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In this paper we describe numeric as well as symbolic algorithms for the enumeration of substitutional
isomers with an unlimited number of different achiral substituents. We consider three different scenarios:
first, the enumeration of diamutamers with a given set of ligand types and ligand multiplicity, second, the
enumeration of diamutamer libraries with a given ligand assortment pattern, and, third, the enumerations of
libraries with diamutamers exhibiting a limited number of ligands.

1. INTRODUCTION

Chemical compounds that exhibit identical molecular
formulas but differ in constitution are calledisomers. Isomers
with constitutions that exhibit the same central skeleton but
differ in the arrangement of ligands are calleddiamutamers.1

A set of diamutamers that one assembles given a central
skeleton and an unlimited supply ofn ligand types is called
a library. The algorithms introduced below efficiently
calculate the number and library size of diamutamers with
one or more types of achiral ligands of specified, unspecified,
and partially specified multiplicity.

Prior to any isomer, diamutamer, or library enumeration,
one has to determine two criteria. First, one has to define
the ensemble of chemical compounds to be considered in
the enumeration. This is usually done by listing the common
properties, such as the number and types of atoms or
subgroups, constitutions, and configurations. Second, one has
to specify the conditions under which two compounds are
to be regarded equivalent. This is done with the help of
symmetry transformations that define an equivalence relation
between identical isomers. Obviously, many different kinds
of isomer enumerations are possible. Here, we limit our
considerations to configurational diamutamers with achiral
substituents.

The enumeration algorithms described in this paper are
implemented in a program called ISOMERS.2 We assume
that the reader is a potential user of this program and thus
proceed as follows. We begin with the input data. As
mentioned above, the input data consist of diamutamer
ensemble specifications and of applicable spatial symmetry
transformations determining the isomer equivalence. The
ensembles are defined through a diamutamer skeleton, the
binding sites, and the types, number, and assortment of
achiral ligands. The symmetry transformations are provided
as binding site permutations. The construction and classifica-
tion of the binding site permutations, the derivation of Po`lya

cycle indices, and a point group identification scheme for
input verification are the subject of section 2. We conclude
section 2 with the Cauchy-Frobenius lemma, a prerequisite
for all the enumeration algorithms that follow. Section 3
introduces an algorithm that enumerates diamutamers with
given ligand types and multiplicities. This algorithm utilizes
the Pòlya theorem3 by efficiently calculating the coefficients
of expanded Po`lya polynomials. In section 4 we generalize
the previous algorithm to enumerate diamutamer libraries
with specified ligand assortment patterns. This method can
also be used to enumerate libraries of diamutamers with a
limited number of attached ligands. However, another
procedure introduced in section 5 is far superior. It is
especially tailored for counting diamutamers with ligands
of arbitrary composition but fixed number. Section 6
introduces the program ISOMERS, written in the computer
algebra language MATHEMATICA.4 An example calcula-
tion of cyclohexane demonstrates the handling of the
program. Other more elaborate diamutamer enumerations
illustrate the scope of the software.

2. POÅ LYA CYCLE INDICES

The main ingredient for all our enumeration algorithms
are Po`lya cycle indices. These cycle indices encode the
relevant information about a diamutamer and its symmetry
and number of binding sites. In this section we discuss the
generation of Po`lya cycle indices. We start with a parent
compound and a set of substituent types. The parent
compound, also referred to as the skeleton, should exhibit a
limited number of binding sites, to each of which at most
one substituent may be attached in just one way. The supply
of an arbitrary number of achiral substituents may consist
of a given number of different substituent types.

2.1. Symmetry Group. We want to count all possible
ways to arrange and attach substituents to a parent compound.
This task is not trivial, because spatial symmetries of the
parent compound render some substituent patterns equivalent.
Two or more substituent patterns are indistinguishable, if
there exists a symmetry transformation of the parent com-
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pound, typically a rotation, that maps the two or more
substituent patterns into one another (e.g., 1,3-dibromobenzol
and 3,5-dibromobenzol, where the latter does not obey the
rules of nomenclature). These symmetry transformations
partition the set of all possible substituent patterns into
distinct equivalence classes, each encompassing all those
compounds that can be transformed into each other. The task
is to enumerate these isomer equivalence classes. They
represent the distinguishable isomers.

To count the isomer equivalence classes, we have to
identify the symmetry transformations that define them.
Symmetry transformations are maps that take each atom and
each bond of a compound into an image that is congruent
with the original compound. Hence, each atom maps into
an atom of the same type, and each bond maps into a bond
of the same kind.

We distinguish three kinds of symmetry transformations.
(1) Rotations: rotations are symmetry transformations that
rotate a compound as a whole in three-dimensional Euclidean
space around one or more axes. (2) Reflections/inversions:
reflections map each part of a parent compound across a
plane into a mirror image. Inversions flip every (atom)
position vector across an origin into the opposite direction.
(3) Conformational transformations: conformational trans-
formations are symmetry transformations that affect the
chemical bonds of a parent compound by twisting, or
rotating, them. Rotations and reflections as well as inversions
may be part of a conformational transformation.

Rotations do not alter chemical compounds in any way.
One can always perform a rotation on an actual chemical
compound. It may, however, not be possible to obtain a
reflected or inverted diamutamer without altering the struc-
ture of the parent compound. Any molecule that cannot be
rotated into its mirror image is a chiral molecule, hence the
distinction between rotations and reflections/inversions.
Nevertheless, rotations and reflections/inversions have one
property in common. They are spatial symmetry transforma-
tions that leave one fix point invariant, thus the namepoint
group transformation.

The symmetries of rigid structures are limited to point
group symmetries. Chemical bonds, however, may not
always be viewed as rigid links. Some bonds can be twisted;
some dihedral angles alongσ-bonds can be rotated. This
allows some molecules to change their conformation. In
combination with rotations and reflections, we thereby obtain
symmetry transformations that extend the set of point group
transformations. Since a molecule may have to overcome
an energy barrier to change its conformation, we treat
conformational transformations separately, so that one can
include or exclude them in an isomer enumeration.

We apply the above symmetry considerations to a dia-
mutamer skeleton and use methane CH4 as an instructive
example. The central carbon atom of CH4 forms the skeleton.
Each of the four hydrogen ligands H may be substituted and
represents a substituent site. We label these substituent sites
with labels 1, 2, 3, and 4. The central C atom of methane
and its sp3 hybrid orbitals exhibit a simple tetrahedral
symmetry as depicted in Figure 1. For larger skeletons the
symmetry identification may be more difficult and may
require the help of a computer program such as SYMMOL.5

Mathematically, symmetries are encoded as invariances
under symmetry transformationsg. These symmetry trans-

formations can be classified according to the three categories
above: rotations, reflections/inversions, and conformational
transformations.

Each symmetry transformationg induces a permutation
pg of substituent sites. All these site permutations have to
be taken into account. Fortunately, it is sufficient to identify
the permutations of only those symmetry transformations
with which all others can be performed via concatenation.
A set of such symmetry transformations is called a generator
set. In the case of methane three generators are needed. Two
generators are rotations, one 3-fold and the other 2-fold. Their
axes,6 C3 andC2, are shown in Figure 1. The third generator,
a reflection, is depicted by a reflection plane,7 σ. No
conformational transformations are present in this example.
The resulting permutations of methane’s four substituent sites
are

These generators form permutation groupPG with 24
elementspg representing the 24 transformationsg of meth-
ane’s symmetry groupG.

2.2. Point Group Identification. The program ISOMERS
automatically generates the permutation groupPG. With PG

at hand, it is possible to derive the necessary group properties
to obtain the Po`lya cycle index and, equally important, to
identify the symmetry groupG in retrospect, thereby
verifying the permutation group generators. To achieve this,
we determine the conjugate equivalence classes and cycle
structures of permutation groupPG, as presented for methane
in Table 1.

The conjugate equivalence relation

partitions the set of group elements into conjugate equiva-

Figure 1. Methane CH4 and its symmetries depicted by a
tetrahedron with three of its point group symmetry transformations,
C2, C3, andσ.

pC3
) (1 2 3 4

1 3 4 2)
pC2

) (1 2 3 4
2 1 4 3)

pσ ) (1 2 3 4
2 1 3 4)

pa ≡ pb S ∃ pc ∈ PG, with pc‚pa‚pc
-1 ) pb
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lence classes. The number of group elements in each of these
classes (for methane, see the first column of Table 1) is the
first criterion to identify the point group.

Furthermore, rotations around ann-fold axis give rise to
a group cycle{Cn, C n

2, ..., E ) C n
n}, whereCn denotes a

rotation of (1/n)360°, C n
2 ) Cn‚Cn represents a rotation of

(2/n)360°, and C n
n stands for a 360° rotation, which is

equivalent to the identity transformationE. We determine
the group cycles in the permutation subgroup representing
pure rotations. These group cycles allow us to identify the
rotations and to label the subgroup elements according to
C n

p (for variations in notation found in the literature see ref
8). For point group elements containing a reflection or
inversion, we proceed accordingly and place aσ in front of
C n

p to indicate a pseudorotation. We count the number of
group elements with a given label in each equivalence class
and obtain a point group cycle structure like the one in the
second column of Table 1. For each label the number of
corresponding group elements is appended in parentheses.
The point group cycle structure is the second criterion to
identify the point group.

The number and size of equivalence classes and the cycle
structure ofPG are almost sufficient to uniquely identify the
corresponding point groupG. However, there are point
groups G that have isomorphic permutation groupsPG

exhibiting the same equivalence classes as well as cycle
structures. These point groups are in Schoenflies notation:9

It is impossible to discriminate the point groups in (1) given
the site permutations representing rotations and reflections/
inversions.

The program ISOMERS renders the identified point groups
G in Schoenflies notation, which, in the case of methane, is
Td. This extra feature of ISOMERS is not needed for a
diamutamer enumeration, but greatly helps to eliminate errors
in the input data.

2.3. Pòlya Cycle Index Construction.The most compact
mathematical encoding of the skeleton symmetry data is a
Pòlya cycle index. Here we explain how to construct such

an index. The motivation and theoretical background will
be given in the next section.

To derive a Po`lya cycle index Z(PG), we take the
substituent site permutationspg and determine the length of
each permutation cycle. This only needs to be done for one
permutationpg per equivalence class, since the length of the
permutation cycles does not vary within a conjugate equiva-
lence class. The results for methane are displayed in the third
column of Table 1. To construct a Po`lya cycle indexZ(PG),
one replaces each permutation cycleci(pg) of length|ci(pg)|
with an index variablef|ci(pg)|; in this fashion one converts
each substituent permutationpg into a product of index
variables, one sums over all permutationspg, and finally
divides the sum by the number of permutation group
elements|PG|. The result is a Po`lya cycle index

For methane we can determine two Po`lya cycle indices,
one excluding the reflection symmetryσ, and one including
it. The Pòlya cycle index for methane excluding reflections
is

The Pòlya cycle index for methane including reflections is

This concludes the survey of input data. Most of the steps
above are automated in the ISOMERS program. The Po`lya
cycle index is the starting point for all enumeration schemes
that follow.

2.4. Cauchy-Frobenius Lemma. The Cauchy-Frobe-
nius lemma is the cornerstone of many enumeration schemes,
including methods utilizing Polya’s polynomial. To state the
lemma of Cauchy and Frobenius, we introduce a few group
theoretical terms.

(1) PG denotes a finite group consisting of permutations
pg, which permute the elementsx of ordered setX. The
permutationspg are bijective mapspg:X f X representing
the symmetry transformationsg of point groupG with pg: x
f pg(x), (pg‚pg′)(x) ) pg′(pg(x)), pg-1(x) ) pg

-1(x), andpε(x)
) x. X will denote the set of distinguishable as well as
indistinguishable diamutamers.

(2) ωG(x) represents the set{pg(x)|pg ∈ PG} for a givenx
∈ X. The ωG(x) with x ∈ X form equivalence classes with
respect to the equivalence relationx ≡ x′ S ∃ pg ∈ PG, with
pg(x) ) x′. TheωG(x) will represent the isomer equivalence
classes representing the indistinguishable isomers.

(3) ΩG(X) is the set of all classesωG(x) with x ∈ X
generated byPG. Thus, ΩG(X) is the set of disjoint
equivalence classes inX. ΩG(X) will denote the set of all
distinguishable isomers.

(4) Xpg is the set of fix points{x ∈ X|pg(x) ) x} under a
single permutationpg.

(5) (PG)x is the stabilizer{pg ∈ PG|pg(x) ) x} of x ∈ X.
(PG)x is the largest subgroup ofPG that leavesx invariant.

Table 1. Conjugate Equivalence Classes and Point Group Cycle
Structures of the Tetrahedral Point GroupTd

a

conjugate
class size

point group
cycle structure

permutation sample
in cyclic notation

1 E (1) (2) (3) (4)
8 C3 (4), C 3

2 (4) (1) (342)
3 C2 (3) (21) (43)
6 σC4 (3), σC 4

3 (3) (2341)
6 σ (6) (21) (3) (4)

a The first column lists the number of permutations in each conjugate
class. The second column displays the point group cycle structures.
The notation is explained in the text. The third column lists permutation
examples whose partition into permutation cycles is a property of their
conjugate class.

Z(PG) )
1

|PG| ∑
pg∈PG

(∏
i

f|ci(pg)|) (2)

Z(methane)) (1/12)(f 1
4 + 8f1f3 + 3f2

2)

Zσ(methane)) (1/24)(f 1
4 + 8f1f3 + 3f 2

2 + 6f4 + 6f 1
2f2)

S2 ≡ C1h ≡ C1 ≡ Cs

C2h ≡ C2v

S4n+2 ≡ C(2n+1)h

D(2n+1)d ≡ D(2n+1)h
}n ∈ IN

(1)
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In an isomer enumeration we determine the cardinality
|ΩG(X)|, which is the number of elements of the setΩG(X)
of all isomers equivalence classesωG(X). Instead of counting
all ωG(x) ∈ ΩG(X) the Cauchy-Frobenius lemma (3) allows
us to enumerate the fix pointsXpg.

A proof can be found in ref 10.

We apply the Cauchy-Frobenius lemma (3) to a diamu-
tamer enumeration as follows. Initially, we are given a
diamutamer skeleton withs substituent sites and a setL
containingn ligand types. A diamutamer is represented by
a mapê: B f L, associating every substituent site inB with
a ligand type inL (see Figure 2). We assume the setLB of
all possible mapsê to be the setX.

Point group transformationsg rotate and transform a
diamutamer skeleton and thereby permute the substituent
sites inB according to a site permutationp̃g(B). Each site
permutationp̃g induces a permutation of mapsê ∈ X.

We thereby have obtained all the necessary ingredients to
apply the Cauchy-Frobenius lemma (3): an ordered setX
and a permutation groupPG operating onX. The setsωG(ê)
are the isomer equivalence classes. To enumerate the
diamutamers, we have to determine the number of classes
|ΩG(X)|.

According to the Cauchy-Frobenius lemma (3), we only
have to count the number of fix points|Xpg| for all pg ∈ PG.
This turns out to be a simple task, since fix point mapsê ∈
Xpg are easily constructed. To obtain an invariant mapê for
a given site permutationp̃g, one has to ensure that all the
substituent sites within a permutation cycleci(p̃g) are mapped
onto the same ligand type as shown in Figure 2. The
permutations of substituent sites within a cycle do not affect
such a map. Site permutations between cycles do not occur.
Hence, we are looking at an invariant mapê, a fix point of
permutationpg.

The following three sections address the enumeration of
fix points |Xpg| under three different enumeration constraints.
The section about Po`lya polynomial expansion focuses on
the enumeration of invariant maps fromB into L with given

multiplicity for each ligand type. We ease the constraint of
ligand multiplicity in the subsequent section by specifying
ligand assortment patterns instead. The third section features
an algorithm that enumerates libraries of diamutamers with
limited numbers of attached ligands.

3. PÒLYA POLYNOMIAL EXPANSION

Before addressing the problem of Po`lya polynomial
expansion, we quickly recapitulate the concept of Po`lya
polynomials and the relation to the Cauchy-Frobenius
lemma.

3.1. Pòlya Polynomial. To count the number of fix points
|Xpg|, one can simply state the different ways on how to
construct an invariant mapê. Taking Figure 2 as an example,
we could attach one H, one Cl, or one Br tob1, and connect
three H, three Cl, or three Br atoms tob2, b3, andb4, and,
finally, assign two H, two Cl, or two Br atoms tob5 andb6.
Rewriting this in Boolean logic, we obtain

According to the distributive law of Boolean logic11 one
can expand (4) to

Every line in (5) is an invariant mapê, and the expansion
of (4) delivers all invariant maps underpg.

The expansion of a Boolean expression corresponds to the
expansion of a polynomial if one replaces the∧’s by
multiplication and the∨’s by addition. In this way one can
apply polynomial calculations to the enumeration of invariant
maps. To do so, we simply replace each mapbi f X by the
corresponding ligand variable X, all∧’s by ×, and all∨’s
by +. The boolean expression (4) is represented by

and expands to

Figure 2. A diamutamer is represented by a mapê matching the
susbtituent site inB with the ligand types inL. The circles inB
represent the cyclesci(p̃g) generated by a site permutationp̃g. The
mappingê shown is invariant under permutationp̃g and thus a fix
point.

|ΩG(X)| )
1

|PG| ∑
pg∈PG

|Xpg
| (3)

pg(ê)(B) ) ê(p̃g(B))

(H + Cl + Br)(H3 + Cl3 + Br3)(H2 + Cl2 + Br2) (6)
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Every monomial in (7) stands for an invariant mapê. The
variables of the monomials indicate the assortment of ligand
types.12 The monomial H4Cl2, for example, represents an
invariant map with four hydrogen and two chlorine atoms.
The coefficient in front of H3Cl3 indicates the existence of
2 invariant maps with three hydrogen and three chlorine
atoms. In this fashion, the polynomials can be used as
generating functions to count the numbers|Xpg| of invariant
maps under permutationpg. The generating function of|Xpg|
for a given assortment of ligand types is

The Cauchy-Frobenius lemma (3) sums over|Xpg| for all
pg ∈ PG. Thus, we obtain a generating function for|ΩG(X)|
by substituting (8) for|Xpg| in (3).

(9) is called thePòlya polynomial. Comparing the Po`lya
polynomial (9) with the Po`lya cycle index (2), we find the
simple connection.

Consequently Po`lya cycle indices can be used to construct
the corresponding Po`lya polynomials. Expanding a Po`lya
ploynomial, we find as coefficients the number of diamu-
tamers|ΩG(X)| for a given assortment of ligand types as
indicated by the monomials.

To complete this short introduction, we enumerate the
number of diamutamers for methane, substituting three of
the four hydrogens H with two ligands A and one ligand B.
Disregarding the set of possible ligandsL ) {A, B, H}, we
first replace the index variablefk by (x1

k + x2
k + x3

k + x4
k),

because methane has four substituent sites and can accept
up to four ligandsx1, x2, x3, andx4. We then take the Po`lyas
polynomial resulting from the methane Po`lya cycle index
(excluding reflections) and expand it. We extract the coef-
ficient of monomial x1x2

2x3,x1 representing one hydrogen
atom H,x2

2 denoting two ligands A, andx3 standing for one
ligand B. The coefficient we find is 1. Hence, there is only
one possible configuration and consequently only one
stereoisomer for CHA2B.

Considering Po`lyas cycle indices and polynomials with
or without reflections and with or without conformational
transformations, one can enumerate configurational or con-
formational stereoisomers as well as configurational or
conformational diastereoisomers.

3.2. Polynomial Expansion.Given a generating polyno-
mial, we need to find its expansion coefficients. For small
polynomials this task can be handled by a built-in MATH-
EMATICA command called Coefficient.

For the previous methane example we enter

The built-in Coefficient routine can process any kind of
polynomial, but may demand large amounts of memory and
processor time to do so. We therefore introduce a far more
efficient algorithm that determines the coefficients of Po`lya
polynomials in a fraction of the time, especially for com-
pounds with many substituent sites. The increase in process-
ing speed for methane with four substituent sites is 40%,
cyclohexane with 12 substituents is calculated 4 times faster,
and kekulene with 24 sites is processed already 80 times
faster.

We were able to achieve this tremendous increase in speed
by specializing on Po`lya polynomials. All generating func-
tions encountered are linear combinations of the following
polynomial type:

With respect to (11) we can rewrite the Po`lya polynomial
GF for methane in the MATHEMATICA input above as

The algorithm, introduced here, determines the expansion
coefficients ofS(Rb;xb). Once the expansion coefficients of
S(Rb;xb) are calculated, one can assemble the expansion
coefficients of the complete generating function GF linearly
(see (25)).

We determine the expansion coefficients ofS(Rb;xb) by
rewriting polynomialS(Rb;xb) in an expanded form as depicted
in (12). We can, thus, extract a formula for the expansion
coefficientsø(R1,R2,...,Rm)

(µ1,µ2,...,µn) .

First, we expand the polynomial factors (x1
k‚x2

k...xn
k)Rk in

(11) utilizing the formula for multinomials in (13) and (14).

H6 + H5Cl + H5Br + H4Cl2 + H4Br2 + 2H3Cl3 +
H3Cl2Br + ... + ClBr5 + Br6 (7)

∏
i

(∑
X∈L

X|ci(pg)|) (8)

1

|PG| ∑
pg∈PG

∏
i

(∑
X∈L

X|ci(pg)|) (9)

f|ci(pg)| ) ∑
X∈L

X|ci(pg)| (10)

S(Rb;xb) :) (x1 + x2 + ... + xn)
R1‚(x1

2 + x2
2 + ... + xn

2)R2...

(x1
m + x2

m + ... + xn
m)Rm

) ∏
k)1

m

(x1
k + x2

k + ... + xn
k)Rk (11)

Rb :) {R1, R2, ...,Rm}

xb :) {x1, x2, ...,xn}

GF(xb) ) 1
12

S({4,0,0,0};xb) + 3
12

S({0,2,0,0};xb) +

8
12

S({1,0,1,0};xb)

S(Rb;xb) ) ∑
µ1,µ2,...,µn

ø(R1,R2,...Rn)
(µ1,µ2,...,µn)‚x1

µ1‚x2
µ2...xn

µn (12)

(x1 + x2 + ... + xn)
R ) ∑

a1,a2,...,an

∑
n

j)1
aj)R

R!
a1!a2!...an!

‚x1
a1‚x2

a2...xn
an

(13)
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Evidently, the above equation remains valid after substitut-
ing xi

k for xi.

To distinguish them polynomial factors ofS(Rb;xb), we
attach to exponentR and to all nonnegative integersaj in
(14) an additional indexk. Inserting (14) into (11) yields

For convenience we will use the following notation for
multinomial coefficients.

In the next step we expand the product of multinomial
factors by applying the generalized distribution law (17).

Setting qhk ) (Rk
abk

)x1
k‚ak1‚x2

k‚ak2...xn
k‚akn and hk ) abk with

∑j)1
n akj ) Rk yields

Each summand of (18) consists of a product with numerous
xj

k‚akj factors. These factors are indexed byk and j so that
one can rewrite thexj

k‚akj products in condensed form as a
double product.

We leave the multiplication with respect toj untouched and

convert the product with respect tok into a summation of
the exponent ofxj.

We abbreviate the exponent of eachxj with µj :) ∑k)1
m k‚akj.

Then we collect all monomials exhibiting the same exponent
pattern. We, thus, split the summation in (18) into a
summation overµj and a subsummation over allakj with
∑j)1

n akj ) Rk as well as∑k)1
m k‚akj ) µj.

Note that givenµj ) ∑k)1
m k‚akj the sum of exponents

∑j)1
n µj is a constant valueσ :) ∑k)1

m k‚Rk as can be seen in
(22), where∑j)1

n akj ) Rk encountered in (16) is used.

Comparing the expanded sum in (21) with the polynomial
in (12), we can extract the terms for the coefficients
ø(R1,R2,...,Rm)

(µ1,µ2,...,µn) .

Hence, to find a coefficientø(R1,R2,...,Rm)
(µ1,µ2,...,µn) for a given tupleRb

andµb, we have to sum over products of multinomials for all
nonnegative integersajk satisfying the conditions∑j)1

n akj )
Rk and∑k)1

m k‚akj ) µj.
3.3. Algorithm. The heart of the algorithm, introduced

here, consists of a recursive strategy that generates all admis-
sible sets of nonnegative integersakj. To explain the strategy,
we rewrite the conditions∑j)1

n akj ) Rk and∑k)1
m k‚akj ) µj in

the form of a table (24).
The kth row k‚ak1 k‚ak2 ... k‚akn ∑ Rk stands for∑j)1

n k‚akj

) Rk. Accordingly, thejth column stands for∑k)1
m k‚akj )

µj.
TheRk’s andµk’s andmandn are given. The nonnegative

integersakj must be found. The strategy consists of two
recursions, one nested within the other. The outer recursion

(x1
k + x2

k + ... + xn
k)R )

∑
a1,a2,...,an

∑
n

j)1
aj)R

R!
a1!a2!...an!

‚x1
k‚a1‚x2

k‚a2...xn
k‚an (14)

S(Rb;xb) ) ∏
k)1

m ( ∑
ak1,...,akn

∑
n

j)1
akj)Rk

Rk!

ak1!...akn!
‚x1

k‚ak1...xn
k‚akn) (15)

(Rk

Rbk
) :)

Rk!

ak1!ak2!...akn!
(16)

abk :) {ak1, ak2, ...,akn}

ak :) ak1 + ak2 + ... + akn

∏
k)1

n

(∑
hk)1

mk

qhk) ) ∑
h1)1

m1

...∑
hn)1

mn

(∏
k)1

n

qhk)
) ∑

...,hk)1,...

...,mk,...

(∏
k)1

n

qhk) (17)

S(Rb;xb) ) ∏
k)1

n ( ∑
ak1,...,akn

∑
n

j)1
akj)Rk

(Rk

abk
)‚x1

k‚ak1...xn
k‚akn)

) ∑
...,akj,...

∑
n

j)1
akj)Rk

(∏
k)1

m (Rk

abk
)‚x1

k‚ak1...xn
k‚akn) (18)

S(Rb;xb) ) ∑
...,akj,...

∑
n

j)1
akj)Rk

(∏
k)1

m (Rk

abk
))‚(∏

j)1

n

∏
k)1

m

xj
k‚akj) (19)

S(Rb;xb) ) ∑
...,akj,...

∑
n

j)1
akj)Rk

(∏
k)1

m (Rk

abk
))‚(∏

j)1

n

xj
(∑k)1

m k‚akj)) (20)

σ ) ∑
j)1

n

µj ) ∑
j)1

n

∑
k)1

m

k‚akj

) ∑
k)1

m

k‚(∑
j)1

n

akj) ) ∑
k)1

m

k‚Rk (22)

ø(R1,R2,...,Rm)
(µ1,µ2,...,µn) :) ∑

...,akj,...

∑
n

j)1
akj)Rk

∑
m

k)1
k‚akj)µj

∏
k)1

m (Rk

abk
) (23)
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reduces the equation table (24) by one row at a time, from
bottom to top. The inner recursion eliminates one column
in each recursion step, doing so from right to left.

3.4. Outer Recursion. We commence with the outer
recursion. Given a tupleRb and a tupleµb, we first determine
the maximum nonnegative integer values admissible for the
amj entries in rowm. Sincem‚amj is part of thejth column
that forms the sumµj, and since all summands in that sum
are nonnegative, we must observe the inequalitym‚amj e

µj. Hence, the largest possible value foramj is given bybj
(m)

) µj/m. The expressionµj/m stands for the greatest integer
value smaller than or equal toµj/m. Equipped withRm and
tuplebB(m), the inner recursion, defined in a separate function
and described below, generates all admissible tuplesabm with
amj e bj

(m) and∑j)1
n amj ) Rm. For each of these admissible

tuplesabm, we now perform a recursion step from rowm to
(m - 1). Be aware that at this point the recursion splits into
one or more branches, one branch for each admissible tuple
abm ) {am1, am2, ..., amn}. First, we storeabm as part of one of
the final solutions. Second, we subtractm‚abm from µb and
keep the result as the new tupleµb. Third, we remove the
mth row from the equation table (24) and repeat the above
procedure, this time for row (m - 1).

There are two scenarios which cause the outer recursion
to halt. In the first scenario, the recursion reaches the first
row with m ) 1. We thus obtain a complete set of{ab1, ab2,
..., abm} values with which we can calculate a summand in
(11). In the second scenario, the inner recursion renders no
solution for abk in a kth outer recursion step. Then the
prospective solution{ab1, ab2, ..., abk} of the affected outer
recursion branch must be discarded.

Remember that the outer recursion splits into one or more
branches at each recursion step. Hence, we obtain a tree
structure of solutionsabk. For every leaf of this tree structure
we can extract a complete solution{ab1, ab2, ..., abm} by
collecting tuplesabk at each branch as we go from the root to
a given leaf. The expansion coefficientø is zero, if the outer
recursion fails to produce any solution.

3.5. Inner Recursions: Bounded Distributions.We still
have to describe the inner recursion. As noted above, the
inner recursion starts with an integer value forR and an
n-tuple of nonnegative integer upper boundsbB. Here we omit
indexk for easier reading. The inner recursion has to render
all tuplesab that comply with∑j)1

n aj ) R andaj e bj for all
j ) 1, ..., n. Setting it differently, we are looking for all
distributions ofR items inton bins with upper boundsbj.
We therefore refer to the inner recursion as thebounded
distribution function. We start the inner recursion by
calculating the range of admissible values ofa1; we then
proceed to deal witha2 and so forth. An upper bound for
admissiblea1 values is given either byR, due to∑j)1

n aj )
R, or by b1, whichever is smaller. Consequently,a1 e min-

(R, b1). A lower bound fora1 is 0, sincea1 has to be a
nonnegative integer. Furthermore, a lower bound fora1 is
given when all other summandsajg2 assume their maximum
valuesbjg2. Thena1 has to assume its smallest value to allow
for a1 + ∑j)1

n bj ) R. Thus,a1 g R - ∑j)2
n bj. The lower

bound is therefore given bya1 g max(0,R - ∑j)2
n bj). Each

integer value within the interval [max(0,R - ∑j)2
n bj), min-

(R, b1)] is admissible fora1. For each admissiblea1 value
we perform a separate recursion step. Hence, the inner
recursion may split into several branches, just as the outer
recursion. For every branch we save the correspondinga1

value and remove it from the sum∑j)1
n aj ) R by subtract-

ing a1 from R. Then, we repeat the inner recursion fora2 by
settingab ) {a2, a3, ..., an} and bB ) {b2, b3, ..., bn}, and
taking the reducedR into account. The inner recursion halts
with an ) R - ∑j)1

n-1aj. The inner recursion never stops
prematurely if a range of admissible values fora1 exists.
This is obvious since we have chosen the lower interval
boundary ofa1 to allow for a solution of allaj’s. If one cannot
find an admissible value fora1, no solution exists.

Again, as with the outer recursion, we obtain a tree
structure of solutions. For every leaf of this tree structure
we can extract a complete solutionab ) {a1, a2, ..., an} by
collecting the admissibleaj values at each branch going from
the root of the tree structure to the given leaf.

3.6. Assembly of Expansion Coefficients.We now return
to (11). Any generating function that we encounter consists
of summandsS(Rb;xb) with different tuplesRb. We obtain the
expansion coefficientsγ(µb) of such a generating function by
summing up the respective multiples of all corresponding
summand coefficientsø(Rb)

(µb) with the same exponent signa-
ture (µb).

With this result we conclude the discussion of our Po´lya
polynomial expansion algorithm. The expansion coefficients
γ(µb) of GF(xb) in (25) render the number of equivalence classes
in ΩG(X) and thus the isomer count for diamutamers with
specified ligand multiplicity.

4. LIBRARIES WITH SPECIFIED LIGAND
ASSORTMENT PATTERNS

In the previous section we performed the enumeration of
isomer ensembles. Every diamutamer consisted of the same
central skeleton and the same set of ligands. We now turn
to the enumeration of diamutamer libraries. The ensembles
(or libraries) to be enumerated consist of diamutamers that
exhibit the same central compound but not necessarily the
same set of ligands. Instead we assume an unlimited supply
of substituents with a specified range of ligand types. The
substituents of the diamutamers are all taken from the same
supply, but the ligand selection may be different. Within one
library one may therefore encounter diamutamers with
different molecular formulas, hence chemical compounds that
are not isomeric.

GF(xb) ) cS(Rb;xb) + c′S(Rb′;xb) + c′′S(Rb′′;xb) + ...

) ∑
µ1,µ2,...,µn

γ(µ1,µ2,...,µn)‚x1
µ1‚x2

µ2...xn
µn (25)

γ(µb) :) cø(Rb)
(µb) + c′ø(Rb′)

(µb) + c′′ø(Rb′′)
(µb) + ...
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In this section we enumerate libraries consisting of
diamutamers with a specified ligand assortment pattern. The
emphasis lies on the wordpattern. We already considered
diamutamers with a specified ligand assortment in the
previous section. A ligand assortment pattern is the partition
of attached substituents into subsets. Each subset denotes a
substituent group of an unspecified ligand type. Different
subsets represent different ligand types. We thereby limit
an ensemble of diamutamers to compounds that exhibit a
certain molecular formula pattern. All possible ligand as-
sortment patterns for methane are listed in the first column
of Table 2 as an example.

Given a ligand assortment pattern and a supply of ligand
types, one has to be aware of the many combinations with
which the available ligand types can be distributed into the
ligand assortment pattern. Determining this number of
combinations we can convert an enumeration of libraries with
ligand assortment patterns into an enumeration of isomer
ensembles consisting of diamutamers with a specified set of
ligands.

We solve this task step by step considering more and more
assortment patterns.

First, we address an assortment pattern that equally
partitions the set of attached substituents intok different
ligand types, each partition encompassingm substituents.
Obviously, k needs to be smaller thann, the number of
supplied ligand types. A substituent selection such as
AmBmCm...Km satisfying the pattern is uniquely specified by
the k-element subset A, B, C, ..., K. The order of ligand
types in the selection is irrelevant, since a ligand assortment
pattern refers to the Chemical Abstract Formula Index, which
may have a sorted notation convention, but which does not
imply any structural order (e.g., formula C6H2Br2Cl2 is
equivalent to C6H2Cl2Br2 or C6Br2Cl2H2). To find the number
of possible substituent selections such as AmBmCm...Km, we
have to determine the number ofk-element subsets in the
set of n ligand types. The solution to this well-known
problem is the binomial coefficient (k

n). Consequently,
having access to a supply ofn ligand types, one can create
( k

n) different selections ofk elements. Each ligand selection
leads to the same diamutamer enumeration, since these
enumerations are independent of the particular ligand types.
Only the abstract partitions into different ligand types are
relevant.

Second, we approach assortment patterns with partitions
of different sizes via recursion. We begin by considering
partitions of a certain size only. We assume to findk1 of
these partitions. We can then distributek1 of then available
ligand types into thek1 partition bins. As mentioned above,
there are (k1

n ) combinations. We initiate a recursion step by

extracting all partitions of another size. If there arek2

partitions of this other size, we can distributek2 of then -
k1 ligand types not yet in use. The resulting combinatorial
factor is (k2

n-k1). In the next recursion step, we extractk3

partitions of still another size, distribute then - (k1 + k2)
unused ligand types, and obtain the combinatorial factor
( k3

n-(k1+k2)). We can proceed this way until all partition sizes
are accounted for.

The resulting combinatorial factors for the methane
example are listed in the second column of Table 2. We can
infer from the fourth row of Table 2 that one can assemble
( 1

n)( 2
n-1) methane diamutamers of type CX2YZ given a

supply of n ligand types. According to the last row, there
are two (4

n) methane diamutamers of type CXYZW. Note
that in the last case every ligand selection amounts to two
diamutamers.

We can utilize this library enumeration scheme also for
libraries with no or partially specified ligand assortment
patterns. We simply have to sum over all admissible
assortment patterns. This approach may, however, be very
tedious, if the number of admissible assortment patterns is
large. For example, to enumerate an unrestricted library for
methane, we must sum over all five patterns listed in Table
2, obtaining (1

n) + ( 1
n)( 1

n-1) + ( 2
n) + ( 1

n)( 2
n-1) + 2( 4

n) ) n2-
(11 + n2)/12 diamutamers. This might be acceptable, but
the enumeration of the C60 fullerene diamutamer library
results in a summation of over 966 467 ligand assortment
patterns,13 a task that takes today’s personal computers days
to complete. In such a case the algorithm introduced in the
next section is far superior.

5. LIBRARIES WITH A SPECIFIED NUMBER OF
ATTACHED LIGANDS

We continue with the enumeration of diamutamer libraries.
However, we no longer specify the ligand assortment pattern.
The only constraint upon the library ensemble is now the
number of attached ligands. We achieve an enumeration of
such an ensemble not via Po`lya polynomials as in sections
3 and 4, but through a new algorithm counting the number
of fix points Xpg in the Cauchy-Frobenius lemma (3) under
the new constraint.

We start with the special case in which the number of
attached ligandss is the same as the number of binding sites
|B|. This scenario is equivalent to the enumeration of
unrestricted libraries. We recall the construction of invariant
diamutamer mapsê as discussed in section 2.4 and Figure
2. A mapê is invariant under a site permutationp̃g, if all
the sites within a permutation cycle are mapped onto the
same ligand type. Hence, we can choose to map every
permutation cycle, or rather its elements, onto|L| different
ligand types. We useη(pg) to denote the number of
permutation cycles inB. The number ofpg-invariant maps
is then based onη(pg) ligand type choices, amounting to
|L|η(pg) possibilties. Inserting this number of fix points|Xpg|
into the Cauchy-Frobenius lemma (3), we derive

(26) is the known enumeration formula for unrestricted
diamutamer libraries.

Table 2. Substituent Patterns and the Corresponding Combinatorial
Factors of Methane (First Two Columns) and The Number of
Isomers for the Substituent Pattern in Column One (Last Column)

pattern
multiplication

factor
no. of

isomers pattern
multiplication

factor
no. of

isomers

CX4 (n
1) 1

CX2YZ (n
1)(n - 1

2 ) 1

CX3Y (n
1)(n - 1

1 ) 1
CXYZW (n

4) 2

CX2Y2 (n
2) 1

|ΩG(X)| )
1

|PG| ∑
pg∈PG

|L|η(pg) (26)
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Pòlya indices (2) are very helpful when constructing (26)
for a particular skeleton. Recall that every Po`lya index
variablef|ci(pg)| denotes a permutation cycleci(pg). Replacing
f|ci(pg)| by |L|, we obtain|L|η(pg) for ∏if|ci(pg)| and (26) for a
Pòlya index (2).

The enumeration of diamutamer libraries becomes more
subtle if one reduces the number of substituents attached to
the central skeleton. We introduce a new ligand type with
the symbol V, representingVacancies, to account for this
modification. Binding sites mapped upon V are now con-
sidered unsubstituted.

As with unrestricted libraries we have to count the
invariant mapsê:B f L ∪ {V}, but with the proviso that
|B| - s binding sites are mapped onto V. Hence, the set of
admissible diamutamer maps is (L|s ∪ {V})B :) {ê|ê:B f
(L ∪ {V}) ∨ |ê-1(L)| ) s}. The number of occupied binding
sites iss, fixed by the condition|ê-1(L)| ) s.

To determine the number of diamutamers, we have to find
the number of fix points|((L|s ∪ {V})B)pg| for each site
permutationpg, the same counting strategy as before. Now,
however, we have to ensure that for all diamutamers exactly
(|B| - s) sites are vacant, i.e., mapped upon V.

Under this constraint, we can only find invariant diamu-
tamer mapsê for a site permutationpg, if pg exhibits a subset
of permutation cycles with altogether exactly (|B| - s)
elements. The elements of these permutation cycles can then
be invariantly mapped upon the (|B| - s) ligands of type V.
After all, any permutation cycle with only part of its elements
mapped upon V would not be invariant under permutation
pg, hence the guideline “all cycle elements or none”.

Once again we use the Po`lya index variablesf|ci(pg)| to
denote the permutation cyclesci(pg) of a site permutation
pg. The product∏if|ci(pg)| represents the number and length
of all cycles of site permutationpg faithfully. We rewrite
the product of index variablesf|ci(pg)| by gathering permutation
cycles of the same lengthl ) |ci(pg)|, and denoting their
multiplicity by an exponente. We thereby obtain an
expression of the formf l1

e1‚f l2

e2...f lj

ej. We thus characterize a
permutationpg with e1 cycles of lengthl1, ..., andej cy-
cles of lengthl j.

To determine the number of fix points|((L|s ∪ {V})B)pg|
by recursive means, we introduce a new function

The function NFs will render the number of fix points under
a permutation with a Po`lya index variable productf l1

e1...f lj

ej.

As a recursion anchor we consider site permutationspg

with permutation cycles of equal lengthl. Such site permuta-
tions are represented by a Po`lya index variable productf l

e.
NFs(f l

e) is equal to 0 if no invariant map can be formed.
This is the case if thes occupied binding sites cannot be
assigned to a subset of complete permutation cycles as
described in Figure 2. Thus, a necessary condition for any
invariant assignment issmodl ) 0. The number of occupied
binding sitess has to be divisible by the cycle lengthl.
Furthermore, there should not be more binding sitess than
the (e‚l) elements of all permutation cycles:s e el.

Once these preconditions are met, there areepermutation
cycles,s/l of which are mapped onto ligand types inL. The

rest will be assigned to V. Obviously there are (s/l
e )

possibilities to selects/l permutation cycles out of a total of
e cycles. For each of these (s/l

e ) selections there are|L|s/l
possibile assignments of thes/l cycles to the|L| ligand types
in L. This is the same reasoning as for unrestricted libraries.
Hence, we obtain the following recursion anchor:

To apply the function NFs to permutationspg with j
different cycle lengths, we construct a recursion step that
reduces the case withj different cycle lengths to the case
with (j - 1) different cycle lengths. The permutationspg

with j different cycle lengths will exhibit a Po`lya index
variable productf l1

e1...f lj-1

ej-1‚f lj

ej. We begin with the ligand
assignments to the permutation cycle of the last Po`lya
variable f lj

ej. The ligand assignments to the remaining
permutation cycles will be handled by the following recursion
steps.

Up front, we do not know how many of thef lj

ej cylces will
be assigned to ligand types inL, and how many will be
assigned to V, and, thus, stay vacant. We therefore have to
sum over all possible scenarios. We can assign 0 or up toej

but no more thans/l j cycles to ligand types inL. Assume
we take an integerk with 0 e k e min(ej, s/l j), and map
k permutation cycles of lengthl j onto L. We obtain, as in
the case of the recursion anchor, (k

ej)|L|k possible invariant
maps. However, we still have the cycles of lengthl1 to l j-1.
The number of invariant maps for these cycles is evaluated
by the following recursion steps, which we obtain via
NFs-k(f l1

e1...f lj-1

ej-1). Note that the number of binding sites to be

occupied has been reduced froms to (s - k). The (partial)
maps of the permutation cycles of different lengths will
combine to complete invariant maps. Hence, the enumera-
tions of all the possible partial maps within a recursion have
to be multiplied. We thus multiply the NFs-k(f l1

e1...f lj-1

ej-1)
possibilities onto the number of invariant maps with cycles
of length l j. Summing over all admissible values ofk, we
derive the recursion step

Obviously the recursion step (27) reduces the number of
cycles with different length. Consequently, the recursion
terminates with the anchor derived above.

So far, function NFs helps us to determine the number of
fix points |((L|s ∪ {V})B)pg| for a single site permutationpg.
According to the Cauchy-Frobenius lemma (3), we have
to perform this calculation for every site permutationpg of
groupPG, add the results, and divide it by|PG| to complete
the diamutamer library enumeration. We can simplify this
procedure. Note that a Po`lya index is a linear combination
of Pòlya index variable products representing the summation
and division just mentioned above. Hence, we simply define
function NFs as a linear operator and apply it to a Po`lya

NFs:f l1

e1...f lj

ej f IN

NFs(f l
e) ) {( s/l

e ) |L|s/l, if s mod l ) 0 ∨ s e el,

0, otherwise

NFs(f l1

e1...f lj-1

ej-1‚f lj

ej) ) ∑
k)0

min(s/lj,ej)(ej

k )|L|kNFs-k(f l1

e1...f lj-1

ej-1)

(27)
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index as a whole. We instantly obtain the result of the
diamutamer library enumeration.

6. THE PROGRAM

The program package ISOMERS.M is written in MATH-
EMATICA4 and readily available to MATHEMATICA users
on the Internet.2 We will try to find a sponsor for a
MATHEMATICA-driven Web page for those who do not
have access to the MATHEMATICA kernel needed to run
ISOMERS.M. The core of ISOMERS.M consists of an
adaptation, a refinement, and a considerable extension of a
program14 given earlier in FORTRAN. ISOMERS.M auto-
mates all the calculations and algorithms introduced in this
paper. The program makes intensive use of the powerful list
and symbolic manipulating features of the computer algebra
language MATHEMATICA. This allows us to enhance the
capacity of the algorithms. We can render symbolic as well
as arbitrarily large, exact numeric results. ISOMERS.M
comes with detailed on-line help and explanations built into
MATHEMATICA's Help Browser.

Here, we provide some sample calculations to illustrate
the handling of the program. We take cyclohexane in its chair
conformation (Figure 3) to compare our results with those
of J. Leonard.15

After loading the ISOMERS.M package, we start by
providing the substituent site permutations according to the
three categories (1) rotations, (2) reflection/inversion, and
(3) conformational transformations.

The symmetry group of cyclohexane can be generated with
four generators. Two of them are rotations, a 2-fold one with
site permutation (8, 7, 6, 5, 4, 3, 2, 1, 12, 11, 10, 9), and a
3-fold one with site permutation (5, 6, 7, 8, 9, 10, 11, 12, 1,
2, 3, 4). Furthermore, cyclohexane is invariant under reflec-
tion with site permutation (1, 2, 11, 12, 9, 10, 7, 8, 5, 6, 3,
4). Besides these point group symmetries, cyclohexane also
exhibits a conformational symmetry transformation. Figure

3 displays the cyclohexane chair conformation before and
after a ring flip. A ring flip in combination with a 60° rotation
around the 3-fold vertical axis is our fourth symmetry
transformation with site permutation (3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 1, 2). We implement these properties of cyclohexane
with the command (note that the subscriptσ identifies the
site permutation of a reflection and c the site permutation of
a conformational transformation)

Now, Cyclohexane is a MATHEMATICA symbol with
which we can retrieve the symmetry generators from our
database. To check the input, we verify the symmetry of
cyclohexane.

The automatically identified point groupsD3d and D6h

agree with those in ref 15. However, some Po´lya cycle
indices determined with our program contradict those in ref
15. Simple consistency checks16 indicate that a few results
of ref 15 must be partially wrong.

The Pólya cycle index for a “rigid” cyclohexane with point
group symmetryD3 and without any conformational ring flips
is (different in ref 15)

Including reflections as in the point groupD3d, we obtain
(same as in ref 15)

The Pólya cycle index for a “nonrigid” cyclohexane with
a symmetry corresponding toD6 is (same as in ref 15)

Figure 3. Cyclohexane in its chair conformation. The numbers
enumerate the hydrogen ligands, the possible substituent sites. The
two displayed conformations are related by a ring flip. The
conformations are invariant under rotations around a 2-fold axis,
C2, and a 3-fold axis,C3, as well as under reflectionσ between the
foreground and background.

|ΩG(L|s ∪ {V})| ) NFs( 1

|PG| ∑
pg∈PG

(∏
i

f|ci(pg)|)) (28)
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Including reflections as in the point groupD6h, we obtain
(different in ref 15)

Due to the discrepancy in Po´lya cycle indices, we
obviously obtain different results in our isomer enumerations.
For example, if we count the number of isomers of
cyclohexane with 12 ligands of type A, B, D, and E, we
calculate for C6A5B4D2E

Here we are still in agreement, since the Po´lya cycle index
of Out[5] is in agreement with ref 15. However, we find
different results for the number of enantiomeric pairs, since
Out[6] contradicts ref 15.

We conclude the cyclohexane example with a symbolic
calculation related to ref 17. The number of compounds with
a cyclohexane skeleton assembled with 12 ligands of at most
n different types is

7. RESULTS AND DISCUSSION

The enumeration of diamutamers is not only of particular
interest in spectroscopy and theoretical chemistry,18 but also
in the expanding field of combinatorial chemistry to estimate
library sizes.19

With the program described above one can derive general
formulas for the number of isomers of multisubstituted
derivatives. This has been done for several organic molecules
in ref 17. Additional examples of larger molecules can be
found at our Web site.20 There, we provide isomer enumera-
tion results for many types of fullerenes, which are of general
interest, and which were previously treated to lesser extent
due to restraints in computer memory and time.21 The
algorithm described in section 5 of this paper drastically
reduces the time needed to derive symbolic formulas for any
diamutamer. For example, initially the derivation of all
isomer enumeration formulas of C60 fullerene17 took several
days. This initial approach was based on the algorithm

described in section 3. The algorithm of section 5 handles
the task in less than 30 s.22

With this program we wish to provide chemists with an
easy to use tool for diamutamer enumeration. We hope the
algorithms will prove to be beneficial to a large number of
scientists.
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