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Abstract

We will show a number of ways in which Differential Evolution, a member of the genetic/evolutionary fam
optimization methods, can be used for the purpose of discrete optimization. Problems under consideratior
standard integer linear programming, knapsack problems, set partitioning, set covering, quadratic assignme
(discrete—continuous) optimization, and more.

Introduction

The primary purpose of this tutorial is to introduce a few standard types of discrete and combinatorial optimization problems, and indicate ways in whi
attack them using Differential Evolution. Our main focus will beraiexing by relative positiofalso known asrder based representatignve will describe
some related approaches as well. We will not delve much into why these might be regarded as "interesting" problems, as that would be a book in itsel
say that many problems one encounters in the optimization literature have their origins in very real engineering problems, e.g. layout of hospital wing
chip design, optimal task assignments, boolean logic optimization, routing, assembly line design, and so on. The types of problems we will consider
abstractions of the ones from engineering, go by names sikciapsack problemset coveringsset partitioning andpermutation assignmenf secondary goa
of this tutorial will be to introduce a few ideas regarding hybridization of Differential Evolution with some other methods from optimization. Portions of
have previously appeared as a chapter in [11].

I will observe that throughout these notes we regard Differential Evolutiorsaf @ptimization tool. Methods we present are entirely heuristic in nature. \
usually do not get guarantees of result quality; generally this must be assessed by independent means (say, comparison with other tactics such as ra
greedy algorithms, or a priori problem-specific knowledge). So we use theoptimtizationa bit loosely, and really what we usually meaimiprovementWhile
this may seem to be bad from a theoretical point of view, it has advantages. For one, the field is relatively young and is amenable to an engineering
need not invent a new branch of mathematics in order to make progress. We will note a few directions that might, for the ambitious reader, be wortt
pursuit.

Another caveat is that | make no claim as to Differential Evolution beinigetstenethod for the problems we will discuss. Nor do | claim that the approache:
seen are the only, let alone best, ways to use it on these problems. What | do claim is that Differential Evolution is quite a versatile tool, one that can
get reasonable results on a wide range of combinatorial optimization problems. Even more, this can be done using but a small amount of code. It is
convey the utility of some of the methods | have used with success, and to give ideas of ways in which they might be further enhanced.

Rather differenMathematicaapproaches to some types of discrete optimization problem may be found in [9, 10, 11].

Differential Evolution in Mathematica

As | will illustrate the setup and solving attempts uditathematica(Wolfram 2007), | need to describe in brief how Differential Evolution is built into an
accessed within that program. Now recall the general setup for this method [15, 16]. We have some number of eaoton®somesof continuous—valued
genes Theymateaccording to a crossover probabilitputateby differences of distinct other pairs in the pool, and compete with a parent chromosome to :
moves to the next generation. All these are as described by Price and Storn, in their Dr. Dobbs Journal article from 1997 [15] . In particular, crossover
parameters are as described thereirMathematicathe relevant options go by the name€£obssPr obabi | i ty, Scal i ngFact or, andSear chPoi nt s.
Each variable corresponds to a gene on every chromosome. Using the terminology of th€aosd®r obabi | i ty is the CR parameteBear chPoi nt s
corresponds to NP (size of the population, that is, number of chromosome vecto&)abnhaigFact or is F. Default values for these parameters are rough
recommended in that article.

The Mathematicafunction that invokes these is callBifl ni m ze. It takes dvet hod option that can be set @ f f er enti al Evol uti on. It also takes a
Max| t er at i ons option that, for this method, corresponds to the number of generations. One explicitly invokes Differential Evdlitrematicaas follows.

NM ni m ze [ {obj ective, constraints}, variabl es,
Met hod — {Di fferential Evol uti on, net hodopti ons}, otheropts]

Herenet hodopt i ons might include setting to nondefault values any or all of the options indicated below. We will show usage of some of them as w
examples. Further details about these options may be found in the program documentation. All of this is available online; see, for example,
http://reference.wolfram.com/mathematica/ref/NMinimize.html

Here are the options one can use to control behavidkioni m ze.



Options[NM nim ze' Differential Evol ution]

1
{CrossProbabi lity >~ Initial Points > Automtic,
Penal t yFuncti on - Aut omati c, Post Process - Aut omati ¢, RandonSeed - O,

3
Scal i ngFactor - g Sear chPoi nts - Aut omati c, Tol erance - 0. 001}

There are some issues in internal implementation that need discussion to avoid later confusion. First is the question of how constraints are enforce
particularly important since we will often constrain variables to take on only integer values, and in specific ranges. For integrality enforcement there a
two viable approaches. One is to allow variables to take on values in a continuum, but use penalty functions to push them toward integrality [2]. For €

could add, for each variable a penalty term of the foritx — round(x))? (perhaps multiplied by some suitably large constai).ni ni ze does not use this
approach, but a user can choose to assist it to do so by explicitly usiPgnthkt yFunct i on method option. Another method, the one use8iMyni mi ze, is
to explicitly round all (real-valued) variables before evaluating in the objective function. Experience in the development of this function indicated this w
the more successful approach.

This still does not address the topic of range enforcement. For example, say we are using variables in{1he.ramyeo construct a permutation nfelements.
If a value slips outside the range then we might have serious difficulties. For example, in low level programming languages such as C, having an out
array reference can cause a program to crash. While this would not as likely haptatheématicathe effect would still be bad, for example a hang or perhe
garbage result due to processing of a meaningless symbolic expression. So it is important either that olNMadeyioze, carefully enforce variable bound:
As it happens, the implementation does just this. If a variable is restricted to lie between a low and high bound (this is referexdangasaa or box, con—
straint), then thé&iM ni mi ze code will force it back inside the boundary. Here | should mention that this is really a detail of the implementation, and shc
general be relied upon by the user. | point it out so that the reader will not be mystified upon seeing code that blithely ignores the issue throughout th
chapter. | also note that it is not hard to make alterations e.g. to an objective function, to preprocess input so that bound constraints are observed.
maximize simplicity of code presented below, | did not do this.

In the literature on combinatorial (and other) optimization via evolutionary means, one frequently runs across rggiwtgmEndphenotypeThe former refer:
to the actual chromosome values. Recall the basic workings of Differential Evolution. One typically forms a new chromosome from mating its parent c
with a mutation of a random second parent. Said mutation is in turn given as a difference of two other random chromosomes. These operations are ¢
genotype level. It is in translating the chromosome to a combinatorial object e.g. a permutation, that one encounters the phenotype. This refers, rou
expressiorof the chromosome as something we can use for objective function evaluation. Said slightly differediizooiesa genotype to obtain a phenotyf
We want genotypes that are amenable to the mutation and mating operations of Differential Evolution, and phenotypes that will respond well to the ge
sense of allowing for reasonable improvement of objective function. Discussion of these matters, with respect to the particulars of Differential Evoluti
found in [16]. Early discussion of these issues, and methods for handling them, appear in [5, 4].

Two simple examples

| like to start discussion of Differential Evolution in discrete optimization by presenting two fairly straightforward examples. They serve to get the reac
mated to how we might set up simple problems, and also to how they look as input to
MathematicaThese are relatively simple examples of discrete optimization and hence are good for easing into the more complicated examples that fol

Pythagorean triples

First we will search for Pythagorian triples. These, as one may recall from high school, are integéxtsiptesuch

thatx? + y2 = 2. So we wish to find integer triples that satisfy this equation. One way to set up such a problem is to form the square of thexdiffeyerc,
We seek integer triples that make this vanish, and moreover this vanishing is a minimization condition (because we have a square). Note that this is t
arbitrary, and minimizing the absolute value rather than the square would suffice just as well for our purpose.

We constrain all variables to be between 5 and 25 inclusive. We also specify explicitly that the variables are integer valued. We will say a bit more ak
moment.

NMnimze[{(x*"2+y"2-z"2)"2, Elenent [{x, ¥y, z}, Integers], 5=<x <25,
5<y=<25, 57 <25, x<vy}, {X,V, z}]

{0., {X>7,y->24, z->25}}

We see thaliM ni mi ze is able to pick an appropriate method by default. Indeed, it uses DifferentialEvolution when
variables are specified as discrete, that is, integer valued.

Now we show how to obtain different solutions by specifying that the random seed usedbf/ftee ent i al Evol uti on
method change for each run. We will suppress warning messages (the algorithm mistakenly believes it is not converging).
After all, we are only interested in the results; we can decide for ourselves quite easily if they work.



Qui et [
Timng[
Table[NM nimze[{ (x"2+y"2-2z"2)"2, Elenment [{X, Y, z}, | ntegers],
5<x=<25, 5<y <25, 57 <25, x<vy}, {X,VY, 2},
Met hod -» "Differential Evoluti on ", RandonSeed» Random nt eger [1000]1], {20}11]

(17.1771, {{0., {x>9, y 512, z 515}}, (0., {x - 15, y - 20, z - 25}},

{0., {Xx->6,y->8, z-10}}, {0., {x->5,y->12, z > 13}},
{0., {Xx->6,y->8, z-510}}, {0., {X>7,y->24, z->25}},
{0., {x->15, y->20, z>25}}, {0., {x->15, y-> 20, z »25}},
{0., {(x>15, y->20, z->25}}, {0., {(x>8,y->15, z->17}},

{O.: {x->5,y->12, z >13}}, {0., {(x>9, y->12, z > 15}},

{0., {(x->9, y->12, z»15}}, {0., {x->5, y->12, z »13}},
{0., {x->6,y->8,z-10}}, {0., {x->5,y->12, z > 13}},
{0., {Xx->5,y->12, z>13}}, {0., {x->5,y->12, z >13}},
{0., {Xx->5,y->12, z->13}}, {0., {x->15, y->20, z->25}}}}

We observe that each of these is a valid Pythagorean triple (of course, there are several repeats). Recalling our objective
function, any failure would appear as a false minimum, that is to say, a square integer strictly larger than zero.

A coin problem

We now show a basic coin problem. We are given 143,267 coins in pennies, nickels, dimes, and quarters, of total value $12563.29, and we are to dt
many coins might be of each type. There are several ways one might set up such a

problem inNM ni mi ze. We will try to minimize the sum of squares of differences between actual values and desired values of the two linear expressi
by the information above. For our search space we will impose obvious range constraints on the various coin types. In order to obtain different results
to alter the seeding of the random number generator; this changes the random initial parameters used to seed the optimization code. That is why w
method with this option added. We will do 10 runs of this.

Timng[
Tabl e[
{mn, sol} =
NMnimze[{(p+5n+10d+25q-1256329)"2+ (p+n+d+q-143267)"2,
{p, n, d, gy elntegers, O0<p<1256329, 0<n <1256329/5,
0<d=<1256329/10, 0<q <1256329/25}, {p, n, d, g}, Maxlterations -» 1000,
Met hod » {Di fferential Evol uti on , RandonSeed» Random[l nt eger , 10001}1, {10}]]
NM nimze::cvmit :
Failed to converge to the requested accuracy or precision within 1000 iterations.
{229.634, {{0., {p—-22554, n>70469, d - 24978, g > 25266} },
{0., {p~>4094, n>79778, d >42102, q > 17293}1,
{0., {p~>23139, n->64874, d > 31502, q->23752}},
{0., {p~>26649, n—> 72620, d - 15558, q »28440}},
{0., {p~>2914, n->76502, d >48358, q-> 15493} 1},
{0., {p~>9714, n 49778, d - 73110, q - 10665} },
{0., {p>26019, n 26708, d >77782, q—>12758}},
{0., {p>58229, n->31772, d >19494, q »33772}},
{0., {p~>8609, n->70931, d 46674, q > 17053}},
{0., {p~>35049, n->55160, d 25398, q—->27660}}}}

We obtained valid solutions each time. Using only, say, 400 iterations we tend to get solutions about half the time and

"near" solutions the other half (wherein either the number of coins and/or total value is off by a very small amount). Notice that this type of problem
constraint satisfaction. An advantage to such problems is that we can discern from the proposed solution whether it is valid; those are exactly the case
get an object value of zero, with all constraints satisfied.

Maximal determinants

In this section we illustrate a heuristic methods on certain extremal matrix problems of modest size. As motivation for looking at this particular probler
that it is sometimes important to understand extremal behavior of random polynomials or matrices comprised of elements from a given set.

Below we apply knapsack-style optimization to study determinants of matrices of integers with all elements lying in the set {-1,0,1}. The problem is t
the determinant of such a matrix (since we can multiply any row by —1 and still satisfy the constraints, the smallest negative value corresponds to t
positive value). We will make the simplifying assumption that all diagonal elements are 1.

Our objective function is simply the determinant. We want this function only to evaluate when the variables have been assigned numeric values. TF
important because symbolic determinants are quite slow to compute. Hence we set up the function so that it is only defined when numeric values are |

detfunc[a: {{_?NunberQ..}..3}]/; Length[a] == Length[First[a]] : = Det [a]



Our code will take a matrix dimension as argument, and also an optional argument specifying whether to print the constraints. We use that in a smal
show the constraints explicitly, so that the reader may check that we have set this up correctly. Before showing the actual code we first outline the prot

Outline ofdet M n
1. Input: the dimension, and the parameter settings we will ugéMoni m ze.
2. Create a matrix of variables.
3. Create a set of constraints.
a. All variables must be integers.
b. All variables lie in the rangp-1, 1].
c. Variables corresponding to the diagonal elements are all set to 1.
4. CallNM ni mi ze on the objective function, using the above constraints and taking program parameters from the argument list.
5. Return the optimum found BYM ni m ze, along with the matrix that gives this value.

Here is the actual program to do this.

detMn[n_, cp_, sp_, it_, printsetup_: Falsé:=Mdul el
{mat , vars, problenmist, j, best,
mat = Array [x, {n, n}];
vars = Flatten[mat ];
probl emist =
{det func [mat ],
Fl atten[{El enent [vars, |Integers], Map[-1 <# <1 &, vars],
Table[x[j, j1=1, {j, n}1}1};
I f [printsetup, Print[problemist[[2]]]1];
best = NM nim ze[problenmist, vars, Maxlterations-it,
Met hod -» {Di fferential Evol uti on , CrossProbability-scp, SearchPoints - sp}];
{best [[1]], mat /. best [[2]]}

Here is our result for the 3x3 case. We also show the constraints for this small example.

Timng[{mn, mat} =detM n[3, .1, 20, 20, True]]

{(x[1, 17 |x[1, 2] |x[1, 3] |x[2, 1] |x[2, 2] |x[2, 3] |x[3, 1] |X[3, 2] |X[3, 3]) €lntegers,
-1<xJ[1, 1] =<1, -1 <x[1, 2] =<1, -1<x[1, 3] <1, -1=<x[2, 1] =<1, -1=<x[2,2] =<1, -1<x[2, 3] <1,
-1 <x[3, 1] <1, -1 <x[3, 2] <1, -1 <x[3, 3] <1, x[1, 1] =1, x[2, 2] =1, x[3, 3] =1}

{0.528033, {-4., {{1, 1, 1}, {1, 1, -1}, {1, -1, 1}}}}

We obtain —4 as the minimum (can you do better?) We now try at dimension 7. We will use a larger search space and more iterations. Indeed, our o
were determined by trial and error. Later we will say more about how this might systematically be done.

Timng[{mn, nmat} = detMn[7, .1, 80, 80]]

(54.6874, (-576., ({1, 1, -1, -1, 1, -1, 1}
(1, 1, -1, 1, -1, -1, -1}, {1, -1, 1, 1, 1, -1, -1}, {-1, -1, -1, 1, 1, 1, 1},
(1, 1, -1, -1, 1, 1, -1}, {1, 1, 1, 1, 1, 1, 1}, (1, -1, -1, -1, -1, 1, 1}}})

7
Readers familiar with theladamard boundor absolute values of matrix determinants will recognize that the minimum must be no smaller than the c€ffing

or —907. (In brief, this bound is the product of the lengths of the rows of a matrix; for our family, the maxinal length of each/%w‘ﬁlsat this product
maximizes the absolute value of the determinant can be observed from the fact that this absolute value is the volume of the rectangular prism forme
vectors of the matrix. This volume can be no larger than the product of their lengths; it achieves that value precisely when the rows are pairwise orthoc
We can ask how good is the quality of our result. Here is one basis for comparison. A random search that took approximately twice as long as the coc
nothing smaller thar28€. Offhand | do not know if =576 is the true minimum, though | suspect that it is.

It is interesting to see what happens when we try this with dimension increased to eight.

Timng[{mn, mat} = detMn[8, 1/50, 100, 200]]

(222.618, {-4096.,
({1, -1, 1, 1, 1, -1, -1, -1}, {-1, 1, -1, 1, 1, 1, -1, -1}, {-1, 1, 1, 1, 1, -1, 1, 1},
(1, 1, -1, 1, -1, -1, -1, 13}, {-1, -1, -1, -1, 1, -1, -1, 1},
(1, 1, 1, -1, 1, 1, -1, 1}, {1, 1, -1, -1, 1, -1, 1, -1}, {1, -1, -1, 1, 1, 1, 1, 1}}}}



In this case we actually attained the Hadamard bound; one can check that the rows (and likewise the columns) are all pairwise orthogonal, as must |
order to attain the Hadamard bound. Indeed, when the dimension is a power of two, one can always attain this bound. The motivated reader might try
recursive (or otherwise) construction that gives such pairwise orthogonal sets.

Partitioning a set

The last sections were a warmup to the main focus of this tutorial. We introduced Bathefmaticacoding, and in particular use of Differential Evolution, in
context of discrete optimization. We now get serious in discussing combinatorial optimization problems and techniques.

We start with theSet Partitioning ProblemWe will illustrate this with an old example from computational folklore: we are to partition the integers from 1
into two sets of 50, such that the sums of the square roots in each set are as close to equal as possible.

There are various ways to set this up as a problemiNbni m ze. We will show two of them. First we will utilize a simple way of choosing 50 elements fri
set of 100. We will use 100 real values, all between 0 and 1. (Note that we are using continuous variables even though the problem itself involves a
We take theirelative positionsas defining a permutation of the integers from 1 to 100. A variant of this approach to decoding permutations is described

In more detail: their sorted ordering (obtained, in our code, fronMidiaematicaOr der i ng function) determines which is to be regarded as first, which
second, and so on. As this might be confusing, we illustrate the idea on a smaller set of six values. We begin with our range of integers from 1 to 6.

smal | set = Range[6]
{1, 2, 3, 4, 5, 6}

Now suppose we also have a set of six real values between 0 and 1.

val s = RandonReal [1, {6}]
{0. 131973, 0.80331, 0.28323, 0.694475, 0.677346, 0.255748}

We use this second set of values to gafil | set into two subsets of three, simply by taking as one such subset the elements with positions correspo
those of the three smallest membevaf s. The complementary subset would therefore be the elements with positions corresponding to those of the thi
members ofral s. One can readily see (and code below will confirm) that the three smallest elemeaits pfn order of increasing size, are the first, sixth, ¢
third elements.

Ordering[val s]
{1, 6, 3, 5, 4, 2}

We split this into the positions of the three smallest, and those of the three largest, as below.

{snal lindi ces, | argeindi ces} = {Take[#, 3], Drop[#, 3]} &[Ordering([val s]]
{{1, 6, 3}, {5, 4, 2}}

We now splitsmal | set according to these two sets of indices. Because it is simply the values one through six, the subsets are identical to their positic

{sl, s2} = Map[snallset [[#]] & {snallindices, |argeindices}]
{{1, 6, 3}, {5, 4, 2}}

The same idea applies to splitting any set of an even number of elements (small modifications could handle an odd number, or a split into subsets
lengths).

With this at hand we are now ready to try our first method for attacking this problem.

Set partitioning via relative position indexing
Here is the code we actually use to split our 100 integers into two sets of indices.
Outline ofspl i t Range

1. Input: a vector of real numbers, of even length.
2. Return the positions of the smaller half of elements, followed by those of the larger half.

splitRange[vec_]:=Wth[{newec = Ordering[vec], hal fl en = Fl oor [Lengt h[vec] / 2]},
{Take [newec, hal fl en], Drop[newec, hal fl en]}]

Just to see that it works as advertised, we use it to replicate the result from our small example above.



splitRange[val s]
{{1, 6, 3}, {5, 4, 2}}

Once we have a way to associate a pair of subsets to a given set of 100 values in the range from 0 to 1, we form our objective function. A convenie
simply an absolute value of a difference; this is often the case in optimization problems. We remark that squares of differences are also commonly us¢
when the optimization method requires differentiability with respect to all program variables. This is not an issue for Differential Evolution, as it is a dt
free optimization algorithm.

Here is an outline of the objective function, followed by the actual code.

Qutline ofspf un
1. Input: a vector of real numbers, of even length.
2. Usespl i t Range to find positions of the smaller half of elements, and the positions of the larger half.
3. Sum the square roots of the first set of positions, and likewise sum the square roots of the second set.

4. Return the absolute value of the difference of those two sums.

spfun[vec: {_ _Real }]:=
Wth[{val s = splitRange[vec]},
Abs [ (Appl y [Pl us, Sqgrt [N[First [vals]11]1] -Apply[Plus, Sgrt[N[Last [vals]]]11)1]

It may be a bit difficult to see what this does, so we illustrate again on our small example. Supposing we Bawd kglét into two subsets as above, what
the value of the objective function? Well, what we do is take the first, sixth, and third elements, add their square roots, and do likewise with the fifth, -
second elements. We subtract one of these sums from the other and take the absolute value of this difference. For speed we do all of this in machi
arithmetic. In exact form it would be:

sqrts =Sqrt [splitRange[val s1]

sunms = Total [sqrts, {2}]

sundi f ference = Appl y [Subt ract , sumns]
abssummdi f fs = Abs [sundi f f er ence]
appr oxabs = N[abssummdi ffs]

(1L B VB ) (5. 242 ))
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0.468741

As a check of consistency, observe that this is just what we get from evaluating our objective funcéibe.on

spfun[val s]

0. 468741

We now put these components together into a function that provides our set partition.

Outline ofget Hal f Set
1. Input: An even integem, and options to pass alongNiM ni m ze.
. Create a list of variablesar s, of lengthn.
. Set up initial ranges that the variables all lie between 0 and 1 (these are not hard constraints biMust t&llze where to take random initial values).

2
3
4. CallNM ni m ze, passing ibbf un| var s] as objective function.
5

. Return the minimum value found, and the two complementary subsets of the original int€ber sef that give rise to this value.

getHal f Set [n_, opts___ Rule]:=Mdul e[{vars, xx, ranges, nmn, val g,
vars = Array [XX, nl;
ranges = Map[{#, 0, 1} & vars];
{nmn, val s} = NM ni m ze[spfun[vars], ranges, opts];
{nm n, Map[Sort, splitRange[vars /. vals]]}]



As in previous examples, we explicitly set the method so that we can more readily pass it nondefault method-specific options. Finally, we set this tc
iterations with a lot of search points. Also we turn off post—processing. Why do we care about this? Well, observe that our variables are not explicitl
valued. We are in effect foolinigM ni nmi ze into doing a discrete (and in fact combinatorial) optimization problem, without explicit use of discrete varic
Hence default heuristics are likely to conclude that we should attempt a "local" optimization from the final configuration produced by the differential ¢
code. This will almost always be unproductive, and can take considerable time. So we explicitly disallow it. Indeed, if we have the computation time t
are usually better off increasing our number of generations, or the size of each generation, or both.

Timng[
{mn, {s1, s2}} =
get Hal f Set [100,
Met hod » {Di fferential Evol uti on, CrossProbability-» .8, SearchPoints - 100,
Post Process - Fal se}, Maxlterations - 10000]]

[2134. 42,

{2.00622x10‘7, {{1, 2, 4, 6, 7, 11, 13, 15, 16, 17, 19, 21, 23, 25, 26, 27, 31, 34,
37, 41, 43, 44, 45, 47, 50, 51, 52, 54, 56, 66, 67, 69, 72, 73,
75, 77, 78, 79, 80, 86, 87, 88, 89, 90, 91, 93, 96, 97, 98, 100},
{3, 5, 8 9, 10, 12, 14, 18, 20, 22, 24, 28, 29, 30, 32, 33, 35, 36,
38, 39, 40, 42, 46, 48, 49, 53, 55, 57, 58, 59, 60, 61, 62, 63,
64, 65, 68, 70, 71, 74, 76, 81, 82, 83, 84, 85, 92, 94, 95, 99}}}}

We obtain a fairly small value for our objective function. | do not know what is the actual global minimum, and the interested reader might wish to tal
problem with an eye toward obtaining a better result.

A reasonable question to ask is how would one know, or even suspect, where t@sesther obabi | i ty parameter? A method | find useful is to do “tun
runs”. What this means is we do several runs with a relatively small set of search points and a fairly low bound on the number of generations
Max| t er ati ons option setting, ilNM ni mi ze). Once we have a feel for which values seem to be giving better results, we use them in the actual rn
options settings at their full values. Suffice it to say that this approach is far from scientific. About the best one can say is that, while it is not obviously
is also not obviously bad. Note that this sort of situation happens often in engineering, and that is why one can make nice incremental improvements t
such as optimization.

Set partitioning via knapsack approach

Another approach to this problem is as follows. We take the full set and pick 100 corresponding random integer values that are either O or 1. An eleme
put into one or the other subset according to the value of the bit corresponding to that element. For this to give an even split we also must impose a ¢
the size of each subset is half the total size. To get an idea of what these constraints are, we show again on our small example of size six.

vars = Array [X, 6];
ranges = Map[(0 <= # <= 1) & vars];
Joi n[ranges, {El enent [vars, Integers], Appl y[Plus, vars] == 3}]

{0<x[1] =<1, 0=<x[2] =1, 0=<x[3] =<1, 0=<x[4] =<1, 0=<x[5] =1,
0=<x[6] =1, (Xx[1] |x[2] |X[3] |x[4] |X[5] |X[6]) €lntegers,
X[1] +X[2] +X[3] +X[4] +X[5] +X[6] =3}

We are now ready to define our new objective function.

Outline ofspf un2
1. Input: a vector of integers, of even lengthAll entries are 0 or 1.

2. Convert every O to —1.

3. Form a list of square roots of the integer¢lin..., n}.
4. Multiply, componentwise, with the list of ones and negative ones.

5. Return the absolute value of the sum from step (4).

spfun2[vec: {__Integer}] :=Abs[(2xvec-1).Sqrt [N[Range[Length[vec]]]]]

Again we use our small example. What would our objective function be if the vector has ones in the first two and last places, and zeros in the middle tl
find the exact value.

exactval =
Abs[Total [Sgrt [smal | set [[{1, 6, 3}]]1]] -Total [Sqrt [snal | set [[{5, 4, 2}1111]
N[exact val ]

LenE -5 A VB

0. 468741



We see that, as expected, this agrees with our objective function.

spfun2[{1, 0, 1, 0, 0, 1}]
0. 468741

With this knowledge it is now reasonably straightforward to write the code that will perform our optimization. We create a set of variables, one for eact
the set. We constrain the variables to take on values that are either 0 or 1, and such that the sum is exactly half the cardinality of the set (that is, 100/
example of interest to us). Since we force variables to be integer vilMewi, m ze will automatically uséi f f er ent i al Evol uti on for its method. Again
we might still wish to explicitly request it so that we can set option to nondefault values.

Outline ofget Hal f Set 2
1. Input: An even integem, and options to pass alongNM ni m ze.
2. Create a list of variablesar s, of lengthn.
3. Set up constraints.
a. All variables lie between 0 and 1.

b. All variables are integers.

c. Their total is%.
4. CallNM ni mi ze, passing ispf un2[ var s] as objective function, along with the constraints and the option settings that were input.

5. Return the minimum value found, and the two complementary subsets of the original int€her set that give rise to this value.

getHal fSet2[n_, opts___]1:=NMdul e[
{vars, x, nmn, vals, ranges, s},
vars = Array [x, n];
ranges = Map[ (0 <#<1) & vars];
{nm n, val s} =
NM nim ze[
{spfun2[vars], Join[ranges, {El ement [vars, |Integers], Total [vars] ==n/2}1},
vars, opts];
sl = Sel ect [I nner [Ti mes, Range[n], (vars /. vals), List], ##0&];
{nm n, {sl1, Conpl enent [Range[n], s1]}}
1

Tim ng[{m n, {sl, s2}} =getHal f Set 2[100, Maxlterations - 1000,
Met hod » {Di fferential Evol uti on, CrossProbability-» .8, SearchPoints -» 100}]]

(1732. 97,
(0.000251303, ({1, 4, 5, 7, 12, 13, 14, 15, 16, 19, 20, 22, 23, 31, 32, 36, 37, 38,
41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 55, 59, 60, 62, 65,
66, 71, 73, 78, 79, 83, 84, 87, 88, 89, 90, 91, 94, 97, 99, 100},
(2, 3, 6,8, 9, 10, 11, 17, 18, 21, 24, 25, 26, 27, 28, 29, 30, 33, 34,
35, 39, 40, 48, 53, 54, 56, 57, 58, 61, 63, 64, 67, 68, 69, 70,
72, 74, 75, 76, 77, 80, 81, 82, 85, 86, 92, 93, 95, 96, 98}}}}

We check that we have a valid partition (both sets of equal size). This is important because some constraints are enforced internally via penalties, anc
violated.

Length[sl] == Length[s2]

True

One unfamiliar with the subject might well ask what this has to do with knapsacks. The gist is as fokoapsAck Problerinvolves taking, or not taking, ar
element from a given set, and attempting to optimize some condition that is a function of those elements taken. There is a large body of literature de

problems, as they subsume theeger Linear Programming Problefm short, linear program, but with variables constrained to be integer valued). Itis a p
quality of Differential Evolution that it can be adapted to such problems.

Discussion of the two methods

The second method we showed is a classical approach in integer linear programming. One uses a set of variables constrained to be eithertinamy (tl
variables). We constrain their sum so that we achieve a particular goal, in this case it is that exactly half be put into one of the two subsets. Position:s
ones determine which of two complementary subsets receives elements of the parent set.

The first method, which seemed to work better for Differential Evolution (at least with parameter settings we utilized) is less common. It is a bit myster
we use the ordering of an ensemble of reals to determine placement of individual elements of a set. This impliescmloedétpin that a change to one valt
can have a big effect on the interpretation of other entries. This is because it is their overall sorted ordering, and not individual values, that gets us
objective function. Though it is not obvious that this would be useful, we saw in this example that we can get a reasonably good result.



We will encounter the second method later in these notes, applied to an example of some practical significance.

Minimal covering of a set by subsets

The problem below was once posed in the Usenet news group comp.soft-sys.math.mathematica. It is an archetypical example ofsthieselassicaing
problem In this example we are given a set of sets, each containing integers between 1 and 64. Their union is the set of all integers in that range, an
find a set of 12 subsets that covers that entire range. In general we would want to find a set of subsets of minimal cardinality; this is an instance wher
advance that that cardinality is 12.

subsets = {{1, 2, 4, 8, 16, 32, 64, {2, 1, 3, 7, 15, 31, 63, (3, 4, 2, 6, 14, 30, 62,
(4, 3, 1, 5, 13, 29, 61, {5, 6, 8, 4, 12, 28, 60}, {6, 5, 7, 3, 11, 27, 59,
{7, 8, 6, 2, 10, 26, 58, {8, 7, 5, 1, 9, 25, 57, {9, 10, 12, 16, 8, 24, 58,
(10, 9, 11, 15, 7, 23, 55, {11, 12, 10, 14, 6, 22, 54, {12, 11, 9, 13, 5, 21, 53,
(13, 14, 16, 12, 4, 20, 52, {14, 13, 15, 11, 3, 19, 5%, {15, 16, 14, 10, 2, 18, 50,
{16, 15, 13, 9, 1, 17, 49, {17, 18, 20, 24, 32, 16, 48, {18, 17, 19, 23, 31, 15, 4%,
{19, 20, 18, 22, 30, 14, 4§, {20, 19, 17, 21, 29, 13, 45,
(21, 22, 24, 20, 28, 12, 44, {22, 21, 23, 19, 27, 11, 43,
(23, 24, 22, 18, 26, 10, 423, {24, 23, 21, 17, 25, 9, 4%, {25, 26, 28, 32, 24, 8, 40,
(26, 25, 27, 31, 23, 7, 39, (27, 28, 26, 30, 22, 6, 38, {28, 27, 25, 29, 21, 5, 3%,
{29, 30, 32, 28, 20, 4, 36§, {30, 29, 31, 27, 19, 3, 35, {31, 32, 30, 26, 18, 2, 34,
(32, 31, 29, 25, 17, 1, 33, {33, 34, 36, 40, 48, 64, 33,
(34, 33, 35, 39, 47, 63, 33, {35, 36, 34, 38, 46, 62, 30,
(36, 35, 33, 37, 45, 61, 29, {37, 38, 40, 36, 44, 60, 28§,
(38, 37, 39, 35, 43, 59, 2%, {39, 40, 38, 34, 42, 58, 28,
(40, 39, 37, 33, 41, 57, 25, {41, 42, 44, 48, 40, 56, 24,
(42, 41, 43, 47, 39, 55, 23, {43, 44, 42, 46, 38, 54, 22,
(44, 43, 41, 45, 37, 53, 21, {45, 46, 48, 44, 36, 52, 20,
(46, 45, 47, 43, 35, 51, 19, {47, 48, 46, 42, 34, 50, 18§,
(48, 47, 45, 41, 33, 49, 17, {49, 50, 52, 56, 64, 48, 18§,
(50, 49, 51, 55, 63, 47, 18, {51, 52, 50, 54, 62, 46, 14,
(52, 51, 49, 53, 61, 45, 13, {53, 54, 56, 52, 60, 44, 13,
(54, 53, 55, 51, 59, 43, 13, {55, 56, 54, 50, 58, 42, 10,
{56, 55, 53, 49, 57, 41, 9, {57, 58, 60, 64, 56, 40, §, {58, 57, 59, 63, 55, 39, 7,
(59, 60, 58, 62, 54, 38, §, {60, 59, 57, 61, 53, 37, §, {61, 62, 64, 60, 52, 36, 4,
{62, 61, 63, 59, 51, 35, 3, {63, 64, 62, 58, 50, 34, 3, {64, 63, 61, 57, 49, 33, J};

We do a brief check that the union of the subset elements is indeed the set of integers from 1 through 64.

Uni on[Fl atten[subsets]] == Range[64]

True

An ad hoc approach to subset covering

We will set up our objective function as follows. We represent a set of 12 subsets of this master set by a set of 12 integers in the range from 1 to the
subsets (which in this example is, coincidently, also 64). This set is allowed to contain repetitions. Our objective function to minimize will be based on
elements from 1 through 64 are "covered". Specifically it will be 2 raised to the #(elements not covered) power. The code below does this.

Outline ofscf un
1. Input: a vectolV of integers, a s& of subsets, and an integeto denote the range of integéts..., n}.
2. ComputeU, the union of elements contained in the subSgtor all j € V.
3. Calculatec, the cardinality of the complement of our initial rangelhy
a. More succinctly this i${1, ..., n} — U], where subtraction is taken to messat complemenand| § denotes the cardinality &
4. Return2°.

scfun[n: {___Integer}, set_, nx_Integer]:=
27 Lengt h[Conpl emrent [Range [mx], Union[Fl atten[set [[nN]]11]1]

This may be a bit elusive. We will examine its behavior on a specific set of subsets. Suppose we take the first 12 of our subsets.

firstl2 = Take[subsets, 12]

({1, 2, 4, 8, 16, 32, 64}, (2, 1, 3, 7, 15, 31, 63}, {3, 4, 2, 6, 14, 30, 62},
{4, 3, 1, 5, 13, 29, 61}, {5, 6, 8, 4, 12, 28, 60}, {6, 5, 7, 3, 11, 27, 597,
(7, 8, 6, 2, 10, 26, 58}, {8, 7, 5, 1, 9, 25, 57}, {9, 10, 12, 16, 8, 24, 56},
(10, 9, 11, 15, 7, 23, 55}, (11, 12, 10, 14, 6, 22, 54}, (12, 11, 9, 13, 5, 21, 53})



Their union is

elenentsinfirstl2 =Union[Flatten[firsti12]]

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64}

Our objective function for this set of subsets raises 2 to the power that is the cardinality of the set of integers 1 through 64 complemented by this set.
elements does this union miss?

m ssed = Conpl ement [Range [64], el enentsinfirst12]
Lengt h[m ssed]

{17, 18, 19, 20, 33, 34, 35, 36, 37, 38,

39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52}

24

27 Length[m ssed]
16777216

Does this agree with the function we defined above? Indeed it does.

scfun[Range[12], subsets, 64]
16777216

We now give outline and code to find a set of spanning subsets.

Outline ofspanni ngSet s

1. Input: a set of m subsets, an integkrspecifying how many we are to use for our cover, and option values to pédstioni ze. We assume the union of
all subsets covers some rarige..., n}.
2. Create a vector df variables.
3. Set up constraints.
a. All variables are between 1 and
b. All variables are integer valued.
4. CallNM ni m ze, using the constraints asaf un as defined above, along with option settings.
5. Return the minimal value (which we want to be 1, in order that there be full coverage), and the list of positions denoting which subsets we used in

spanni ngSets[set_, nsets_, iter_, sp_, cp]:=
Modul e[{vars, rnges, max= Length[set], nm n, val s},
vars = Array [XX, nsets];
rnges = Map[ (1 < # < max) &, vars];
{nm n, val s} =
NM ni m ze[{scfun[vars, set, nmax], Append[rnges, El enent[vars, |Integers]]},
vars, Maxlterations-iter,
Met hod » {Di fferential Evol uti on , SearchPoi nts-» sp, CrossProbability -»cp}];
val s = Union[vars /. val s];
{nm n, val s}]

In small tuning runs | found that a fairly high crossover probability setting seemed to work well.

Timng[{m n, sets} = spanni ngSet s[subsets, 12, 700, 200, .94]
Lengt h[Uni on[Fl atten[subsets[[sets]]11]

(365.099, {1., {1, 7, 14, 21, 24, 28, 34, 35, 47, 52, 54, 57}}}
64

While this is not lightning fast, we do obtain a good result in a few minutes of run time.
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Subset covering via knapsack formulation

Another method is to cast this as a standard knapsack problem. First we transform each of our set of suliset®attwrapresentation. In this form each sut
is represented by a positional list of zeros and ones. In effect we are translatingsfrarseto adenserepresentation.

Outline ofdensevec
1. Input: a seSof integers and a length It is assumed that the membersSefil lie in{1, ..., n}.

2. Create a vectov of lengthn.
a. Initialize all elements to be 0.

3. Loop: For eachj € §, set thejth element oW to be 1.

4. ReturnV.
densevec [spvec_, len_] :=Mdul e[{vec = Tabl e[0, {l en}]},
DO[\]/eC[[sr)veC[[j 1111 =1, {j, Length[spvec]}];
vec

We now apply this function to each member of our set of subsets, that is, make a dense representation of each subset.

mat = Map[densevec [#, 64] & subsets];

It might not be obvious what we have done, so we illustrate using the fourth of our 64 matrix rows.

mat [[4]]

{1, 0,1,1,1,¢00 00600010000 0,0,

o, 0,00000001000000000 000,

o, 0, 0000006000 00000000010 00}

We have ones at positions that correspond to the elements contained in our fourth subset, and zeros elsewhere. Specifically, the ones are at the pc
below.

Flatten[Position[mat [[4]], 1]]
{1, 3, 4, 5, 13, 29, 61}

But this is, up to ordering, exactly the elements in the fourth subset. That is to say, we pass a basic consistency check.

Sort [subsets[[4]]]
{1, 3, 4, 5, 138, 29, 61}

As in our last knapsack problem, we again work with binary variables and minimize their sum, subject to certain constraints. We use a binary variable
each subset. A one means we use that subset in our set cover, and a zero means we do not. Let us consider the vector of those zeros and ones. Nov
is that we fully cover the superset, that is, the range of integers from 1 to 64.

How might we impose this? Well, let us take a look at the dot product of such a vector with the matrix of bit vectors that we already formed. Again we
example the first 12 subsets, so our vector representing this has ones in the first 12 slots, and zeros in the remaining 64-12=52 slots.

firstl2vec = Joi n[Constant Array[1, 12], Constant Array[0, 52]]

(1, 1,1,1,1,11113111,000 0,0 0,0,
o, 0, 0,0 0,000,600 000000000 00,0,
o, 000000000 000O000000000 00}

What does the dot product of this vector with our matrix of bit vectors represent? Well, let's consider the meaning of this matrix for a moment. Ajone
columnk means that subsgttontains elemerk One then realizes that the dot product gives us the following informatiorktfileéement in the result will be ¢

nonnegative number (possibly zero), and represent the number of timksafipsars in the union of subsets representdd byt 12vec. So the condition we

will need to impose in our optimization is that the dot product of this vector with our matrix of bitvectors has all positive entries. Noticethztvec fails to
satisfy this condition.

firstl2vec. mat

{4, 4,4, 4,5, 5,5, 5,4,4,4,4,2 2, 2 20,00,
’ l! 11 l! 11 l! 11 l! 11 l! 11 l! 11 0! 01 0! 01 0! 01 0! 01 0!
o, 0¢o00¢000¢000¢0®001211112121111211;}

Outline ofspanni ngSet s2
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Input: a set of m subsets (each now represented as a bit vector), and option values toNDAsSE tmi ze. We assume the union of all subsets covers so
range{l, ..., n}.

2. Create a vector ahvariablesyar s.

3. Set up constraints.

a. All variables lie between 0 arid
b. All variables are integer valued.

¢. The union of subsets corresponding to variables with value of 1 covers the fulltangen}.
i. This is done by checking that each elemenS\dr s is greater or equal to 1.
4. CallNM ni m ze to minimize the sum ofar s, subject to the above constraints, using the input option settings.
5. Return the minimal value and the list of positions denoting which subsets we used in the cover.

spanni ngSets2[set_, iter_, sp_, seed_, cp_: .5 :=
Modul e[ {vars, rnges, max= Length[set], nm n, val s},

vars = Array [XX, max];

rnges = Map[(0 <#<1) & vars];

{nm n, val s} =

NM ni m ze [ {Appl y [Pl us, vars], Join[rnges, {El ement [vars, |ntegers]},
Thread[vars. set > Tabl e[1, {max}]11}, vars, Maxlterations-iter,
Met hod » {Di fferential Evol uti on, CrossProbability-scp, SearchPoints - sp,

RandontSeed -» seed}];

vals =vars /. vals;

{nm n, val s}]

Tim ng[{m n, sets} =spanni ngSet s2[mat, 2000, 100, 0, . 9]

{1930. 4 Second,

{12., {0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,0, 000100001, 0,0,nQ0,
i, 0,000 1000000100001 0000,1,
0,000100100000000 131}

We have again obtained a result that uses 12 subsets. We check that it covers the entire range.

Total [Map[M n[#, 1] & sets. nmat]]
64

We see that this method was much slower. Experience indicates that it needs a lot of iterations and careful sefingssfRhebabi | i ty option. So at
presenf\NM ni m ze has difficulties with this formulation. All the same it is encouraging to realize that one may readily set this up as a standard knapsa
and still hope to solve it using Differential Evolution. Moreover, as the alert reader may have observed, we actually had an added benefit from using 1
nowhere did we need to assume that minimal coverings require 12 subsets.

An assignment problem

Our next example is a benchmark from the literature of discrete optimization [17]. We are given two square matrices. We want a permutation that, wh
the rows and columns of the second matrix, multiplied element-wise with corresponding elements of the first, and all elements summed, gives a min
The matrices we use have 25 rows. This particular example is known as the NUG25 problem. It is an exaQuielmaitia Assignment Proble(@AP). The
optimal result is known and was verified by a large parallel computation. We mention that the methods of handling this problem can, with minor modi
applied to related problems that require the selecting of a permutation (for example, the traveling salesman problem).

12
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First we define a function to permute rows and columns of a matrix. It simply rearranges the matrix so that both rows and columns are reordered acc

given permutation.

QOutline ofper nut eMat ri x

n}, wheren is the dimension df1.

1. Input: a square matrid and a permutatioR of the setd, ...,

2. FormM, the matrix obtained by rearranging rows and columnd af specified bfp.

3. ReturnM.

per mut eMat ri x [nat

mat [ [perm, permn]

, perm] : =

We use a small matrix to see how this works.
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Mat ri xForm[mat = Array [X, {4, 4}]1]

x[1, 1] x[1, 2] x[1, 3] Xx[1, 4]
X[2, 1] x[2, 2] x[2, 3] X[2, 4]
X[3, 1] x[3, 2] x[3, 3] X[3, 4]
X[4, 1] x[4, 2] x[4, 3] Xx[4, 4]

Now we move rows/columns (4,1,3,2) to positions (1,2,3,4), and observe the result.

Mat ri xFor m[pernuteMatri x[mat, {4, 1, 2, 3}1]
4,

11
2,
3

X X X X
W www

( ]
[ ]
( ]
[ ]

Let us return to the NUG25 problem. Below is an optimal permutation (it is not unique). We remark that the computation that verified the optimality toc
tial time and parallel resources.

p = {5, 11, 20, 15, 22, 2, 25, 8, 9, 1, 18, 16, 3, 6, 19, 24, 21, 14, 7, 10, 1i
12, 4, 23, 13};
We compute the objective function value we obtain from this permutation. As a sort of baseline, we show the result one obtains from applying no perr
then compute results of applying several random permutations. This gives some idea of how to gauge the results below.

best = Total [Flatten[matl xpermuteMatri x[mat2, pl]]
baseline =Total [Flatten[mat1 x mat 2]]
randonval s = Tabl e[
perm= Orderi ng[RandonReal [{0, 1}, {25}11;
Appl y[Plus, Flatten[mat1l xperrmuteMatri x[mat2, perm]],
{10}]

3744
4838
{4858, 5012, 5380, 5088, 4782, 4994, 5032, 5044, 5088, 5094}

A substantially longer run over random permutations gives an indication of how hard it is to get good results via a naive random search.

SeedRandom[11117;

Ti m ng[randomval s = Tabl e[
perm= Orderi ng[RandonReal [{0, 1}, {25}11;
Total [Flatten[mat 1 xpernuteMatrix[mat2, perm]],
{1000 0003}71; 1

M n[randonval s]

4284
(449. 06, Nul I }

Relative position indexing for permutations

We must decide how to make a set of values into a permutation. Our first approach is nearly identical to the ensemble order method we used on the
problem. Specifically, we will let thér der i ng function of a set of real values determine a permutation.

Outline of QAP
1. Input: square matricdd, andM, each of dimension, along with parameter settings to pasblitb ni m ze.
2. Form a vector of variables of length
a. Give them initial ranges from 0 to 1.

3. Form an objective function that sums tifgproducts of elements of the first matrix and elements of the row—and-column permuted second matrix.

a. The permutation is determined by the ordering of values of the variables vector. (Remark: some readers might recognimattissiasex product
computed via thenatrix traceof the usual matrix product).
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For improved speed (at the cost of memory)memoizesalues of the objective function. What that means is we record them once computed, so
recomputation is done by fast lookup. Readers familiar with data structure methods will recognize this as an appheaationgof
4. CallNM ni m ze on the objective function, using the above ranges, constraints, and input option settings.

5. Return the minimal value found, along with the permutation that gives rise to that value.

QAP[matl_, mat2_, cp_, it_, sp_, sc]: =
Modul e[ {l en = Lengt h[mat 1], obfunc, obfunc2, vars, x, nmn, vals, rnges,
vars = Array [x, |len];
rnges = Map[{#, O, 1} & vars];
obfunc[vec: {__Real }]1:=o0obfunc2[Ordering[vec]];
obfunc2[perm] : =
obfunc2[perm] = Total [Flatten[mat 1l xpernmuteMatri x[mat2, perm]];
{nm n, val s} = NM ni mi ze [obf unc[vars], rnges,
Met hod » {Di fferential Evol uti on, SearchPoi nts-» sp, CrossProbability - cp,
Scal i ngFact or » sc, PostProcess -» Fal se}, Maxlterations »it1];
d ear [obfunc2]y;
{nm n, Ordering[vars /. val s1}]
Again we face the issue that this problem requires nonstandard values for optionBitbftee ent i al Evol ut i on method, in order to achieve a reasonat
result. While this is regretable, it is clearly better than having no recourse at all. The idea behin@hass®r obabi | i ty relatively small is that we do no
want many crossovers in mating a pair of vectors. This in turn is because of the way we define a permutation. In particular it is not just values but rel

across the entire vector that give us the permutation. Thus disrupting more than a few, even when mating a pair of good vectors, is likely to give a bar
was also the case with the set partitioning example we encountred earlier.

We saw that the baseline permutation (do nothing) and random permutations tend to be far from optimal, and even a large random sampling will get |
half way from baseline to optimal. A relatively brief run with "good" values for the algorithm parameters, on the other hand, yields something notably b
next subsection we explicitly show how one might use ghnoimg runsto find such parameter settings.)

SeedRandom[11 1117;
Tim ng[{m n, pern} = QAP[mat1, mat2, .06, 200, 40, .q]

(13.5048, (3864., ({22, 20, 17, 12, 5, 13, 15,
23, 25, 2, 19, 10, 9, 8, 4, 1, 7, 6, 16, 18, 24, 21, 14, 3, 11}})

We now try a longer run.

SeedRandom[11 1117;
Timng[{m n, pern} = QAP[nat1, nmat2, .06, 4000, 100, .§]

(394. 881, (3884., ({15, 20, 19, 10, 13, 22, 1,
16, 7, 4, 9, 25, 6, 23, 12, 8, 11, 21, 14, 17, 5, 2, 18, 3, 24}})

We learn a lesson here: sometimes a short run is lucky, and a longer one does not fare as well. We will retry with a different crossover, more iteration:
set of chromosomes.

Timng[{m n, pern} = QAP[mat1, nat2, .11, 10000, 200, .§]

{2186. 43, {3826., {5, 2, 18, 11, 4, 12, 25, 8,
14, 24, 17, 3, 16, 6, 21, 20, 23, 9, 7, 10, 22, 15, 19, 1, 13}}}

This result is not bad.

Representing and using permutations as shuffles
The method we now show will generate a permutationsisifileof a set of integers. We first describe a standard way to shuffle, with uniform probability,
n elements. First we randomly pick a numbpein the rangédl, ..., n} and, ifj; # 1, we swap the first angth elements. We then select at random an elejpent
the rangd2, ..., n}. If j» # 2 we swap the second aigth elements. The interested reader can convince him or herself that this indeed gives a uniform r
shuffle (in contrast, selecting all elements in the rdfge., n} fails to be uniform).

Our goal, actually, is not directly to generate shuffles, but rather to use them. Each chromosome will represent a shuffle, encoded as above by a sef
perform. So the effective constraint on the first variable is that it be an integer in thg¢Irange}, while the second must be an integer in the rgBge., n}, and
so on (small point: we do not actually requirendtm variable, since its value must alwaysreWe will need a utility routine to convert quickly from a shuffle
encoding to a simple permutation vector. The code below will do this. We uSertpe | e function ofMathematicao get a speed boost.

Outline ofget Per m

1. Input: a shuffléSencoded am - 1 integers in the rand@, ..., n}, with thejth actually restricted to lie in the subrar{ge..., n}.
2. Initialize a vectolP of lengthn to be the identity permutation (that is, the ordered1ist.., n}).
3. Iterate ovelS.
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Swap thejth element of with the element whose index is the (currgti)element of.
4. ReturnP.

get Perm= Conpi l e[{{shuffle, _Integer, 1},
Modul e[ {perm, | en=Length[shuffle] +1},
per m= Range[l en];
Do[perm[[{j, shuffle[[j 11}1] =perm[[{shuffle[[j1], j}11, {j, len-1}1;
permp ],

Okay, maybe that was a bit cryptic. Here is a brief example that will shed light on this process. Say our shuffle encoding for a set of five{@lefnént is
What would this do to permute the $&t 2, 3, 4, 3? First we swap elements 1 and 2, so we Kayé, 3, 4, 3. We next swap elements 2 and 4, giving

{2,4,3,1,5 Then we swap elements 3 and 5 to obt2jd, 5, 1, 3. Finally, as the fourth element in our shuffle is a 4, we do no swap. Let us check that
indeed get the permutation we claim.

getPerm[{2, 4, 5, 4}]
{2, 4, 5, 1, 3}

The constraints we would like to enforce are that all chromosome elements be integers, andtthatitdeelement be betwegand the total length inclusive.
The bit of code below will show how we might set up such constraints.

| en = 5;
vars = Array[x, len-17;
constraints = Prepend[Map[(#[[1]] <#<len) & vars], El enent [vars, I ntegers]]

[
((X[1] |x[2] [X[3] |X[4]) < |ntegers,
1<x[1] <5 2=<x[2] <5, 3<x[3] =<5, 4<x[4] <5}

There is a small wrinkle. It is often faster not to insist on integrality, but rather to use real numbers and simply round off (or truncate). To get uniform g
initially, using rounding, we constrain so that a given variable is at least its minimal allowed integer value minus 1/2, and at most its maximal integer ve

Without further fuss, we give an outline and code for this optimization approach.

Outline of QAP2

1. Input: square matriced; andM, each of dimension, along with parameter settings to pashitb ni mi ze.
2. Form a vector of variables of length- 1.
a. Forjin{1,...,n- 1} constrain thgth variable to lie in the rand¢ — .499..., n + 1.499.

3. Form an objective function that sums tifeproducts of elements of the first matrix and elements of the row—and—column permuted second matrix.

a. The variables vector, with entries rounded to nearest integers, may be viewed as a shuffle on elasieots. The permutation is determined by
invoking get Per mon the variables vector.
4. CallNM ni m ze on the objective function, using the above variables, constraints, and input option settings.

5. Return the minimal value found, along with the permutation that gives rise to that value.

QAP2[matl_, mat2_, cp_, it_, sp]:=
Modul e[{l en = Length[mat 1] -1, obfunc, vars, x, nmin, vals, constraintg,
vars = Array [x, |l en];
constraints = Map[ (#[[1]1]-.499 <# <len+1.499) & vars];
obfunc[vec: {_ Real }]:=
Total [Flatten[mat 1 » pernuteMatri x[mat 2, get Per mMRound[vec]]11]11;
{nm n, val s} = NM ni m ze[{obfunc[vars], constraints}, vars,
Met hod » {Di fferential Evol uti on , SearchPoi nts» sp, CrossProbability - cp,
Post Process - Fal se}, Maxlterations »it, Conpil ed - Fal se]l;
{nm n, get PermMRound[vars /. val s]11}]

We show a sample tuning run. We keep the number of iterations and number of chromosomes modest, and try cross probabilities between 0.05 al
increments of .05.

Quiet [Table[{j, First[ Q\AP2[nmat 1, mat2, j /100, 50, 2011}, {j, 5, 95, 5}1]

({5, 4364.}, {10, 4436.}, {15, 4538.}, {20, 4428. 3,

(25, 4522.}, {30, 4506.}, (35, 4518.}, (40, 4550. ), {45, 4512.},
(50, 4456. ), {55, 4530.}, {60, 4474.1, {65, 4520.}, {70, 4412.},
(75, 4474.), {80, 4454.}, (85, 4410.), {90, 4314.}, {95, 4324.})
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From this we home in on the region of the larger values since they seem to be consistently a bit better than other values (it is interesting that this is tk
what | had found for the relative index positioning approach in the previous subsection). We now do larger runs to get a better idea of what are the rel:
these various cross probability parameter settings.

Quiet [Table[{j, First[QAP2[matl, mat2, j /100, 80, 2011}, {j. 87, 98, 1}1]

({87, 4298. }, (88, 4418.}, (89, 4346.}, {90, 4314. )}, {91, 4396. ), {92, 4416. },
{93, 4300. )}, {94, 4308.}, (95, 4274.), {96, 4322. ), {97, 4282.}, {98, 4298. })

We will finally try a longer run with cross probability set to 0.975.

Quiet [Timng[{nmn, pern} = QAP2[rmat1, mat2, .975, 10000, 10Q1]]

{2590. 27, {3814., {5, 2, 11, 22, 15, 18, 25,
16, 9, 1, 17, 3, 6, 8, 19, 12, 14, 7, 23, 20, 24, 4, 21, 10, 13}}}

This gets us reasonably close to the global minimum with a scant 15 lines of code. While it is mildly more complicated than the 10 line relative positic
method, it has the advantage that it is slightly less dependent on fine tuning of the cross probability parameter.

Another shuffle method

There are other plausible ways to set up permutations, such that they behave in a reasonable manner with respect to mutation and mating operation
such.

We have for our vector a set of integers from h,tthe length of the set in question (again we will actually work with reals, and round off to get integers
range restriction is the only stipulation and in particular it may contain repeats. We associate to it a unique permutation as follows. We initialize a list -
zeros. The first element in our list is then set to the first element in the vector. We also have a marker set telling us that that first element is now usec
over subsequent elements in our list, setting them to the corresponding values in vector provided those values are not yet used. Once done with this
through the elements that have no values, assigning them in sequence the values that have not yet been assigned. This method, which is used in [7],
of GeneRepair[12]. It is also related to a method of [21], although they explicitly alter the recombination (that is, the genotype) rather than the resulting

Outline ofget Per n2
1. Input: a shuffléSencoded am integers in the randé, ..., n}.
2. Create vector®; andP, of lengthn. The first will be for the permutation we create, and the second will mark as "used" those elements we have enc
a. Initialize elements of each to be 0.
3. Loop overS.
a. Denote byk the jth element oE. If thekth element oP; is 0, this means we have not yet ukéd our permutation.
i. SetP,(k) to j to mark it as used.
ii. SetPy(j)tok.
4. Initialize a countek to 1.
5. Loop overP;.
a. If the jth elementPy(j), is O then it needs to be filled in with a positive integer not yet used.
i. Find smallesk for whichP,(k) is O (telling us thak is not used as yet in the permutation).
ii. Forthatk, setP;(j) to bek, and markP,(k) nonzero (alternatively, could simply incremérgo it will not revisit this value).
6. ReturnP;.

get PernR = Conpi l e[{{vec, _Integer, 13},
Modul e[ {pl, p2, len=Length[vec], Kk}, pl =p2 =Table[0, {len}];
Dok =vec[[j1];
If[p2[[k]] =0, p2[[k]l] =j;
PLIL 11 =k;1, {j, len}];

k =1;
Do[lf[pl[[j1] =0, While[p2[[k]] #0, k++1;
Pl 11 =k;
p2[[k11 =1, {i, len}l;
p111;

We illustrate with a small example. Say we have the vé¢dtdr, 4, 3, 3. What permutation does this represent? Well, we have a 4 in the first slot, so the re
permutation vector starts with 4. Then we have a 1, so that’s the next element in the permutation. Next is a 4, which we have already used. We defe
Next is a 3, so the fourth slot in our permutation is 3. last is a 1, which we have already encountered, so we defer on filling in the fifth position of our
We have completed one pass through the permutation. The entries we were unable to use were in positions 3 and 5. The values not yet used are 2 ai

filled in a vector as$4, 1,x, 3,y}, wherex andy are not yet known). We now simply use these in order, in the empty slots. That is, entry 3 is 2 and entry 5
obtain as our permutatidd, 1, 2, 3, 5.
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getPern2[{4, 1, 4, 3, 1}]

{4, 1, 2, 3, 5}

This notion of associating a list with repeats to a distinct shuffle has a clear drawback insofar as earlier elements are more likely than later ones to bt
their corresponding values in the vector. All the same, this provides a reasonable way to make a chromosome vector containing repeats correspond
(and once the method has started to produce permutations, mating/mutation will not cause too many repeats provided the crossover probability is eith
fairly high). Moreover, one can see that any sensible mating process of two chromosomes will less drastically alter the objective function than would
the ensemble ordering, as the corresponding permutation now depends far less on overall ordering in the chromosomes. The advantage is that this i
be somewhat less in need of intricate tuning for the crossover probability parameter (but we will do that anyway).

Outline of QAP3

1. Input: square matriced; andM, each of dimension, along with parameter settings to pasbitd ni ni ze.
2. Form a vector of variables of length

a. Constrain each variable to lie in the rafd®1..., n + .499.

3. Form an objective function that sums tifeproducts of elements of the first matrix and elements of the row—and—column permuted second matrix.

a. The variables vector, with entries rounded to nearest integers, may be viewed as a shuffle on ele®ieots. The permutation is determined by
invoking get Per n2 on the variables vector.
4. CallNM ni m ze on the objective function, using the above variables, constraints, and input option settings.

5. Return the minimal value found, along with the permutation that gives rise to that value.

QAP3[matl_ , mat2_, cp_, it_, spl:=

Modul e[{l en = Lengt h[mat 1], obfunc, vars, x, nmn, vals, constraintg,
vars = Array [X, |len];
constraints = Map[(.501 <# <len+0.499) & vars];
obfunc[vec: {__Real }]:=

Total [Flatten[nmat 1 » pernuteMatri x[nmat 2, get Per n2[Round[vec]]1111;
{nm n, val s} = NM ni m ze[{obfunc[vars], constraints}, vars,
Met hod -» {Di fferential Evol uti on , SearchPoi nt s» sp, CrossProbability - cp,
Post Process - Fal se}, Maxlterations »it, Conpil ed- Fal se];

{nm n, getPern2[Round[vars /. val s]1}]

We'll start with a tuning run.

Qui et [Table[{j, First[ QAP3[mat1l, mat2, j /100, 50, 2011}, {j., 5, 95, 5}1]

({5, 4486.}, {10, 4498.}, (15, 4464.}, {20, 4492. 3,

(25, 4430.}, (30, 4516.}, (35, 4482. ), (40, 4396. ), {45, 4432.},
(50, 4472.), {55, 4548.}, {60, 4370.}, (65, 4460.}, {70, 4562. },
(75, 4398. ), {80, 4466.}, {85, 4378.), {90, 4426. ), {95, 4354. })

| did a second run (not shown), in the upper range of crossover probabilities, and with more iterations and larger numbers of search points. It homed
reasonably good choice for a crossover probability setting.

Ti ming[Qui et [ QAP3[mat1, mat2, .93, 8000, 10Q7]

{2380. 2, {3888., {7, 20, 11, 8, 13, 4, 25, 10,
19, 18, 17, 22, 6, 3, 5, 15, 24, 14, 23, 21, 1, 16, 2, 12, 9, 26}}}

Hybridizing Differential Evolution for the assignment problem

Thus far we have seen methods that, for a standard benchmark problem from the quadratic assignment literature, take us to within shouting distance
value. These methods used simple tactics to formulate permutations from a vector chromosome, and hence could be applied within the framework o
Evolution. We now show a method that hybridizes Differential Evolution with another approach.

A common approach to combinatorial permutation problems is to swap pairs (this is ofte2€afi§dor reorder triples, of elements. Also reversal of segme
common. With Differential Evolution one might do these by modifying the objective function to try them, and then recording the new vector, if we choo
in the internals of the algorithm. This can be donkiNhni m ze, albeit via alteration of an undocumented internal variable. We show this below, using a
set of pair swaps. When we obtain improvement in this fashion, we have gained something akin tulleclooding method. | remark that such hybridization,
an evolutionary method with a local improvement scheme, is often referred toeaseticalgorithm. Nice expositions of such approaches can be found in [1:

The code creates a random value to decide when to use a swap even if it resulted in no improvement. This can be a useful way to maintain variat

chromosome set. We also use a print flag: if s@trtoe, whenever we get an improvement on the current best permutation, we learn what is the new va
how much time elapsed since the last such improvement. We also learn when we get such an improvement arising from a local change, that is, a swa|

As an aside, the use of a swap even when it gives a worse result has long standing justification. The idea is that we allow a decrease in quality in the |
later help in finding an improvement. This is quite similar to the methaihuilated annealingexcept we do not decrease the probability, over the course
generations, of accepting a decrease in quality.
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Outline of QAP4

1. Input: square matriced; andM, each of dimension, along with parameter settings to passlb ni m ze, and a probability levgh between 0 and 1 to

determine when to retain an altered chromosome that gives a decrease in quality.
2. Form a vector of variables of length

a.

Give them initial ranges from O to 1.

3. Form an objective function that sums tifeproducts of elements of the first matrix and elements of the row—and—column permuted second matrix.
a. As in QAP, the permutation is determined by the ordering of values of the variables vector.

4. lterate some number of times (a reasonable value is 4).

a.
b. Check whether we got improvement in the objective function.

c.

d. If not, possibly still keep it depending on whether a random value between 0 and 1 is largeatithalso whether the better vector is the best seen

e.

Swap a random pair of elements in the variables vector.

If so, keep this improved vector.

far (we never replace the best one we have).
Depending on an input flag setting, either restart the swapping (if we are not done iterating) with our original vector, or else continue with the «

from prior swaps.

5. CallNM ni mi ze on the objective function, using the above ranges, constraints, and input option settings.

6. Return the minimal value found, along with the permutation that gives rise to that value.
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QAP4[matl , mat2_, cp_, it_, sp_, sc_, maxj _: 4, keep_: 0.4, restorevector_,
printFlag : Fal s€] : =
Modul e[ {l en = Lengt h[mat 1], obj func, objfunc2, objfunc3, vars, vv, nnin,
val s, rnges, best, bestvec, indx=0, i =0, tt =Ti neUsed[]},
vars = Array [vv, |en];
rnges = Map[{#, O, 1} & vars];
obj func2[vec_] : =
obj func3[vec] = Total [Flatten[mat 1l xpermnmuteMatri x[mat2, vecl]];
obj func[vec: {__Real }]:=
Modul e[{val 1, val 2, r1, r2, vecl=vec, vec2=vec, nmax = Max [Abs[vec]], | =0},
{vecl, vec?2} = {vecl, vec?2} / nmax;
val 1 = obj func2[Ordering[vecl]];
While[j < maxj,
j ++;
{r1, r2} = Random nteger [{1, | en}, {2}];
I f [restorevector , vec2=vecl];
vec2[[{rl, r2}]] =vec2[[{r2, rl1}]1;
val 2 = obj func2[Ordering[vec2]1;
I f [val 2 <best, j--;
If[printFlag, Print["locally inmproved", {best, val 2}1117;
If[val2 <vall]|| (val 1 > best & RandonReal [] > keep),
Optimize* NM ni m zeDunp' vec = vec2;
If[val 2 <val 1l, vecl=vec2];
val1 =Mn[val 1, val 2],
Optim ze* NM ni m zeDunp' vec = vecl];
I f [val 1 < best,
best =val 1;
vecl = bestvec = Optini ze' NM ni mi zeDunp* vec ;
I f[printFlag, Print["new |l ow ", ++i ndx,
" {iteration, elapsed tine, new valué ", {i, TinmeUsed[] -tt, best}]];
tt =TimeUsed[];

1
1
val 1];

bestvec = Range[l en];

best = Total [Flatten[mat 1l » mat 2]];

{nm n, val s} = NM ni m ze[obj func[vars], rnges, Maxlterations-it,

Compi |l ed » Fal se, StepMnitor = (i ++; |f [Mdd[i, 10] == 0, C ear [obj func3]]),
Met hod » {Di fferential Evol uti on, SearchPoi nts-» sp, CrossProbability - cp,
Scal i ngFact or - sc, PostProcess - Fal se}];
Cl ear [obj func2];
{Total [Flatten[mat 1l xperrmuteMatri x[mat2, Ordering[bestvec]]]],
Ordering[bestvec]}]

We now show a run with printout included. The parameter settings are, as usual, based on shorter tuning runs.

Timng[QAP4[mat 1, mat 2, .08, 400, 320, .4, 4, .4, Fal se, Trug]

locally inproved{4838, 4788}

new low 1 {iteration, elapsed tine, new value} {0, 0.192971, 4788}

local ly inproved{4788, 4724}

new low 2 {iteration, elapsed tine, new value} {0, 0.006999, 4724}

| ocal ly inproved{4724, 4696}

new low 3 {iteration, elapsed tine, new value} {0, 0., 4696}

locally inproved{4696, 4644}

new low 4 {iteration, elapsed tinme, new value} {0, 0.001, 4644}
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| ocal ly
new | ow
| ocal ly
new | ow
| ocally
new | ow
| ocal l'y
new | ow
| ocally
new | ow
| ocal ly
new | ow
| ocal ly
new | ow
new | ow
new | ow
| ocal ly
new | ow
| ocal l'y
new | ow
new | ow
new | ow
| ocal ly
new | ow
| ocal l'y
new | ow
new | ow
new | ow
new | ow
new | ow
new | ow
new | ow
| ocal ly
new | ow
new | ow

new | ow

new | ow

i mproved {4644,
5 {iteration,

i nproved {4612,
6 {iteration,

i mproved {4594,
7 {iteration,

i nproved {4566,
8 {iteration,

i nproved {4498
9 {iteration,

i mproved {4370,
10 {iteration,
i mproved {4348,
11 {iteration,
12 {iteration,
13 {iteration,
i mproved {4304,
14 {iteration,
i nproved {4242,
15 {iteration,
16 {iteration,
17 {iteration,
i mproved {4102,
18 {iteration,
i nproved {4096,
19 {iteration,
20 {iteration,
21 {iteration,
22 {iteration,
23 {iteration,
24 {iteration,
25 {iteration,
i mproved {3952,
26 {iteration,
27 {iteration,

28 {iteration,

29 ({iteration,

4612}
el apsed tine,

4594

el apsed time,

4566)

el apsed tinme,

4498

el apsed tine,

4370)

el apsed time,
4348

el apsed tine,
4322}

el apsed ti
el apsed ti
el apsed ti
42423

el apsed ti
4184}

el apsed ti
el apsed ti
el apsed ti
4096}

el apsed ti
4092}

el apsed ti

el apsed ti

el apsed ti

el apsed ti

ti

el apsed

el apsed ti

3 83 3 3 3 3 3

ti

el apsed
3948}

el apsed ti

el apsed ti

el apsed ti

3 3 3 3

el apsed ti

new val ue}

new val ue}

new val ue}

new val ue}

new val ue}

new

new

new

new

new

new

new

new

new

new

new

new

new

new

new

new

new

new

new

new

val ue}

val ue}
val ue}

val ue}

val ue}

val ue}
val ue}

val ue}

val ue}

val ue}
val ue}
val ue}
val ue}
val ue}
val ue}

val ue}

val ue}
val ue}
val ue}

val ue}

{0,

{0,

{0,

{0,

{0,

0.118982, 4612}

0. 043993, 4594}

0. 001, 4566}

0., 4498}

0. 486926, 4370}

(0, 0.001, 4348}

(10,
{11,

{20,
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{31,
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0
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new low 30 {iteration, elapsed tine, new value} {85, 0.39594, 3924}
new low 31 {iteration, elapsed tine, new value} {86, 0.702893, 3922}
| ocal ly inproved{3922, 3894}

new low 32 {iteration, elapsed tine, new value} {89, 3.11353, 3894}
| ocal ly inproved{3894, 3870}

new | ow 33 {iteration, elapsed tine, new value} {109, 18.6902, 3870}

new low 34 {iteration, elapsed tine, new value} {119, 9.75552, 3860}
new low 35 {iteration, elapsed tine, new value} {134, 15.1257, 3856}
| ocal ly inproved{3856, 3840}

new low 36 {iteration, elapsed tine, new value} {142, 7.71583, 3840}
new | ow 37 {iteration, elapsed tine, new value} {146, 3.83042, 3830}
new | ow 38 {iteration, elapsed tine, new value} {174, 26.13, 3816}
new low 39 {iteration, elapsed tine, new value} {196, 21.4287, 3800}
new | ow 40 {iteration, elapsed tine, new value} {203, 6.86196, 3788}
new low 41 {iteration, elapsed tine, new value} {203, 0.199969, 3768}

locally inproved{3768, 3750}
new |l ow 42 {iteration, elapsed tine, new value} {222, 17.4773, 3750}

{277.978, {3750, {1, 19, 22, 15, 13, 7, 10, 9,
20, 23, 21, 6, 14, 4, 17, 16, 3, 8, 25, 12, 24, 18, 11, 2, 5}}}

This is now quite close to the global minimum. As might be observed from the printout, the swaps occasionally let us escape from seemingly sticky Ic

So, for the problem at hand, this hybridization truly appears to confer an advantage over pure Differential Evolution. | will remark that it seems a bit m
to get this type of hybridization to cooperate well with the various shuffle methods of creating permutations.

For contrast we go to the opposite extreme and do a huge number of swaps, on a relatively smaller number of chromosomes and using far fewer iter¢
reset our vector with swapped pairs to the original (or best variant found thereof, if we get improvements). This is to avoid straying far from reasonak
since we now do many swaps.

This is thus far a 2—-opt approach rather than Differential Evolution per se. Nonetheless, we notice that the later stages of improvement do come duri
iterations of Differential Evolution, and quite possibly those final improvements are due in part to the maintaining of diversity and the use of mutati
recombination.
Timng[QAP4[matl, mat2, .08, 20, 60, .4, 2000, .6, True, Trug]
locally inproved{4838, 4808}
new low 1 {iteration, elapsed tine, new value} {0, 0.034995, 4808}
locally inproved{4808, 4786}
new low 2 {iteration, elapsed tine, new value} {0, 0., 4786}
locally inproved{4786, 4738}
new low 3 {iteration, elapsed tinme, new value} {0, 0.001, 4738}
locally inproved{4738, 4690}
new low 4 {iteration, elapsed tinme, new value} {0, 0.001, 4690}
local ly inproved{4690, 4614}
new low 5 {iteration, elapsed tine, new value} {0, 0., 4614}
locally inproved{4614, 4502}

new low 6 {iteration, elapsed tine, new value} {0, 0.000999, 4502}
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| ocal ly
new | ow
| ocal ly
new | ow
| ocally
new | ow
| ocal l'y
new | ow
| ocally
new | ow
| ocal ly
new | ow
| ocal ly
new | ow
| ocally
new | ow
| ocal ly
new | ow
| ocal ly
new | ow
| ocal ly
new | ow
| ocal ly
new | ow
| ocal l'y
new | ow
| ocal ly
new | ow
| ocal ly
new | ow
| ocal ly
new | ow
| ocal ly
new | ow
| ocal ly
new | ow

| ocal ly

i mproved {4502,
7 {iteration,

i mproved {4406
8 {iteration,

i mproved {4370,
9 {iteration,

i mproved {4342,
10 {iteration,
i nproved {4226,
11 {iteration,
i mproved {4178,
12 {iteration,
i mproved {4174,
13 {iteration,
i mproved {4170,
14 {iteration,
i mproved {4158,
15 {iteration,
i mproved {4114,
16 {iteration,
i mproved {4070,
17 {iteration,
i mproved {4046
18 {iteration,
i mproved {4042
19 {iteration,
i mproved {4014,
20 {iteration,
i mproved {3982,
21 {iteration,
i nproved {3978,
22 {iteration,
i mproved {3970,
23 {iteration,
i mproved {3966,
24 [iteration,

i nproved {3964,

4406}
el apsed tine,
4370)
el apsed time,
43423
el apsed tinme,
4226}

el apsed tine,

4178)
el apsed tine,
4174)
el apsed tine,
4170}
el apsed tine,
4158)
el apsed tine,
4114)
el apsed tine,
4070}
el apsed tine,
4046)
el apsed tine,
4042}
el apsed tine,
4014)
el apsed tine,
3982}
el apsed tine,
3978}
el apsed tine,
3970}
el apsed tine,
3966}
el apsed tine,
3964}
el apsed tine,
3960}

new val ue} {0, 0.001, 4406}

new val ue} {0, 0., 4370}

new val ue} {0, 0.003, 4342}

new

new

new

new

new

new

new

new

new

new

new

new

new

new

new

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

{0,

{0,

{0,

{0,

{0,

{0,

{0,

{0,

{0,

{0,

{0,

{0,

{0,

{0,

{0,

0

0

0

0

0
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. 001999,

. 007999,

. 046993,

. 057991,

. 004999,

001, 4226)

. 007998, 4178}

. 001, 4174}

. 007999, 4170}

. 006999, 4158}

. 002, 4114}

4070}

4046

4042

4014)

3982)

005, 3978}

031995, 3970}

068989, 3966}

. 006999, 3964}



new | ow
| ocal ly
new | ow
| ocal ly
new | ow
| ocal ly
new | ow
| ocal ly
new | ow
| ocal l'y
new | ow
| ocal ly
new | ow
| ocal ly
new | ow
| ocal ly
new | ow
| ocal ly
new | ow
| ocal ly
new | ow
| ocal ly
new | ow
| ocal ly
new | ow
| ocal ly
new | ow
| ocal l'y
new | ow
| ocal ly
new | ow
| ocal ly
new | ow
| ocal l'y
new | ow
| ocal ly

new | ow

25 {iteration,
i mproved {3960,
26 {iteration,
i mproved {3944,
27 {iteration,
i mproved {3926,
28 {iteration,
i mproved {3916,
29 {iteration,
i nproved {3896,
30 {iteration,
i mproved {3892,
31 {iteration,
i mproved {3888,
32 {iteration,
i nproved {3868,
33 {iteration,
i mproved {3864,
34 {iteration,
i mproved {3860,
35 {iteration,
i nproved {3852,
36 {iteration,
i mproved {3838,
37 {iteration,
i mproved {3834,
38 {iteration,
i nproved {3818,
39 {iteration,
i mproved {3812,
40 {iteration,
i mproved {3786,
41 {iteration,
i nproved {3780,
42 {iteration,
i nproved {3768,

43 {iteration,

el apsed
3944,
el apsed
3926
el apsed
3916}
el apsed
3896}
el apsed
3892}
el apsed
3888)
el apsed
3868}
el apsed
3864
el apsed
3860}
el apsed
3852}
el apsed
3838)
el apsed
3834)
el apsed
3818}
el apsed
3812)
el apsed
3786}
el apsed
3780}
el apsed
3768)
el apsed
3758)

el apsed

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

new

new

new

new

new

new

new

new

new

new

new

new

new

new

new

new

new

new

new

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

val ue}

{0,

{0,

{0,

{0,

{0,

{0,

{0,

{0,

{0,

{0,

{0,

{0,

{0,

{0,

{0,

{0,

{0,

{0,

{0,

0

0
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., 3960)

. 018997, 3944

. 021997, 3926}

. 003999, 3916}

. 024996, 3896}

. 096986, 3892}

. 074988, 3888}

. 089986, 3868}

. 73874, 3864)

. 100985, 3860}

. 52377, 3852}

. 012998, 3838}

. 009999, 3834}

. 055991, 3818}

. 10753, 3812)

. 071989, 3786}

. 42878, 3780}

033995, 3768}

084987, 3758}



| ocal ly inmproved{3758, 3756}

new | ow 44 {iteration, elapsed tine, new value} {7, 269.394, 3756}
local ly inproved{3756, 3754}

new low 45 {iteration, elapsed tine, new value} {10, 98.83, 3754}

| ocal ly inproved{3754, 3752}

new | ow 46 {iteration, elapsed tine, new value} {10, 0.222966, 3752}
| ocal ly inproved{3752, 3748}

new | ow 47 {iteration, elapsed tine, new value} {16, 233. 249, 3748}
locally inproved{3748, 3744}

new | ow 48 {iteration, elapsed tine, new value} {16, 0.06699, 3744}

{791. 696, {3744, {22, 15, 20, 11, 5, 1, 9, 8,
25, 2, 19, 6, 3, 16, 18, 10, 7, 14, 21, 24, 13, 23, 4, 12, 17}}}

Notice that this permutation is not identical to the one we presented at the outset, which in turn comes from benchmark suite results in the literature [J
that we seem to get good results from swaps early on (indeed, we almost get a global minimizer prior to the main iterations). This raises the question
might be useful to plug in a different sort of heuristic, say larger swaps, or perhaps use of local (continuous) quadratic programming. The interested
wish to explore such possibilities.

More examples

We now give several examples that have been posbththematicausers.

A mixed discrete—continuous optimization

The example we now show was brought to my attention by Lai Ngoc Anh (private communication). It arises in the context of computational chemistr
data and wish to find a good "equation of state" approximation. This will be a Puisiux polynomial function (exponents may be rational instead of intege
degree, with nonnegative exponents. We are to find both the exponents and coefficients.

It turns out that this is best viewed as a "bi-level" type of optimization problem. At the outer level we attempt to find good exponents. We use these in
optimization, in order to find good corresponding coefficients. For the exponent optimization we will use Differential Evolution, as it readily enforces ir
So we will call on it, using an objective function that is itself computed by an optimization function.

The data are modified (differently scaled) from table 1 found in [14]. A nice article describing how such a fit was performed is [19]. Our method can be
simpler variant; all the hard work is left to the Differential Evolution code.

data = {{0.492836, -2.76349979}, {(0.484912, -2.71627714},
(0. 476987, -2. 66934661},

(0. 461139, -2.57627064}, {0.44529, -2.48420922}, {0.429441, -2.39306352}
{0. 405668, -2.2578664}, {0.381894, -2.12420539}, {0.358121, -1.99180889}
{0.342272, -1.90410278}, {0.318499, -1.77321817}, {0.318499, -1.77320734},
{0. 286801, -1.59966342}, {0.286801, -1.59964561}, {0.263028, -1.46992327},
{0.263028, -1.46990573}, {0.239254, -1.34031315}, {0.239254, -1.34031185},
{0. 223406, -1.25390787}, {0.199632, -1.12418091}, {0.183783, -1.03751393},
{0. 167935, -0.95065758}, {0.144161, -0.81990054}, {0.128312, -0.73235589}
{0.128312, -0.7323321}, {0.112464, -0.64440847}, {0.096615, -0.55600443}
{0. 08869, -0.51160367}, {0.080766, -0.46706783}, {0.072841, -0.42236874},
{0.064917, -0.37750794}, {0.056993, -0.33245946}, {0.049068, -0.28720197}
(0. 041144, -0.24171452}, {0.033219, -0.19597321}, {0.029257, -0.17298665}
{0. 025295, -0.14992861}, {0.025295, -0.14990853}, {0.021333, -0.12677606}
{0.01737, -0.10352715}, {0.014201, -0.08485674}, {0.011823, -0.07080379}
{0. 009446, -0.05670636}};
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get Pol ynomi al [data_, x_, nvars_, expden_, iters_, npts]:=Catch[Mdul e[
{c, j, coeffs, expons, poly, sos, xvals, yvals, evars, cni nfunc, coeffval:
expval s, mnl, mnZ,
coeffs = Array[c, nvars];
expons = Array[j, nvars];
poly = coeffs. x”(expons / expden);
{xval s, yval s} = Transpose [dat a];
sos =Total [((poly /. x » xval s) -yval s)"2];
cm nfunc[obj _, cvars_, evars_, evals:{_Integer ..}]:=
Fi rst [Qui et [Fi ndM ni nrum[obj /. evars -» evals, cvars]]];
expval s = expons;
Catch[
m nl =NM nimze[{cn nfunc[sos, coeffs, expons, expval 9,
Fl atten[{El enent [expval s, I ntegers], Map[# =0 & expval s1}]1},

expval s, Method- {("Differential Evolution ", "SearchPoints s npts},
Maxlterations »iters];
If [Head[m nl1l] === NM nim ze || ! FreeQ[m nl, | ndet erm nat e],

Thr ow[$Fai | ed],
{m nl, expval s} = mnl
1
{m n2, coeffval s} = Fi ndM ni nrum[sos /. expval s, coeffs];
{m n2, poly /. Join[expval s, coeffval s]}]
11

Ti mi ng[get Pol ynoni al [data, x, 4, 6, 200, 4Q]
{219.598, {3.70378x10°% -6.10819 x +3.7723x>/*-3.08831 x*/° - 1. 87827 x'*/3}}

We have obtained a rather low sum of squares of discrepancies, using a scant two dozen or so lines of code.

Another knapsack problem

This next problem was communicated by Peter Sisak, in the Usenet forum comp.soft-sys.math.mathematica [20]. We are given a set of file sizes, sa
have a storage device of a given size and wish to store as much of the given files as possible, that is, to maximize the number of bytes stored.

This is readily seen to be a traditional knapsack problem. As such, one might seek to handle it using standard integer linear programming tools such
and-bound strategy. The actual sizes given, unfortunately, make this quite difficult. There are various ways to ameliorate this, e.g by dividing and finc
approximate best solution (some approaches are shown in responses to the original query; see the URL in the references section for further details).
use Differential Evloution to find a reasonable approximation.

We set up the problem quite simply. We have a set of 0-1 variables, where a value of 1 means we will use the corresponding file. Our objective is to
difference between the total size we use, and the target (that is, the size of our storage device). We constrain of course so that the discrepancy is pos
do not slightly spill over.

wu- bigval s = {1305892 864, 1385113088, 856 397 968, 1106 152 425, 1647 145 093,
1309 917 696, 1096825032, 1179 242 496, 1347 631104, 696 451 130,
746 787 826, 1080588 288, 1165223499, 1181 095 818, 749 898 444, 1147 613 71
1280 205 208, 1242816512, 1189588992, 1232630196, 1291 995 024,
911702 020, 1678225920, 1252273 456, 934 001 123, 863 237 392, 1358 666 176,
1714134790, 1131848814, 1399 329280, 1006 665 732, 1198 348 288,
1090 000 441, 716 904 448, 677 744 640, 1067 359 748, 1646 347 388, 1266 026 32
1401106 432, 1310275584, 1093 615634, 1371899 904, 736 188 416,
1421438976, 1385125391, 1324463502, 1489042122, 1178813212,
1239236 096, 1258202 316, 1364 644 352, 557 194 146, 555 102 962, 1383 525 88
710 164 700, 997 808 128, 1447 622 656, 1202 085740, 694 063 104, 1753 882 504,
1408 100 352}

targ = 8547 993 600;
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cl osest Sum[val s_, target_, maxiters_: 100, sp_: Automatic, cp_: Autonmati]c: =
Modul e[ {x, vars, |l en=Length[val s], obj, constraints, max, best},
vars = Array [x, | en];
obj =vars.vals;
constraints =Join[Map[0 <# <1 &, vars],
{obj <target, El enent[vars, |Integers]}];
{max, best} = NMaxi m ze[{obj, constraints}, vars,
Met hod » {"Differential Evolution ", "SearchPoi nts s sp,
"CrossProbability "-»cp}, Maxlterations » maxiters];
{mex, target - max, N[ (target -max) /target], vars /. best}]

After some tuning runs, | settled on the default crossover probability of 1/2.

n= Tim ng [Qui et [cl osest Sum[bi gval s, targ, 300, 100, 1/ 2111

oup- {138.787, {8.54792x10° 73942., 8.65022x10°,
{0,0,0 000, 1,0001,1,0 0000000000000 00,00°0,
0,001,000 101,00 0,0,0000000, 1,0,0,0,0,1, 1, 0, 0}}}

While this can be shown to be less than the optimum, we see we that for all intents and purposes we have attained our practical goal. That is to say,
of remaining storage is quite small relative to that which will be utilized from the computed set of files sizes.

Maximal independent vertex sets

We now show a Differential Evolution approach to the problem of finding a large set of vertices in a graph such that each is not directly connected to :
is referred to as an independent subset of vertices. A different way to go about this problem is discussed in [10].

For purposes of illustration we will start by generating a random graph of 100 vertices, with a specified independent set of size 20. For all vertex pairs
least one is not in the specified set, we will have a 1/8 probability of there being an edge between them. The code below will generate such a set. We
may be independent vertex sets strictly larger than the specified set; we only enforce that that particular set is comprised of independent vertices.

n2p= shuffle[n_I nteger, mliInteger]: =
Modul e[ {res = Range[n]}, Do[rand = Random[l nteger, {j, n}]1;
res[[{j, rand}]] =res[[{rand, j}11;, {j, m1];
Take[res, m]
{n, m} = {100, 20};
density =1/8;

SeedRandom[1111]7];
i ndepset = Sort [shuffle[n, m]]
mat =
Array[Bool e[#1 < #2 & Random[] < density & Conpl ement [ {##}, i ndepset] =!= {}] &,
{n, n}L;

oupte= {2, 3, 6, 9, 12, 16, 17, 18, 25, 27, 32, 46, 52, 58, 71, 72, 79, 81, 83, 97}

We now have an independent subset of cardinality 20, comprised of vé2iies ., 97}. We now see if we can recover that set, or another of comparable
such that it contains vertices with no edge between any pair. We will use values of one for vertices we place in our set, and zero for those not in it.

The idea is to provide an objective function that "rewards" vertex values of one, but penalizes pairs of such vertices whenever there is an edge betwe
the reward term, we use the inner product of the vertex values with itself. For the penalty, we sum the edge matrix (zero if no edge, one if an edge) tir
values, over each pair of vertices. This tends to work tolerably well for the problem at hand, though of course one might need to adjust (e.g. by weight
based on problem specifics.

npep= | ndependent Verti cesQP[mat _] : = Modul e[

{Xx, n=Length[mat ], vars, polyl, poly2, poly, sol},

vars = Array [X, nJ;

polyl =Sum[mat [[i, j1]1*x[i1*x[j]1, {i, n=-1}, {j, i +1, n}];

pol y2 =vars. vars;

poly = pol yl -poly2;

sol =NM nim ze[{poly, Flatten[{(0<# <1 &) /evars, El enent[vars, Integers]}]},
Map[{#, O, 1} & vars],
Met hod » {("Differential Evolution ", "SearchPoi nts's 100, "Post Process "- Fal se},
Maxl t erations -» 2507;

{sol [[1]1], Flatten[Position[Round[Chop[vars /. sol [[2]11],
Heads - Fal se]]1}]

2(#=1=08&),
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Notice that we set tliePost Pr ocess" option toFal se. This is because the post—processing capabilitidvbhi m ze might alone suffice for the task a
hand. We wish to show that Differential Evolution alone does a reasonable job here.

nop= Ti mi ng[Qui et [i set =i ndependent VerticesQ[mat1]]

oupo= {102.421, {-23., {13, 16, 17, 18, 19, 21, 22, 27, 28,
33, 36, 48, 50, 52, 55, 56, 58, 62, 64, 70, 75, 79, 83, 85, 92, 98}}}

We have obtained a subset of size 23, that is, exceeding the size of the vertex subset we had rigged in advance to be independent. Some verificatic
here) will indicate it is in fact an independent subset .

Sparse matrix column sum minimization

We are given a sparse matrix comprised of, say, symbols. Each symbol can appear in multiple rows, but appears only once in a given row. We are r
select exactly one symbol per row. The object is to do so in such a way that we minimize the number of repeats. Moreover, we want to penalize a trif
more than two doubles, etc. The idea is to have the selected symbols be "as unique as possible", to abuse language ever so slightly.

We create an example where we have 60 rows, and we use 50 "symbols". We will denote&ksymibolj by b[j, k]. In our example problem, each row will
contain 3 symbols (though in general it is not required that the number of symbols per row be constant).

in2s)= N = 50;
mat = Tabl e[RandonBanpl e [Range[n], 3], {60}1;
row i sts = Mapl ndexed[b[#2[[1]], #] & mat, {2}];
collists =GatherBy[Flatten[rowists], #[[2]] &];

Let us look at what we have.

o= row i sts

oue- {{b[1, 5], b[1, 42], b[1, 50]}, {b[2, 30], b[2, 32], b[2, 26]},
(b[3, 39], b[3, 15], b[3, 26]}, (b[4, 8], b[4, 5], b[4, 18]},
(b5, 19], b[5, 4], b[5, 45]}, (b[6, 5], b[6, 15], b[6, 34]},
(b[7, 8], b[7, 17], b[7, 48]}, {b[8, 34], b[8, 407, b[8, 35]},
(b[9, 11], b[9, 44], b[9, 271}, {(b[10, 15], b[10, 20], b[10, 32]},
{b[ll 3], b[1l, 4], b[11, 471}, (b[12, 21], b[12, 45], b[12, 41]},
{b[13, 461, b[13, 34], b[13, 27]}, {b[14, 6], b[14, 34], b[14, 2]},
(b[15, 33], b[15, 50], b[15, 22]}, {b[16, 30], b[16, 19], b[16, 11]},
(b[17, 47], b[17, 44], b[17, 36]}, {b[18, 6], b[18, 44], b[18, 36]},
(b[19, 34], b[19, 20], b[19, 33]}, {b[20, 43], b[20, 20], b[20, 27]},
(b[21, 6], b[21, 25], b[21, 37]}, {(b[22, 207, b[22, 34], b[22, 13]},
(b[23, 21], b[23, 40], b[23, 3]}, {(b[24, 49], b[24, 19], b[24, 36]},
(b[25, 45], b[25, 30], b[25, 35]}, {(b[26, 6], b[26, 10], b[26, 1]},
(b[27, 9], b[27, 36], b[27, 18]}, {(b[28, 4], b[28, 11], b[28, 35]},
(b[29, 10], b[29, 2], b[29, 42]}, {b[30, 34], b[30 32], b[30, 177},
(b[31, 5], b[31, 12], b[31, 44]}, (b[32, 47], b[32, 26], b[32, 33]},
(b[33, 36], b[33, 28], b[33, 17]}, {(b[34, 2], b[34, 38], b[34, 45]},
(b[35, 36], b[35, 42], b[35, 44]}, {(b[36, 46], b[36, 44], b[36, 39]},
(b[37, 13], b[37, 33], b[37, 29]}, {(b[38, 36], b[38, 39], b[38, 21]},
(b[39, 13], b[39, 25], b[39, 27]}, {b[40, 10], b[40, 44], b[40, 12]},
(b[41, 48], b[41, 22], b[41, 29]}, (b[42, 14], b[42, 42], b[42, 34]},
(b[43, 42], b[43, 31], b[43, 33]}, {(b[44, 31], b[44, 43], b[44, 41]},
(b[45, 41], b[45, 48], b[45, 43]}, {b[46, 40], b[46, 19], b[46, 26]},
(b[47, 46], b[47, 40], b[47, 227}, {b[48, 29], b[48, 3], b[48, 25]},
(b[49. 43]. b[49, 40]. b[49. 471}, {b[50. 6], b[50, 31], b[50, 14]}.
(b[51, 11], b[51, 2], b[51, 15]}, {(b[52, 39], b[52, 16], b[52, 8]},
(b[53, 50], b[53, 29], b[53, 191}, (b[54, 25], b[54, 23], b[54, 14]},
(b[55, 21], b[55, 16], b[55, 36]}, {(b[56, 19], b[56, 43], b[56, 8]},
(b[57, 19], b[57, 48], b[57, 36]}, {(b[58, 13], b[58, 5], b[58, 17]},
(b[59, 24], b[59, 9], b[59, 291}, (b[60, 34], b[60, 50], b[60, 45]})

So the first row is comprised of symbols 5, 42, and 50, the second row uses symbols 30, 32, and 26, etc. We now formulate our optimization proble
insist that all variables lie between 0 and 1, be integers (so of course it is a 0-1 problem), and that each row sum be one (so there is exactly one 1 pe
minimize the sum of fourth powers of the column sums. Any power larger than one might be reasonable, but in using fourth powers we seemtodo ar
of forcing uniqueness of symbol selections in columns.
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mnEo= vars = Flatten[row i sts];
cO=Mp[0O<t<1& vars];
cl = {El ement [vars, |Integers]};
c2 =Map[Total [#] ==1&, rowists];
constraints =Join[cO, cl1, c2];
obj =Total [Map[Total [#]1"4 &, collists]];

We now run this, again disabling the post—processing so that we are certain Differential Evolution is doing the serious work.

3= T1mng[
Qui et [
{mn, best} =NM nim ze[{obj, constraints}, vars,
Method » {"Differential Evolution ", "CrossProbability -9 /10,

" Sear chPoi nts " - 50, "PostProcess " - Fal se}, Maxlterations - 5007; 1]

ouazl= {175.735, Null}

Now let us check the quality of the results.

n4er= col suns = Total [Array[b, {60, 50}] /. best /. b[_, _] 0]
Count [col suns, 2]

ouwps= {1, 1, 1,1, 2,1,01,1,1,2/1,1,1,2,1,1,1,1, 2,1, 1, 1, 1,
1, 2,112 2,2,1,11111,12121,1,11 2,1, 1,1, 1}

outag= 11

We used 11 symbols twice. All others that were used show up but once. Given the way we had set up this problem instance, the best possible outcor
to use at least 10 symbols twice, so clearly we are either optimal, or quite close, for this particular problem instance.

Future directions

We have seen several examples of discrete optimization problems, and indicated ways in which one might approach them using Differential Evolutio
investigated include basic integer programming, set partitioning, set covering by subsets, the permutation optimization problem of quadratic assignm
optimal polynomial fitting problem. The main issues have been to adapt Differential Evolution to enforce discrete or combinatorial structure, e.g. that
integrality, partitions, or permutations from chromosome vectors.

There are many open questions and considerable room for development. Here are a few of them.

1. Figure out better ways to attack quadratic assignment problems so that we are less likely to encounter difficulty in tuning parameter values, premi
convergence, and so on.

2. Make the Differential Evolution prograadaptive that is,allow algorithm parameters themselves to be modified during the course of a run. This migh
results less sensitive to tuning of parameters su€h assPr obabi lity.

a. Alternatively, develop a better understanding of how to select algorithm parameters in a problem-specific manner. Our experience has been -
for cross probability should usually be around .9 (which is quite high as compared to what is typical for continuous optimization). It would be L
have a more refined understanding of this and other tuning issues.

b. Figure out how to sensibly alter parameters over the course of the algorithm, not by evolution but rather by some other measure, say iteration
example, one might do well to start of with a fairly even crossover (near 0.5, that is), and have it either go up toward 1, or drop toward 0, as tF
progresses. Obviously it is not hard to code Differential Evolution to do this. What might be interesting research is to better understand when
such progression of algorithm parameters could improve performance.

3. Implement a two-level version of Differential Evolution, wherein several short runs are used to generate initial values for a longer run.

4. Use Differential Evolution in a hybridized form, say, with intermediate steps of local improvement. This would involving modifying chromosomes "i
so that improvements are passed along to subsequent generations. We showed a very basic version of this but surely there must be improvemer

We remark that some ideas related to item 2 above are explored in [3]. Issues of self-adaptive tuning of Differential Evolution are discussed in some ¢
nice exposition of early efforts along these lines, for genetic algorithms, appears in [4].
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