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The vibrations of a circular drumhead and the behavior of an electromagnetic wave or
a quantum-mechanical particle confined to a circular region can be understood by solving
the wave equation in polar coordinates on a disk. Let Ψ(r, θ, t) be the wave function
(displacement of the drumhead, electric or magnetic field of the electromagnetic wave,
Schrödinger wave function of the particle), which is a function of the polar coordinates
r and θ and of the time t. The wave is confined to a disk of radius R and has boundary
condition Ψ(R, θ, t) = 0 for all θ and t. Another condition is that Ψ must be regular
(not infinite) at the origin; and finally there is a continuity condition that Ψ(r, θ, t) =
Ψ(r, θ + 2π, t) for all r, θ, and t.

Let v be the speed of waves on the disk; then the wave equation is

∇2Ψ(r, θ, t) =
1
v2

∂2Ψ(r, θ, t)
∂t2 . (1)

The two-dimensional Laplacian in polar coordinates looks like the 3-D Laplacian in
cylindrical coordinates without a z term, so the wave equation becomes

∂2Ψ
∂r2 +

1
r

∂Ψ
∂r

+
1
r2

∂2Ψ
∂θ2 =

1
v2

∂2Ψ
∂t2 . (2)

We will use the technique of separation of varaiables to look for solutions of the form

Ψ(r, θ, t) = f (r)g(θ)h(t). (3)

Substituting this ansatz into the wave equation, we have

g(θ)h(t)
d2 f (r)

dr2 +
g(θ)h(t)

r
d f (r)

dr
+

f (r)h(t)
r2

d2g(θ)
dθ2 =

f (r)g(θ)
v2

d2h(t)
dt2 (4)

where all derivatives are now total derivatives. Multiplying through by v2/ f (r)g(θ)h(t),
we have

v2

f (r)
d2 f
dr2 +

v2

r f (r)
d f
dr

+
v2

r2g(θ)
d2g
dθ2 =

1
h(t)

d2h
dt2 . (5)

Notice that the right-hand side of this equation is a function only of t, and not or r or θ,
and that the left-hand side does not depend on t at all. The only way for this to happen is
if both sides are actually constant. Let us call this unknown constant −ω2; then

1
h(t)

d2h
dt2 = −ω2 (6)

1

WaveEquation.html
PolarCoordinates.html
Disk.html
Laplacian.html
CylindricalCoordinates.html
SeparationofVariables.html
OftheForm.html
Ansatz.html


and, multiplying through by h(t),

1
v2

d2h
dt2 = −ω2h(t). (7)

This is the differential equation that describes a sinusoid, so that generally

h(t) = A cos(ωt) + B sin(ωt) (8)

or, equivalently,
h(t) = C sin(ωt + φ) (9)

where A and B or C and φ are determined by the initial conditions. A common configu-
ration is A = 0 and B = 1 (or C = 1 and φ = 0) so that Ψ = 0 at t = 0. Another common
configuration is A = 1 and B = 0, which means that the wave function has its maximum
magnitude at t = 0; this corresponds to starting the clock when a drum is hit.

We how have
v2

f (r)
d2 f
dr2 +

v2

r f (r)
d f
dr

+
v2

r2g(θ)
d2g
dθ2 = −ω2. (10)

Multiplying through by r2/v2, and defining k = ω/v, we have

r2

f (r)
d2 f
dr2 +

r
f (r)

d f
dr

+
1

g(θ)
d2g
dθ2 = −k2r2 (11)

where k, which has units of 1/distance, is called the wave number. Gathering all the r
terms on the left and the θ terms on the right, we have

r2

f (r)
d2 f
dr2 +

r
f (r)

d f
dr

+ k2r2 = − 1
g(θ)

d2g
dθ2 . (12)

Again, each side must be equal to a constant, which we will call n2. Now we have

− 1
g(θ)

d2g
dθ2 = n2 (13)

or
d2g
dθ2 = −n2g(θ) (14)

which is, again, the equation for a sinusoid of the form

g(θ) = D cos(nθ) + E sin(nθ) (15)

or
g(θ) = sin(nθ + θ0) (16)

where we are disregarding an overall multiplicative constant. We impose the continuity
condition, which is that g(θ) = g(θ + 2π), and from it deduce that n must be an integer.
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Turning to the radial component of the wave function, we now have

r2

f (r)
d2 f
dr2 +

r
f (r)

d f
dr

+ k2r2 = n2 (17)

so that

r2 d2 f
dr2 + r

d f
dr

+ k2r2 f (r) = n2 f (r) (18)

or

r2 d2 f
dr2 + r

d f
dr

+ (k2r2 − n2) f (r) = 0. (19)

If we change to the dimensionless variable x = kr, we have

x2 d2 f (x)
dx2 + x

d f (x)
dx

+ (x2 − n2) f (x) = 0 (20)

which is a Bessel differential equation, whose solutions are the Bessel functions Jn(x) and
Yn(x). The Yn(x) are not regular at the origin, and must be disregarded here, so we are
left with

f (x) = Jn(x) (21)

or, switching back to using r,
f (r) = Jn(kr) (22)

where we are again disregarding an overall multiplicative constant.
The boundary condition, f (R) = 0, imposes a restriction on k. If we denote by jn,m

the mth positive zero of Jn(x), then we must have

kR = jn,m (23)

for some positive integer m, so that

k =
jn,m

R
(24)

and
ω = kv =

vjn,m

R
. (25)

Putting it all together, we have

Ψn,m(r, θ, t) = CJn

(
jn,mr

R

)
sin(nθ + θ0) sin

(
vjn,mt

R
+ φ

)
(26)

where C, φ, and θ0 are determined by the initial conditions.
Any linear combination of Ψn,m’s is also a solution to the original wave equation, so

we can write a general solution as a Fourier-Bessel series

Ψ(r, θ, t) =
∞

∑
n=0

∞

∑
m=1

cn,mΨn,m(r, θ, t) (27)

3

BesselDifferentialEquation.html
BesselFunctions.html
BesselFunctionoftheSecondKind.html
BesselFunctionZeros.html
Fourier-BesselSeries.html


and, because the Bessel functions are orthogonal, we can solve for the coefficients cn,m
using Fourier analysis.

Physically, ω is related to the frequency of oscillation f by ω = 2π f , so that the
frequency of a mode is

fn,m =
ωn,m

2π
=

vjn,m

2πR
(28)

and the period T is

Tn,m =
1

fn,m
=

2πR
vjn,m

. (29)

The frequencies are not integer multiples of the lowest frequency, so drums are not
harmonic in the musical sense.
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