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“Hobbits delighted . . . to have books filled with things that they already knew,
set out fair and square with no contradictions.”

– J. R. R. Tolkien The Fellowship of the Ring, Prologue, §1 at end.

1. Introduction

The theory of convex polyhedra in several dimensions is important in a wide
variety of contexts. For instance, it underlies the topic of linear programming. The
text by Ziegler[3] is modern and inclusive. Among the publicly available collections
of software that handle convex polyhedra, the Parma Polyhedra Library (PPL) at
http://www.cs.unipr.it/ppl/ is very well designed and documented.

For another project, I wanted to compute some elementary properties of a con-
vex polyhedron. Specifically, I had a convex polytope, defined by equalities and
inequalities. I wanted to project it along one or more coordinate axes, and charac-
terize the resulting polytope in a similar way. Ziegler showed me the theory, but
omitted some details and relegated others to exercises.1 The PPL dealt with all the
computational issues, but was dauntingly large. I decided to do it myself.

The process of explaining it to myself, well enough that I adequately knew what
I was doing, has resulted in these notes. To a large extent they follow Ziegler; the
algorithmic aspects are strongly influenced by the PPL, and a crucial proof comes
from Komornik[2].

A convex polytope can also be characterized by its vertices. The two character-
izations can be used together to good effect. Therefore a considerable part of these
notes is devoted to the relationship between these two characterizations.

Convex polytopes are bounded, and thus are a special case of convex polyhedra,
which may be unbounded. I found that another special case, that of convex poly-
hedral cones, has two advantages: its properties are somewhat simpler, and the
general case can be reduced to this special case. Therefore, much of these notes is
focused on convex polyhedral cones.

1.1. Notation. In these notes, Rd represents the vector space of all d-dimensional
column vectors with real components. Vectors will be named in bold-face lower case,
e.g. x. When it is necessary to be explicit about the components of a particular
vector, I will write (v1, v2, . . . , vd)T . The standard basis of Rd is e1, . . . , ed. The

1So, to some extent, these notes record my working of those exercises. I do not feel that I am

supplying anyone with a spoiler or cheat-sheet, however, because I had to do the exercises for a
different special case than the one that Ziegler prefers.

1



2 CHRISTOPHER J. HENRICH

usual norm and inner product will be denoted ‖ . . . ‖ and (. . . , . . .); thus, (v,w) =
vTw.

If x ∈ Rd, then the ray generated by x is

Rx = {tx|t ≥ 0}
and the line generated by x is

Lx = {tx|t ∈ R} .
We shall use sans-serif capitals to name lists of vectors, for instance: A =

(a1, . . . ,am). If aι ∈ Rd, ι = 1, . . . ,m, then A ∈ Rd×m. A list of m real num-
bers is a row vector, or a member of R1×m, denoted by a small sans-serif letter.
The empty list, or list of length 0, will be denoted O.

1.2. Two definitions of “convex polyhedron”. In general, a set S ⊆ Rd is
convex if, whenever two vectors x1 and x2 belong to S, so do the points of the
segment joining x1 and x2. Algebraically, these are the vectors t1x1 + t2x2 , t1 ≥
0, t2 ≥ 0 , t1 + t2 = 1. A set S is a convex cone if it is convex and, for every
x ∈ S and t ≥ 0, tx ∈ S. Algebraically, S is a convex cone if, given x1 ∈ S and
x2 ∈ S, and t1 ≥ 0, t2 ≥ 0,

t1x1 + t2x2 ∈ S .
These notes are about convex sets that are “polyhedral”. Part of our task is to

define and describe polyhedral convex sets. We shall give two descriptions, which
we must show are equivalent.

A closed convex polyhedron may be defined as the intersection of a finite set of
closed half-spaces in Rd. This may or may not be bounded, and it may or may not
be contained in an affine subspace such as a hyperplane. The definition includes as
extreme cases the empty set and the entirety of Rd. This definition can be made
more formal:

Definition 1.1. Let A ∈ Rd×m, B ∈ Rd×n, v ∈ R1×m, and w ∈ R1×n. The
H -polyhedron presented by A, B, v, and w is the set

Poly
(

A B
v w

)
=

{x ∈ Rd|(aα,x) = vα, α = 1, . . . ,m; (bβ ,x) ≤ wβ , β = 1, . . . , n}
where

A = (a1, . . . ,am),

B = (b1, . . . ,bn),

v = (v1, . . . , vm),

w = (w1, . . . , wn).

If v and w are both 0, we shall write Poly(A,B); this is the H -cone presented by
A and B.

Definition 1.2. A closed convex polyhedron is any set P which can be pre-
sented as an H -polyhedron. The dimension of P , denoted dim(P ), is the dimen-
sion of the smallest affine subspace containing P .

Another way to describe a convex polyhedron is to construct it from generating
elements. These elements may be lines, rays, or points.
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Definition 1.3. Let A ∈ Rd×m, B ∈ Rd×n, and C ∈ Rd×p; let

Hull(A,B,C) =(1.1)

{r1a1 + · · ·+ rmam + s1b1 + · · ·+ snbn + t1c1 + · · ·+ tpap|
rα ∈ R, α = 1, . . . ,m; sβ ≥ 0, β = 1, . . . , n;

tγ ≥ 0, γ = 1, . . . , p; t1 + · · · tp = 1}.

Then Hull(A,B,C) is the convex-conical hull generated by the lines La1 , . . . ,
Lam , the rays Rb1 , . . . , Rbn , and the points c1,. . . , cp, where

A = (a1, . . . ,am),

B = (b1, . . . ,bn),

C = (c1, . . . , cp).

If the list C = O, we shall write Hull(A,B); this is the cone generated by the
lines La1 , . . . , Lam

and the rays Rb1 , . . . , Rbn
.

1.3. Summary of further sections. In §2, I define convex polyhedral cones.
I show how questions about the more general class of convex polyhedra can be
reduced to this subclass.
§3 introduces polarity for closed convex polyhedral cones. §4 introduces the op-

erations of intersection and projection for closed convex polyhedral cones. These
can be implemented by an important algorithm called Fourier-Motzkin elimi-
nation. They are then used in §5, to prove that H -polyhedra and convex-conical
hulls are two definitions of the same class of sets. This will, in fact, be the “main
theorem” of these notes.

The next part of these notes is motivated by the problem of computing descrip-
tions of closed convex polyhedra. §6 introduces double descriptions of these polyhe-
dra, and describes some of the ways in which these descriptions can be otimized. §7
is concerned with the last stage of optimization, which is to eliminate redundancy
from the descriptions. We have to characterize “redundancy,” both geometrically
and algebraically. In §8 we show how redundant parts of a description can be
detected economically.

The final part of these notes is concerned with the problem of computing the
double descriptors of convex polyhedral cones. In §9, we consider the effects of
adding a single descriptor to part of the double description. In the course of this,
we revisit the Fourier-Motzkin algorithm, in which we can not only detect redun-
dant descriptors but prevent their formation. Finally, in §10, we discuss how the
contents of these notes are used in some Mathematica(tm) code which these notes
accompany.

2. Reduction to the subproblem of convex polyhedral cones

It is useful to define two embeddings of Rd into Rd+1:

ι : (x1, . . . , xd)
T 7→ (x1, . . . , xd, 1)T

and
ι0 : (x1, . . . , xd)

T 7→ (x1, . . . , xd, 0)T .

Definition 2.1. Let S be a closed set in Rd. Then C(S), the closed cone over S,
is the closure of the union of the rays Rιx for x ∈ S.
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We will show that an H -polyhedron or a convex-conical hull is determined by
the closed cone over it.

2.1. Closed cones over H -polyhedra.

Proposition 2.2. Let P be a non-empty H-polyhedron in Rd:

P = Poly
(

A B
v w

)
.

where

A = (a1, . . . ,am) ∈ Rd×m ,

B = (b1, . . . ,bn) ∈ Rd×n ,
v = (v1, . . . , vm) ∈ R1×m ,

w = (w1, . . . , wn) ∈ R1×n .

Let

ãα = ι0aα − vαed+1, α = 1, . . . ,m ,

b̃β = ι0bβ − wβed+1 , β = 1, . . . , n,

b̃n+1 = −ed+1 .

and

Ã = (ã1, . . . , ãm) ∈ R(d+1)×m ,

B̃ = (b̃1, . . . , b̃n+1) ∈ R(d+1)×(m+1) .

Then

(2.1) ιP = Poly(Ã, B̃) ∩ ιRd .
Also, the closed cone over P is

C(P ) = Poly(Ã, B̃) .

Proof. Equation (2.1) is an immediate consequence of the definitions.
Let us show that C(P ) ⊆ Poly(Ã, B̃). Indeed, if x ∈ P then it is immediate

that ιx ∈ Poly(Ã, B̃). Therefore the ray through ιx is contained in Poly(Ã, B̃). But
Poly(Ã, B̃) is a closed set, so it contains the closure of the union of those rays, which
is just C(P ).

Next we show that Poly(Ã, B̃) ⊆ C(P ), let y ∈ Poly(Ã, B̃). Then yd+1 ≥ 0
because of the last member of B̃. There are two cases to consider.

(i) If yd+1 > 0, let z = (yd+1)−1y. Then z = ιx for some x ∈ P .
(ii) If yd+1 = 0, then y = ι0u where u ∈ Rd, and

(aα,u) = 0, α = 1, . . . ,m,

(bβ ,u) ≤ 0, β = 1, . . . , n.

Let x be any point in P . We check that x + λu ∈ P , so that ιx + λv ∈ C(P ).
Divide by λ and let λ→∞; we have that λ−1ιx + v belongs to C(P ) and tends to
v. �

The moral of this tale is that the theory of H -polyhedra can be reduced to that
of H -cones.
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2.2. Closed cones over convex-conical hulls. The following proposition, taken
from [2], is crucial to Theorem 3.3, known as “Farkas’s lemma.”

Proposition 2.3. Let Y = {y1,y2, . . . ,yk} ∈ Rd×k, and let K = Hull(O,Y). Then
for every x ∈ Rd there is a closest point x′ in K.

Proof. The proof is by induction on k. The statement is obvious if k = 1. Let
k ≥ 2. There are three cases to consider.

(1) If x ∈ K then we may choose x′ = x.
(2) If x /∈ K but x belongs to the linear hull L of {y1,y2, . . . ,yk}, then

by the induction hypothesis we may assume that, for each j, the cone Kj =
Hull(O, (y1, . . . ,yj−1,yj+1, . . . ,yk)) has a closest point x′j to x. Let x′ be the
closest point to x among {x′1,x′2, . . . ,x′k}. We show that ‖x − x′‖ ≤ ‖x − z‖ for
every z ∈ K.

We have
x = α1y1 + · · ·+ αkyk ,

in which αj < 0 for some j because x /∈ K. We also have

z = γ1y1 + · · ·+ γkyk ,

in which γ1, . . . , γk ≥ 0. Let

t := min{γj/(γj − αj) | 1 ≤ j ≤ k, αj < 0} .

Then 0 ≤ t < 1 and the minimum is attained at some index i. Therefore

tαj + (1− t)γj ≥ 0 for all j

and
tαi + (1− t)γi = 0 .

The geometrical meaning of these inequalities is that the segment from x to z meets
the side Ki of K at tx + (1− t)z. Therefore

‖x− x′‖ ≤ ‖x− x′i‖ ≤ ‖x− (tx + (1− t)z)‖ = (1− t)‖x− z‖ ;

therefore
‖x− x′‖ ≤ ‖x− z‖ .

(3) If x /∈ L, then choose an orthonormal basis f1, . . . , fl of L and set x̃ =
(x, f1)f1 + . . . (x, fl)fl. From steps (1) and (2), there is in K a closest point x′ to x̃.
Now x− x̃ is orthogonal to L. So, if z ∈ K, we have

‖x− x′‖2 = ‖x− x̃‖2 + ‖x̃− x′‖2 ≤ ‖x− x̃‖2 + ‖x̃− z‖2 = ‖x− z‖2 ;

thus, x′ is also a closest point in K to x. �

Corollary 2.4. Let K be as in Prop. 2.3; then K is closed.

These results, as stated, apply to conical hulls determined by ray generators. Line
generators, while very convenient, are not indispensable, as the following proposi-
tion shows.

Proposition 2.5. Let

A = (a1, . . . ,am) ∈ Rd×m ,

B = (b1, . . . ,bn) ∈ Rd×n ,
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and let

C = (a1, . . . ,am,−a1, . . . ,−am,

b1, . . . ,bn) ∈ Rd×(2m+n) .

Then
Hull(A,B) = Hull(O,C) .

Proof. Each of these hulls contains the generators of the other hull. �

Corollary 2.6. Let

A = (a1, . . . ,am) ∈ Rd×m ,

B = (b1, . . . ,bn) ∈ Rd×n ,
and let

K = Hull(A,B) .
Then for every x ∈ Rd there is a closest point x′ in K. Also, K is closed.

Proof. Apply Proposition 2.5 to K; then apply Proposition 2.3 and Corollary 2.4.
�

Similarly, equality constraints are not indispensable; one could replace each of
them by a pair of inequalities. However, both line generators and equality con-
straints make the descriptions more concise and more informative about the sets
being described.

Proposition 2.7. Let

A = (a1, . . . ,am) ∈ Rd×m ,

B = (b1, . . . ,bn) ∈ Rd×n ,

C = (c1, . . . , cp) ∈ Rd×p ,
and let

P = Hull(A,B,C) .
Let

Â = (ι0a1, . . . , ι0am) ,

B̂ = (ι0b1, . . . , ι0bn, ιc1, . . . , ιcp) .

Then

(2.2) C(P ) = Hull(Â, B̂)

and

(2.3) ιP = Hull(Â, B̂) ∩ ιRd .

Proof. P consists of points of the form given in (1.1). If x is any point of that
form, then ιx ∈ Hull(Â, B̂); that is to say, ιP ⊆ Hull(Â, B̂) ∩ ιRd. Conversely, if
w ∈ Hull(Â, B̂), then

(2.4) w = r1ι0a1 + · · · + rmι0am + s1ι0b1 + · · · + snι0bn + t1ιc1 + · · · + tpιcp
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where rα ∈ R, α = 1, . . . ,m, sβ ≥ 0, s = 1, . . . , n, and tγ ≥ 0, γ = 1, . . . , p; if
moreover w ∈ ιRd, then t1 + · · ·+ tp = 1. It follows that w = ιx for some x of the
form given in in (1.1). Therefore, Hull(Â, B̂) ∩ ιRd ⊆ ιP , and (2.3) is proved.

To prove that Hull(Â, B̂) ⊆ C(P ), consider a vector w ∈ Hull(Â, B̂), given by
(2.4), and let t = t1 + · · ·+ tp. There are two cases to consider:

(i) If t > 0, then t−1w ∈ ιRd, so t−1w ∈ ιP by (2.3); therefore w ∈ C(P ).
(ii) If t = 0, then w = ι0u, where u ∈ Hull(A,B). Let x ∈ P . If λ > 0, then

x + λu ∈ P ; therefore ιx + λw ∈ C(P ). Divide by λ and let λ→∞; we have that
λ−1ιx + w belongs to C(P ) and tends to w.

To prove that C(P ) ⊆ Hull(Â, B̂), we simply observe that Hull(Â, B̂) is closed,
by Corollary 2.6, and contains every ray through a point of ιP . �

This proposition shows that the general case of convex-conical hulls can be re-
duced to that of conical hulls.

3. Polarity

This is a relation between convex polyhedral cones that naturally relates H -cones
to conical hulls.

Definition 3.1. Let K be a convex cone in Rd. The polar of K is the set K◦

defined by
K◦ = {x ∈ Rd | (x,y) ≤ 0 for all y ∈ K} .

It is easily seen that K◦ is also a convex cone.

Proposition 3.2. Let A ∈ Rd×m and B ∈ Rd×n; let

K = Hull(A,B) .

Then
K◦ = Poly(A,B) .

Proof. Let A = (a1, . . . ,am) and B = (b1, . . . ,bn). The statement that x ∈
Poly(A,B) is equivalent to

(aα,x) = 0, α = 1, . . . ,m,

(bβ ,x) ≤ 0, β = 1, . . . , n.

But these relations are clearly equivalent to x ∈ K◦. �

This easy proposition says that the polar of a conical hull is an H -cone. What
about the polar of an H -cone : is it a conical hull? The affirmative answer to this
question is a fundamental result, first proved in [1]. Ziegler[3] gives many equivalent
formulations, with references to its history. The proof given here, dependent on
Proposition 2.3, is due to Komornik[2].

Theorem 3.3. (Farkas’s Lemma) Let A ∈ Rd×m and B ∈ Rd×n, and let

K = Poly(A,B) .

Then
K◦ = Hull(A,B) .
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Proof. Let

A = (a1, . . . ,am) ,

B = (b1, . . . ,bn) .

Then the statement that x ∈ K is equivalent to the inequalities

(aα,x) = 0, α = 1, . . . ,m , (bβ ,x) ≤ 0, β = 1, . . . , n .(3.1)

Thus it is immediate that
Hull(A,B) ⊆ K◦ .

Let us prove that, conversely,

K◦ ⊆ Hull(A,B) .

Let y ∈ K◦; that is, (y,x) ≤ 0 for all x ∈ Rd satisfying (3.1).
By virtue of Prop. 2.6, we may let z be a point in Hull(A,B) closest to y. We

will prove that

(3.2) (aα,y − z) = 0, α = 1, . . . ,m,

(3.3) (bβ ,y − z) ≤ 0, β = 1, . . . , n

and

(3.4) (−z,y − z) ≤ 0.

Indeed, if one of the equalities (3.2) were not valid, then for sufficiently small t ∈ R
such that t(aα,y − z) > 0 we would have

‖y−(z+taα)‖2 = ‖(y−z)−taα‖2 = ‖y−z‖2−2t(aα,y−z)+t2‖bβ‖2 < ‖y−z‖2 ,

whereas if one of the inequalities (3.3) or (3.4) were not valid, then for a sufficiently
small t ∈ (0, 1) we would have

‖y−(z+tbβ)‖2 = ‖(y−z)−tbβ‖2 = ‖y−z‖2−2t(bβ ,y−z)+t2‖bβ‖2 < ‖y−z‖2 ,

that is,

(a) ‖y − (z + tbβ)‖2 < ‖y − z‖2 ,

or

‖y− (z− tz)‖2 = ‖(y− z) + tz‖2 = ‖y− z‖2− 2t(−z,y− z) + t2‖yi‖2 < ‖y− z‖2 ,

that is,

(b) ‖y − (z− tz)‖2 < ‖y − z‖2 ;

but z + taα, z + tbβ and z− tz = (1− t)z belong to Hull(A,B), so inequalities (a)
and (b) are contrary to the choice of z.

Now by hypothesis the inequalities (3.2) and (3.3) imply that (y,y − z) ≤ 0.
Together with (3.4) this implies (y − z,y − z) ≤ 0. Thus y = z and therefore
y ∈ Hull(A,B). �

Proposition 3.2 and Theorem 3.3 show that polarity gives a very exact corre-
spondence between convex cones presented as H -cones and convex cones described
as conical hulls. It is worth noting that for cones of either description, K = K◦◦.
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4. Some operations on cones

The intersection of a convex cone with a linear subspace is a convex cone in the
subspace. If the original cone is polyhedral, what about the intersection? It is very
easy to see that the intersection of an H -cone with a subspace is also an H -cone.
For conical hulls, one feels that the intersection ought to be polyhedral, but proving
it is not trivial.

If the enclosing vector space is projected onto a vector space of lower dimension,
then a convex cone is projected onto a convex cone. Again one may ask, if the
original cone is polyhedral, is the image polyhedral? If the original is a conical hull,
then it is very easy to see that the image is also a conical hull. For H -cones, the
affirmative answer to the question is, again, very plausible but not trivial to prove.

The non-trivial part of these problems is solved by using a process called Fourier-
Motzkin elimination. We will define it in a way that is slightly more general
than what we need here, but will be useful later.

Definition 4.1. Let B ∈ Rd×n; let v ∈ Rd. Then FM(B,v) is a list of the following
vectors in Rd:

(1) any element d of D such that (v,b) = 0;
(2) for any b′ and b′′ in D such that (v,b′) > 0 and (v,b′′) < 0, the vector

(v,b′)b′′ + (−(v,b′′))b′ .

Fourier-Motzkin elimination is the process of generating FM(B,v).

Proposition 4.2. Let A ∈ Rd×m and B ∈ Rd×n. Let v ∈ Rd be orthogonal to each
element of A. Then

Hull(A,B) ∩ v⊥ = Hull(A, FM(B,v)) .

Proof. To check that the right-hand side of this equation is included in the left, it
is sufficient to observe that each generator on the right is contained in the Hull on
the left, and is orthogonal to v.

Next we must show inclusion in the other direction. Let x be contained in the
set specified on the left-hand side. Then

x ∈ Hull(A,B) ,

and also (v,x) = 0. Therefore

x =
∑
i

siai +
∑
i

tibi , ti ≥ 0 ,

and also ∑
i

ti(v,bi) = 0 .

It may be the case that all the products ti(v,bi) are 0. If so, then

x ∈ Hull(A,B0)

where B0 is a list of those elements b of B such that (v,b) = 0. But by Definition
4.1, B0 ⊆ FM(B,v).
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On the other hand, consider the case that some of the products ti(v,bi) are not
zero. Remembering that n is the number of elements in B, let us define

P = {i | 1 ≤ i ≤ n, (v,bi) > 0} ,
M = {i | 1 ≤ i ≤ n, (v,bi) < 0} ,
Z = {i | 1 ≤ i ≤ n, (v,bi) = 0} .

Then, if we define Λ by

Λ =
∑
i∈P

ti(v,bi) > 0 ,

we also have

Λ =
∑
i∈M

ti(−(v,bi)) .

With this, we can rewrite our expression for x as

x =
∑
i

siai +
∑
i∈Z

tibi +
∑
i∈P

tibi +
∑
j∈M

tjbj

=
∑
i

siai +
∑
i∈Z

tibi +
1
Λ

∑
i∈P

∑
j∈M

tj(−(v,bj))

 tibi

+
1
Λ

∑
j∈M

(∑
i∈P

ti(v,bi)

)
tjbj

=
∑
i

siai +
∑
i∈Z

tibi +
∑
i∈P

∑
j∈M

titj
Λ

((−(v,bj))bi + (v,bi)bj)

 .

We see that the expression on the last line belongs to Hull(A, FM(B,v)). �

To make the technicalities easier, we consider a special case of a subspace or
quotient space. Specifically, we start with a convex cone K in Rd+1, and recall the
linear map ι0. We also define

(4.1) π0 : Rd+1 → Rd : (x1, . . . , xd, xd+1)T 7→ (x1, . . . , xd)
T
.

Note that

(4.2) (ι0x,y) = (x, π0y), x ∈ Rd , y ∈ Rd+1 .

We will also describe our convex cones withut using line generators or hyperplane
constraints. As shown by Proposition 2.5, this entails no loss of generality.

Now, for a general convex cone K ⊆ Rd+1, we define

Kι = {x ∈ Rd | ι0x ∈ K} = π0(K ∩ e⊥d+1)

and
Kπ = {π0y | y ∈ K} .

We wish to prove that, if B ∈ R(d+1)×n, and K = Hull(O,B), then Kι = Hull(O,B′)
for some B′ ∈ Rd×n′

. Similarly, we wish to prove that if K = Poly(O,B), then
Kπ = Poly(O,B′).
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Proposition 4.3. Let B = (b1, . . . ,bn) be a list of vectors in Rd, and let K =
Hull(O,B). Let B′ be the list of vectors π0b′ where b′ is an element of FM(B, ed+1).
Then

Kπ = Hull(O,B′) .

Proof. It follows directly from Proposition 4.2 that

Kι = π0(K ∩ e⊥d+1)

= π0(Hull(O, FM(B, ed+1)))

= Hull(O,B′) .

�

Proposition 4.4. Let K be a convex cone in Rd+1. Then

Kπ◦ = K◦ι .

Proof. Let x ∈ Rd. Then the statement that x ∈ Kπ◦ is equivalent to the statement
that for all y ∈ K, (x, π0y) ≤ 0. This in turn is equivalent to the statement that
for all y ∈ K, (ι0x,y) ≤ 0. But the latter statement is equivalent to the statement
that ι0x ∈ K◦, that is, to x ∈ K◦ι. �

Proposition 4.5. Let K be an H-cone in Rd+1:

K = Poly(O,B), B ∈ R(d+1)×n .

Then
Kπ = Poly(O,B′)

where B′ is defined as in Proposition 4.3.

Proof. By Theorem 3.3,
K◦ = Hull(O,B) .

By Proposition 4.3,
K◦ι = Hull(O,B′) .

By Proposition 4.4,
Kπ◦ = Hull(O,B′) .

By Proposition 3.2,
Kπ = Poly(O,B′) .

�

It is clear that we can express the intersection of Hull(O,B) with any subspace as
a conical hull, and the projection of Poly(O,B) on any quotient space as an H -cone,
by linear transformations and repeated application of Fourier-Motzkin elimination.
This is not a good way to go, computationally, because the number of generators
of halfplanes may grow horribly fast. If B contains n vectors, then the number of
vectors in FM(B,v) may be as large as n2/4. Many of these may be redundant; we
shall see later how to discard the redundant vectors or even avoid computing them
in the first place. (We shall also find a less inelegant way of treating line generators
and hyperplane constraints, than sweeping them under the rug into the lists of rays
or halfspaces.)
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5. Fundamental theorems

We can now prove the main theorem, in three different forms. First we consider
convex cones; then, convex polyhedra which may not be bounded, finally, bounded
convex polyhedra or polytopes.

Theorem 5.1. (Main theorem for cones) A subset of Rd is a conical hull if and
only if it is an H-cone.

Proof. First, let K = Hull(O,B) ⊆ Rd, where B ∈ Rd×n; we must prove that K is
an H -cone. Now if B = (b1, . . . ,bn), then

K = {Σtβbβ | t ≥ 0, t ∈ Rn}

= {x ∈ Rd | ∃ t ∈ Rn : t ≥ 0, x = Σtβbβ} .
The set

{
(

x
t

)
∈ Rd+n | t ≥ 0, x = Σtβbβ}

is clearly an H -cone, and K is obtained from it by projecting out the last n com-
ponents. Therefore the conclusion that K itself is an H -cone follows from n appli-
cations of Proposition 4.5.

Second, let C = Poly(O,B); we must prove that C is a conical hull. By
Proposition 3.2, C◦ = Hull(O,B). But now, by the first part of this theorem,
C◦ = Poly(O,C). Therefore, by Theorem 3.3, C = C◦◦ = Hull(O,C). �

Theorem 5.2. (Main theorem for unbounded polyhedra) A subset of Rd is a convex-
conical hull if and only if it is an H-polyhedron.

Proof. First, let K = Hull(A,B,C), where A, B, and C are lists of vectors in Rd; we
must prove that K is an H -polyhedron. By Proposition 2.7, there is a conical hull
K̂ = Hull(Â, B̂) in Rd+1 such that ιK = K̂ ∩ ιRd. By Theorem 5.1, K̂ = Poly(O,C)
for some C ∈ R(d+1)×n. That is,

ιK = Poly(O,C) ∩ ιRd .
From Proposition 2.2, we see that

K = Poly
(

O D
0 w

)
for suitable D and w.

Second, let

K = Poly
(

A B
v w

)
;

we must prove that K is a convex-conical hull. By Proposition 2.2,

ιK = Poly(Â, B̂) ∩ Rd ;

and by Theorem 5.1, Poly(Â, B̂) = Hull(O,C) for a suitable list C of vectors in
Rd+1. Now the form of C given in Proposition 2.2 ensures that each vector c in
C satisfies cd+1 ≥ 0. We populate two lists D and E of vectors in Rd as follows:
for every c = (c1, . . . , cd, cd+1)T in the list C, if cd+1 = 0 then let (c1, . . . , cd)T

belong to D; and if cd+1 > 0 then let (c1/cd+1 , . . . , cd/cd+1)T belong to E. Then
K = Hull(O,D,E). �

A bounded convex polyhedron is also called a convex polytope.
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Theorem 5.3. (Main theorem for polytopes) A subset of Rd is the convex hull of
a finite set of vectors in Rd if and only if it is a bounded H-polyhedron.

Proof. Let P be the convex hull of a finite set V of vectors in Rd. Then, by Theorem
5.2, P is an H -polyhedron, and it clearly is bounded.

Conversely, suppose that P is a bounded H -polyhedron. Then, again by The-
orem 5.2, P is a convex-conical hull Hull(O,D,E). But P is bounded, so in this
expression for P the set D must be empty. �

6. Descriptions

To describe algorithms for dealing with convex cones, it is useful to be somewhat
wordy about how the cones themselves are described. We use the word descriptor
for a vector in Rd.

As we saw in §5, we can describe a particular convex cone by generators, or by
constraints. We may define two-sided and one-sided descriptors for either kind
of description..

In the description of K by generators, each two-sided descriptor spans a line
that is contained in K, and each one-sided descriptor spans a ray in K.

In the description of K by constraints, each two-sided descriptor v determines
a hyperplane {x ∈ Rd|(v,x) = 0}, and each one-sided descriptor w determines a
halfspace {x ∈ Rd|(w,x) ≤ 0}.

Table 1 summarizes the terms I have just introduced:

Two-sided One-sided
Generators lines rays
Constraints hyperplanes halfspaces

Table 1. Nomenclature for descriptors

The double description of K consists of the two kinds of description. We shall
represent a double description thus:

(6.1) D = ((A,B), (C,D))

where A is the list of line generators, B is the list of ray generators, C is the list of
hyperplane constraints, and D is the list of halfspace constraints.

Much of the “fundamental theory” of convex cones can be summarized by two
remarks:

(1) the cone described by the above D is

K = Hull(A,B) = Poly(C,D) ;

(2) a double description of K◦ is obtained from that of K by exchanging the
generators with the constraints.

Every line descriptor is necessarily orthogonal to all of the constraint descriptors,
and similarly every hyperplane descriptor is orthogonal to all of the generators.
The inner product of a ray descriptor with halfspace generator may be 0 or strictly
negative. Table 2 summarizes the inner products of the generator and constraint
descriptors.
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Generator
line ray

Constraint hyperplane 0 0
halfplane 0 ≤ 0

Table 2. Inner products of descriptors

6.1. The intuitive notion of “best” description. Evidently there can be many
different double descriptions of the same cone. We would like to find the best
descriptions, even if we are not quite sure what “best” means here. What are we
looking for? The best descriptions should be economized, not using unnecessary
descriptors. And it would be nice if the best descriptions made certain intrinsic
properties of the cones apparent “on inspection.”

Two intrinsic properties of any convex polyhedron are these:

Definition 6.1. Let P be a convex set in Rd. Then the lineality space of P ,
denoted lineal(P ), is

lineal(P ) := {y ∈ Rd |x + ty ∈ P ∀x ∈ P, t ∈ R} .

The affine hull of P , denoted aff(P ), is the smallest affine subspace containing P .

Note that if P contains the origin (for instance, if P is a cone), then aff(P ) is a
vector space.

If K is a closed convex polyhedral cone and lineal(K) = {0}, then we say that
K is pointed. If aff(K) = Rd, then we say that K is d-dimensional or of full
dimension; then K has interior points.

It turns out that lineal(K) and aff(K) can both be revealed by a properly com-
posed description. We can make sure that, in (6.1), A is a basis of lineal(K) and C
is a basis of (aff(K))⊥. In particular,

dim lineal(K) = #(A)

and
dim aff(K) = d−#(C) .

For the one-sided descriptors, the important thing is not to be redundant. Infor-
mally, a descriptor is redundant if it can be removed from the description without
having any effect on the thing being described. We will give this notion a more rig-
orous definition. We also demonstrate some criteria for deciding when a descriptor
is redundant.

It is convenient to define the optimization of double descriptions in stages.

6.2. First-Stage Optimization.

Definition 6.2. Let K be a convex polyhedral cone, and lst D be a double de-
scription of K. A one-sided descriptor v is saturated if it is orthogonal to all the
one-sided descriptors in the opposite description.

Proposition 6.3. Let K be a convex polyhedral cone in Rd, with a double descrip-
tion D; let v be a saturated one-sided descriptor. If v is a ray descriptor, then
the line Rv is contained in K. If v is a halfspace descriptor, then the hyperplane
{x ∈ Rd | (x,v) = 0} contains K.
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Proof. If v is a saturated ray descriptor, then Rv satisfies all the constraints in D.
On the other hand, if v is a saturated halfspace descriptor, then all the generators
in D satisfy the hyperplane constraint. �

Corollary 6.4. Let K be a convex polyhedral cone in Rd, with a double description
D. Then another double description of K may be obtained by moving each satu-
rated ray descriptor into the list of line descriptors, and each saturated halfspace
descriptor into the list of hyperplane descriptors.

Definition 6.5. Let K be a convex polyhedral cone in Rd, with a double descrip-
tion D. Then D is first-stage optimized if it contains no saturated one-sided
descriptors.

The corollary shows that every convex polyhedral cone does have a first-stage
optimized double description.

Proposition 6.6. Let K be a convex polyhedral cone in Rd, with a double de-
scription D which is first-stage optimized. Then lineal(K) is spanned by the line
generators of D.

Proof. From the definition,

lineal(K) = {x ∈ K |Rx ⊆ K} .
Let D be as in (6.1). It is evident that every element of A is contained in lineal(K).
Conversely, if x ∈ lineal(K), then we will show that x is a linear combination of
the elements of A. Because x ∈ K, we have

x = Σtiai + Σuibi ,

where the ai are elements of A, the bi are elements of B, and ui ≥ 0. Now suppose
ui > 0 for some i. By hypothesis, bi is not saturated; therefore there is a halfspace
constraint descriptor dj such that (bi,dj) < 0. From this it follows that (x,dj) < 0,
and therefore, in particular, −x /∈ K. This implication shows that if Rx ⊆ K, then
all the terms uibi in the above expression for x must vanish, q.e.d. �

Proposition 6.7. Let K be a convex polyhedral cone in Rd, with a double descrip-
tion D which is first-stage optimized. Then (aff(K))⊥ is spanned by the hyperplane
constraint descriptors of D.

Proof. If D = ((A,B), (C,D)), then D◦ = ((C,D), (A,B)) is a double descriptor of
K◦. Now by hypothesis, Rx ⊆ K◦; so, by Proposition 6.6, x is in the vector space
spanned by the vectors in D. �

6.3. Second-stage optimization.

Definition 6.8. Let K be a convex polyhedral cone in Rd, with a double descrip-
tion D = ((A,B), (C,D)). Then D is second-stage optimized if it is first-stage
optimized and, in addition, each of A and C is a linearly independent list of vectors.

Gaussian elimination is a well-known method for finding, from a finite set of
vectors, another, linearly independent set which generates the same vector space.
The method can be described as a sequence of transformations of a list of vectors.
It proceeds through the list, taking as “current vector v” the first element, then the
second, and so on until the list is exhausted. If the current vector is 0, then it is
eliminated. Otherwise, let ι be the index of a non-zero component vι of v. It may
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be felt convenient, but it is not strictly necessary, to scale v so that vι = 1. Then,
every other vector w is altered, by subtracting from it a multiple of v so that wι
becomes 0. This step having been performed for v, the process goes on to the next
vector in the list.

Each step in the process of Gaussian elimination leads to a list of vectors which
spans the same vector space. Thus the vector space is the same at the end of the
process as it was at the beginning. At the end of the process, for each vector that
remains in the list there is a component index, such that this vector, and only this
vector, has a non-zero component at this index. From this property of the list, it
easily follows that the list of vectors is linearly independent.

6.4. Third-stage optimization.

Definition 6.9. Let K be a closed convex polyhedral cone, and let L = lineal(K).
Let v,w ∈ K \ L. Then v and w are lineally equivalent (for K) if w = λv + u
for some non-zero λ and some u ∈ L.

Lineal equivalence is evidently an equivalence relation. (You would hope so,
would you not?) In the generator description of a cone, ray descriptors can be
replaced by others which are lineally equivalent, without changing the cone being
described. To put this more formally, let K be a closed convex polyhedral cone,
described by generators:

K = Hull(A,B) ;

suppose that A is a basis of lineal(K) — as will be the case, if (A,B) is part of a
double description that is second-stage optimized. Then the cone is not changed if
any element of B is replaced by a lineally equivalent vector. Furthermore, it is clear
that if two elements of B are lineally equivalent, then one of them may be removed
from the list without changing the cone.

Lineal equivalence also applies to the constraint description of a cone:

K = Poly(C,D) ;

by analogy, we suppose that C is a basis of (aff K)⊥ = lineal(K◦). Then a halfspace
descriptor d is lineally equivalent (for K◦) to a vector obtained from it by non-zero
scaling and addition of a vector from lineal(K◦).

Definition 6.10. Let K be a closed convex polyhedral cone, and let

D = ((A,B), (C,D))

be a double description of K. Thn D is third-stage optimized if it is second-stage
optimized and moreover no two elements of B are lineally equivalent (for K) and
no two elements of D are lineally equivalent (for K◦).

Gaussian elimination can be extended so as to facilitate the detection of lineally
equivalent descriptors. For instance, in the generator description (A,B), the “cur-
rent vector” v ranges over the elements of A; but the vector w which is altered to
make wι = 0 ranges over both A and B. When this has been done, two vectors in
the transformed B are lineally equivalent if and only if they are proportional.
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7. Faces, descriptors, and redundancy

7.1. Faces.

Definition 7.1. Let P be a closed convex polyhedron in Rd. Let c ∈ Rd and
c0 ∈ R. Then c and c0 define a valid inequality for P if (c,x) ≤ c0 for every
x ∈ P .

Definition 7.2. Let P be a closed convex polyhedron in Rd. Then a face of P is
any set of the form

P ∩ {x ∈ Rd | (c,x) = c0}

where c and c0 define a valid inequality for P .

One sees that ∅ and P are faces of P . Any non-empty face of P is a closed
convex polyhedron. It is common to use the terms vertex, edge, and facet for
faces whose dimension is, respectively, 0, 1, and dim(P )− 1.

Proposition 7.3. Let K be a convex polyhedral cone in Rd, and let F be a non-
empty face of K. Then F is the intersection of K with a hyperplane passing through
the origin.

Proof. By hypothesis, there exist c and c0 such that

F = K ∩ {x ∈ Rd | (c,x) = c0}

and

(c,x) ≤ c0 ∀x ∈ K .

Now let x0 ∈ F ; then (c,x0) = c0. However, λx0 ∈ K for all nonnegative λ, which
implies

λc0 ≤ c0 ∀λ ≥ 0 .

It is easy to see from this that c0 = 0. �

Proposition 7.4. If K is a convex polyhedral cone and F is a non-empty face of
K, then F ⊇ lineal(K).

Proof. By hypothesis and Proposition 7.3, there exists c such that (c,x) ≤ 0 for
all x ∈ K and also F = {x ∈ K | (c,x) = 0}. Now if x ∈ lineal(K), then x ∈ K
and −x ∈ K, from which it follows that (c,x) = 0. �

Proposition 7.5. Let K be a closed convex cone; then lineal(K) is a face of K.

Proof. Let ((A,B), (C,D)) be a double description of K which is second-stage opti-
mized; let f be the sum of the vectors in D. Then f and 0 define a valid inequality
for K; we claim that the face of K defined by (f ,x) = 0 is lineal(K).

Indeed, (f ,a) = 0 for every a belonging to A. If b belongs to B, then because b
is not saturated (f ,b) < 0. Now, if x ∈ K then

x = Σtαaα + Σuβbβ , uβ ≥ 0 .

In order to have (f ,x) = 0, it must be the case that uβ = 0 ∀β. This x is in the
vector space generated by A. which is just lineal(K). �
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7.2. Descriptors and redundancy. We need to formalize the concept of redun-
dancy for one-sided descriptors. Informally, a descriptor is redundant if dropping
it from the description does not change the cone. So it would seem that being
redundant is essentially dependent, not just on the descriptor itself but also on the
whole description. The following proposition will be used to show that this is not
quite true.

Proposition 7.6. Let K be a closed convex polyhedral cone,

K = Hull(A,B) ,

where A is a basis of lineal(K) and none of the elements of B belong to lineal(K).
Let L = lineal(K). Let b be an element of B, and let B′ be the result of removing
b from B. If

K ′ = Hull(A,B′) 6= K ,

then K ∩ (L ⊕ Lb) is a face of K.

Proof. If b were a member of K ′, then K would equal K ′; so we must have b /∈ K ′.
Therefore, there is a vector f ∈ (K ′)◦ such that (f ,b) > 0. On the other hand,
because L is a face of K, there is a vector g ∈ Rd such that (g,x) = 0 if x ∈ L,
and

(g,b) < 0, (g,b′) < 0, ∀b′ ∈ B′ .

Let ρ = (f ,b)/(g,b) < 0, and let h = f − ρg. Then (h,x) = 0 if x ∈ L, and

(h,b) = 0, (h,b′) < 0 ∀b′ ∈ B′ .

It follows that
K ∩ (L ⊕ Lb) = {x ∈ K | (h,x) = 0} .

�

Theorem 7.7. Let K be a convex polyhedral cone in Rd; let L = lineal(K); and
let v ∈ K \ L. Then the following three statements are equivalent:

(i) K ∩ (L ⊕ Lv) is a face of K;
(ii) in any expression of v as a sum of elements of K, all the terms must belong

to L ⊕ Lv;
(iii) in any description of K by generators, the ray generators must include an

element of K ∩ (L ⊕ Lv).

Proof. These implications have to be checked:
(i)⇒ (ii):

Suppose that K ∩ (L⊕Lv) is a face of K. Then there is a vector f ∈ Rd such that

x ∈ K ⇒ (f ,x) ≤ 0 ;

K ∩ (L ⊕ Lv) = {x ∈ K | (f ,x) = 0} .
Thus, if v = w1 + · · · + wn where wi ∈ K, then we have (f ,wi) ≤ 0 for i =
1, . . . , n and also (f ,v) = 0. The last equality forces (f ,wi) = 0, which implies
wi ∈ K ∪ (L ⊕ Lv).

(ii)⇒ (iii):
Suppose that condition (ii) is satisfied. Let K = Hull(A,B). Then

v = Σtαaα + Σuβbβ ;
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since v /∈ L, one of the terms uβbβ must be non-zero. By supposition, every term
in this sum must be a member of L ⊕ Lv; thus this particular bβ must belong to
K ∩ (L ⊕ Lv).

(iii)⇒ (i):
Suppose that condition (iii) is satisfied. Let K = Hull(A,B); we may assume that
A is a basis of L and no element of B belongs to L. By supposition, B must contain
at least one element of K ∩ (L⊕ Lv). The convex-conical hull will not be changed
if one such element is replaced by v itself; nor will it be changed if other elements
of K ∩ (L ⊕ Lv) are omitted. Thus, we may assume that

B = (v = b1,b2, . . . ,bn),

where b2, . . . ,bn do not belong to K ∩ (L ⊕ Lv).
Let

B′ = (b2, . . . ,bn) ,

and
K ′ = Hull(A,B′) .

By condition (iii), K ′ 6= K. Proposition 7.6 now implies the desired conclusion. �

Definition 7.8. Let K be a closed convex polyhedral cone. Then a vector v is
relatively extremal for K if it satisfies the conditions of Proposition 7.7.

Definition 7.9. Let K be a closed convex polyhedral cone, with a double descrip-
tion

D = ((A,B), (C,D)) .

Then an element of B is a redundant generator for D if it is not relatively
extremal for K; and an element of D is a redundant constraint for D if it is not
relatively extremal for K◦.

Proposition 7.10. Let K be a closed convex polyhedral cone, with a double de-
scription

D = ((A,B), (C,D)) .

Let b be an element of B that is redundant for D; let B′ be the result of removing
b from B. Then Hull(A,B′) = K.

Proof. By hypothesis, b is not relatively extremal for K. By Definition 7.8, K ∩
(lineal(K)⊕Lb) is not a face of K. The conclusion follows from Proposition 7.6. �

Corollary 7.11. Let K be a closed convex polyhedral cone, with a double descrip-
tion

D = ((A,B), (C,D)) .

Let d be an element of D that is redundant for D; let D′ be the result of removing
d from D. Then Poly(C,D′) = K.

Proof. By hypothesis, d is not relatively extremal forK◦. Therefore, by Proposition
7.10, K◦ = Hull(C,D′). By Theorem 3.3, K = Poly(C,D′). �

Definition 7.12. Let K be a closed convex polyhedral cone. Then a double de-
scription D of K is fully optimized if it is third-stage optimized and, in addition,
no one-sided generators are redundant for D).
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It is clear that every closed convex polyhedral cone K has a fully optimized
double description

D = ((A,B), (C,D)) .

Its descriptors are related to the intrinsic structure of K:

• A is a basis of lineal(K).
• B consists of relatively extremal vectors for K. In any other fully optimized

double description ofK, the ray generators would each be lineally equivalent
(for K) to one element of B.
• C is a basis of lineal(K◦), which is the same as (aff(K))⊥.
• D consists of relatively extremal vectors forK◦. In any other fully optimized

double description of K, the halfspace constraints would each be lineally
equivalent (for K◦) to one element of D.

Proposition 7.13. Let K be a closed convex polyhedral cone in Rd, and let v be a
relatively extremal vector for K. Let K1 = K + Lv. Then

(K1)◦ = {x ∈ K◦ | (x,v) = 0} ,

and (K1)◦ is a facet of K◦.

Proof. The characterization of (K1)◦ is easily checked. Note that because of it,
(K1)◦ is a face of K◦. We need to verify that it has the desired dimension.

Consider a fully optimized double description of K as above. If A1 is A with v
appended, and B1 is B with v removed, then K1 = Hull(A1,B1). Therefore

dim aff((K1)◦) = d− dim lineal(K1) = d− dim lineal(K)− 1 = dim aff(K◦)− 1 ,

q.e.d. �

We will use the notation K◦v for the facet (K1)◦ in this proposition.

8. Detection of Redundant Descriptors

Useful criteria for detecting redundant descriptors can be found using only the
inner products of ray and halfspace descriptors; in fact, all that matters is which
of these inner products are 0.

By the theory of polarity, there is complete symmetry between the ray descriptors
on the one hand and the halfspace descriptors on the other. We will describe the
redundancy criteria in terms of eliminating redundant rays.

Definition 8.1. Let
D = ((A,B), (C,D))

be a double description of a closed convex cone, with

B = (b1, . . . ,bm) ,

D = (d1, . . . ,dn) .

Then
σi(D) := {j ∈ {1, . . . , n} | (bi,dj) = 0} , i = 1, . . . ,m .

When the choice of D is clear from context we shall omit it.
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Proposition 8.2. Let K be a closed convex polyhedral cone, with a double descrip-
tion D as in Definition 8.1. For any i with 1 ≤ i ≤ m, if

#(σi) < dim aff(K)− dim lineal(K)− 1 ,

then the ray descriptor bi is redundant for D.

Proof. Suppose, on the contrary, that bi is not redundant, but is in fact a relatively
extremal vector for K. Then, by Proposition 7.13,

dim aff(K◦bi) = dim aff(K◦)− 1

= d− dim lineal(K)− 1 .

But K◦bi is generated by C together with {dj | j ∈ σi}. Therefore

dim aff(K◦bi) ≤ #C + #(σi)

≤ d− dim aff(K) + #(σi) .

This inequality and the preceding equality together imply that

#(σi) ≥ dim aff(K)− dim lineal(K)− 1 .

�

Corollary 8.3. Let K be a closed convex polyhedral cone, with a double description
D as in Definition 8.1; suppose also that D is second-stage optimized. For any i
with 1 ≤ i ≤ m, if

#σi < d−#(A)−#(C)− 1 ,
then the ray descriptor bi is redundant for D.

That proposition gives us a sufficient condition for deciding that a descriptor is
redundant. Here is a necessary and sufficient condition, which however takes more
work to apply.

Proposition 8.4. Let K be a closed convex polyhedral cone, and let D be a double
description of K. With the notations of Definition 8.1, a ray descriptor bi is
redundant for D if and only if σi ⊆ σj for some j 6= i.

Proof. First, let us suppose that bi is redundant for D; we must show that σi ⊆ σj
for some j 6= i. Let B′ denote a list of all the elements in B except bi. By Proposition
7.10, bi ∈ Hull(A,B′). That is to say,

bi =
∑
α

sαaα +
∑
j 6=i

tjbj , tj ≥ 0 .

There must be an index j such that tj > 0. For this j, and for an element d of D,

(bi,d) = 0 ⇒ (bj ,d) = 0 ;

in other words, σi ⊆ σj .
Second, let us suppose that bi is not redundant for D; we must show that, for

every j 6= i, 1 ≤ j ≤ m, there is a k, 1 ≤ k ≤ n, such that k ∈ σi but k /∈ σj .
Indeed, by Theorem 7.7(i), bi is contained in a face of K that does not contain any
of the bj with j 6= i. Therefore there is a vector y ∈ K◦ such that (bi,y) = 0 but
(bj ,y) < 0. Now

y =
∑
γ

sγcγ +
n∑
k=1

tkdk , tk ≥ 0 ;
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there must be a value of k for which tk > 0 and (bj ,dk) < 0 but (bi,dk) = 0. That
is, k /∈ σj but k ∈ σi; this is what we needed to show. �

It might happen that two elements of B, say bi and bj , are lineally equivalent.
Then σi = σj , and each one is redundant—given that the other one is present. One
may be removed without changing K, but it is not safe to remove both of them.
Thus it is better to apply Proposition 8.4 after third-stage optimization.

9. Incremental Operations on Cones and Their Descriptions

By an “incremental operation” we mean adding a single descriptor. This usage
sounds right if we are adding a line or a ray, and taking the convex hull of the result.
“Adding” a constraint may appear to be quite different; it amounts to taking the
intersection of the given cone with a halfspace or hyperplane. In fact, the operations
are profoundly similar. If I change K by adding a line or a ray, then I change K◦

by intersecting it with a hyperplane or a halfspace. In this section, we consider how
to obtain a double description of the changed cone, given a double description of
the original cone.

The operations K 7→ Kι and K 7→ Kπ of §4 are thinly disguised special cases of
incremental changes to cones in Rd+1. The disguise is pretty transparent for going
from K to Kι, because Kι is just the pre-image, with respect to ι0, of K ∩ ι0Rd.
As for Kπ, one way of describing the construction is to let K1 be the convex hull
of the union of K with the line generated by ed+1; then Kπ is the pre-image of K1

with respect to ι0.
The computational details are quite symmetrical between generators and con-

straints. We will assume that we are adding a line or a ray, and describe how the
hyperplane and halfspace constraints are affected.

So, let K be a closed polyhedral cone in Rd, with double description

D = ((A,B), (C,D)) .

The descriptor v is to be added to either A or B, to define the cone K ′. Our problem
is to determine how C and D must be changed to obtain a double description of
K ′. Two cases must be distinguished. In the first case, there is a descriptor c in C
such that (v, c) 6= 0; in the second case, there is no such c.

9.1. First case. The geometric significance of the inequality (v, c) 6= 0 is that,
while K lies in the hyperplane c⊥ orthogonal to c, the line or ray being added lies
outside this hyperplane. Thus the affine hull of K ′ is larger than that of K.

To find a constraint description of K ′, we begin by observing that an arbitrary
multiple of c can be added to each of the other constraints in (C,D) without having
any effect on the cone being described. Let us suppose this to be done, in such a
way that, except for c, every constraint in (C,D) is orthogonal to v. We may also
assume that (v, c) < 0.

The geometrical picture of this transformation is that each of the other hy-
perplanes orthogonal to a constraint descriptor is swung around, pivoting on its
intersection with c⊥, until it passes through the new generating descriptor. If the
new descriptor is a line, then K ′ is described by these constraints, with c omitted.
If the new descriptor is a ray, then c survives as a halfspace constraint.

The last paragraph may be intuitive; but let us also have a proof.
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Proposition 9.1. Let

K = Hull(A,B) = Poly(C,D) ⊆ Rd .
Let v ∈ Rd. Suppose that c is an element of C such that (v, c) < 0 but all other
elements of C, and all elements of D, are orthogonal to v. Then

Hull(A + (v),B) = Poly(C− (c),D) ,(9.1)

Hull(A,B + (v)) = Poly(C− (c),D + (c)) .(9.2)

Proof. In each equation, the Hull is a subset of the Poly; it is sufficient to check
that each generator on the left satisfies each constraint on the right. To prove
inclusion the other way, let us suppose that x is a vector in Rd which satisfies all
the constraints on the right side of the equation; that is, if c′ is an element of
C − (c) then (x, c′) = 0; if d is an element of D, then (x,d) ≤ 0; and, in the case
of equation 9.2, (x, c) ≤ 0. Let

λ = (x, c)/(v, c) .

Note that in the case of equation 9.2, λ ≥ 0. Then x = x′ + λv where (x′, c) = 0.
It can be checked that x′ satisfies all the constraints needed to imply that

x′ ∈ Poly(C,D) = Hull(A,B) ;

it follows that x belongs to the Hull on the left side of the equation. �

9.2. Second case. In the second case, we need to apply Fourier-Motzkin elimina-
tion to the halfspace descriptors D. We recall Definition 4.1; after showing that
it gives us what we want, we will define a more efficient form of Fourier-Motzkin
elimination, and prove that it leads to the same result.

Proposition 9.2. Let K be a closed polyhedral convex cone in Rd:

K = Hull(A,B) = Poly(C,D) ;

let v ∈ Rd be orthogonal to all the elements of C. Then

(9.3) Hull(A + (v), B) = Poly(C, FM(D,v)) .

If D− is a list of those elements d of D such that (v,d) < 0, then

(9.4) Hull(A, B + (v)) = Poly(C, D− + FM(D,v)) .

Proof. It is more convenient to prove the equivalent statements about the polar
cone. Given

K◦ = Hull(C,D) = Poly(A,B) ,
we must prove

(9.5) Hull(C, FM(D,v)) = Poly(A + (v), B)

and

(9.6) Hull(C, D− + FM(D,v)) = Poly(A, B + (v)) .

We have done all the work of proving equation (9.5) in Proposition 4.2, from
which we see that

Hull(C, FM(D,v)) = Hull(C,D) ∩ v⊥

= Poly(A,B) ∩ v⊥

= Poly(A + (v),B) .
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To prove equation (9.6), we most modify part of the reasoning of Proposition
4.2. First, the Hull is included in the Poly, because every generator of the former
is contained in the latter. To prove inclusion the other way, let

x ∈ Poly(A,B + (v)) ;

that is,
x ∈ Poly(A,B) = Hull(C,D)

and also (v,x) ≤ 0. Therefore

x =
∑
i

sici +
∑
i

tidi , ti ≥ 0 ,

and also ∑
i

ti(v,di) ≤ 0 .

If n is the number of elements in D, let

P = {i | 1 ≤ i ≤ n, (v,bi) > 0} ,
M = {i | 1 ≤ i ≤ n, (v,bi) < 0} ,
Z = {i | 1 ≤ i ≤ n, (v,bi) = 0} .

Also, let

xP =
∑
i∈P

tidi , xM =
∑
i∈M

tidi ,

xZ =
∑
i∈Z

tidi , xC =
∑
i

sici .

If we define ΛP and ΛM by

ΛP =
∑
i∈P

ti(v,di) = (v,xP ) ,

ΛM =
∑
i∈M

ti(−(v,di)) = −(v,xM ) ,

then
ΛM ≥ ΛP ≥ 0 .

If ΛP = 0, then xP = 0 and

x = xC + xM + xZ ;

all the terms belong to Hull(C, D− + FM(D,v)).
If ΛP > 0, then

x = xC + xP + xZ + xM = x′ + x′′

where

x′ = xC + xP + xZ +
ΛP
ΛM

xM ,

x′′ =
(

1− ΛP
ΛM

)
xM .

Now
x′ ∈ Hull(C,D) ∩ v⊥ = Hull(C, FM(D,v))
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by Proposition 4.2; and x′′ ∈ Hull(O,D−). Therefore

x ∈ Hull(C, D− + FM(D,v)) .

�

9.3. Economized Fourier-Motzkin elimination. At this point we seem to have
convex polyhedral cones pretty well described. We understand their descriptions,
both by generators and by constraints; and we now know, in principle, how to build
up these descriptions from scratch. For instance, if we were given a set of generators
of a cone and wanted to know its description by constraints, we could find it. We
could start with the zero cone and add generators, one at a time, keeping track of
the constraints as we went. Moreover, from §6 and Propositions 8.2 and 8.4, we
know how to optimize the resulting double description. Our goal was to understand
how to compute the descriptions of convex polyhedran abd perform operations on
them, with reasonable efficiency. Have we not reached it?

No—almost, but not quite. The problem is that the process of Fourier-Motzkin
elimination is combinatorially explosive. As we remarked at the end of §4, that
process can turn n descriptors into anything up to n2/4 descriptors. For any serious
computation, we need to be able to economize here.

From Proposition 4.2, we know that the Fourier-Motzkin process, starting with
the ray generators of a cone, arrives at a set of ray generators of the intersection
of that cone with a hyperplane. We may optimize that set of generators, applying
Propositions 8.2 and 8.4. This would get rid of redundant decriptors. It would be
even better to avoid creating those redundant descriptors in the first place.

In this subsection, we prove two propositions which enable us to do just that.
Let us suppose given a cone K with a double description

D = ((A,B), (C,D)) ,

so that

K = Hull(A,B) = Poly(C,D) .

Let us add a hyperplane constraint with descriptor v, and suppose that v is or-
thogonal to all the line descriptors in A. Then, by Proposition 9.2, the resulting
cone K ′ has this double description:

D′ = ((A, FM(B,v)), (C + (v),D)) ;

that is,

K ′ = Hull(A, FM(B,v)) = Poly(C + (v),D) .

Recall that if B = (b1, . . . ,bm), then FM(B,v) contains those vectors bh such
that (v,bh) = 0, and the vectors

b′ij = (v,bi)bj − (v,bj)bi , (v,bi) > 0 , (v,bj) < 0 .

We recall the notation σi = σi(D) in Definition 8.1. Let us extend it by setting

σij = {k ∈ {1, . . . , n} | (b′ij ,dk) = 0} .

Lemma 9.3. Let K, D, and v be as above. Let i and j be indexes of elements of
B such that (v,bi) > 0 and (v,bj) < 0. Then σij = σi ∩ σj.
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Proof. First, it is easy to see that if k ∈ σi∩σj , then k ∈ σij . to prove the converse,
suppose that k ∈ σij . Then

0 = (v,bi)(bj ,dk)− (v,bj)(bi,dk)

= (v,bi)(bj ,dk) + (−(v,bj)(bi,dk)) ;

in the last expression, both summands are ≤ 0. Since their sum is 0, each summand
must be 0, that is, k ∈ σi ∩ σj . �

Before we apply Lemma 9.3 to economizing the description of K ′, we consider a
special case. If v ls orthogonal to all the descriptors in A and B then it is redundant,
and K ′ = K.

Proposition 9.4. Let K, D, v, K ′ and D′ be as above, and assume that v is
orthogonal to all descriptors in A, but not to all descriptors in B. Let i and j be
indexes of elements of B such that (v,bi) > 0 and (v,bj) < 0. If

#(σi ∩ σj) < dim aff(K)− dim lineal(K)− 2 ,

then b′ij is redundant for D′.

Proof. By Proposition 8.2, b′ij is redundant if

#σij < dim aff(K ′)− dim lineal(K ′)− 1 .

But, by Lemma 9.3, σij = σi ∩ σj ; and the hypotheses on v imply that

dim aff(K ′) = dim aff(K)− 1 , dim lineal(K ′) = dim lineal(K) .

�

Proposition 9.5. Let K, D, v, K ′ and D′ be as above, and assume that v is
orthogonal to all descriptors in A, but not to all descriptors in B. Let i and j
be indexes of elements of B such that (v,bi) > 0 and (v,bj) < 0. Then b′ij is
redundant for D′ if and only if σi ∩ σj ⊆ σk for some k not equal to i or j.

Proof. First, suppose that b′ij is redundant. Then, by Proposition 8.4, there is an
index k, or a pair of indexes (gh) distinct from (ij), such that σij ⊆ σk or σij ⊆ σgh.
But in the second case, σij ⊆ σg and σij ⊆ σh.

Next, suppose that b′ij is not redundant. We must show that, for every k ∈
{1, . . . ,m} other than i and j, σij * σk. Consider the following cases:

• (v,bk) = 0.
In this case, bk is an element of FM(B,v), so by Proposition 8.4 applied
to D′, we have σij * σk.

• (v,bk) > 0, but k 6= i.
In this case, by the same Proposition, σij * σkj , that is,

σi ∩ σj * σk ∩ σj .

This relation easily implies σi ∩ σj * σk.
• (v,bk) < 0, but k 6= j.

This case is like the previous one, applied to σik.

�
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Propositions 9.4 and 9.5 suggest an efficient way to construct an economical
equivalent to FM(B,v): construct the sets σi, and examine the intersections σij , to
determine whether b′ij will be redundant before going to the expense of constructing
it at all. The careful reader may feel misgivings about this strategy, connected
with the possibility that some of the rays constructed in FM(B,v) may be lineally
equivalent. If, for instance, b′ij and b′kl are lineally equivalent, then testing σij and
σkl will reveal both to be redundant. Is it safe, then, to exclude both from the list
of new descriptors?

Yes. Suppose that b′ij and b′kl are lineally equivalent, that is

(9.7) b′ij = λb′kl + x , λ > 0 , x ∈ lineal(K) .

Then both b′ij and b′kl can be omitted, because they are lineally equivalent to a
strictly positive combination of b′il and b′kj . Indeed, we have

1
vivj

b′ij =
1
vj

bj −
1
vi

bi

and similar equations for b′kl, b′il, and b′kj . Therefore

1
vivj

b′ij +
1
vkvl

b′kl =
1
vivl

b′il +
1

vkvj
b′kj ,

which together with equation (9.7) gives the desired lineal equivalence.

10. Implementation Notes

These notes accompany two Mathematica packages, “ConvexPolyhedra” and
“ConvexCones.” These packages supply functions for constructing convex poly-
hedra in Rd and performing elementary operations on them. A small suite of test
programs accompanies the packages. In this section, I describe, using Mathematica-
related vocabulary, how these packages are organized.

The packages are contained in two Notebook files: ConvexPolyhedra.nb and Con-
vexCones.nb. It is assumed that these files are in a folder named Convex, which is
contained in a folder on the $Path. You can modify this assumption, if you want,
by changing the arguments of the BeginPackage commands in the two Notebooks.

“ConvexPolyhedra” defines the symbol ConvexPolyhedron, which is the Head of
any expression that denotes a convex polyhedron. Several classes of functions are
provided:

• to construct a polyhedron by giving lists of generators or lists of constraints;
• to modify a polyhedron by adding one or more generators or imposing one

or more constraints;
• to retrieve the generators and constraints that describe a polyhedron;
• to perform other transformations on a polyhedron;
• to test for containment, subset relations, or equality of polyhedra.

The contents of ConvexPolyhedra can be made available by this command:
Needs[“ ‘Convex‘ConvexPolyhedra‘ ”];

In these notes, we showed how to relate convex polyhedra to convex cones, and
after that worked mostly on convex cones. In the same way, the package Convex-
Polyhedra does most of its work by calling on ConvexCones. The latter package has
a similar structure to the former, with some simplifications.
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The internal structure of an expression denoting a convex cone consists of its
ambient dimension and its double description, in the form of four lists of descrip-
tors: hyperplanes, halfspaces, lines, and rays. We take advantage of the symme-
try between generators and constraints, so that adding a generator, and adding a
constraint, are both imnplemented by calling an internal function, AddDescriptor.
Functions for initializing a convex cone, or adding several generators or constraints,
make repeaded calls to this function.

AddDescriptor is central to the implementation of ConvexCones. This function
separates the problem of adding a new descriptor into three cases, just as we did in
§9. For convenience, it first takes care of the special case that the new descriptor is
redundant. Next in handles the “first case,” as in §9.1; the details are taken care of
by two calls to another internal function ShiftDescriptors. Finally, the “second case”,
as in §9.2, is handled; most of the details are in the economized Fourier-Motzkin
process, which is taken care of by the internal function FME.

Optimization is done in two functions: FME and SimplifyCone. When one tries
to optimize anything, there can be a trade-off between the quality of the result,
and the amount of work needed to achieve this result. I decided that economizing
every use of the Fourier-Motzkin process was best. It costs little, because some of
the time spent deciding which new descriptors are redundant is made up by not
computing the redundant descriptors. SimplifyCone, however, is not called within
AddDescriptor; it is called once in every publicly visible function that needs it. Each
application of AddDescriptor may make some existing descriptors redundant; but it
does not cause a combinatorial explosion of redundant new descriptors.
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