
A Guide to Three-Dimensional Analytical Magnetic Resonance 
Imaging Phantom in the Fourier Domain 
 
SECTION 1 INTRODUCTION 
 
Welcome. I am excited that you are interested in this analytical phantom. 
 
In the archived file STBBFolder.zip, you will find 9 items: 

1. this guide,  
2. the Software agreement, 
3. JarFile folder, 
4. JavaDoc folder, 
5. JavaTest folder, 
6. MathematicaTest folder, 
7. MatlabTest folder, 
8. IDLTest folder, and 
9. src folder. 

 
 
The JarFile folder contains a jar file called STBB.jar.  
 
JavaDoc contains HTML files shows how the classes and methods are named. 
 
JavaTest contains an example of using the 3D analytical phantom in the Java 
environment. 
 
To facilitate investigators who are not familiar with Java but are comfortable with 
Mathematica, Matlab or IDL, I have included information on how to call Java 
classes from these commercial packages.  
 
Finally, src folder contains the source codes written in Java programming 
language. 
  
Here is a summary of the topics covered in this guide: 
 

Section 2 introduces the reference on the 3D analytical phantom in the 
Fourier domain.  
 
Section 3 provides the basics on installing Java and setting up Java 
environment and run a simple Java application, i.e. SampleTest.java in the 
JavaTest folder. 
 
Section 4 outlines the basics of JLink in Mathematica and how to call Java 
from Mathematica. 
   
Section 5 shows how to use Matlab to create Java classes. 



 
Section 6 deals with IDL and shows how to call Java from IDL.  

 
 
Many colleagues had worked with me in creating the interfaces between Java 
and other programming languages for another related project, namely, the 
nonlinear least squares tensor estimations1. I have adapted these interfaces to 
this work. If you need the software on tensor estimations, please send your 
request to me.  
 
Sincere thanks go to Dr. Joelle E Sarlls, Dr. Evren Özarslan for helpful 
discussion and for carefully and critically reading the work related to the 3D 
phantom. I am very grateful to Dr. Peter J. Basser and Dr. Carlo Pierpaoli for 
their continued support.  
 
Please feel free to contact me if you have any question related to the software. If 
you have any question related to IDL or Matlab, I may not be the best person to 
talk to but I will try to help. However, if your questions are related to Mathematica 
or Java, it is more likely that I will be able to answer them. 
 
Good luck and best wishes. 
 
Cheng Guan Koay  
STBB/LIMB/NICHD 
National Institutes of Health 
Building 13, Room 3W16,  

13 South Drive 

Bethesda, MD 20892   

Tel: (301) 435-9333, Fax: (301) 435-5035 

guankoac@mail.nih.gov, cgkoay@uwalumni.com 

 
07/07/2007 
 
 
 
 
 
 
 
 

                                                 
1 Koay CG et al. A Unifying Theoretical and Algorithmic Framework for Least Squares Methods of 
Estimation in Diffusion Tensor Imaging. J Magn Reson 2006; 182: 115-125. 
 



 
SECTION 2: REFERENCE  
 
This is a quick guide to users interested in using the 3D analytical phantom in the 
Fourier domain (k-space) or in the image domain.  
 
Readers may find the following article helpful:  
(1) Koay CG, Sarlls JE, Özarslan E. Three Dimensional Analytical Magnetic 
Resonance Imaging Phantom in the Fourier Domain. Magn Reson Med. (Early 
view)  
 
If you find this software useful in your research, please pass the message by 
word of mouth or citation so that other researchers may benefit from this 
software.  
 
You can obtain the above articles on the STBB website: 
http://dir2.nichd.nih.gov/nichd/stbb/publications.html 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
SECTION 3: Installing and Running Java 
 
 
There are several ways to use and develop Java applications. We can use the 
basic text editors (i.e. vi, emacs, wordpad, notepad) to write java programs and 
run java applications using command lines or we can use Java Interactive 
Development Environment (IDE) such as Netbeans to write our codes, see 
www.netbeans.org. Personally, I find Netbeans’ IDE to be very useful. For 
example, the IDE will do text completion. And, it is great! 
 
If you plan to develop applications in Java Standard Edition (Java SE), you may 
want to use Java Development Kit (JDK) rather than Java Runtime Environment 
(JRE). You can download JDK or JRE from (last checked on 08/28/06): 
http://java.sun.com/javase/downloads/index.jsp 
Look for “JDK 5.0 Update 7 with Netbeans 5.0”, “JDK 5.0 Update 8” or  “Java 
Runtime Environment (JRE)  Update 8” to download. You can find installation 
instructions on the same page. 
 
Assume now that you have successfully installed the software. You can check 
your Java version by typing on the terminal: 
“java –version”  
This command works in both the Linux and Windows systems.  
To be sure, we will assume you know where you stored the JDK, say 
“c:\java\j2sdk5.0\” (Linux: /home/java/j2sdk5.0/) so that we know that full path to 
java.exe, i.e. “c:\java\j2sdk5.0\bin\java.exe” (Linux: /home/java/j2sdk5.0/bin/java). 
 
For simplicity, we will outline how to run the SampleTest.java using command 
line approach. 
 
Step1: Go to the directory where SampleTest.java is located. As an example we 
shall use this fictitious directory path: “c:\STBBFolder\JavaTest\” for Windows 
and “/home/STBBFolder/JavaTest/” for Linux. 
 
Step2: To compile the Java application, run the following command: 
Windows:  
“c:\java\j2sdk5.0\bin\javac –classpath .;c:\STBBFolder\JarFile\STBB.jar 
SampleTest.java”  
Linux:  
“/home/java/j2sdk5.0/bin/javac –classpath .:/home/STBBFolder/STBB.jar 
SampleTest.java”  
 
These commands should return SampleTest.class. 
 
Note the difference in notation when one specifies the classpath. Windows uses 
semi-colon and Linux uses colon. 



 
 
Step2: To compile the Java application, run the following command: 
Windows:  
“c:\java\j2sdk5.0\bin\javac –classpath .;c:\STBBFolder\JarFile\STBB.jar 
SampleTest.java”  
Linux:  
“/home/java/j2sdk5.0/bin/javac –classpath .:/home/STBBFolder/STBB.jar 
SampleTest.java”  
 
Step 3: Run the application by entering the following command: 
Windows:  
“c:\java\j2sdk5.0\bin\java –classpath .;c:\STBBFolder\JarFile\STBB.jar 
SampleTest”  
Linux:  
“/home/java/j2sdk5.0/bin/java –classpath .:/home/STBBFolder/STBB.jar 
SampleTest”  
 
If you manage to run this simple application, you should see on the screen the 
following results: 
 
You should see the following results printed on the terminal: 
 
image domain signal at (-0.25,0.15,0.05) is 1.2 
Fourier domain signal at (0.25,0.15,0.05) is 2.4834061312960225-0.00838733761651407I 
image domain signals at  {{-0.25,0.15,0.05},{0.5,0.35,0.5}} are { 1.2, 2.0}; 
 
Fourier domain signals at  {{-0.25,0.15,0.05},{0.75,0.5,0.5}} are { 2.48331915292207-
0.004916488124360764I, -0.22797836078897474-0.012638899072246745I}; 
 
 
NOTE: FourierDomainSignal returns an array of two elements the first and the 
second elements are the real part and the imaginary part of the complex value 
signal, respectively. 
 
Hope this is enough to get you started. You can learn more by looking up the 
Java webpage: http://java.sun.com. 
 
 
 
 
 
 
 
 
 
 
 



 
 
SECTION 4: Mathematica 
 
NOTE: FourierDomainSignal returns an array of two elements the first and the 
second elements are the real part and the imaginary part of the complex value 
signal, respectively. 
 
If you are using Mathematica 5.0, you should already have JLink installed. JLink 
is the interface for basic communication between Java and Mathematica. 
 
SampleTest.nb is the notebook where the same example as in SampleTest.java 
is carried within the Mathematica notebook. It shows examples of initiating JLink, 
creating objects and calling methods associated with the objects. The 
explanations are provided in the notebook and SampleTest.nb is in the  
MathematicaTest folder.  
 
 
If you manage to run SampleTest.nb, you should get the same results as in 
Section 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
SECTION 5: Matlab 
 
NOTE: FourierDomainSignal returns an array of two elements the first and the 
second elements are the real part and the imaginary part of the complex value 
signal, respectively. 
 
 
Calling Java from Matlab is quite easy but you need version 7.0 and above. In 
the MatlabTest folder, you will find SampleTest.m. It contains all the necessary 
information to run the test program.  
 
If you manage to run SampleTest.m, you should get the same results as in 
Section 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
SECTION 6: IDL 
 
NOTE: FourierDomainSignal returns an array of two elements the first and the 
second elements are the real part and the imaginary part of the complex value 
signal, respectively. 
 
This is the most complicated one. You need to set up your bash shell 
environment or csh shell depending on your preference. I have not run the 
SampleTest.pro on Windows. Therefore, the focus is on the Linux platform. 
 
All files related to IDL are located in the IDLTest folder. 
 
Step 1:  
If you are using bash shell: 
Try this: Copy those lines beginning with the word “export” in bashrc.txt to your 
“.bashrc” file in your home directory and makes changes to the directory names 
in those lines where necessary. 
 
If you are using csh shell: 
Try this: Copy those lines beginning with the word “setenv” in cshrc.txt to your 
“.cshrc” file in your home directory and make changes to the directory names in 
those lines where necessary. 
 
Step 2: Change the directory name in the idl.cfg file. 
 
Step 3: Depending on which “shell” you like to use, type in “csh” or “bash” to 
create new shell environment. Then, run your idl program. 
 
Step 4: Run SampleTest.pro 
 
 
You should get the same results as in Section 3. 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
FINAL NOTE: FourierDomainSignal or ImageDomainSignal can be overloaded 
with array of arrays: namely: 
 
FourierDomainSignal( 
                                   {{ kx1, ky1, kz1 }, 
                                    { kx2, ky2, kz2},  
                                         .       .      .   , 
                                    { kxN, kyN, kzN} 
                                   ) 
  
and 
 
 
ImageDomainSignal( 
                                   {{ x1, y1, z1 }, 
                                    { x2, y2, z2},  
                                         .       .      .   , 
                                    { xN, yN, zN} 
                                   ) 
 
Note that the braces are the convention used in Java and Mathematica. For 
Matlab or IDL, the convention is different. 
 
Matlab: 
 
[ x1 y1 z1; … 
  x2 y2 z2; … 
   .    .    . ;… 
  xN yN zN]; 
 
   
IDL: 
 
p=[ [x1, y1, z1],$ 
  [x2, y2, z2],$ 
   .    .    .     ,$ 
  [xN, yN, zN]] 
 
ImageDomainSignal(transpose(p)) 
 
IDL is atypical. It defines row and column differently from the mathematical 
convention. So, you need to transpose the matrix p. 
 
 



 


