TuGames vli.1

by Holger I. Meinhardt (2005)

Contents

1. Introduction

2. Installation

2.1. Unix

2.2. Windows

2.3. Mac OS

3. Getting Started

3.1. How to define Games?

4. Some Functions

4.1. Basic Functions

4.2. k-Convexity

4.3. Kernel

4.4. Unanimity Coordinates

5. Computing the Vertices of the Core
6. Concluding Remarks and Limitations
7. References

1 Introduction

TuGames is a MATHEMATICA package to determine and to check some game properties of transferable utility games.
It provides about 70 different functions and it can calculate, for instance, kernel elements, excess payoffs, marginal
values, the tau-value, and the vertices of a core. Moreover, it verifies if the game is convex, average-convex or super-
additive just to mention some interesting functions. This package is an extension of the package CooperativeGames
that has been developed by M. Carter. It must be mentioned in this place that some commands of TuGames require
routines that have been provided by the package CooperativeGames. Therefore, you have also to install the package
CooperativeGames to use the new functions properly. A description of the package CooperativeGames can be found
in Economic and Financial Modeling with MATHEMATICA, ed. Hal. R. Varian, Telos Springer Publisher,1993, Chap-
ter 8. Furthermore, if one is interested in computing the vertices of a core the MATHEMATICA® package VertexEnum
written by K. Fukuda and I. Mizukoshi must also be installed on the computer. But note that this function is very
slow in computing all vertices of a core on old computers like Pentium II systems. You can overcome these short-
comings of VertexEnum by installing the C-library cddmathlink written by the same authors to perform the same
computational task more efficiently. It can be found under http://www.cs.mcgill.ca/ fukuda/ for various UNIX and
for Window systems. The library is linked via MathLink with the MATHEMATICA® Kernel. For Windows Operating
Systems pre-build binaries are available and are included in the subdirectory cddml. Note that the functions that
based on this library are not activated. To use these functions on your operating systems you must comment them
out in the package TuGames. Moreover, you have to adjust the $Path variable where the library can be found. The
default value is set to "/usr/local/bin" for UNIX systems. For changing this value edit the file TUGames with an editor
of your choice and search for SetDirectory[]. The package TuGames can be used under Windows XP/2000/NT, Ma-
cOS and UNIX platforms running MATHEMATICA® Version 3.0 or later. The author has tested the functions extensively
under LINUX x86/64, HP-UX and AIX. Furthermore, the package was also be installed and tested successfully un-
der Windows XP. For Windows 2000/NT and Mac OS the author has no experience. But the programming language
of MATHEMATICA is system independent, thus, there should no problems occur on these operating systems.

2 Installation

2.1 Unix

1. Create a directory "TuGames" in your SHOME/.Mathematica /3.0/AddOns/Applications directory. Copy now
all files in the directory "TuGames", but for the file CooperativeGames.m create a subdirectory "coop" in TuGames
and move the file in this subdirectory.

2. Create the variable $TuGamesPath in the init.m file in your SHOME/.Mathematica/3.0/Kernel directory. If no
init.m file exists, create the file. Set this variable to

$TuGamesPath = $HomeDirectory<>'.Mathematica/3.0/AddOns/Applications/TuGames"

3. Add to the global variable $Path in the init.m file the location of TuGames by

AppendTo[$Path, $TuGamesPath]

Now you can start TuGames.

Note that for UNIX/LINUX systems is also a graphical extension available. See also the remark at the end of the
README file.

2.2 Windows

1. Create the directory "AddOns\Applications\TuGames" at the location where your MATHEMATICA' files are lo-
cated. This can be find out by typing
$TopDirectory
in your MATHEMATICA" Notebook.
2. Copy now all files in this directory.
2.1 Create for the file CooperativeGames.m the subdirectory "coop" and move the file in this directory.
2.2 Create for the file VertexEnum.m the subdirectory "vertex" and move the file in this directory.
2.3 Create for the library cddml_w32new the subdirectory "cddml" and move the file in this directory.
3. Create in your init.m file the variable $TuGamesPath to locate the various packages. Set this variable to
$TuGamesPath = $TopDirectory<>'"\\AddOns\\Applications\\TuGames"
4. Add to the variable $Path in the iniz.m file the location of TuGames
AppendTo[$Path, $TuGamesPath]
Now you can start TuGames.
Note that the double backslash (\\) is important. A simple backslash is not sufficient to set the directory path
correctly. In cases that you have still problems with the init.m file consult the README file.

2.3 Mac OS

Sorry, but at the moment no installation instruction for Mac OS is available.

3 Getting Started

In the next step we assume that you have installed properly the files mentioned above on your computer. To start
with the calculation, we have first to load some packages. This can be done by the following commands.

In[1]:= Needs|["coop ‘'CooperativeGames ‘"]
Needs|["TuGames ‘"]

Needs ["VertexEnum'"]

To get an overview of all available functions call just

In[2]:= funcname = Names|["TuGames" % "]

Out [2]= {AdjustedEffUpperVectors, AdjustedEffVector, AdjustedWorthVectors,
AllConstraints, AllMaxSurpluses, Assign, AvConvexQ, AvSumCheck, BelongToCoreQ,
CddGmpVerticesCore, CddVerticesCore, CddVerticesImputationSet, CddVerticesReasonableSet,
ChangeInternalEps, Concession, ContributionSum, ConvCheck, ConvexQ, ConvexStrQ,
ConvexUnanConditionQ, ConvStrQ, CoordS, CoreElementsQ, DefineGame,
DeltalP, DisagreeConvex, Disagreement, DualGame, EpsCore, EpsilonValue, EpsValue,
EvalSumMinCoord, ExcessPayoff, FirstCriticalVal, FourthCriticalval,
GameMonotoneQ, Gap, IncreasingMargContributions, kCover, Kernel,
KernelCalculation, KernelImputationListQ, KernelImputationQ, LargestAmount,
MargValue, MaxSurplus, MaxExcessBalanced, MinUnanimityCoordinates,
MonotoneQ, NewShapley, Nuclconvex, OneNormalization, PreKernelQ, Quota,
RationalApproximate, RationalExact, ReasonableOutcome, ReasonableSet, Scrb, ScrbSolution,
SecondCriticalvVal, SelectSuperSets, SmallestContribution, SmallestContributionVector,
StarCriticalvVal, StrictlyConvexUnanConditionQ, StrIncreasMargContrib,
SuperAdditiveQ, TauValue, ThirdCriticalval, Transfer, TransferConstraints,
UnanimityCoordinates, UtopiaPayoff, UtopiaSum, UtopiaVector, VerticesCore,

WeaklySuperAdditiveQ, ZeroMonotoneQ, ZeroNormalization, ZeroOneNormalization}
For getting the most recent listing of all available functions in the package TUGames type

In[3] := ?TuGames “*

TuGames '
’ AdjustedEffUpperVectors ‘ ’ KernelImputationQ ‘ [SmallestContribution |
’AdjustedEffVector‘ CoreElementsQ KernelPoints lSmallestContributionVector‘
’ AdjustedWorthVectors ‘ KernelSubCall StarCriticalVal

AllConstraints DeltalP ’KernelSubCallEmpty‘ ’StrictlyConvexUnanConditionQ‘
AllMaxSurpluses [KernelSubCallZero ‘ ’ StrIncreasMargContrib ‘

Disagreement SuperAdditiveQ
DisplayAllResults MargValue
DisplayMatrixForm l MaxExcessBalanced ‘ l ThirdCriticalVal ‘

DualGame

MaxSurplus

’MinUnanimityCoordinates‘

CddGmpPlotCore

CddGmpPlotImputationSet ’ MonotoneQ ‘ l TransferConstraints ‘

CddGmpPlotReasonableSet NewShapley ’ UnanimityCoordinates ‘
’ CddGmpVerticesCore ‘ Nuclconvex UtopiaPayoff
CddVerticesCore l OneNormalization ‘

CddVerticesImputationSet

CddVerticesReasonableSet

’ChangeInternalEps‘

ConvexQ

ConvexStrQ

’ConvexUnanConditionQ‘

FilledCore

[FirstCriticalval |

| FourthCriticalval |

ImputationQ

’IncreasingMargContributions‘

kCover

lKernelCalculation‘

PreKernelQ
Quota

’RationalApproximate‘

RationalExact
lReasonableUutcome‘

lSecondCriticalVal‘

SelectSuperSets

ConvStrQ

’KernelImputationListQ‘

lSetGameToNonZeroMonotonic‘

’ WeaklySuperAdditiveQ ‘
WithIncidences
'm

lZeroNormalization‘

lZeroUneNormalization‘

Just click with your mouse pointer on the functions name to get a short description how to use it.

ConvexQ[game] checks if the Tu - game is convex.

It returns thevalue’'True or’'False’.

To obtain a brief documentation about individual functions type

In[4] := ?TuGames ‘ConvexQ
ConvexQ [game] checks if the Tu - game is

convex. It returns the value 'True’ or ‘'False’.

if you are interested in a specific function name like ConvexQI].

3.1 How to define Games?

Note first that in the sequel we indicate the whole player set in the commands with the symbol T instead of N.
We must deviate from the general game theoretical convention, since under MATHEMATICA' the symbol N is already
occupied by the built-in function N[] to evaluate an expression numerically. Whereas in the definitions and results
we use the symbol N in the usual convention.

We can define a game in two different ways. The first one is the way as it was implemented by Carter in his
MATHEMATICA® package CooperativeGames. This procedure becomes very inconvenient for large games. The pack-
age TuGames provides, in addition, the function DefineGame[] to assign the values of the characteristic function for
large games. Let us now present the representation of a TU-game used by Carter. The values of the characteristic
function are assigned by

In[5] := ExpGamel := (T = {1, 2, 3, 4}; Clear([v];

vi{}1=0;
v[{1}]1=0;
v[{2}] =0;
v[{3}]1=0;
v[{4}]1 =0;

v[{1,2}]=0;
v[{1,3}1=0;
v[{1,4}]=0;
v[{2,3}1=0;
v[{2,4}]=0;
v[{3,4}1=0;

v[{1,2,3}] = 40;
vi{1,2,4}]=0;
vi{l,3,4}] =40;
vi{2,3,4}] =0;v[T] =90;)

To call the function DefineGame[] we define in a first step the player set and create a vector with zeros of length
2",

In[6]:=T2={1,2,3,4};

vec2 = Table[0, {i, 16}];

Then we can assign positive values to some or all coalitions. It is also possible to assign the coalitional values
directly to the vector, but in this case you have to know the exact order how the components of the vector are
assigned to the coalitions. Note that you should not assign negative or floating point values to the coalitions. The
commands in the package TuGames require nonnegative or rational numbers for the coalitional values to perform the
computational task correctly. For instance, if you use floating point numbers some functions can run into an infinite
loop and never terminate. In this case choose from the menu Kernel -> Abort Evaluation.

In[7]:= ExpGame2 := (DefineGame[T2, vec2];v[{1l, 2, 3}] = 40;
v[{1l,3,4}] =40;v[T] =90;);

Here is an example with five players. The example is borrowed from Maschler, Peleg and Shapley (1979) (cf. p.
317).

In[8]:

T3={1,2,3,4,5};

vec3 = Table[0, {i, 32}];

In[9] := ExpGame3 := (DefineGame[T3, vec3];v[{1l, 2,4}] =4;v[{1,2,5}] =4;
v[{1,3,4}]1 =4;vI[{1,3,5}] =4;vI[{2,3,4}] =4;vI[{2,3,5}] =4;
v[{4,5}] =4;vI[T] =7;);

Next an average-convex game:
1 1
In[10]:= ExpGame4 := (DefineGame[TZ, vec2];v[{l, 2}] = Z; v[{1, 4}] = Z;

7

1 3 1
vi{2,3}] = Ziv[{3,4}] = §;V[{1/2,3}] = E;V[{LZ, 4}] =

N R

134—1' 234—1'T-1"
vI{1,3,4}]1=3:v{2,3,4}] = 5 vIT] =)

Note that we have just assigned the values to the characteristic functions, but these values are at the moment not
evaluated. Since under the operator ":=" the right hand side, that means, in our case the game, is maintained in an
unevaluated form. The game is at that moment evaluated when a function is invoked that requires as an input the
pattern game_name, that is, in the case that the left hand expression game_name appears, it is replaced by the right
hand expression, the game. To see that at the moment no game is really evaluated type

In[11]:= ?2?v

v [S] describes the worth of coalition S

Due to the fact that nothing is evaluated at the moment you get a short function description back. Problems
encountered with the operator ":=" in the context of our package is briefly discussed in Section 6.

4 Some Functions

In this section we will discuss some basic functions provided by TuGames to examine some game properties like
convexity, average-convexity, superadditivity, monotonicity and zero-monotonicity. Furthermore, TuGames will also
enable us to evaluated solutions of a game like the Shapley value, tau-value or the kernel. In the sequel of the section
we will discuss as well functions related to the notion of k-convexity and unanimity coordinates. At this place some
remarks are required concerning the presentation of the material in this notebook. The purpose of this notebook is
to give the potential user a short description at hand how to use the new commands related to transferable utility
games correctly. We will not embed the descriptions of the commands in a thorough game theoretical presentation
of definitions and results on which the commands are based on. We just introduce definitions and results in cases
where it is according to our opinion useful to do so. This is done to mention differences between functions that do
ostensible the same or where we have used special results in our functions that are not quite common. In addition,
we will also dispense from any code presentation and discussion. Users interested in this material should examine
and try out for themselves the code presented in the package TuGames. Moreover, we assume that users bring along
good knowledge in cooperative game theory to asses the results correctly in a game theoretical context. Nevertheless,
we hope that the package might be useful for research as well as for teaching purpose in constructing examples in
both of these fields. Certainly, it is assumed that users have some experience with MATHEMATICA, but it is not a
prerequisite for the use of the package.

4.1 Basic Functions

In general, functions are invoked by the function name and its parameters, in most cases a function needs as an input
parameter the game_name, a list of imputations (payoffs), a set of coalitions or a player from the player set. To make
the point more precise let us first start with some functions that need just one parameter to examine some well known
game properties. The function that examines the convexity condition of the game is called ConvexQ[] and it needs
just one parameter, namely the game_name to perform the necessary calculations to check on this game property.
We can verify convexity by invoking

In[12]:= ConvexQ[ExpGamel]
OQut[12]= True

In[13]:= ConvexQ[ExpGame2]
OQut [13]= True

In[14]:= ConvexQ[ExpGame3]
Out [14]= False

In[15] := ConvexQ[ExpGame4]
Out [15]= False

Additionally to the possibility to check whether a game is convex, we are also able to examine with the command
AvConvexQ[] a generalized convexity property, the so-called average convexity. Since, average-convexity general-
ize convexity it should be clear that convexity implies average-convexity, but the converse is not true. The property
of average-convexity has been introduced by Inarra and Usategui (1993) in the literature. Before we will discuss this
command note first that average-convexity is defined as follows

> ® -vsW] = > MR -vR\)] forallS € R C N, S #¢.
ieS ieS
Similar to the function ConvexQ[] the function AvConvexQ[] that test the average-convexity condition of the

game is called with one parameter, the game_name. Hence, we need just to type

In[16]:= AvConvexQ[ExpGamel]
OQut [16]= True

In[17]:= AvConvexQ[ExpGame2]

Out [17]= True

In[18]:= AvConvexQ[ExpGame3]
OQut [18]= False

In[19] := AvConvexQ[ExpGame4]
Out [19]= True

Superadditivity can be checked by

In[20] := SuperAdditiveQ[ExpGamel]
Out [20]= True

In[21]:= SuperAdditiveQ[ExpGame2]
Out [21]= True

In[22] := SuperAdditiveQ[ExpGame3]
Out [22]= False

In[23] := SuperAdditiveQ[ExpGame4]
Out [23]= True

Let the coalitions S|, ..., S, partition the grand coalition 7. A necessary condition for the core C(v) of a game v to
be nonempty is that the condition

S VS < vN)

is satisfied. This property is captured by the function WeaklySuperAdditiveQ[].

In[24] := WeaklySuperAdditiveQ[ExpGamel]
Out [24]= True

In[25] := WeaklySuperAdditiveQ[ExpGame2]
Out [25]= True
In[26] := WeaklySuperAdditiveQ[ExpGame3]
Out[26]= True
In[27] := WeaklySuperAdditiveQ [ExpGame4]
Out [27]= True

Certainly, we can also verify on monotonicity and zero-monotonicity of the game. The commands are GameM-
onotoneQ[], MonotoneQ[] and ZeroMonotoneQ[].

In[28] := GameMonotoneQ[ExpGamel]
Out [28]= True

In[29] := MonotoneQ[ExpGamel]
Out [29]= True

In[30] := ZeroMonotoneQ[ExpGamel]
Out [30]= True

In[31] := GameMonotoneQ [ExpGame2]
Out [31]= True

In[32] := MonotoneQ[ExpGame2]
Out [32]= True

In[33] := ZeroMonotoneQ [ExpGame2]
Out [33]

True

In[34] := GameMonotoneQ[ExpGame3]
Out [34]= False

In[35] := MonotoneQ[ExpGame3]
Out [35]= False

In[36] := ZeroMonotoneQ[ExpGame3]
OQut [36]= False

In[37] := GameMonotoneQ [ExpGame4]
OQut [37]= True

In[38] := MonotoneQ[ExpGame4]
Out [38]= True

To demonstrate that the package TuGames works properly together with CooperativeGames let us now call the
command CoreQ[] written by Carter.

In[39] := CoreQ[ExpGamel]
Out [39]= True

In[40] := CoreQ[ExpGame2]
Out [40]= True

In[41]:= CoreQ[ExpGame3]
Out [41]= True

In[42] := CoreQ[ExpGame4]

Out [42]= True
Now determine the quotas of the games

In[43] := Quota[ExpGamel]

out [43] {80 40 80 40}

u -y~ = == 27
37 3737 3

In[44]:= Quota[ExpGame2]

8 40 80 40
out(44]= {5, -5, 55}

In[45] := Quota[ExpGame3]
Out [45]= {0, 0,0,0,0}

In[46]:= Quota[ExpGame4]

out [46]= {i

5 5 o o)

7

4.2 k-convexity

In this section we present some basic functions related to the notion of k-convexity that has been introduced by
Driessen. The usefulness of this notion stems from the fact that TU-games with this property having similar proper-
ties like convex games, although convexity does not imply k-convexity, and the converse is also not true in general.
There is just a small subclass of games that satisfy both properties, for instance, bankruptcy games are convex as
well as k-convex. The package TuGames provides some useful functions to determine properties of k-convex games.
To demonstrate some of these functions, let us define to this end four new games. The first three games have been
borrowed from Driessen (1988), whereas two of them are 2-convex (Exp. 4.5 on page 198 and Exp 5.3 on page 202)
and one of them is 1-convex "ExpGame7" (cf. Exp. 5.6 on page 75). The last game presented in the series below is
discussed in Meinhardt (2002) and satisfies also the property of 2-convexity.

In([47] := ExpGame5 := (DefineGame [T2, Table[0, {i, 2"Length[T2]}]1];
vi{1,2}] =vI{1,3}] =1;vI[{2,3}] =4; v[{2,4}] = 6;
vi{l,4}]1=3;vI[{3,4}]=7; v[{1,2,3}]1 =9;v[{1,2,4}] =12;
vi{1,3,4}] = 13;v[{2,3,4}] =15;Vv[T] =20;);

In[48] := ExpGame6 := (DefineGame[T2, Table[0, {i, 2"Length[T2]}]1];
v[{1,2,3}] =vI[{1,2,4}] =vI[{1, 3,4}] =v[{2,3,4}] =3;

v[T] =5;);

In[49]:= T4 ={(1,2, 3};

vecd = Table[0, {i, 2 "Length[T4]}];

In[50] := ExpGame7 := (DefineGame [T4, Table[0, {i, 2"Length[T4]}11];
v[{2}] =vI[{3}] =6;vI[{1,2}] =v[{1,3}] =9;v[{2,3}] =15;
v[T] =18;);

As mentioned above you could assign the values of the characteristic function directly by constructing a vector
of length 2"simply by
800 800 800 800

In[51]:= coalval={0,26.7,26.7,26.7,26.7, —, , , ,
3 3 3 3

800 800 1600 1600 1600 1600
37 3 3 3 3 3

The order of the coalitions is obtained by the functions

, 800};

7 7 7 7

In[52] := Subsets[T2]
out[52]= {{}, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, (2,3}, {2, 4},
(3,4}, 1{1,2,3}, {2, 2,4}, {1,3,4},{2,3,4},(1,2,3,4}}
To define a game you need no more than the player set 72 and the vector of the values of the game, that is,
coalval.

In[53] := Options[DefineGame]
Out [53]= {RationalApproximate - True}
In[54] := ExpGame8 := (DefineGame[T2, coalval]);
Let us first check whether some of them have an empty or non-empty core.

In[55] := CoreQ[ExpGame5]
Out [55]= True

In[56] := CoreQ[ExpGame6]
Out [56]= True

Let k e N. Note that an n-person game v, is called the k-cover of the game v if the original game v satisfies the
condition

1) £&(S) = g'(W) forall S c Nwith [S| = k, (cf. Driessen 1988, pp. 173)

where g'(S) = > jes b; — v(S) and bj- = V(N) — v(N\i). A TU-game v, is defined as follows

(2) v(S) = W(S)if Sl <k and v,(S):= ZjESbE - &) ifISI= k.

A TU-game v is called k-convex if the k-cover of the game is convex, that is, the condition (1) is fulfilled and the
TU-game v, is convex. The k-cover of the game v can be verified by calling the function Gap[]. The output of the
function Gapl[] is the value of g"(S) for each coalition in the order set by the command Subsets[]. In the example
given below the coalition size two starts at position six whereas coalition size three starts at position twelve.

In[57] := Gap[ExpGame5]
out([(57]= {0,5,7,8,11,11,12,13,11,12,12,11,11,11,11, 11}

In[58] := Gap[ExpGame6]
Out [58]= {0,2,2,2,2,4,4,4,4,4,4,3,3,3,3,3}

In[59] := Gap[ExpGame7]
out[59]= {0,3,3,3,3,3,3,3}

In[60] := Gap[ExpGame8]
7199 7199 7199 7199 800 800

Out [60]= {0, ’, , , y— ’

ut[607= {0, —0= 07 S0 T30 3 3
800 800 800 800 800 800 800 800 800
A A A R S R i

In[61]:= Gap|[ExpGame8]//N
Out [61]= {0.,239.967,239.967, 239.967, 239.967,
266.667, 266.667, 266.667, 266.667, 266.667,
266.667, 266.667, 266.667, 266.667, 266.667, 266.667}

Game "ExpGame7" satisfies the condition of a 1-cover, whereas for the other games the condition of a 2-cover
is satisfied. In the next step, we have to verify that the associated v, game is convex. By doing so, we can derive
the associated v, game by using the function kCover[] and by setting k=2. First, we have to generate the coalitional
values of the v, games, this is done by calling

In[62] := kvall = kCover [ExpGame5, 2]
out[62]= {0,0,0,0,0,1,2,5,4,7,8,9,12,13,15,20}

In[63] := kval2 = kCover [ExpGame6, 2]
out[63]= {0,0,0,0,0,1,1,1,1,1,1,3,3,3,3,5}

In[64] := kval3 = kCover [ExpGame7, 1]
out[64]= {0,0,6,6,9,9,15,18}

In[65] := kvald = kCover [ExpGame8, 2]

out 1657 {0 267 267 267 267 800 800 800
u = T T T e s s

107 107 107 107 37 3 3
800 800 800 1600 1600 1600 1600

37 37 3 373 3 3
In the second step we define new TU-games v, for "ExpGame5, ExpGame6, ExpGame7 and ExpGame8" re-
spectively, by the function DefineGame[] and by using the associated vectors of coalitional values which we have

determined in the previous step. These games are defined simply by typing

’

, 800}

7 7 7

In[66] := Gamevkl := (DefineGame[T2, kvall]) ;
In[67] := Gamevk2 := (DefineGame[T2, kval2]);
In[68] := Gamevk3 := (DefineGame[T4, kval3]);

In[69] := Gamevk4 := (DefineGame[T2, kvald]) ;

We have already found out that the original games satisfy condition (1), hence, it remains to check whether the
corresponding games v, are convex to conclude that the games under considerations are 2-convex. To this end, we
call the function ConvexQ[].

In[70] := ConvexQ[Gamevkl]
Out [70]= True

In[71]:= ConvexQ[ExpGame5]
OQut [71]= False

In[72] := ConvexQ[Gamevk2]
Qut [72]= True

In[73] := ConvexQ[ExpGame6]
OQut [73]= False

In[74] := ConvexQ[Gamevk3]
Out [74]= True

In[75] := ConvexQ[ExpGame7]
Out [75]= True

In[76] := ConvexQ[Gamevk4]

Out [76]= True

In[77] := ConvexQ[ExpGame8]
Out [77]= True
Since the condition (1) and the convexity condition are fulfilled, all games under consideration are k-convex.
Exemplary, we demonstrate that the game "ExpGame5" is not 1-convex.
In[78]:= kval5 = kCover [ExpGame5, 1]
out[78]= {0, -6,-4,-3,0,1,2,5,4,7,8,9,12,13,15, 20}

In[79] := Gamevk5 := (DefineGame[T2, kval5]) ;

In[80] := ConvexQ[ExpGame5]
Out [80]= False

In[81] := ConvexQ[Gamevk3]
Out [81]= True

The convexity condition holds, but recall that the k-cover of the game "ExpGame5" is not an 1-cover, it is just a
2-cover.

In[82] := Gap[ExpGame5]

10

out[82]= {0,5,17,8,11,11,12,13,11,12,12,11,11, 11,11, 11}
In this case condition (1) does not hold and therefore the game "ExpGame5" is not 1-convex.
Furthermore, we can calculate the upper or utopia payoff that represents an upper bound of the core by

In[83] := UtopiaVector [ExpGame5]
Out[83]= {5,7,8, 11}

In[84] := UtopiaVector [ExpGame6]
out[84]= {2,2,2,2}
A lower bound of the core is the so-called disagreement vector and it can be computed by calling

In[85] := Disagreement [ExpGame5]
Out[85]= {0,0,0,0}

In[86] := Disagreement [ExpGame6]
out[86]= {0,0,0,0}

Since the tau-value can be regarded as some fair compromise between the utopia and the disagreement vector,
we are now in the position to compute the tau-value of the previous games.

In[87]:= taul = TauValue [ExpGame5]
100 140 160 220
out [87]

I4 7

317 317 317 31
In[88]:= tau2 = TauValue [ExpGame6]
out [88]= {E 2,2 E}

4" 4" 47 4

In the next step, we want to verify if the computed tau-values are contained in the corresponding cores of the
game "ExpGame5 and ExpGame6", respectively. For this purpose let us call the command InCoreQ[] provided by
the package CooperativeGames. The command requires as an input one imputation and the game_name.

In[89] := InCoreQ[taul, ExpGame5]
Out [89]= True

In[90] := InCoreQ[tau2, ExpGame6]
Out [90]= True

It is well known that for convexity of an n-person Tu-game it is necessary and sufficient that the core of the
game contains all n! marginal worth vectors. A similar result holds for k-convex games. For k-convexity it is
necessary and sufficient that all (n — k)!)~! n! adjusted marginal worth vectors are contained in the core of the game
(cf. Driessen 1988). The adjusted marginal worth vectors of k-convex games can be evaluated with the function
AdjustedWorthVectors[] . There is also a special function available to compute the adjusted worth vectors of 1-
convex games. The function name in this case is AdjustedEffUpperVectors[]. Let us now calculate for the above
games the adjusted marginal worth vectors.

In[91]:= v5 = AdjustedWorthVectors [ExpGame5, 2]

out[91]= {{0,1,8,11}, {0,1,8,11},{0,7,2,11}, {0, 7,8,5},{0,7,2,11},
{6,7,8,5},{1,0,8,11}, {1,0, 8,11}, {2,7,0, 11},
{5/ 7/ 8/ O}/ {2/ 7/ O/ ll}/ {5/ 7/ 8/ O}/ {5/ 0/ 4/ 11}/ {5/ O/ 8/ 7}/
{5,4,0,11}, {5,7,8,0}, {5,7,0,8}, {5,7,8,0}, {5,0,4, 11},
{5,0,8,7},{5,4,0,11}, {5,7,8,0}, {5,7,0,8},{5,7,8,0}}

In[92] := u5 =v5//Union

Out[92]= {{0,1,8,11},{0,7,2,11},{0,7,8,5},{1,0,8,11},{2,7,0,11},
{5,0,4,11}, {5,0,8,7},{5,4,0,11},{5,7,0,8}, {5,7,8,0}}

In[93] := Length[u5]
out [93]= 10

As expected the number of marginal worth vectors does not exceed the threshold value of ((n — KD~ n! vertices.
For 2-convex games the maximal number of marginal worth vectors is 12. All adjusted marginal worth vectors must
be contained in the core. We check this by

11

In[94] := CoreElementsQ[ExpGame5, u5]
Out [94]= {True, True, True, True, True, True, True, True, True, True}

As well as for the class of convex games the class of k-convex games can be characterized by the vertices of
the core, it is necessary and sufficient for the k-convexity property that the vertices of the core coincide exactly with
the adjusted marginal worth vectors. We are able to check on this property by using the following steps: first, we
compute the vertices of the core. In a second step we find out the imputations that are contained in the core and
examine if the imputations we have selected are really core elements. Then we compute the adjusted marginal worth
vectors and compare the result with our vertex result. To compute core vertices, we can perform this task with the
command VerticesCore[]. The command returns two output values, the vertices and a list of "active-variable" sets,
indicating which inequalities are satisfied with equalities at each vertex (cf. VertexEnum). In our example below, the
symbol cvert5 captures the informations associated with the vertices and the symbol nonvert5 grabs all informations

of the "active -variable" set.

In[95] := {cvert5, nonvert5} = VerticesCore [ExpGame5]

Oout[95]= {{{5,7,8,0},{3,9,10,0}, {6,6,9,0},{6,8,7,0}, {0,9,10, 3},
{6,0,9,6},{6,8,0,7},{5,7,0,8},{2,7,0,11}, {1,8,0,12},
{5,4,0,11},{0,7,8,5},{0,7,2,11}, {0, 8,1, 12},

{0,1,8,11}, {5,0,8,7}, {5,0, 4,11}, {1,0,8,11}},
({16, 18, 19,17, 8, 4}, {16, 11, 8,17, 4}, {16, 18, 8, 13, 4},
(14,18,8,17, 4}, {16,111, 5,17, 1}, {16, 18, 6, 13, 2},
{14, 18, 7,17, 3}, {7, 18,19, 17, 3}, {7, 15,19, 17, 3},
(7,15, 10,17, 3}, {7, 18,19, 15, 3, 12}, {16, 5,19, 17, 1},
{15, 5,19,17, 1}, {15, 5, 10,17, 1}, {16, 5,19, 15, 9, 1},
(16, 18,19, 6,2}, {15,18, 19,6, 2, 12}, {16,15,19, 6,2, 9}}}
The package provides two different functions to check whether a list of imputations is contained in the core. In
addition to the function CoreElementsQ[] which we have already introduced above and that is based on the function
InCoreQ[] by Carter, we provide a second function that is called BelongToCoreQ[] which is based on the property

that an imputation x belongs to the core C(v) iff
x(S) = Z,-Es x; = W(N) — w(S) forall ScN.

We demonstrate how the function BelongToCoreQ[] works in comparison to the function CoreElementsQ[]
before we proceed on our problem. The difference between the function is discussed in more detail in Section 5.

In[96] := corb = CoreElementsQ[ExpGame5, cvert5]
Out [96]= {True, False, False, False, False, False, False, True,
True, False, True, True, True, False, True, True, True, True}
In[97] := blcor5 = BelongToCoreQ[ExpGame5, cvert5]
Out[97]= {True, False, False, False, False, False, False, True,

True, False, True, True, True, False, True, True, True, True}

Since, some of imputations aren’t contained in the core, we select the core imputations by using the command

In[98] := pos5 = Position[cor5, True]
Out[98]= {{1}, {8}, {9}, {11}, {12}, {13}, {15}, {16}, {17}, {18}}

In[99] := bes5 = Position[blcor5, True]
Out[99]= {{1}, {8}, {9}, {11}, {12}, {13}, {15}, {16}, {17}, {18}}

We got with the command Position[] the exact location of the core elements, we can use this information by
extracting all core imputations typing

In[100]:= ext5 = Extract|[cvert5, pos5]
Out[100]= {{5,7,8,0},{5,7,0,8},{2,7,0,11}, {5,4,0,11}, {0, 7,8, 5},
{0,7,2,11y%,{0,1,8,11}, {5,0,8,7},{5,0,4,11}, {1,0,8,11}}

12

In[101]:= bcext5 = Extract[cvert5, becs5]
Out[101]= {{5,7,8,0},{5,7,0,8},{2,7,0,11}, {5,4,0,11}, {0,7,8,5},
{6,7,2,11},{0,1,8,11}, {5,0,8, 7}, {5,0, 4,11}, {1,0,8,11}}

Let us verify that all elements we have selected from our initial list are contained in the core.

In[102] := CoreElementsQ[ExpGame5, ext5]

Out [102]= {True, True, True, True, True, True, True, True, True, True}

In[103] := BelongToCoreQ [ExpGame5, bcext5]

Out[103]= {True, True, True, True, True, True, True, True, True, True}

In[104]:= Length[ext5]
Out[104]= 10

In[105]:= to5 =Union[ext5, u5]
Out[105]= {{0,1,8,11},{0,7,2,11}, {0,7,8,5},{1,0,8,11},{2,7,0,11},
{51 O/ 4/ 11}/ {5/ OI 8/ 7}/ {5/ 4/ O/ ll}/ {5/ 7/ O/ 8}/ {5/ 7/ 8/ 0}}

In[106]:= Length[to5]
out[106]= 10

To get more evidence that the function AdjustedWorthVectors[] computes the exact values. Let us consider the
game "ExpGameS".

In[107]:= v8 = AdjustedWorthVectors [ExpGame8, 2]
7199 800 7199 800 800

800 26
T A N N L T T e
267 800 7199 800 267 800 800 7199

T3 30 3 it 3 s T

267 800 7199 800 267 800 800 7199

7 7

10’3’30’3}’{10’3’3’30
7199 267 800 soo} {7199 267 800 800}
30 7 107 3 3 107 3 3 7
7199 800 267 800 {7199 800 800 267
30 7 37107 3771 30 3 3 10
7199 800 267 800 {7199 800 800 267
30 7 37107 377V 30 37 37 10
800 267 7199 800 800 267 800 7199

L T T R R e T e T
800 7199 267 800 800 7199 800 267
{3’30’10’3}’{3’30’3’10
{800 800 267 7199} {800 800 7199 267
37 37107 3074V 3 7 37 307 1077
800 267 7199 800 800 267 800 7199

3’10’30'3}’{3’10’3’30
800 7199 267 800} {800 7199 800 267
10”7 347V 37 307 37 10

’
7
’
’
7

’

’

7 7

37 30
800 800 267 7199 800 800 7199 267

e e T TR e N TN TR L
Removing all duplicated results we obtain

In[108]:= u8 =v8//Union

out [108]= {{267 7199 800 800} {267 800 7199 eoo}
10" 30 " 37 347Vvi07 37 30" 377

267 800 800 7199} {7199 267 800 800}

107 3 37 30 77V 30 710" 37 3/

7199 800 267 800 7199 800 800 267

30’3’10’3}’{30’3’3’10
{800 267 7199 soo} {800 267 800 7199
37107 307 307V 37107 37 30
{800 7199 267 soo} {800 7199 800 267
37 30 7107 3274V 37 307 3710
800 800 267 7199 800 800 7199 267

L A T IRt A ST T

7

7

7

13

We obtain the expected number of adjusted marginal worth vectors, since

In(109]:
out[109]
For an intermediate step, let us verify that the computed vectors are all efficient. This could be done by

Length[u8]
12

In[110]:= Apply[Plus, #] & /@Qu8
out[110]= {800, 800, 800, 800, 800, 800, 800, 800, 800, 800, 800, 800}
In[111]:= {cvert8, nonvert8} = VerticesCore [ExpGame8]
out (111 {{{800 800 267 7199} {800 800 7199 267
u - b kit vy oYY 227 20
37 37107 302"V 3 7 37 307 107
7199 800 800 267} {267 800 800 7199
307 37 37107 V10” 37 37 30 77
267 7199 800 800} {7199 800 267 soo}
10” 307 37 34"V 30 7 37 10" 377
267 800 7199 soo} {7199 267 800 800}
10" 37 307 3V 30710 37 37
{800 7199 800 267} {800 267 800 7199
37 307 37104V 37107 37 30 17
{800 7199 267 soo} {800 267 7199 soo}}
37 30 10" 3474V 37107 30 7 31
{{19,18,7,17,14}, {19,18,8,17, 14}, {19, 16, 8,17, 11},
{19,16,5,17,11}, {19, 15,5, 16, 9}, {19, 15,7, 17, 10},
{19, 15,5,17,10}, {19, 16, 6, 15, 9}, {19, 18, 8, 16, 13},
{19, 18, 6, 16, 13}, {19, 18, 7, 15, 12}, {19, 18, 6, 15, 12} } }
In[112]:= Length[cvert8]
out[112]= 12
In[113]:= CoreElementsQ[ExpGame8, cvert8]
Out[113]= {True, True, True, True, True,
True, True, True, True, True, True, True}
In[114]:= BelongToCoreQ[ExpGame8, cvert8]
Out[114]= {True, True, True, True, True,
True, True, True, True, True, True, True}
In[115]:= to8 = Union[cvert8, v8]
out [115] {{267 7199 800 800} {267 800 7199 800}
u S b A b o/ oYY 1299 oYY
10” 30 7 37 34"ti0” 37 307 31
267 800 800 7199} {7199 267 800 800}
10" 37 37 30 V30 10" 37 3/
7199 800 267 800} {7199 800 800 267
30 37107 347V 307 37 37 1077
{800 267 7199 soo} {800 267 800 7199
37107 307 3274V 3 7107 37 30 77
{800 7199 267 soo} {800 7199 800 267
37 30 710" 347V 377 307 37107
{800 800 267 7199} {800 800 7199 267}}
37 37107 307V 3 7 37 307 10
In[116]:= Length[to8]

out[116]= 12
Do not try to use the function AdjustedEffUpper Vectors[] for k-convex games, with k= 2. In this case you will
get wrong results.

In[117]:= AdjustedEffUpperVectors [ExpGame8]

800 800 800 800 800 800
ouerr17i= {0, == == 5oh A5 0 5m
800 800 800 800 800 800
R A N

14

You can just use this function simply to compute the adjusted marginal worth vectors for 1-convex games as the
next example will demonstrate it.

In[118]:= AdjustedEffUpperVectors [ExpGame7]
Out[118]= {{0, 9,9}, {3,6,9},{3,9,6}}

In[119]:= AdjustedWorthVectors[ExpGame7, 1]//Union
Out[119]= {{0,9,9},{3,6,9},{3,9,6}}

In[120]:= VerticesCore[ExpGame7][[1]]
Out[120]= {{3,9,6},{0,9,9}, {3,6,9}}

4.3 Kernel

In this subsection we want to present some functions which will enable us to compute at least a kernel solution or
in good cases the whole kernel of a game. The functions we will present in this subsection relying on the linear
programming approach to determine outcomes that lie in the core (or strong epsilon core) as well as in the kernel
of the game, that is, outcomes that satisfy the bisection property. Note, that for zero-monotonic games the bisection
property is necessary and sufficient that an imputation that belongs to the core (strong-epsilon core) is also contained
in the kernel of the game (cf. Th 3.7 Maschler, Peleg and Shapley (1979)). More informations about the algorithm
can be found in Meinhardt (2004). To start off, let us first consider the command Kernel[game,opts] without an
option to compute a kernel point of the game. In the second case we make use of an optional parameter EpsilonValue
which is a critical value to generalize the bisection property to the strong epsilon-cores. You can omit the critical
value EpsilonValue in the command without harm, since the default value is set to zero. There are different functions
available which determine the different types of critical values. One critical value can be calculated, for instance, by
the function FirstCriticalVal[game]. This function and all the rest of them will be discussed in the sequel of this
subsection.

In[121]:= kerl = Kernel [ExpGamel]

Game has nonempty core
out[121] {45 45 45 45}
u = P A S
2 2 2 2
In[122]:= ker2 = Kernel [ExpGame2]

Game has nonempty core
out [122] {45 45 45 45}
u =SV 5r o
2 2 2 2
In[123]:= ModifiedKernel [ExpGame2]
out [123] {45 45 45 45
u =V 5r o
2 2 2 2
In[124]:= ker3 = Kernel [ExpGame3]
Game has nonempty core

out[124]= {1,1,1,2,2}

In[125]:= ModifiedKernel [ExpGame3]
Out[125]= {1,1,1,2,2}

In[126] := ker4d = Kernel [ExpGame4]

Game has nonempty core
77 9 9
out[126]= { ==, ==, ==+ =—
327327 327 32
In[127]:= ModifiedKernel [ExpGame4]
7
out[127]= {==, =5+ 25+ =5
327327 327 32
The next function verifies whether the payoff belongs to the kernel of the game.
In[128]:= KernelImputationQ[ExpGamel, kerl]

OQut [128]= True

15

In[129] := KernelImputationQ[ExpGame2, ker2]
Out [129]= True

In[130]:= KernelImputationQ[ExpGame3, ker3]
OQut [130]= True

In[131]:= KernelImputationQ[ExpGame4, ker4]
OQut [131]= True

Define some payoffs
In[132]:= pay = {{45, 0, 45, 0}, {10, 20, 30, 30}, kerl, ker2};

If you want to test, if a list of payoffs belong to the kernel then use
In[133]:= KernelImputationListQ[ExpGamel, pay]
Out [133]= {False, False, True, True}

Specify now the arrangement of all subsets of the grand coalition N.
In[134]:= Subsets[{1l, 2, 3, 4}]

Out [134]= {{}, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4},
{3,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4}, {1,2,3,4}}

The surpluses of an excess vector are arranged exactly in accordance with the above order of subsets of the grand
coalition N. Here, we present the shortened corresponding excess vectors related to the symbol "pay".

In[135] := ExcessPayoff [ExpGamel, pay, DisplayMatrixForm » True]

Co[{}] Co[{1}] Co[{2}] Co[{3}] Co[{4}] Co[{l,2}] Co[{1,3}] Cof[{l,4}] =~ Co[{l,2,3,4}]

0 45 0 45 0 45 ~90 45 0

0 10 20 30 30 30 40 40 0

Out [135]= (0)))) 45 45 45 0
2 2 2 2
45 45 45 45

0 =2 =2 =2 =2 45 45 45 0
2 2 2 2

To check if the kernel element coincides with the nucleolus, we use the function Nucleolus[] provided by Coop-
erativeGames.

In[136]:= Nucleolus[ExpGamel]
45 45 45 45
out[136]= {7, — 5 7}
In the package TuGames are also some functions available to compute the nucleolus or pre-nucleolus of the
game. These are the following functions:

In[137]:= ModifiedNucleolus [ExpGamel]

out [137] {45 45 45 }

u - (= = = 2=
2727 27 2

In[138]:= LexiCenter [ExpGamel]

45 45 45 45
iz 2 2 37

In[139] := PreNucleolus |[ExpGamel]
out[1391= {2, 2, 22, 2
2727 27 2

The Options can be called with the following command.

Out [138]

’

In[140]:= Options[ModifiedNucleolus]
Out [140]= {CallMinimize - True, SetRecursionLimit - 128, Silent —» True}

Due to our experience these functions are more robust than the function Nucleolus[] for essential games. If the
game is inessential then the result might not be correct and you have to check the result by KernellmputationListQ[]
or KernellmputationQ[]. Since the result is a remapping of a zero-one normalized game back to original game,
one has simply to look on this result to find an appropriate remapping to original game. The game "ExpGamel" is
convex, in this case the kernel is an unique element that coincides with the Nucleolus.

In[141]:= ConvexQ[ExpGamel]

16

OQut [141]= True
Recall the kernel element from "ExpGame3"

In[142] := ker3
Oout[142]= {1,1,1,2,2}

In[143]:= nuc3 = Nucleolus[ExpGame3]
out[143]= {1,1,1,2,2}

In[144]:= ModifiedNucleolus [ExpGame3]
out[144]= {1,1,1,2,2}

In[145]:= ModifiedNucleolus [ExpGame3, CallMinimize » False]
out[145]= {1,1,1,2,2}

If you are interested to find out more kernel elements the package provides the command KernelCalculation[].
The function KernelCalculation[] computes a kernel element and candidates from (n(n — 1)/2 + 1) LPs, whereas
Kernel[] computes a kernel element from just one linear maximization problem. But due to the restriction that the
built-in function ConstrainedMax[] find just one solution and not all solutions of a LP we are sometimes not able
to specify the whole kernel with MATHEMATICA". That’s why we follow the strategy that the above commands return
also the final LP for further investigation outside of MATHEMATICA'.

In[146]:= {sol3, pay3} = KernelCalculation[ExpGame3, EpsilonValue » 2]
Game is zero - monotone? False
Core is nonempty? True

Game is either zero - monotonic or has nonempty core

AKernel solutionis : {x[1] -1, x[2] 913){[3] »1 x[4] 4»2 X3[5] -2}
Oout [146]= {{1,1,1,2,2},{{—,— S5 } { F 3 5,5},
{(1,1,1,2,2},{1,1,3,1, 1},{1,3,1,1,1},
41438}41483}441 }
376”3727 31737673737 2073737
4 4 1 8 3 5 5 5
5'5’6'3'5}’{3'5’* 1,1}, {3,1,1,1, 1}}}

In[147]:= KernelImputationListQ[ExpGame3, pay3]
Out[147]= {False, False, True, False, False,

False, False, False, False, False, False}

All internal results can be obtained by invoking the option DisplayAllResults.

In[148]:= {sol3, obj3, con3, tra3, pay3} =

KernelCalculation[ExpGame3, EpsilonValue » 2,
DisplayAllResults -» True]

Game is zero - monotone? False

Core is nonempty? True

Game is either zero - monotonic or has nonempty core

AKernel solutionis : {x[1] -1, x[2] -1, x[3] »>1, x[4] -2, x[5] -2}

Out [148]= {{l, 1,1,2,2},x[1] +x[2] +x[3] +x[4] +x[5],

{(-2-x[1] -2, -2-x[2] <-2, -2-%x[3] =<-2,
2-x[1]-x[2] -x[4] =-2,2-x[1] -x[3] -x[4] <-2,
2-x[2] -x[3] -x[4] =-2,2-x[1] -x[2] -x[5] =-2,
2-x[1] -x[3] -x[5] =-2,2-x[2] -x[3] -x[5] =-2,
2—x[4]—x[5]s—2,x[l}+x[2]+x[3]+x[4}+x[5]57},

1 1 1 1 1 4 3

{l/ 1/ g/ g/ 1/ g/g g 7} {{7 57 57 5 7}
£§£§§}11122 1,1,3,1,1},{1,3,1,1,1
6/3/3/3/2 /{ 4 7 7 4 }/{ ’ 4 7 4 }/{ 7 4 7 7 }/
4 1 4 3 8 4 1 4
VR TR 75 V% IR 08 V0 8 V8 1 JRE VR PO 10 1
4 4 1 8 5 5 5
{5/ 5/ g/ 5/ }/ {E 5/ E/ /1}/ {3/ 1,1, 111}}}

17

The first return value is the kernel solution, the second the objective function, the third the constraint set, the
fourth contains values of the largest bi-symmetrical transfer and the last value returns in general a list of possible
kernel candidates that have been computed from the n(n — 1)/2 initial LPs. Note, that according to this procedure
the function becomes very slow for huge games. A good strategy is to find out a first kernel element by the function
Kernel[]. This function is in average 10 times faster than the function KernelCalculation[]. Moreover, we have
found out that you can also speed up the calculation with the above commands by providing one of the critical value
that have been introduced by Maschler, Peleg and Shapley (1979) to vary the strong epsilon core instead of using the
default value zero.

The complete set of options can be seen by

In[149]:= Options[KernelCalculation]
Out [149]= {ChangeInternalEps -» False, DisplayAllResults —» False,

EpsilonValue - 0, SetGameToNonZeroMonotonic » False}

and for the function Kernel[] by calling

In[150] := Options[Kernel]
Out [150]= {DisplayAllResults -» False, EpsilonValue - 0}

Now have a (shortened) look what returns the function Kernel[] by invoking the option DisplayAllResults
In[151]:= {sol3, object3, con3, var3, trans3} =

Kernel [ExpGame3, DisplayAllResults » True]
Game has nonempty core

Out[151]= {{1,1,1,2,2},56[1,2]+6[1,3]+6[1,4]1+56[1,5]+
6(2,31+6[2,4]+6[2,5] +6[3,4] +6[3,5]+6[4,5],
{x[1] +x[2] +x[3 x[4] +x[5] ==7,%x[1] =20,x[2] =0, x[1] +x[2] =0,
x[1] +x[2] +x[5] -&6[4, 5] =4, x[3] +x[5] -6[4,5] =20,
x[1] +x[3] +x[5] -56[4,5] =4, x[2] +x[3] +x[5] -6[4, 5] =4,
x[1] +x[2] +x[3] +x[5] -&6[4,5] =20,6[4,5] =0},

{x[1], x[2], x[3], x[4],x[5],6[1,2],6[1,3],6[1, 4],
6[1,51,6[2,3],6(2,4],612,5],6(3,41,613,5], 64,51},
{0,0,0,0,0,0,0,0,0,0}}
The first three return values are the same as above. The last but one return value stores all variables of the LP and
the last provides information about the transfers in each direction such that the endpoints of the line segment remain
in the strong epsilon-core.

In[152] := trans3
Out[152]= {0,0,0,0,0,0,0,0,0,0}

The result states that it is not possible to transfer a positive amount in each direction without leaving the core.
To check this, let us determine, if an endpoint of the line segment 1-2 belongs to the core if we transfer a half unit
from player 1 to player 2 from the derived kernel solution. The function Transfer[] needs five input parameters, the
initial imputation, the whole player set, the transfer amount, the player from whom we extract the transfer amount
and the player who receives it.

1
In[153]:= trl = Transfer[sol3, T3, 27 1, 2]
1 3
out [153]= {E’ Sole2, 2}

In[154]:= InCoreQ[trl, ExpGame3]
Qut [154]= False

Next let us remain in the initial payoff distribution.

In[155]:= tr2 = Transfer[sol3, T3, 0, 1, 2]
Out [155]= {1,1,1,2,2}

18

In[156] := InCoreQ[tr2, ExpGame3]
Out [156]= True

In the last example we take from the initial distribution a half unit away from player 2 to give it player 1.
In[157]:= txr3 =Transfer[sol3,T3,%;y 1, 2]
31
out(157]= {Z, 2, 1,2, 2}

In[158]:= InCoreQ[tr3, ExpGame3]
OQut [158]= False

Recall that all kernel commands based on the built-in MATHEMATICA command ConstrainedMax[]. Unfortu-
nately, this command offers no control on the solver. That’s why, we let us also return the whole final LP that
computes us a kernel element with the intention to export this final LP to a mathematical software that offers more
control on the solver. In some respect one can overcome this shortcoming by computing kernel elements by varying
the strong epsilon core. This can be done by calculating in a first step some critical values. For instance the command
FirstCritical Val[] calculates the smallest epsilon value such that the epsilon-core is non-empty (cf. Maschler, Peleg
and Shapley (1979)).

In[159]:= FirstCriticalVal [ExpGamel]
45
out[159]= {epsl - -7}

In[160]:= FirstCriticalVal [ExpGame2]
45
Out[160]= {ep514>—7;}

In[161]:= FirstCriticalVal [ExpGame3]
Out[161]= {epsl >0}

In[162]:= FirstCriticalVal [ExpGame4]
3
out[162]= {epsl - _R}

In[163]:= SecondCriticalVal [ExpGame3]
Out [163]= {eps2 -4}

In[164]:= ThirdCriticalVal [ExpGame3]
Out[164]= {eps3 —»21}

In[165] := FourthCriticalVal [ExpGame3]
Out [165]= {epsd » 4}

In[166]:= FifthCriticalVal [ExpGame3]
Out[166]= {eps5—>16}

In[167]:= StarCriticalVal [ExpGame3]
Out[167]= {eps5 >4}

In[168] := SecondStarCriticalVal [ExpGame3]
Out [168]= {dstareps —» 4}

In[169]:= ThirdStarCriticalVal [ExpGame3]
Out[169]= {thstareps > 0}
Now let us demonstrate that we are able to compute the complete kernel of a game.

In[170] := ExpGame9 := (DefineGame[T3,vec3];v[{2,5}] =1;v[{3,5}] =1;

v[i{4,5}1=1;v[{1,2,3}] = %;V[{I,Z/ 4}1=1;vI{1,2,5}]1 =1;
vi{1,3,4}1=1;v[{1,3,5}]1=1;v[{1,4,5}]1=1;vI[{2,3,4}]1=1;
vi{2,3,5}]1 =1;v[{2,4,5}] =1;v[{3,4,5}]1=1;

v[{1,2,3,4}]1 =1;v[{1,2,3,5}] =1;vI[{1,2,4,5}] =1;

vI{2,3,4,5}] =1; v[T3] =2;);

19

The kernel of this game is given by the union of the following three line segments (cf. Maschler and Peleg
(1966,p.322)):

co{{0, 1, 1,1, 1}/2, {1, 11, 11, 12, 13}/24}

~
|

J, = col{7,8,8,9,16)/24, {1, 11, 11, 12, 13}/24}
Jy =col{7,8,8,9,16)/24, {11, 11, 11, 14, 25}/36}

Note first that specifying an epsilon value can speed up the calculation time by using the MATHEMATICA function
ConstrainedMax[].

In[171]:= {time9, ker9} = AbsoluteTiming[Kernel [ExpGame9]]
Game has nonempty core
out [171]= {2.14333 Second, {l, R E}}
24 37378" 3
In[172]:= {time091, ker9} = Abs701uteTiming [Kernel [ExpGame9, EpsilonValue » 3]]
out[172]= {0.568597 Second, {ﬂ’ 3337 5}}

We can also to try to find out some kernel segment by using the command:

In[173] := KernelVertices [ExpGame9]

Game has nonempty core
11 11 1 l

1 1 3 2
out[173]= {{= -, -, 2 =z
ue(1731= {557 53 } { 5573
In[174]:= {time92, {sol9, pay9}} = AbsoluteTiming[KernelCalculation [ExpGame9]]
Game is average - convex? False

A Kernel solutionis :

{xI L k12151, x[3] 5 =, x[4] > 2, x[5] 2}
x[a— X -> -, X - -, X - —, X - =
37 37 8’ 3
out[174]= {12 8581 second {{i L2 g}
’ ! 3737 8" 317
{{ 111313}{1111}{71132}
"27 27207 Y2a7 37 37 87 37
11 ll 11 7 1 1 1 2
56 3¢ 35 15 3¢} {57 5/ 5+ 57 31N
In[175]:= kerli9 = KernelImputationListQ[ExpGame9, pay9]
Out[175]= {False, True, True, True, False}
In[176]:= ps =Position[kerli9, True]
Out[176]= {{2}, {3}, {4}}
In[177]: kerel Extract[pay9 ps]
1 11 7
Oout[177]= 0, -, = ,, i — -,
ut (177)= {{ ol s SR ¥ 21

In[178]:= {time9, {so0l91, pay9l}} =
AbsoluteTiming[KernelCalculation [ExpGame9, EpsilonValue - 3]]
Game is zero - monotone? False
Core is nonempty? True
Game is either zero - monotonic or has nonempty core

A Kernel solutionis :

{x[1]1 - x[z]—>E x[3]—>£ X[4]%£ X[S}%E
247 247 247 27 24
out [178]= {6 25416 second,
11 1 1 1 1
0,0,1,1,0 0, =, =, =
{{ e } 1 oo 2,2,2},
7 1 1 3
{O/ 1, O/ 1, O}/{O/ 1,1, OIO}/{ﬂ/ 5/ 5/ g/ }
19 1 1 7 1
ﬁ/ E/ E/ gl g}/ {1/ O/ l/ O/ 0}/ {l/ 1/ 0/ O/O}}}}

20

In[179] := AppendTo [kerel, sol91]

11 01 1 711
out [179]= {{0, 5, 5, 5, S}/ {ﬁl Tz s f}
11 11 11 7 o1
367367 367 } { 5 }}

This is exactly the kernel solutlon.

Instead of computing kernel solutions with an LP approach, we can also compute a kernel element by relying on a
convergence algorithm. We implemented an algorithm that was due to Maschler by iteratively carrying out transfers
between pairs of players. Details of the algorithm can be found in Faigle, Kern and Kuipers (1998). Note that the
algorithm is implemented by using recursion. The default value is set to 512 and can be changed with the option
SetRecursionLimit. We invoke the algorithm by calling the function FindKernelSolution[game,payoff,options]
and the options can be find out by calling

In[180]:= Options[FindKernelSolution]

OQut [180]= {DiqitPrecision - 6, RationalTol - SetRecursionLimit — 512}

-
10000000
To check out how the function works, let us first construct some payoff vectors.

In[181]:=¢cl={2,0,0,0,0};

c2 = Permutations[cl];

Computing a pre-kernel element can be done by

In[182]:= {tel, clkernl} = AbsoluteTiming[FindKernelSolution[ExpGame9, cl]]
out[182]= {2.83453s d {l oD 31}}
u = . econ - —, ==, —, —

" Y47 48" 487 487 48

or
In[183]:= {tec2, clkern2} = AbsoluteTiming[FindKernelSolution[ExpGame9, c2]]
out[183]= {12.0065 Ssecond, {{ vouD 3—l}
" 48’ 48’ 48’ 487’

17 17 19 31 17 17 19 31

{7548E }{7E484848
111l 1137

24’ 247 247 27 }{ ’32 327 }}}

By using the kernel candldates of pay9l we compute

In[184]:= {tc3, clkern3} = AbsoluteTJ.mlng[FlndKernelSolutJ.on[ExpGameS, pay91ll]]
11 1 1 1

out[184]= {13.11258 d, ~1,

ut [184]= { {{ e 24} {0,555 3}

1 11 11 1 } { 17 17 19 31

24’24’24’2’ 47 48’ 487 48’ 48

7 1 1 } { 65 65 73 127
24" 3" 37 1927 1927 1927 192
17 17 19 31 17 17 19

{7’5 487 48”7 48} {7’5 48’ 48”7 48}}}

In[185] := c2k2 = Union[clkern2]

out [185] {{1 11 11 1 13}

u = W55’ 55 5 5 oS
247 24° 2 24

17 17 19 ll

{7’E 487 48’ } {

=n

In[186] := c2k3 = Unlon[clkern3]

out [186]= {{o =, = f}
1 11 111 }{ 17 17 19 31
247247 247 27 2 47 48’ 48 48 48
9 65 65 73 127} { 1
327 1927 1927 1927 19277 24'3’3’8'3
Verifying that the computed solutions are really kernel elements can be done by
In[187]:= KernelImputationListQ[ExpGame9, #]&/@ {c2k2, c2k3}

Out[187]= {{True, True, True}, {True, True, True, True, True}}

21

For non-zero-monotonic games we are able to compute pre-kernel elements by invoking the function FindPreK-
ernelSolution[]. The function works in the same vein as FindKernelSolution[], since they are based on the same
algorithm. Therefore, for zero-monotonic games they will compute the same results.

In[188]:= {tc4, clkernd} =
AbsoluteTiming [Find.PreKernelSolution [ExpGameS, pay91ll]]

1 11 11 1 1
out[188]= {14.0878 Second, {{—, >3 24} {o. 5 5. 5. 5h
1 11 11 1 } { 17 17 19 31
24" 247 24’ 2’ " 487 487 487 48
7 1 1 } { 65 65 73 127
24" 37 37 1927 1927 1927 192
17 17 19 17 17 19

{7 48’ 48" 48’ 48} {7’ 487 487 48”7 48}}}
In[189] := clkern3 == clkernd
Out [189]= True
For non-zero-monotonic games the pre-kernel and the kernel solution are different. Recall the following three
person example given by Maschler, Peleg and Shapley (1979), p 316. The kernel solution is given by {20,0,15}
satisfying individual rationality and the pre-kernel is found at {27.5,-5,17.5} where individual rationality is violated.
Define the three person game by

In[190]:= ExpGame9l := (T = {1, 2, 3};
Clear|[v];
v[{}] =0;v[{1}] =0;v[{2}] =0;v[{3}] =0;
v[{1,2}] =20;v[{1, 3}] =50;v[{2,3}] =10;
v[T] =40;)
and indeed we compute the kernel by relying on the LP approach

In[191]:= Kernel [ExpGame91]
Game has empty core
Oout [191]= {25, 0, 15}
as well as by relying on the convergence algorithm by calling

In[192]:= ker9l = FindKernelSolution[ExpGame91, {0, 0, 40}]
out[192]= {25,0, 15}
Invoking the function to compute the pre-kernel, we get exactly the required result.

In[193]:= prk9l = FindPreKernelSolution [ExpGame91, {40, 0, 0}]
55 35
Out [193]

{ P 5, > }
In[194]:= N[prk9l]
out[194]= {27.5,-5.,17.5}

Now, we want to demonstrate some limitation of the kernel computation associated with our approach by relying
on the largest bi-symmetrical transfers. The core consists of a unique point {1, 1, 1, 2, 2}. For this purpose, resume
the game "ExpGame3". Maschler, Peleg and Shapley (1979) found out that the kernel is a line segment extending
from the core point {1, 1, 1, 2, 2} to a boundary point of the imputation set. The kernel of this game is

7-31) (7-3¢
K(T) ::{(t,t,t,(5),(5) 0=t =<1 and the pre-kernel

K*(I) := {(t,t,t, (7-30 (7_3”) © —02<t < 1})

2 72

According to the calculation of the first critical value, we see that the core of the game coincides with the least
core of the game. Let us construct some pre-kernel elements from the line segment, this can be done by

7-3t 7-3t -3 11

2 s 2 }/ {tlﬁ ﬁ ﬁ}]

In[195]:= kerline = Table[{t, t, t,

22

3 3 3 79 79

1 1
Out [195]= {{ " 10’ "10’ 10’ 20’ %}/ { T5/ 75 5 5 5 4

1 1 1 73 73 7 7
{’ﬁ/’ﬁ/’ﬁ/ %/ %}/{O/OIOI EI 5}/
1 1 1 67 67 1 1 1 16 16
10710707 207200 1575 5 50
3 3 3 61 61 2 2 2 29 29
107 707 107 207 2007 45757 57 107 107

1 1 1 11 11 3 3 3 13 13
Gezza 3G 3h

7 7 7 49 49 4 4 4 23 23
107707 107 207 2007 45757 57 107 10

9 9 9 43 43 11 11 11 37 37
=, =, —, =}, {1, 1, 1,22}, {—=, —, =, =, —}}
107107 107 20" 20 107107 107 20" 20
Verifying that the constructed elements are really contained in the line segment that constitutes the kernel solution
we use the function

In[196] := PreKernelQ[ExpGame3, kerline]
Out[196]= {False, True, True, True, True, True, True,

True, True, True, True, True, True, True, False}
In[197] := KernelImputationListQ[ExpGame3, kerline]

Out[197]= {False, False, False, True, True, True, True,

True, True, True, True, True, True, True, False}

In[198] := Kernel [ExpGame3]
Game has nonempty core
out[198]= {1,1,1,2,2}
This kernel solution is contained in the core and coincides with the Nucleolus of the game.

In[199] := Nucleolus[ExpGame3]
Out[199]= {1,1,1,2,2}

In[200] := LexiCenter [ExpGame3]
Out [200]= {1,1,1,2,2}

In[201]:= kersol = Table[Kernel [ExpGame3, EpsilonValue » j], {j, 10}]

Out[201]= {{1,1,1,2,2},{1,1,1,2,2},{1,1,1,2,2},
{1,1,1,2,2},1{1,1,1,2,2},{1,1,1,2,2},
{1,1,1,2,23,1{1,1,1,2,2},{(1,1,1,2,2},{1,1,1,2,2}}

By varying the critical value we see that we get in any case the same kernel result. This is caused due to the
fact that the core consists of just a singleton. Enlarging the core by some epsilon values has no effect on the largest
bi-symmetrical transfer and its associated midpoint. Clearly, the largest bi-symmetrical transfer varies if we enlarge
the core by some epsilon values, but it still remains the largest transfer at the imputation computed. At the other
kernel imputations the bi-symmetrical transfer is smaller than the value we will obtain at {1,1,1,2,2} (cf. Meinhardt
(2004)). The same happens if we rely on the function KernelCalculation[] that use a different procedure to compute
kernel elements. We obtain

In[202] := {sol31l, obj31, const31, tra3l, pay31l} =
KernelCalculation[ExpGame3, EpsilonValue - 4,
DisplayAllResults -» True]
Game is zero — monotone? False
Core is nonempty? True
Game is either zero - monotonic or has nonempty core

AKernel solutionis : {x[1] -1, x[2] -1, x[3] -1, x[4] -2, x[5] -2}

23

out [202]= {{1, 1,1,2,2},x[1] +x[2] +x[3] +x[4] +x[5],
{-4-x[1] =-4,-4-x[2] =-4,-4-x[3] =-4,-4-x[4] =-4,

-4 -x[1] -x[4] =-4,-4-x[2] -x[4] =-4, -x[1] -x[2] -x[4] <-4,
—4-x[3]-x[4] <-4, -x[1] -x[3] -x[4] <-4,
-x[2] -x[3] -x[4] =-4, -4-x[5] =-4,-4-x[1] -x[5] =-4,
-4 -x[2] -x[5] =-4, -x[1] -x[2] -x[5] =-4, -4-%x[3] -x[5] = -4,
-x[1] -x[3] -x[5] <-4, -x[2] -x[3] -x[5] = -4, -x[4] - x[5] =< -4,
-4 -x[1] -x[4] -x[5] =-4, -4-x[2] -x[4] -x[5] = -4,
-4 -x[3] -x[4] -x[5] =-4, x[1] +x[2] +x[3] +x[4] +x[5] =7},
33 11 3 1 1 1 1 1
G 2sereeeezh
1 4 4 3 8 1 4 4 8 3
e 33273145335 20
{1,1,1,2,2},{§,3,£,5,§}, 5,58 5,
36737273 3"6° 373" 2
4 4 1 3 8 4 4 1 8 3 3 3
{5/ 375327 5}/ 37375737 5}/ {EI 5,4,0, O}/
3 3 1

1 3 3
{E/ 4/ EI O/ O}/ {2/ 2/ 2/ 51 5}/ {4/ 5/ EI O/ O}}}
In some case the n(n — 1)/2 initial LPs provide some additional kernel elements. These kernel candidates have

been stored for the above example in the variable pay3/ and we can test now with the command Kernellmputation-
ListQ[] if one or some of these candidates is an or are additional kernel element(s).

In[203] := KernelImputationListQ[ExpGame3, pay31]
Out [203]= {False, False, True, False, False,
False, False, False, False, False, False}
In[204]:= {sol32, pay32} = KernelCalculation[ExpGame3, EpsilonValue » 21]
Game is zero - monotone? False
Core is nonempty? True

Game is either zero - monotonic or has nonempty core

AKernel solutionis : {x[1] -1, x[2] -1, x[3] >1, x[4] -2, x[5] -2}
out(2047= {{1,1,1,2,2}, {{=, 2, 2,2, 8, (1,2, 2,8 3
’ 4 7 4 4 613/3/213 ’ 6,3/3,3,2 7
4 1 4 3 8 4 1 4 8 3
{1,1, 1/2/2}/{5/ 5’337 5}/ 37673737 5}/
4 4 1 3 8 4 4 1 8 3 3 3
{5/ gl g/ EI g}/ {E/ g/ g/ 5/ 5}/ {E/ 5/ 4/ 0/ O}/
3 3 1

1 3 3
{5/ 4, E/ O/ O}/ {2/ 2/ 2/ 21 5}/ {4/ E/ E/ Ol O}}}
Let us look again on additional kernel elements.

In[205] := KernelImputationListQ[ExpGame3, pay32]
Out [205]= {False, False, True, False, False,
False, False, False, False, False, False}

In both cases we get the same kernel candidates by relying on the function KernelCalculation[] which are not
contained in the solution set. Hence, we did not find any additional kernel solution, although the kernel is not
a singleton. But now we want provide a strategy to compute the complete kernel solution by using the dual game.
This strategy could be successful in cases that the least core of the dual and the primal game are different. For a quick
test we are looking on the nucleolus of the dual and the primal game. Let us define the dual game of ExpGame3.

In[206] := duvec = DualGame [ExpGame3]
out[206]= {0,7,7,7,7,7,7,7,3,3,7,3,3,3,
3,7,3,717,17,1,17,7,7,7,7,7,7,7,7, 7}

In[207] := DualExpGame3 := (DefineGame[T3, duvec];);
The nucleolus of the dual is

24

In[208] := Nucleolus[DualExpGame3]
707

out [208]= S—, =, —, —, —

ut [] {5/5/5/5/5}

In[209] := nuec3

out[209]= {1,1,1,2,2}

Note first that the dual is not a zero-monotonic game.

In[210] := ZeroMonotoneQ[DualExpGame3]
Out [210]= False

In[211]:= {duker3, dupay3} = KernelCalculation[DualExpGame3,
EpsilonValue » 7, SetGameToNonZeroMonotonic » True]

Game is zero - monotone? False

Core is nonempty? False

Game is not zero - monotonic and has empty core

A Kernel solution is :

{x111- 1, x[ﬂe%,xmez,xmw% x[swg}
Out[2ll]—{{f % % % f} {{o, 0, % f} {0, 0, % 0, % ,
{oo%%o}{o o,o}{%o,%o},
{0,%,%,0,0}, %%% %,%},{%,o,o,o, 7},
7
0,

7 77
{5/ O/ O/ O} { /O/ O}/ {5/ E/ O/ O/ O}}}

But note that you should use the option for non zero-monotonic games with care. The algorithm works quite
well for zero-monotonic games, using the above option can cause an infinite loop for an non zero-monotonic game.

In[212] := KernelImputationListQ[ExpGame3, dupay3]
Out[212]= {True, False, False, False, False,

False, False, False, False, False, False}
In[213]:= First[dupay3]
out(213]= {0, 0,0, 5 5}
This is the second extreme point of the kernel segment given by

In[214] := kerline

3 3 3 79 79 1 19 19
out [214]= {{75,75, 5 }{ ,,,7,?},
1 1 73 73

{—E/ 10’ 10’ 20’ 20 ,{0,0,0, }

1 1 1 67 67 1111616
{ﬁ'ﬁ'ﬁ'%'%}'{??g'?? '
R W
1010’020 575" 5710" 107
11 1 3 3 13 13
Groas *} Grirerssh
lllﬂ }{,fﬂ@ﬁ

107107 10" 207 575 010

11 11 37

9 9 9 43 43 1
10”107 207 20

0’ 10" 10”207 2007
By invoking the function FindKernelSolution[] we find

{11122}{ ,

In[215] := kersol30 = FindKernelSolution[ExpGame3, {0, 0, 0, 0, 7}]

out(215]= {0, 0,0, 5 E}
and by computing kernel elements by the list of permutations from the vector {7,0,0,0,0} we get

In[216] := permut = Permutations[{7,0,0,0,0}];

25

In[217]: kerper-FlndKernelSolutlon[ExpGame3,permut]//Union
out(217]= {{0, 0,0, } { ,z, > }}
167 16

In[218] := KernelImputationListQ[ExpGame3, kerper]
Out [218]= {True, True}

In[219]: ker50131 FlndKerneISolutlon[ExpGame3 pay31l]//Union
3 29 29 29 137 137
out [219]= {{f =, s, = —} {

7327 64
31 31 31 131 131
YT I T el }{11122}}
327327 327 64

In[220]: kersolBZ FlndKernelSolutlon[ExpGame3 pay32]//Union
3 19 19 29 29 137 137

out [220]= {{ 177 8 } {32 32732 64’ 64 TRk

31 31 31 131 131
327327 327 61’ ea) 2,21}

Finally, we verify that the computed solutions are kernel elements by calling again

’ 7

64

In[221]:= KernelImputationListQ[ExpGame3, kersol32]
Out [221]= {True, True, True, True}
Now let us check whether the payoffs are balancing the excesses. We can check this by invoking the function

In[222] := AllMaxSurpluses[ExpGame3, kerline, DisplayMatrixForm » True]

26

sij[{1,2}] sij[{1, 3}] sij[{1,4}] sij[{1,5}] sij[{4,5}]
<Sij[{2,1}1) (Sij[{lgfl}]) (Sij[{;,l}]) (Sij[{95/1}J) (> (Sij[{5,4}])

@) @) @) O @)

/N
LN
ol Ol

N

N
TR
ol ol

N—

N
NN
Ho‘»—ko‘»—km

SN—

VN
LN e
Sl ol

N—

TN

SN—

N
NN
S|l ol

N

/
=N
SN——
/
=N
N~——
/
=N
N—
/
=N
N——
TN
N—
7/
=N
~——

B 3 3 3 3
Gy @) @) @) () @)
))) Y0y)
5 H H H 5
(@) @) @) () @)
Gy @) By @)y () ()
())) G0)
))) 0O

~—
~—
—
~——
—~
~—
/N
~——

— =N N
‘)—'O‘)—'O‘)—'o‘wo‘w\

~
~—r
7 N
~—r
~~

= =N (S
‘»—IO‘HO‘HO‘wO‘w\
N——
/
~—
/
N—
Y
N——
Y
N—
7/

— =Y)
|Fe] S| -8]w 8wl
= SIS)
‘}—'o‘}—‘o‘}—‘o‘wo‘w\
— YIRS)
‘}—'O‘b—‘o‘}—‘o‘wo‘w\

7/~
N
=
N—
7/
N
‘Ho
N—
VS
A8}
‘“o
N——
VN
N
‘Ho
SN——
e
N——
7/~
N
‘Ho
—

)))) ()) 0) o)
(%) (%) (%) () O (%)

20 20 10 10 20
If one is just interested in a special pair of players, in our example for the pair {3,4}, then one should call

In[223] := MaxSurplus [ExpGame3, 3, 4, kerline]
9 3 11 1 9 2 17 31 1 3 1 1 1

Out [223]= {*, —r Tor Sramr T s s s —r s —r ==+ 0, —*}
1057202720520 10" 4" 5" 20" 10" 20 20
In[224] := MaxSurplus [ExpGame3, 4, 3, kerline]
13 3 11 1 9 2 7 3 1 1 3 1 1 3
Out [224]= {*, — s Tmr Srar Tr o r s s —r s —r ==+ 0, *}
2005720 220" 57207 10" 475" 20" 10" 20 10

27

4.4 Unanimity Coordinates

The package TuGames provides also a small set of functions related to unanimity coordinates. We want to demon-
strate the use of these functions for an example given by Rafels and Ybern (1995) on page 120. The example is a
5-player game with the following values:

In[225]:= worth={0,0,0,0,0,0,50.2,49.7,47.1,55.8, 53.3, 101.3,
137.6,130.8,131.2, 188.4,149.7, 229.5, 259.6, 239.3, 278,
428.2,289.1, 308.8, 428.2, 432.8, 471.9, 555.7, 756.5,
772.5,712.8, 1209.2};

The game is defined by

In[226] := ExpGame9 := (DefineGame[T3, worth, RationalApproximate » False]);
Among other things, we can evaluate all unanimity coordinates of the game "ExpGame9" with the command

In[227] := UnanimityCoordinates [ExpGame9]
out[227]= {0,0,0,0,0,0,50.2,49.7,47.1, 55.8, 53.3, 101.3, 137.6,
130.8,131.2,188.4,-3.5,30.9,16.,11.7, 41.3, 136.9,
3.7,-13.3,0.9,-17.6, -3.3,37.4, -8.6, -2.8, -3.5, 37.6}
Furthermore, we can extract the minimum unanimity coordinates of each coalition size by

In[228] := MinUnanimityCoordinates [ExpGame9]
out[228]= {0,47.1, -17.6, -8.6, 37.6)}

In addition to these functions we can also verify the convexity property by relying on unanimity coordinates. The
following sufficient condition of convexity worked out in Rafels and Ybern (1995) in Corollary 2.1 is implemented
in the function EvalSumMinCoord[]. First recall that the unanimity coordinates are defined by

Ae = Ygog (1 u(S), for all R C N,S,R+0.

A sufficient condition of convexity of a game v in terms of unanimity coordinates is given by

if for all k=0,...,n-2 le‘:o 7 (,’ij)! @; = 0, then the game is convex, where @ := ming_ ., Ag.

In[229] := EvalSumMinCoord[ExpGame9]
out[229]= {47.1,29.5,3.3,6.1)
All evaluated sums are strictly positive, hence we conclude that the game is convex. A fortiori, due its strictly

positive values the game is even strictly convex. The functions presented next verify just whether the sufficient
condition of convexity in terms of unanimity coordinates is satisfied.

In[230] := ConvexUnanConditionQ[ExpGame9]
Out [230]= True

In[231]:= StrictlyConvexUnanConditionQ[ExpGame9]
Out [231]= True

In[232] := ConvexQ[ExpGame9]
Out [232]= True

In cases that all unanimity coordinates are nonnegative (i.e. the game is convex) or that the minimum size of
coalition with negative unanimity coordinates is greater than N-2 the return value of the function EvalSumMinCo-
ord[] is the vector of minimum values of unanimity coordinates of each coalition size. In the former case we obtain,
for instance,

In[233] := MinUnanimityCoordinates [ExpGamel]
Out[233]= {0,0,0,10}

In[234] := EvalSumMinCoord[ExpGamel]

28

Nonegative unanimity coordinates found.
Game is convex.
The minimum unanimity coordinates are :
Out [234]= {0,0,0,10}

and for the latter

In[235] := MinUnanimityCoordinates [ExpGame8]
267 3199 5597 2398
out [235]= {

10’ 15 7 30 7 15}
In[236] := EvalSumMinCoord[ExpGame8]

Minimum coalition size with

negative unanimity coordinate is equal to 3
Coalitionsizeof T-2is 2
3 greater than?2
No sum of minimum unanimity coordinates can be evaluated.

The minimum unanimity coordinates are :
267 3199 5597 2398

. 77730 7 15 b

out [236]= {220
ut[2361= \ 7577 15

S Computing the Vertices of the Core

The next functions describe some interfaces that call the cddmathlink library via MathLink to speed up calculation.
One can also use the command CoreVertices[] to obtain the same result as with the command Cdd VerticesCore[].
But this command is based on MATHEMATICA-Code and it is very slow. That means that on old computers like a
Pentium II system your game should not be greater than 6 player if you are interest to get the result in finite time.
The examples are performed on a Pentium II with 266 MHz under LINUX x86 and MATHEMATICA® Version 4.2/5.0.
On a Xeon Processor with 2.4 GHZ the same example was computed in 5 seconds.

If the package VertexEnum is properly installed on your OS, you can calculate the vertices of the core by using
the command

In[237]:= {time, {vertl, nonvertl}} = Timing[VerticesCore [ExpGamel]]
Out [237]= {106.21 Second,
{{{0, 50, 40, 0}, {40, 50,0, 0}, {0, 0, 90, 0}, {90, 0,0, 0},
{o, 0, 40, 50}, {40, 0,0, 50}, {0, 40, 0, 50}, {0, 50, 0, 40}},
{{17,8,11,19,5,1,4},{17,14,8,19,7,3,4},
{16, 11,13,19,5,6,8,9,2,1,4},{18,14,13,19,6,7,8,
12,3,2,4},{15,6,9,19,5,2,1}, {15,12,7,19,6, 3,2},
{15,10,7,19,5,3,1}, {17,10,7,19,5,3,1}}}}

Note, that the MATHEMATICA Version 3.0 is even faster under the command CoreVertices[], you get all vertices
on the same platform in 52 seconds instead of 107 seconds.

By calling the cddmathlink library, we obtain the same result in 0.06 seconds.
In[238] := {time, vert2} = AbsoluteTiming[CddVerticesCore [ExpGamel]]
Out [238]= {0.059817 Second,

({0, 0,40.,50.},{0,0,90.,0}, {0,40.,0,50.}, {0,50.,0,40.},
{0,50.,40.,0}, {40.,0,0,50.}, {40.,50.,0,0}, {90.,0,0,0}}}

If you are interested in rational results, then call
In[239]:= {time, vert3} = AbsoluteTiming[CddGmpVerticesCore [ExpGamel]]
Out [239]= {0.172962 Second,

{{o, 0, 40, 50}, {0, 0, 90, 0}, {0, 40, 0, 50}, {0, 50, 0, 40},
{o, 50, 40, 0}, {40,0,0, 50}, {40, 50, 0,0}, {90,0,0,0}}}

Now let us check the result on core elements. This can be done by calling

29

In[240] := CoreElementsQ[ExpGamel, vertl]

Out [240]= {True, True, True, True, True, True, True, True}

In[241] := BelongToCoreQ[ExpGamel, vertl]

Out [241]= {True, True, True, True, True, True, True, True}

In[242] := CoreElementsQ[ExpGamel, vert2]
Out [242]= {True, True, True, True, True, True, True, True}
This is the expected result since the game "ExpGamel " is convex.
Since we have less than 24 vertices let us verify whether the game is strictly convex.

In[243] := ConvexStrQ[ExpGamel]
Qut [243]= False

The game "ExpGamel" is convex let us also compute the marginal values.

In[244]:
Out [244]

marv = MargValue [ExpGamel]

{{o,0, 40,503, {0, 0, 90,0}, {0, 40, 0, 50}, {0, 50, 0, 40},
{o, 0, 90,0}, {0, 50, 40, 0}, {0, 0, 40, 50}, {0, 0, 90, O},
{40, 0,0, 50}, {90,0,0,0}, {0, 0, 90,0}, {90,0,0,0},
{0, 40,0, 50}, {0, 50, 0, 40}, {40, 0,0, 50}, {90, 0,0, 0},
{40, 50, 0,0}, {90,0,0,0}, {0, 0,90, 0}, {0, 50, 40, O},
{o,0,90,0}, {90,0,0,0}, {40, 50,0, 0}, {90, 0,0, 0}}

In[245] := Length[marv]
out [245]= 24

This is the expected result for convex games that the number of marginal worth vectors is equal to n!. To
demonstrate that the marginal worth vectors coincide with the vertices of the core, we remove all duplicated vectors
by

In[246] := unmarv = Union[marv]

out [246]= {{0, 0, 40, 50}, {0, O, 90, 0}, {0, 40, 0, 50}, {0, 50, O, 40},
{o, 50, 40, 0}, {40, 0,0, 50}, {40, 50, 0,0}, {90,0,0,0}}

In[247]:= Length[Union[marv]]

Out [247]= 8

In[248] := CoreElementsQ[ExpGamel, unmarv]

Out [248]= {True, True, True, True, True, True, True, True}

In[249] := BelongToCoreQ[ExpGamel, unmarv]

Out [249]= {True, True, True, True, True, True, True, True}

In[250] := tol = Union[marv, vertl]
out [250]= {{0, 0, 40, 50}, {0, 0, 90, 0}, {0, 40, 0, 50}, {0, 50, 0, 40},
{0, 50, 40, 0}, {40, 0,0, 50}, {40, 50, 0, 0}, {90, 0,0, 0}}
In[251]:= Length[tol]
out [251]= 8
Hence, we get the expected result, that the marginal worth vectors coincide with core vertices.

In particular, you should handle very carefully floating point results by checking on core elements. We make this
point more clear by the following example

In[252] := ecken8 = CddVerticesCore [ExpGame8]

out[252]= {{26.7,239.967, 266.667, 266.667}, {26.7, 266.667, 239.967, 266.667},
{26.7,266.667,266.667,239.967}, {239.967, 266.667, 266.667,26.7},
{239.967,266.667,26.7,266.667}, {239.967,26.7,266.667, 266.667},
{266.667,239.967,266.667,26.7}, {266.667, 266.667,26.7,239.967},
{266.667,266.667,239.967,26.7}, {266.667,26.7,239.967, 266.667},
{266.667,26.7,266.667,239.967}, {266.667,239.967,26.7,266.667}}

30

These are exactly the core vertices we have already computed in the Section 4.2 . But if we check this result with
the usual function CoreElementsQ[] we obtain a wrong result by using floating point numbers.

In[253] := CoreElementsQ[ExpGame8, ecken8]
Out [253]= {True, True, True, True, True,

True, True, True, True, True, True, True}

The correct result is delivered by the function BelongToCoreQ[]

In[254] := BelongToCoreQ[ExpGame8, ecken8]
Out [254]= {True, True, True, True, True,

True, True, True, True, True, True, True}

To overcome problems associated with floating points result you should convert these results to rational numbers
by using the MATHEMATICA built-in function Rationalize[].

In[255] := ravert8 = Rationalize[ecken8]
267 7199 800 800 267 800 7199 800
ouet2ss)= {5 5o 5 3 MG 5 S0 S b
267 800 800 7199} {7199 800 800 267
10” 37 37 30"V 307 37 37 10
7199 800 267 800} {7199 267 800 800}
307 37107 377V 307 10" 37 377
{800 7199 800 267} {800 800 267 7199
37 307 37100V 37 37107 30
800 800 7199 267 800 267 7199 800}
31

’

4
S = = 5 10 50
800 267 800 7199 800 7199 267 800

T

{3’10’ 37 30}’{3’ 30
In[256] := Length[ravert8]
Out [256]= 12

In[257] := CoreElementsQ[ExpGame8, ravert8]

Out [257]= {True, True, True, True, True,

True, True, True, True, True, True, True}

In[258] := BelongToCoreQ[ExpGame8, ravert8]
Out [258]= {True, True, True, True, True,

True, True, True, True, True, True, True}
This is exactly the result we have already obtained in the Section 4.2.
You can also calculate the vertices of the imputation set and of the reasonable set by using
In[259] := Rationalize[CddVerticesImputationSet [ExpGamel]]
out[259]= {{0,0,0,90}, {0,0,90,0}, {0,90,0,0}, {90,0,0,0}}
and

In[260] := Rationalize[CddVerticesReasonableSet [ExpGamel]]
Out[260]= {{-100, 50, 90, 50}, {90, -140, 90, 50},
{90, 50, -100, 50}, {90, 50, 90, -140}}

6 Concluding Remarks and Limitations

In this section we want to discuss some limitations that appear in the context of the package TuGames. Note first that
it is not possible to assign arbitrary names to the players. The players must be named with natural numbers. Naming
players in the fashion as we did it in the example below does not work or produces wrong results in bad cases.

In[261]:= T10 = {pl, p2, p3}
Out [261]= {pl, p2, p3}

31

In[262]:= T1l = {1, 2, 3}
out [262]= {1,2, 3}

In[263] := veclO = Table[0, {k, 2 "Length[T10]}];

In[264] := ExpGamelO := (DefineGame[T10, veclO0]; v[{p2}] =v[{p3}] = 45;
vi{pl, p2}] = 40; v[{pl, p3}] = 40; v[T] = 90;);
If we want to evaluate the Shapley value of the game with the chosen representation of the player set this will
produce an error.

In[265] := NewShapley|[ExpGamelO]
Part :: partw : Part 1 of {} doesnot exist.
Take :: seqs : Sequence specification (+n, -n, {+n}, {-n}, {m, n}, or {m, n, s})
expected at position 2 inTake[{pl, p2, p3}, -1+ {}1].
Part :: partw : Part 2 of {} doesnot exist.
Take :: seqs : Sequence specification (+n, -n, {+n}, {-n}, {m, n}, or {m, n, s})
expected at position 2 in Take[{pl, p2, p3}, -1+ {}2].
Part :: partw : Part 3 of {} doesnot exist.
General :: stop :
Further output of Part :: partwwill be suppressed during this calculation.
Take :: seqs : Sequence specification (+n, -n, {+n}, {-n}, {m, n}, or {m, n, s})
expected at position 2 inTake[{pl, p2, p3}, -1+ {}3].
General :: stop :

Further output of Take :: seqs will be suppressed during this calculation.
1
Out [265] = {g (vi{pl, {pl,p2,pP3}, -1+ {}1}] +v[{pl, {Pl,P3, P2}, -1+ {}1}]+

v[{pl, {p2, pl, p3}, -1+ {}1}] +v[{pl, {P2,p3,pl}, -1+ {}1}]+
v[{pl, {p3,p1, p2}, -1+ {}1}] +v[{pl, {p3,pP2,pl}, -1+ {}1}]-
v[Take[{pl, p2, p3}, -1+ {}1]] -v[Take[{pl, p3, P2}, -1+ {}1]]-
v[Take[{p2, pl, p3}, -1+ {}1]] -v[Take[{p2, p3, pl}, -1+ {}1]]-
v[Take[{p3, pl, p2}, -1+ {}1]] -v[Take[{p3, p2, pl}, -1+ {}1]]),

% (v[{p2, {p1, P2, P3}, -1 + {}2}] +v[{p2, {p1, P3, P2}, -1+ {}2}]+
v[{p2, (p2, pl, P3}, -1+ {}2}] +v[{p2, (P2, P3, p1}, -1+ {}2}]+
v[{p2, (p3, P, P2}, -1+ {}2}] +v[{p2, {P3, P2, P1}, -1+ {}2}]-
v([Take[{pl, p2, p3}, -1+ {}2]] - v[Take[{pl, p3, p2}, -1+ {}2]]-
v([Take[{p2, pl, p3}, -1+ {}2]] - v[Take[{p2, p3, p1}, -1+ (}2]]-
v[Take[{p3, pl, p2}, -1+ {}2]] - v[Take [{p3, p2, p1}, -1+ {}2]]),

out [265]= % (v[{p3, {p1, P2, P3}, -1+ {}3}] +v[{p3, {pl, P3, P2}, -1+ {}3}]+

v[{p3, {p2, pl, 3}, -1+ {}3}] +v[{p3, {pP2,p3,pl}, -1+ {}3}]+
v[{p3, {p3,pl, P2}, -1+ {}3}] +v[{p3, {P3, P2, pl}, -1+ {}3}]-
v[Take[{pl, p2, p3}, -1+ {}3]] -v[Take[{pl, p3, P2}, -1+ {}3]]-
v[Take[{p2, pl, p3}, -1+ {}3]] -v[Take[{p2, p3, pl}, -1+ {}3]]-
v[Take[{p3, pl, p2}, -1+ {}3]] - v[Take[{p3, p2, pl}, -1+ {}3]1])}

Renaming the players with natural numbers helps to produce the correct results.
In[266] := Tll = MapThread[Set, {T10, {1, 2, 3}}]
Out[266]= (1,2, 3}

In[267] := shl = NewShapley [ExpGamel0]
out [2677- {22, 122 159y

3 6 6
In[268] := sh2 = ShapleyValue [ExpGamelO]

85 185 185
out [268]= {?, — T}

32

Now, let us briefly discuss limitations that appear in relation to the operator ":=" or SetDelayed[] command. To
find out what will happen if the game in which we are interested in is not evaluated, we define for this purpose a new
game with similar coalitional values like the game "ExpGamel0". Recall from the discussion of Section 3.1 that
the values of the characteristic function are evaluated at the moment when the game_name appears in the command.
Just defining the game and invoking the return key is not enough to change the values of the characteristic function.

In[269] := ExpGamell := (DefineGame[{1l, 2, 3}, vecl0]; v[{2}] =v[{3}] = 30;
v[{1,2}] =40;v[{1,3}] =40;v[T] =90;);
To check out which coalitional values are currently assigned can be done by

In[270] := 22v

v [S] describes the worth of coalition S

vi{}] =0

v[{1}] =0
v[{2}] =45
v[{3}] =145

v[{1l,2}] =40
v[{1l,3}] =40
v[{2,3}]=0
v[{1,2,3}] =90

We notice that still the coalitional values for the game "ExpGamel0 are present. If you want to evaluate, for
example, the Shapley value for the game ExpGamel I but you make a typesetting error by forgetting the number 11
in our example, you will obtain the result of the Shapley value for the game ExpGamel0", since there is no change
in the characteristic function.

In[271] := NewShapley[ExpGame]
out[271]= {E, 195, ﬁ}
37 6 6
There is at that moment a change in the values of the characteristic function when a new game_name appears in a
command that requires as an input parameter a game_name. For our example, we get new values for the characteristic
function when we call the command NewShapley[] with a game_name that has been previously defined elsewhere

in the notebook.

In[272] := sh3 = NewShapley[ExpGamell]

out [272]= {@, ﬁ, E}

3 3 3
In[273] := sh4 = ShapleyValue [ExpGamell]
out[273]= {@, £, E}

3 3 3

Now let us again check out the values of the characteristic function by

In[274]:= ??v

v [S] describes the worth of coalition S

33

v[{}]=0

v[{1}]=0
v[{2}] =30
v[{3}] =30

v[{1l,2}] =40
v[{1, 3}] = 40
v[{2,3}]=0
v[{1l,2,3}] =90

In cases that some unexpected or strange results have occurred after the calculation task has finished, you should
check out by the above command which values are currently assigned to the characteristic function.

We did also some effort to examine the data format of some functions to prevent that MATHEMATICA' is performing
lengthy unnecessary computations. By avoiding such computations you can immediately correct the wrong input
parameter instead of waiting some time till MATHEMATICA has finished its evaluation. Here, we present a small and
simple example. First let us construct some payoffs.

In[275] := solll = KernelCalculation[ExpGamell]
Game is average - convex? False
Out [275]= {{10, 40,40}, x[1] +x[2] +x[3],
{-10-x[1] £-20,20-x[2] =-20,30-x[1] -x[2] =-20,20-x[3] <-20,
30-x[1] -x[3] =-20,x[1] +x[2] +x[3] <90}, {{10, 40, 40}, {30, 40, 20}}}

The list soll1 captures all output informations. If we do not care about the data format of sol// and try to hand
over the payoff informations contained in it to the function BelongToCoreQ[], this produces

In[276] := BelongToCoreQ[ExpGamell, solll]
Depth is equal to 7
Usage : BelongToCoreQ [game, payoffs] and CoreElements(Q[game, payoffs]
Input format of the variable ‘payoffs’ is not correct.
The variable ‘payoffs’ must be a

list of payoff vectors or a single payoff vector.

The payoff informations in the list so//] are contained at the first and fourth position. To have access on these
information one must extract these informations from the list. To extract informations located at the first or fourth
position can be done by

In[277]:= solll[[1]]
out[277]= {10, 40, 40}

In[278]:= solll[[4]]
out[278]= {{10, 40, 40}, {30, 40, 20}}
These are the correct input formats to hand over to the function BelongToCoreQ[].

In[279] := BelongToCoreQ[ExpGamell, sol11[[4]]]
Out [279]= {True, False}

At the end let us mention that MATHEMATICA® offers you the possibility to enhance your typesetting productivity.
As you have already realized some commands have rather lengthy names that makes it very inconvenient to type in
every letter in the notebook. To overcome these inconveniences MATHEMATICA offers you a command and symbol-
name completion. This can be achieved by invoking together the control key (abbreviated by C”) and the key of
the letter k. For instance to complete the command MinUnanimityCoordinates[] type the first four letters of the
command and use the key combination C’k to complete the command. Hence

34

In[280] := MinU
Invoking C"k completes the command.

In[281] := MinUnanimityCoordinates

Now introducing the game_name in the command can also be performed by the C'k key combination. In this
case you must again type in the first four letters of the game_name

In[282] := MinUnanimityCoordinates [ExpG
then invoke C"k and you obtain

In[283] := MinUnanimityCoordinates[ExpGamel
Finally, type the last number and the missing bracket to finish the typesetting.

In[284] := MinUnanimityCoordinates [ExpGamell]

7 References

M. Carter, Cooperative Games , in Economic and Financial Modeling with MATHEMATICA’, editor Hal R. Varian,
Springer Publisher, 167-191, 1993.

Theo Driessen, Cooperative Games,Solutions and Applications, Kluwer Academic Publishers, Dordrecht, 1988.

U. Faigle, W. Kern and J. Kuipers, An efficient algorithm for nucleolus and prekernel computation in some classes
of Tu Games, Memorandum No. 1464, Faculty of Mathematical Sciences, University of Twente, 1998.

E. Inarra and J. Usategui, The Shapley value and average convex games, 1JGT, 22, 13-29, 1993.

Maschler, M. and Peleg, B.,A Characterization, Existence Proof and Dimension Bounds for the Kernel of a Game ,
Pacific Journal of Mathematics 18(2), 289-328, 1966.

M. Maschler,B. Peleg and L.S. Shapley, Geometric Properties of Kernel, Nucleolus and related Concepts, in Math-
ematics of Operations Research, Vol.4, Nov. 1979, pp.303-338.

H. Meinhardt, Decision Making in Cooperative Common Pool Situations, Lecture Notes in Economics and Mathe-
matical Systems, Vol. 517, 2002, Springer, Heidelberg.

H. Meinhardt, An LP approach to compute the pre-kernel for cooperative games, Computers and Operation Re-
search, Vol 33/2 pp. 535-557, 2005.

C. Rafels and N. Ybern, Even and Odd Marginal Worth Vectors, Owen’s Multilinear Extension and Convex Games,
1JGT, 113-126, 1995.

Hal R. Varian (Ed.), Economics and Financial Modeling with MATHEMATICA’, Springer,1993

35

	Introduction
	Installation
	Unix
	Windows
	Mac OS

	Getting Started
	How to define Games?

	Some Functions
	Basic Functions
	k-convexity
	Kernel
	Unanimity Coordinates

	Computing the Vertices of the Core
	Concluding Remarks and Limitations
	References

