Orthogonal curvilinear coordinates

B. Lautrup

December 17, 2004

1 Curvilinear coordinates

Let x_{i} with $i=1,2,3$ be Cartesian coordinates of a point and let ξ_{a} with $a=1,2,3$ be the corresponding curvilinear coordinates. We shall use ordinary Cartesian vector notation $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ for the Cartesian coordinates, but not for the curvilinear ones. The two sets of coordinates are connected by a bijective coordinate transformation

$$
\begin{equation*}
\vec{x}=\vec{f}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \tag{1}
\end{equation*}
$$

The most important quantity is the infinitesimal vector element

$$
\begin{equation*}
d \vec{x}=\sum_{a} \vec{J}_{a} d \xi_{a} \tag{2}
\end{equation*}
$$

where the \vec{J}_{a} are the columns of the Jacobian

$$
\begin{equation*}
\vec{J}_{a}=\frac{\partial \vec{x}}{\partial \xi_{a}} \tag{3}
\end{equation*}
$$

The Cartesian square norm of the infinitesimal element is

$$
\begin{equation*}
d \vec{x}^{2}=\sum_{a b} g_{a b} d \xi_{a} d \xi_{b} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{a b}=\vec{J}_{a} \cdot \vec{J}_{b} \tag{5}
\end{equation*}
$$

is the metric.

2 Orthogonality

A large subclass of interesting coordinate systems are orthogonal, which means that

$$
\begin{equation*}
g_{a b}=\vec{J}_{a} \cdot \vec{J}_{b}=0 \quad(a \neq b) \tag{6}
\end{equation*}
$$

In that case it is better to write

$$
\begin{equation*}
\frac{\partial \vec{x}}{\partial \xi_{a}}=h_{a} \vec{e}_{a} \tag{7}
\end{equation*}
$$

where h_{a} is a scale factor and \vec{e}_{a} is a unit vector. These vectors form a local basis in each point

$$
\begin{equation*}
\vec{e}_{a} \cdot \vec{e}_{b}=\delta_{a b} \quad \sum_{a} \vec{e}_{a} \vec{e}_{a}=\overleftrightarrow{1} \tag{8}
\end{equation*}
$$

where the first equation expresses orthogonality of the basis and the second completeness. This permits normal vector and matrix algebra to be used in the curvilinear coordinates.

3 Basis derivatives

The derivatives $\partial \vec{e}_{b} / \partial \xi_{a}$ of the basis vectors play an important role. From $\vec{e}_{b}^{2}=1$ we get

$$
\begin{equation*}
\frac{\partial \vec{e}_{b}}{\partial \xi_{a}} \cdot e_{b}=0 \tag{9}
\end{equation*}
$$

for all a, b. This shows that all derivatives of a unit vector are orthogonal to the unit vector. Similarly from the symmetry of the second derivatives we get

$$
\begin{equation*}
\frac{\partial^{2} \vec{x}}{\partial \xi_{a} \partial \xi_{b}}=\frac{\partial\left(h_{a} \vec{e}_{a}\right)}{\partial \xi_{b}}=\frac{\partial\left(h_{b} \vec{e}_{b}\right)}{\partial \xi_{a}} \tag{10}
\end{equation*}
$$

Expanding this becomes

$$
\begin{equation*}
\frac{\partial h_{a}}{\partial \xi_{b}} \vec{e}_{a}+h_{a} \frac{\partial \vec{e}_{a}}{\partial \xi_{b}}=\frac{\partial h_{b}}{\partial \xi_{a}} \vec{e}_{b}+h_{b} \frac{\partial \vec{e}_{b}}{\partial \xi_{a}} \quad(a \neq b) \tag{11}
\end{equation*}
$$

Expanding in the basis, and using that the derivative of a unit vector is orthogonal to the unit vector, this equation can only be fulfilled for

$$
\begin{equation*}
h_{b} \frac{\partial \vec{e}_{b}}{\partial \xi_{a}}=\frac{\partial h_{a}}{\partial \xi_{b}} \vec{e}_{a}+\lambda_{a b c} \vec{e}_{c} \quad(a \neq b \neq c) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{a b c}=\lambda_{b a c} \quad(a \neq b \neq c) \tag{13}
\end{equation*}
$$

Dotting with \vec{e}_{c} and using that $\vec{e}_{b} \cdot \vec{e}_{c}=0$ we get

$$
\begin{equation*}
\lambda_{a b c}=h_{b} \frac{\partial \vec{e}_{b}}{\partial \xi_{a}} \cdot \vec{e}_{c}=-h_{b} \frac{\partial \vec{e}_{c}}{\partial \xi_{a}} \cdot \vec{e}_{b}=-\frac{h_{b}}{h_{c}} \lambda_{a c b} \tag{14}
\end{equation*}
$$

Combining these two rules we get

$$
\begin{equation*}
\lambda_{a b c}=-\frac{h_{b}}{h_{c}} \lambda_{a c b}=-\frac{h_{b}}{h_{c}} \lambda_{c a b}=\frac{h_{a}}{h_{c}} \lambda_{c b a}=\frac{h_{a}}{h_{c}} \lambda_{b c a}=-\lambda_{b a c}=-\lambda_{a b c} \tag{15}
\end{equation*}
$$

Consequently we have $\lambda_{a b c}=0$ so that

$$
\begin{equation*}
\frac{\partial \vec{e}_{b}}{\partial \xi_{a}}=\frac{1}{h_{b}} \frac{\partial h_{a}}{\partial \xi_{b}} \vec{e}_{a} \quad(a \neq b) \tag{16}
\end{equation*}
$$

Dotting (11) with \vec{e}_{a} we get

$$
\begin{equation*}
\frac{\partial \vec{e}_{b}}{\partial \xi_{a}} \cdot \vec{e}_{a}=\frac{1}{h_{b}} \frac{\partial h_{a}}{\partial \xi_{b}} \quad(a \neq b) \tag{17}
\end{equation*}
$$

and using $\vec{e}_{a} \cdot \vec{e}_{b}=0$ this leads to

$$
\begin{equation*}
\frac{\partial \vec{e}_{a}}{\partial \xi_{a}} \cdot e_{b}=-\frac{1}{h_{b}} \frac{\partial h_{a}}{\partial \xi_{b}} \quad(a \neq b) \tag{18}
\end{equation*}
$$

Using completeness this becomes (as may be easily verified)

$$
\begin{equation*}
\frac{\partial \vec{e}_{b}}{\partial \xi_{a}}=\frac{1}{h_{b}} \frac{\partial h_{a}}{\partial \xi_{b}} \vec{e}_{a}-\delta_{a b} \sum_{c} \frac{1}{h_{c}} \frac{\partial h_{a}}{\partial \xi_{c}} \vec{e}_{c} \tag{19}
\end{equation*}
$$

This concludes the analysis of derivatives of the basis vectors.

4 Vector operators

Derivative operators transform as

$$
\begin{equation*}
\frac{\partial}{\partial \xi_{a}}=\frac{\partial \vec{x}}{\partial \xi_{a}} \frac{\partial}{\partial \vec{x}}=h_{a} \vec{e}_{a} \cdot \vec{\nabla} \tag{20}
\end{equation*}
$$

where $\nabla_{i}=\partial / \partial x_{i}$. Using completeness we get

$$
\begin{equation*}
\vec{\nabla}=\sum_{a} \frac{\vec{e}_{a}}{h_{a}} \frac{\partial}{\partial \xi_{a}} \tag{21}
\end{equation*}
$$

or

$$
\begin{equation*}
\nabla_{a}=\frac{1}{h_{a}} \frac{\partial}{\partial \xi_{a}} \tag{22}
\end{equation*}
$$

4.1 Gradient of scalar field

If f is a scalar field, then $\nabla_{a} f$ is the gradient in the local basis,

$$
\begin{equation*}
(\vec{\nabla} f)_{a}=\nabla_{a} f \tag{23}
\end{equation*}
$$

4.2 Divergence of vector field

For the divergence of a vector field \vec{v} with local components $v_{a}=\vec{e}_{a} \cdot \vec{v}$ we find

$$
\begin{aligned}
\vec{\nabla} \cdot \vec{v} & =\sum_{b} \frac{\vec{e}_{b}}{h_{b}} \frac{\partial}{\partial \xi_{b}} \cdot \sum_{a} v_{a} \vec{e}_{a}=\sum_{a b} \frac{\vec{e}_{b}}{h_{b}} \cdot \frac{\partial\left(v_{a} \vec{e}_{a}\right)}{\partial \xi_{b}}=\sum_{a} \frac{1}{h_{a}} \frac{\partial v_{a}}{\partial \xi_{a}}+\sum_{a b} v_{a} \frac{\vec{e}_{b}}{h_{b}} \cdot \frac{\partial \vec{e}_{a}}{\partial \xi_{b}} \\
& =\sum_{a} \frac{1}{h_{a}} \frac{\partial v_{a}}{\partial \xi_{a}}+\sum_{a b} \frac{v_{a}}{h_{a} h_{b}} \frac{\partial h_{b}}{\partial \xi_{a}}-\sum_{a} \frac{v_{a}}{h_{a}^{2}} \frac{\partial h_{a}}{\partial \xi_{a}} \\
& =\sum_{a} \frac{1}{h_{a}} \frac{\partial v_{a}}{\partial \xi_{a}}+\sum_{a \neq b} \frac{v_{a}}{h_{a} h_{b}} \frac{\partial h_{b}}{\partial \xi_{a}}
\end{aligned}
$$

Introducing $h=\prod_{a} h_{a}=h_{1} h_{2} h_{3}$ this may be written

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{v}=\frac{1}{h} \sum_{a} \frac{\partial\left(v_{a} h / h_{a}\right)}{\partial \xi_{a}} \tag{24}
\end{equation*}
$$

which is the most compact form of the divergence.

4.3 Curl of vector field

In the local system the curl becomes

$$
\begin{aligned}
(\vec{\nabla} \times \vec{v})_{a} & =\sum_{b c} \vec{e}_{a} \cdot \frac{\vec{e}_{b}}{h_{b}} \frac{\partial}{\partial \xi_{b}} \times v_{c} \vec{e}_{c} \\
& =\sum_{b c} \epsilon_{a b c} \frac{1}{h_{b}} \frac{\partial v_{c}}{\partial \xi_{b}}+\sum_{b c} \frac{v_{c}}{h_{b}} \vec{e}_{a} \cdot \vec{e}_{b} \times \frac{\partial \vec{e}_{c}}{\partial \xi_{b}} \\
& =\sum_{b c} \epsilon_{a b c} \frac{1}{h_{b}} \frac{\partial v_{c}}{\partial \xi_{b}}+\sum_{b c} \frac{v_{c}}{h_{b}} \vec{e}_{a} \cdot \vec{e}_{b} \times\left(\frac{1}{h_{c}} \frac{\partial h_{b}}{\partial \xi_{c}} \vec{e}_{b}-\delta_{b c} \sum_{d} \frac{1}{h_{d}} \frac{\partial h_{b}}{\partial \xi_{d}} \vec{e}_{d}\right) \\
& =\sum_{b c} \epsilon_{a b c}\left(\frac{1}{h_{b}} \frac{\partial v_{c}}{\partial \xi_{b}}-\frac{v_{b}}{h_{b} h_{c}} \frac{\partial h_{b}}{\partial \xi_{c}}\right)=\sum_{b c} \epsilon_{a b c}\left(\frac{1}{h_{b}} \frac{\partial v_{c}}{\partial \xi_{b}}+\frac{v_{c}}{h_{b} h_{c}} \frac{\partial h_{c}}{\partial \xi_{b}}\right)
\end{aligned}
$$

This can be combined into

$$
\begin{equation*}
(\vec{\nabla} \times \vec{v})_{a}=\sum_{b c} \frac{1}{h_{b} h_{c}} \frac{\partial\left(v_{c} h_{c}\right)}{\partial \xi_{b}} \tag{25}
\end{equation*}
$$

4.4 Gradient of vector field

The vector field gradient $\vec{\nabla} \vec{v}$ is a tensor with the following components in the local basis

$$
\begin{align*}
(\vec{\nabla} \vec{v})_{a b} & =\frac{1}{h_{a}} \frac{\partial \vec{v}}{\partial \xi_{a}} \cdot \vec{e}_{b}=\frac{1}{h_{a}} \sum_{c} \frac{\partial\left(v_{c} \vec{e}_{c}\right)}{\partial \xi_{a}} \cdot \vec{e}_{b} \\
& =\frac{1}{h_{a}} \frac{\partial v_{b}}{\partial \xi_{a}}+\frac{1}{h_{a}} \sum_{c} v_{c} \frac{\partial \vec{e}_{c}}{\partial \xi_{a}} \cdot \vec{e}_{b} \\
& =\frac{1}{h_{a}} \frac{\partial v_{b}}{\partial \xi_{a}}+\frac{1}{h_{a}} \sum_{c} v_{c}\left(\frac{1}{h_{c}} \frac{\partial h_{a}}{\partial \xi_{c}} \vec{e}_{a}-\delta_{a c} \sum_{d} \frac{1}{h_{d}} \frac{\partial h_{a}}{\partial \xi_{d}} \vec{e}_{d}\right) \cdot \vec{e}_{b} \\
& (\vec{\nabla} \vec{v})_{a b}=\frac{1}{h_{a}} \frac{\partial v_{b}}{\partial \xi_{a}}+\frac{\delta_{a b}}{h_{a}} \sum_{c} \frac{v_{c}}{h_{c}} \frac{\partial h_{a}}{\partial \xi_{c}}-\frac{v_{a}}{h_{a} h_{b}} \frac{\partial h_{a}}{\partial \xi_{b}} \tag{26}
\end{align*}
$$

One may immediately verify that its trace equals the divergence.
Specializing to diagonal and non-diagonal elements we get

$$
\begin{array}{ll}
(\vec{\nabla} \vec{v})_{a b}=\frac{1}{h_{a}} \frac{\partial v_{b}}{\partial \xi_{a}}-\frac{v_{a}}{h_{a} h_{b}} \frac{\partial h_{a}}{\partial \xi_{b}} & (a \neq b) \\
(\vec{\nabla} \vec{v})_{a a}=\frac{1}{h_{a}} \frac{\partial v_{a}}{\partial \xi_{a}}+\sum_{c \neq a} \frac{v_{c}}{h_{a} h_{c}} \frac{\partial h_{a}}{\partial \xi_{c}} & (a=b)
\end{array}
$$

4.5 Divergence of tensor

It is often necessary to calculate the divergence of a tensor $\vec{\nabla} \cdot \overleftrightarrow{t}$ in curvilinear coordinates. We find

$$
\begin{equation*}
(\vec{\nabla} \cdot \overleftrightarrow{t})_{a}=\sum_{b c d} \frac{\vec{e}_{b}}{h_{b}} \cdot \frac{\partial\left(t_{c d} \vec{e}_{c} \vec{e}_{d}\right)}{\partial \xi_{b}} \cdot \vec{e}_{a} \tag{29}
\end{equation*}
$$

Expanding the sum we get

$$
\begin{aligned}
(\vec{\nabla} \cdot \overleftrightarrow{t})_{a} & =\sum_{b c} \frac{\vec{e}_{b}}{h_{b}} \cdot \frac{\partial\left(t_{c a} \vec{e}_{c}\right)}{\partial \xi_{b}}+\sum_{b d} \frac{t_{b d}}{h_{b}} \frac{\partial \vec{e}_{d}}{\partial \xi_{b}} \cdot \vec{e}_{a} \\
& =\vec{\nabla} \cdot \vec{t}_{a}+\sum_{b} \frac{1}{h_{a} h_{b}}\left(t_{a b} \frac{\partial h_{a}}{\partial \xi_{b}}-t_{b b} \frac{\partial h_{b}}{\partial \xi_{a}}\right)
\end{aligned}
$$

Using the divergence of a vector this becomes

$$
\begin{equation*}
(\vec{\nabla} \cdot \overleftrightarrow{t})_{a}=\sum_{b} \frac{1}{h_{b}} \frac{\partial t_{b a}}{\partial \xi_{b}}+\sum_{b \neq c} \frac{t_{b a}}{h_{b} h_{c}} \frac{\partial h_{c}}{\partial \xi_{b}}+\sum_{b \neq a} \frac{t_{a b}}{h_{a} h_{b}} \frac{\partial h_{a}}{\partial \xi_{b}}-\sum_{b \neq a} \frac{t_{b b}}{h_{a} h_{b}} \frac{\partial h_{b}}{\partial \xi_{a}} \tag{30}
\end{equation*}
$$

