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1 Curvilinear coordinates

Let xi with i = 1, 2, 3 be Cartesian coordinates of a point and let ξa with a = 1, 2, 3 be the corresponding
curvilinear coordinates. We shall use ordinary Cartesian vector notation ~x = (x1, x2, x3) for the Cartesian
coordinates, but not for the curvilinear ones. The two sets of coordinates are connected by a bijective
coordinate transformation

~x = ~f(ξ1, ξ2, ξ3) (1)

The most important quantity is the infinitesimal vector element

d~x =
∑

a

~Jadξa (2)

where the ~Ja are the columns of the Jacobian

~Ja =
∂~x

∂ξa
(3)

The Cartesian square norm of the infinitesimal element is

d~x2 =
∑

ab

gabdξadξb (4)

where

gab = ~Ja · ~Jb (5)

is the metric.

2 Orthogonality

A large subclass of interesting coordinate systems are orthogonal, which means that

gab = ~Ja · ~Jb = 0 (a 6= b) (6)

In that case it is better to write

∂~x

∂ξa
= ha~ea (7)

where ha is a scale factor and ~ea is a unit vector. These vectors form a local basis in each point

~ea · ~eb = δab

∑
a

~ea~ea =
←→
1 (8)

where the first equation expresses orthogonality of the basis and the second completeness. This permits
normal vector and matrix algebra to be used in the curvilinear coordinates.
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3 Basis derivatives

The derivatives ∂~eb/∂ξa of the basis vectors play an important role. From ~e2
b = 1 we get

∂~eb

∂ξa
· eb = 0 (9)

for all a, b. This shows that all derivatives of a unit vector are orthogonal to the unit vector. Similarly
from the symmetry of the second derivatives we get

∂2~x

∂ξa∂ξb
=

∂(ha~ea)
∂ξb

=
∂(hb~eb)

∂ξa
(10)

Expanding this becomes

∂ha

∂ξb
~ea + ha

∂~ea

∂ξb
=

∂hb

∂ξa
~eb + hb

∂~eb

∂ξa
(a 6= b) (11)

Expanding in the basis, and using that the derivative of a unit vector is orthogonal to the unit vector,
this equation can only be fulfilled for

hb
∂~eb

∂ξa
=

∂ha

∂ξb
~ea + λabc~ec (a 6= b 6= c) (12)

where

λabc = λbac (a 6= b 6= c) (13)

Dotting with ~ec and using that ~eb · ~ec = 0 we get

λabc = hb
∂~eb

∂ξa
· ~ec = −hb

∂~ec

∂ξa
· ~eb = −hb

hc
λacb (14)

Combining these two rules we get

λabc = −hb

hc
λacb = −hb

hc
λcab =

ha

hc
λcba =

ha

hc
λbca = −λbac = −λabc (15)

Consequently we have λabc = 0 so that

∂~eb

∂ξa
=

1
hb

∂ha

∂ξb
~ea (a 6= b) (16)

Dotting (11) with ~ea we get

∂~eb

∂ξa
· ~ea =

1
hb

∂ha

∂ξb
(a 6= b) (17)

and using ~ea · ~eb = 0 this leads to

∂~ea

∂ξa
· eb = − 1

hb

∂ha

∂ξb
(a 6= b) (18)

Using completeness this becomes (as may be easily verified)

∂~eb

∂ξa
=

1
hb

∂ha

∂ξb
~ea − δab

∑
c

1
hc

∂ha

∂ξc
~ec (19)

This concludes the analysis of derivatives of the basis vectors.
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4 Vector operators

Derivative operators transform as

∂

∂ξa
=

∂~x

∂ξa

∂

∂~x
= ha~ea · ~∇ (20)

where ∇i = ∂/∂xi. Using completeness we get

~∇ =
∑

a

~ea

ha

∂

∂ξa
(21)

or

∇a =
1
ha

∂

∂ξa
(22)

4.1 Gradient of scalar field

If f is a scalar field, then ∇af is the gradient in the local basis,

(~∇f)a = ∇af (23)

4.2 Divergence of vector field

For the divergence of a vector field ~v with local components va = ~ea · ~v we find

~∇ · ~v =
∑

b

~eb

hb

∂

∂ξb
·
∑

a

va~ea =
∑

ab

~eb

hb
· ∂(va~ea)

∂ξb
=

∑
a

1
ha

∂va

∂ξa
+

∑

ab

va
~eb

hb
· ∂~ea

∂ξb

=
∑

a

1
ha

∂va

∂ξa
+

∑

ab

va

hahb

∂hb

∂ξa
−

∑
a

va

h2
a

∂ha

∂ξa

=
∑

a

1
ha

∂va

∂ξa
+

∑

a 6=b

va

hahb

∂hb

∂ξa

Introducing h =
∏

a ha = h1h2h3 this may be written

~∇ · ~v =
1
h

∑
a

∂(vah/ha)
∂ξa

(24)

which is the most compact form of the divergence.

4.3 Curl of vector field

In the local system the curl becomes

(~∇× ~v)a =
∑

bc

~ea · ~eb

hb

∂

∂ξb
× vc~ec

=
∑

bc

εabc
1
hb

∂vc

∂ξb
+

∑

bc

vc

hb
~ea · ~eb × ∂~ec

∂ξb

=
∑

bc

εabc
1
hb

∂vc

∂ξb
+

∑

bc

vc

hb
~ea · ~eb ×

(
1
hc

∂hb

∂ξc
~eb − δbc

∑

d

1
hd

∂hb

∂ξd
~ed

)

=
∑

bc

εabc

(
1
hb

∂vc

∂ξb
− vb

hbhc

∂hb

∂ξc

)
=

∑

bc

εabc

(
1
hb

∂vc

∂ξb
+

vc

hbhc

∂hc

∂ξb

)
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This can be combined into

(~∇× ~v)a =
∑

bc

1
hbhc

∂(vchc)
∂ξb

(25)

4.4 Gradient of vector field

The vector field gradient ~∇~v is a tensor with the following components in the local basis

(~∇~v)ab =
1
ha

∂~v

∂ξa
· ~eb =

1
ha

∑
c

∂(vc~ec)
∂ξa

· ~eb

=
1
ha

∂vb

∂ξa
+

1
ha

∑
c

vc
∂~ec

∂ξa
· ~eb

=
1
ha

∂vb

∂ξa
+

1
ha

∑
c

vc

(
1
hc

∂ha

∂ξc
~ea − δac

∑

d

1
hd

∂ha

∂ξd
~ed

)
· ~eb

(~∇~v)ab =
1
ha

∂vb

∂ξa
+

δab

ha

∑
c

vc

hc

∂ha

∂ξc
− va

hahb

∂ha

∂ξb
(26)

One may immediately verify that its trace equals the divergence.
Specializing to diagonal and non-diagonal elements we get

(~∇~v)ab =
1
ha

∂vb

∂ξa
− va

hahb

∂ha

∂ξb
(a 6= b) (27)

(~∇~v)aa =
1
ha

∂va

∂ξa
+

∑

c 6=a

vc

hahc

∂ha

∂ξc
(a = b) (28)

4.5 Divergence of tensor

It is often necessary to calculate the divergence of a tensor ~∇ ·←→t in curvilinear coordinates. We find

(~∇ ·←→t )a =
∑

bcd

~eb

hb
· ∂(tcd~ec~ed)

∂ξb
· ~ea (29)

Expanding the sum we get

(~∇ ·←→t )a =
∑

bc

~eb

hb
· ∂(tca~ec)

∂ξb
+

∑

bd

tbd

hb

∂~ed

∂ξb
· ~ea

= ~∇ · ~ta +
∑

b

1
hahb

(
tab

∂ha

∂ξb
− tbb

∂hb

∂ξa

)

Using the divergence of a vector this becomes

(~∇ ·←→t )a =
∑

b

1
hb

∂tba

∂ξb
+

∑

b 6=c

tba

hbhc

∂hc

∂ξb
+

∑

b6=a

tab

hahb

∂ha

∂ξb
−

∑

b6=a

tbb

hahb

∂hb

∂ξa
(30)
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