A Simple Mesh Generator in Mathematica

Version 0.1

Zhe Hu

huzhe@iit.edu

lllinois Institute of Technology
September, 2004

In this notebook we experiment with Persson and Strang's mesh generation algorithm in Mathemat-
ica. The algorithm was implemented in MATLAB in their original paper [1], which ishighly
recommended to be read along with this notebook.

Introduction

This Mathematica notebook is an effort to transcribe the MATLAB code of a 2-D mesh generation algorithm as
described explicitly in Persson and Strang's paper [1]. The goal is to make the algorithm executable in Mathematica so
that its users can a so experiment with the algorithm.

Since the algorithm was expressed very clearly from their original paper [1] including the MATLAB code, which is a
perfect example of literate programming in MATLAB, it is pretty easy to translate the MATLAB code "literally" into
Mathematica. Such trandation is virtually always possible in either directions even without human interference. And
such a Rosetta Stone kind of trandation might be useful if one species of people coding in either MATLAB or Mathe-
matica were to disappear, future generations would still be able to rediscover one programming language by reading its
interpretation in the other one.

However, it is so tempting to present the literate programming capability of Mathematica by following its general
principles; that is, (a) documentation mingles with code and both get pretty-printed; (b) shuffle code pieces for human
readability. | decided to transcribe the code manualy.

The origina MATLAB code was documented as 8 steps (sections) in sequential order, which is easy to follow because
the ideas behind the code were explained beforehand in early parts of the paper. So it is recommended that you read
part 1 and 2 of the original paper. Instead of following the MATLAB code literally in 8 steps, this notebook breaks the
code pieces apart and examines each of them separately.

Printed by Mathematica for Students



mesh111604.nb

Overview

In order to generate atriangular mesh, in the 2-D case, one needs to find locations of the meshpoints p(x, y). Then both
MATALB and Mathematica have built-in Delaunay triangulation function of generating the triangular mesh from
these meshpoints.

In Persson and Strang's algorithm [1], user specifies the relative size of the mesh triangles by the size function h(x, y).
In order to generate mesh triangles as well as the edges of them (meshbars) according to h(x, y), an objective function
using "force" analogy is proposed, in which the meshbars act like springs exerting forces that move the meshpoints
around until an equilibrium (zero force) is reached. This "force" related objective function is difficult to minimize (or
zero) because it is not continuous as stated in the paper, "The force vector F(p) is not a continuous function of p, since
the topology (the presence or absence of connecting bars) is changed by Delaunay as the points move."

So the algorithm, in general, turns into an iterative process of minimizing the objective function

Nest Whi | e[ noveMeshpoi nts, initpoints, !(goodEnough[#]) &

The initial locations of the meshpoints can be randomly distributed or chosen according to h(x, y). Since h(x, y) is a
relative measure, one doesn't need to define the exact size of each mesh triangle at location (x, ).

The function nroveMeshpoi nt s keeps changing the locations of meshpoints so as to minimize this "force" related
objective function until the result is regarded by function goodEnough to be so.

In practice, meshpoints always have to reside within certain geometric region. User also needs to define this bounded
region by a distance function d(x, y). And one difficult task is to maintain the meshpoints within the 2-D region
(whether it is adisk or a rectangle with a hole in it) during the iterative process. After each move, if some meshpoints
are pushed out of the 2-D region, they need to be brought back onto its boundary, which is carried out using this
distance function d(x, y).

Using the Distance Function d(x, y)

Since distance function determines the shape for the algorithm, Let's start from it. Each distance function returns
negative for points within the defined region; positive or zero otherwise. Here is a distance function for a disk,
bounded by the circle.

deircle[{x_, y_}, {cXx_, cy_, r_}]:=(x-cx)2+ (y-cy)?-r?

Here is another example of a rectangular region, defined by the lower left point (X3, y1) and the upper right point
(X2, Y2). (Thisis the typical mathematical way of defining coordinates for arectangular region, which is different from
the one for drawing rectangles on the computer screen.)

drectangle[{x_, y_}, {x1 _, yl , x2 , y2 }]:=
-Mn[Mn[Mn[-yl+y, y2-y], -x1+x], X2 -X]

To test if these distance functions can distinguish points within or out of the defined region, we start by seeding
meshpoints in arectangular region, still defined by the lower left point (x;, Y1) and the upper right point (xo, y»). And

Printed by Mathematica for Students



mesh111604.nb 3

points in every other row are shifted so that the distance between every two pointsis hy (corresponding to step 1 in the
paper).

seedMeshpoints[{x1_, y1 , x2_, y2_3}, hO_]: =
1- (_1)QJotient [y-y2, ho fsr]
4

Tabl e [{x + ho, y},

3
{y. y1, y2, V—;-ho}, {x, x1, x2, h0}] //Flatten[#, 1] &

Try to seed meshpoints in arectangle between (-2, —1) and (2, 1) with distance 0.1 between every two meshpoints.

seedMeshpoi nts[{-2, -1, 2, 1}, 0.1] // Li stPl ot [#,
Aspect Rati o » Automatic, PlotStyle ->PointSize[0.01]] &

......................................].-. ........................................
R KON

- G aphi cs -

Function sel ect Meshpoi nt s use the distance function to select only meshpoints within the defined region
(corresponding to part of step 2 in the paper).

sel ect Meshpoints[d _, {x1 , yl1 , x2 , y2 }, hO_]:=
Sel ect [seedMeshpoi nts[{x1, y1, x2, y2}, hO], d[#] <0 &];

The distance function dci r cl e selects meshpoints within adisk.

Printed by Mathematica for Students



mesh111604.nb

sel ect Meshpoi nts[dcircle[#, {0, 0, 0.5}] &,
{-2, -1, 2, 13}, 0.1] // ListPl ot [#,
Aspect Rati o » Automatic, PlotStyle ->PointSize[0.01]] &

0.0.0.00.21.0.0.0.0

- G aphi cs -

The distance function dr ect angl e selects meshpoints within a rectangle. Y ou may notice from its definition that the
four corner points may not be included. This glitch can be fixed later.

Printed by Mathematica for Students



mesh111604.nb 5

sel ect Meshpoi nt s[drectangl e[#, {-1, -0.5, 1, 0.5}] &
{-2, -1, 2, 13}, 0.1] // ListPl ot [#,
Aspect Rati o » Automatic, PlotStyle ->PointSize[0.01]] &

- G aphi cs -

How to define the distance function of a rectangle with a hole in the center? There are ways to combine distance
functions of simple geometric shapes to form more complex ones. For example, ddi ff takes one shape out of the
other.

ddi ff [d1_, d2_7]:= Max[dl, -d2]

For more ways of combining distance functions, see Figure 4.1 in the paper. Hereis adisk taken out of arectangle

Printed by Mathematica for Students



mesh111604.nb

sel ect Meshpoi nt s[ddi ff [drect angl e[#, {-2, -1, 2, 1}],
dcircle[#, {0, 0, 0.5}11 & {-2, -1, 2, 1}, 0.1] //
Li st Pl ot [#, AspectRati o - Autonati c,
Pl ot Styl e -> Poi nt Si ze[0.01]] &

...................1. ® 0000000000000 00000

.................................n'. 5 * ....................................
‘ ...................,.......... ..........,................... ‘
g I et O

- G aphi cs -

There are two other places where the distance function is used. One is to select interior meshbars (discussed later). The
other is to move meshpoints back onto the boundary (step 7), if they were pushed out.

The closest boundary point to an outsider is along the gradient direction of the distance function. The function NG ad
calculates numerically the gradient for a given distance function at a specific point.

NG ad[d_, {xO_, y0O_}1:=
{ND[d[{x, yO}1, x, xO0], ND[d[{x0, y}], ¥y, y01}

Then the function backt oBoundar y moves an outsider onto the closest boundary point. (Fi ndRoot isused to find
the boundary point, which is alittle bit different from step 7 in paper.)

backt oBoundary[d_, {x_, y_}1:=
Modul e[ {expr}, expr = {X, Y} -s NG ad[d, {X, y}]I;
expr /. (Fi ndRoot [d[expr], {s, 0}])]

To test thisfunction, let's move all these pointsin arectangle onto acircular boundary.

Printed by Mathematica for Students



mesh111604.nb

(poi nt sever ywher e = seedMeshpoi nts[{-2, -1, 2, 1}, 0.1]) //
Li st Pl ot [#, AspectRati o - Autonati c,
Pl ot Styl e -> Poi nt Si ze[0.01]] &

e0ecc0o00ecc00cccccccloseccccsccccscccccccncce
0000000000000 000000000000000000000000000
© 000000 0000000000000 000000000000O0COCOCOIOIOITOLIT
©0 0000000000000 0000000000000000000000O0COCCE
© 000000 000000000000 000000000000000000O0OCTOE
-a--a-a-ao-o-oooona.s. 00000000 ccescccsooe
0000000000000 0 0 ol 0000000000000 000 00
©0000000000000000000000000000000000000000
© 000000 0000000000000 0000000000000000O0C0O0COCELIE
0000000000000 0000000000000000000000000000
© 000000 0000000000000 0000000000000COCCOCOCOITLIE
90000000000 000000900 0000000000009 0000000000

0000000090000 00000 0000000000000 0000000 0
—éa--a-a-ao—-o-oooo-a- e0c0c0000doccccscses

- G aphi cs -

It's going to be very crowded.

Printed by Mathematica for Students



mesh111604.nb

(backt oBoundary [dci rcl e[#, {0
poi nt sever ywhere) // Li st Pl

Aspect Rati o » Automatic, PlotStyle ->PointSize[0.01]] &

, 0, 0.5}]1 & #] &/@
ot [#,

".’o- ] -oo~..~
/’ \\
0.4;
0.2+
-0.4 -0.2 0.2 0.4
-0.2+¢
-0.4
\h...- |....*./

- G aphi cs -

Distributing as the Size Function h(x, y)

WEell, it isabit of abuse, since normally the function is only used to move points out of the region back to its boundary.

The other important function in the algorithm is h(x, y). It is actually the goal of the algorithm to make the size of
mesh triangles distributed, in 2-D case, as h(x, y). The ssimplest case would be h(x, y) = 1, such that al the mesh
triangles are of the same size. A more interesting example, the following definition ask for triangle sizes related by
VX2 + y2 , which means the closer they are to the center point (0, 0), the smaller the triangle meshes are. It therefore
asks for more meshpoints as they are closer to the center point (0, 0). So the size function h(x, y) determines the
locations of meshpointsindirectly.

hI{X_, y_}]:=0.1+0.1VxZ+y2

Printed by Mathematica for Students



mesh111604.nb

To distribute meshpointsinitially, for example, in a2-D disk, we assign a value to each would-be meshpoint (X, Y;) by
applying function h(x, y) to it. Since h(x, y) is a relative measure, there is a scaling process, i.e. to normalize al the
values between 0 and 1. Such scaling process is essential and will appear again later (step 6 in the paper). (The defini-
tion of function scal e isabit like MATLAB's style. It makes use of the "Listable" property of the function Di vi de.)

X

scale[x_List]:= W[X]

— | GCeneral::spelll: Possible spelling error: new symbol
name "scale" is simlar to existing synbol "Scale". More...

To attach anormalized value for each meshpoint

pts = sel ect Meshpoi nt s [
dcircle[#, {0, 0, 5}1¢&, {-10, -10, 10, 10}, 0.17;

val ues = scal e &/epts|];

h#]2
(» a nore conpact expression can be
val ues = Divi deee ({#, Max [#]}&[1/h[#]°&/@pts]) =)

In the algorithm, alottery is drawn to select which meshpoints to survive. The attached values isn't actually h(x, y) but
1/h(x, y)? instead, as being the probability of "survival" (part of step 2 in the paper). The meshpoint at locations
(X, vi) where h(x;, y;) issmaller, haslarger 1/h(X;, Vi )2 value so that has higher probability to survive, therefore more

meshpoints are located at where h(x, y) demands smaller mesh triangles.

Printed by Mathematica for Students



10

mesh111604.nb

(p = Extract [pts, Position[values, _? (#>Random[] &)11) //
Li st Pl ot [#, AspectRati o - Autonati c,
Pl ot Styl e -> Poi nt Si ze[0.01] ] &

- Graphi cs -

The above graphic certainly shows more points toward the center, doesn't it. From now on, the number of meshpoints
inthelist p isdetermined. No points will be drop out, but relocated while minimizing the "force".

Delaunay Triangulation

Now we have afixed number of meshpoints selected. Delaunay triangulation can begin (part of step 3 in the paper)

t = Del aunayTri angul ation[p];

The Mathematica function returns mesh triangles in a different format from MATLAB function's. It even has a func-
tion to plot the meshes directly. We can define such afunction ourselves (step 5 in the paper).

Printed by Mathematica for Students



mesh111604.nb

(» the Mathematica built-in function =)
Pl anar Gr aphPl ot [p, Label Poi nts - Fal se]

AN

i

S N S AKX
RSN TN
«‘fqﬁ%‘gs‘«suﬂbmu AN

"'b

N S G A, v "'
SO NSRS O
2 S S

Q)

> [\
l"’:‘»‘ﬂ! W

RO
\V[""ﬁ AV

WS ass
SR
AN ‘\é ‘\
\Q‘%‘(ém %

D\ Sl
4 4\ (}

- G aphi cs -

But before we can plot these meshbars, we need to process the return values from Del aunayTri angul at i on to
get the unique meshbars.

(* the input is directly

from Del aunayTri angul ati on functionx)
meshbar [t _]:=Union[Sort /e

(Thread [Li st [Sequenceee#]] &/@t // Flatten[#, 1] &)]
Get the unique bars (step 4 in the paper)

bars = neshbar [t ];

meshbar Pl ot [p_, bar_List] : = Show[

G aphi cs[Line /e (Part [p, #] &/@bar)], AspectRati o » Automati c]
Our version of "PlanarGraphPlot"

Printed by Mathematica for Students



12

mesh111604.nb

meshbar Pl ot [p, bars]

A

A
=

R
Y

<‘
§
i
X

\/

2
Vé‘

74

_—
L7
)
AN V/A‘
7 AN
oz Y%7
AV
SN
DRIV
ROMR

|

>

AUV e Sy

VA%

N 'wr%'g/hu
/l

‘, jﬂ‘\“ : —
AV N iy AT A

K/

X

NN

IV

,,/

- Graphi cs -

] /
N WS i
A= YN
URSUNIRS ‘
LN
NN TR
AF" V% S0 ‘\

/A%ZK%;\W\*§\,{1§A
’ AW s
RIS

AN

N L \\/

A(AV'
AV, mzmmx{\%x

Q
N
!44»

B
/I
QA
XN

V

NK
A% p\' ‘\
A

A

As mentioned earlier, the distance function is used again to select meshbars that are interior to the defined region. For
example, the following distance function defines a rectangle with aholein the middle.

d[{x_,

dcircle[{x, ¥y}, {0, 0, 0.5}]1

Printed by Mathematica for Students

y _}]:=ddiff [drectangle[{X, ¥y}, {-2, -0.8, 2, 0.8}],



mesh111604.nb

13

(p2 = sel ect Meshpoi nts[d, {-2, -1, 2, 1}, 0.1]) //
Li st Pl ot [#, AspectRati o - Autonati c,
Pl ot Styl e -> Poi nt Si ze[0.01]] &

.................................90.6. .......................................

................................. d. 4 L] .................................

.............................. 0 : 2 ..............................

‘ .o.o.o.o.o’o.o’o.o’ .o’o.o.o. .o.o.o.o.o.o.o.o.o’o.o.o.o’o.o‘
; %.................-.4.......... = 0- 2 ...........1...................2

e e

R AR A AR R A KKK

- G aphi cs -

bar s2 = meshbar [Del aunayTri angul ati on[p2]7;
meshbar Pl ot [p2, bars2]

- G aphics -

Obviously, these meshbars across the hole in the center need to be removed. Here we use a "middle point" approach
that is different from the original MATLAB code. However the idea is the same; that is, using distance function to

identify meshbars that lie out of the defined region.

pllall +p[[b]]

m ddl epoint [p_, {a_, b_}]:= >

It selects only the meshbarsinterior to the region.

bars2 = Sel ect [bars2, d[m ddl epoi nt [p2, #]] <0 &];

Printed by Mathematica for Students



14

mesh111604.nb

meshbar Pl ot [p2, bars2]

NONININONININININOSINONINONONON VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA
VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV/’ ‘\VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV
NONININONONINOSINONONINONINO N ANNNNINININININININONINON

- Graphi cs -

Now you may notice that two upper corner points of the rectangle are missing. This is caused by the definition of its
distance function. To remedy for this, we need to add these points to our list of meshpoints list p. Now the list is
completely initialized after putting in these missing meshpoints (if there is any). They are called fixed meshpoints
because they won't move at all during the force equilibrium process.

Since now we have the meshbars, they will start exerting force on the connecting meshpoints to achieve an equilib-
rium. Let the force be with them.

Force be with them

These meshbars act like a special kind of springs that have the following force vs. length relationship
£, 1) _{ k(l =lg) if I <lp,
9 o ifl=1o.
The function bar | engt h calculates | (the actual meshbar length) in the above equation, given the two connecting
meshpoints of aameshbar.

barlength[p_, {a_, b_}]:=Norm[p[[a]l]-p[[b]l]]

How about 15? It looks like a desired length since | = lg will certainly turn force f into 0. Guess who involves in the
calculation of Iy, size function h(x, y) again. It is the second yet most important appearance of this function. It is
essentially the core of the algorithm—the desired mesh triangle size yields the desired meshbar length. So the iterative
process to zero the force is really a process to adjust the meshbar length to be close to g, which inevitably and implic-

itly adjusts the mesh triangles to the size and distribution as h(x, y). The clever part is that till h(x, y) gives arelative
1/2

2
measure, so a scaling process with scaling factor (L) isused.

D hog, y)°

scal e[a_List, {p_, bars_}]:=

X a

\/ Pl us @@ Map [bar | engt h[p, #]° & bars]
Pl us ee a2

Printed by Mathematica for Students



mesh111604.nb 15

The parameter Fscal e=1. 2 blows |, a little bit. Now let's return to our disk example. To find the desired length |
for each meshbar, we use the middle point of each meshbar as input to h(x, y) and then scale the output.

|0 =Wth[{Fscal e =1.2},
Fscal e x scal e[h[ni ddl epoi nt [p, #]] &/@ebars, {p, bars}]];

— | GCeneral::spelll: Possible spelling error: new symnbol
nane "Fscale" is sinmilar to existing synbol "scale'. More...

Now assuming k = 1, the force can be calculated according to the "spring” relationship.

F=Mx[#, 0] &/@ (10 - (barlength[p, #] &/@bars));

Now the force needs to be dissected into vectors of x-axis and y-axis components at each meshpoint so that they can be
summed in these two independent directions.

Subtract ee p[[#]]
bar| engt h[p, #]

Fvec:F( &/@bars);

The MATLAB code (step 6) uses sparse matrix to sum forces (both x- and y-component) at each meshpoint. Here we
try the same way by defining a sparse array in Mathematica. The sparse array is a square matrix of nx n dimensions,
with n = number of meshpoints. Each row stores the forces for one meshpoint and the columns are forces (x- and
y-component) exerted on it by neighboring meshpoints through connecting meshbars. Since one meshpoint only
connects with a small fraction of the total number of meshpoints, the matrix is very sparse (i.e.,, many zeros in the
matrix). A littletrick (Hol d) is used to store (Fy, Fy) at position (a, b) in the sparse array.

ForceRule[{a_, b_3}, {Fx_, Fy_3}1:={{a, b} »Hold[{Fx, Fy}l,
(* Newton' s Third Law =x)
{b, a} > Hold[{-Fx, -Fy}1}

A sparse array, f or cemat ri x isbuilt from these rules

forcematri x = SparseArray [#, {Length[p], Length[p]}] &e
(MapThr ead [For ceRul e, {bars, Fvec}] // Flatten[#, 1] &);

Then the movements of the meshpoints are induced by the force acting on it (Aristotle-ly) according to the for-
mula

Pri1 = P+ AtF(pP,)

We calculate the second term on the right hand side (with At = 0.2) by summing all forces on each row of the sparse
array.

dp=Wth[{deltat =0.2}, deltat x Tabl e[
Pl us e@ (Rel easeHol d /@forcematri x[[i]]), {i, Length[p]l}]];

So the movement of meshpoints

Printed by Mathematica for Students



16

mesh111604.nb

pp = p +dp;

As shown below, the meshpoints moves from theinitial location

Li st Pl ot [p, Aspect Rati o » Autonati c,
Pl ot St yl e - Poi nt Si ze[0. 01]]

- G aphi cs -

after oneiteration

Printed by Mathematica for Students



mesh111604.nb

17

Li st Pl ot [pp, AspectRati o » Aut onati c,
Pl ot Styl e » {Poi nt Si ze[0. 01], RGBCol or [1, 0, 0]}]

- Graphi cs -

Printed by Mathematica for Students



18

mesh111604.nb

Show[% %84

- Graphi cs -

All these efforts up till now only moves meshpoints for one step. In order to go further, we need to define a function by
wrapping up those temporary variablesinside.

Printed by Mathematica for Students



mesh111604.nb

19

forcenove[p_] : = Modul e[{t, bars, 10, F, Fvec, forcematrix, dp},
t = Del aunayTri angul ation[p];
(» select only interia neshbars =)
bars = Sel ect [nmeshbar [t ], d[m ddl epoi nt [p, #]] <0 &];
|0 =Wth[{Fscale =1.2},
Fscal e x scal e[h[m ddl epoi nt [p, #]] &/@bars, {p, bars}]];
F=Mx[# 0] &/@ (10 - (barlength[p, #] &/@bars));
Subtract ee p[ [#]]
barl engt h[p, #]
forcematri x = SparseArray [#, {Length[p], Length[p]}] &e
(MapThr ead [ForceRul e, {bars, Fvec}] // Flatten[#, 1] &);
dp=Wth[{deltat =0.2}, deltat x Tabl e[Pl us ee
(Rel easeHol d /eforcematrix[[i]]1), {i, Length[p]l}]];
Return[p +dp]

]

Now we can try more iterations.

Fvec:F( &/@bars);

d[{x_, y_}]:=dcircle[{x, ¥}, {0, O, 2}1;

hI{X_, y_}1:=0.1+0.1Vx2+y2;

pts = sel ect Meshpoi nts[d, {-10, -10, 10, 10}, 0.17];

val ues = scal e &/epts|];

h[#]2
p2 = Extract [pts, Position[val ues, _? (#> Random[] &)]1;
pp2 = Nest [forcenbve, p2, 10];

So after 10 iterations, the result is quite good already.

Printed by Mathematica for Students




20

mesh111604.nb

Li st Pl ot [pp2, AspectRati o -» Automati c,

Pl ot Styl e » {Poi nt Si ze[0. 01], RGBCol or [1, 0, 0]}]
o 2’.
° . .. .. - .1. . ] . . . °
I R S
° . . e o . .-]:. : . ® o . .
. . 9| ° o °
- Graphi cs -

Once we have the locations of the meshpoints, it is simply afunction call to generate the meshes.

Printed by Mathematica for Students



mesh111604.nb

21

(» the Mathematica built-in function =)
Pl anar Gr aphPl ot [pp2, Label Poi nts - Fal se]

aAd
PRI

KKK

AR/

PRI

A Ny B s g S ZAVA
g‘ RPN N>
EYANR RN VA
St iS et onA N
NSRS

IR INNY I

SRS

[
=
S
N
s
474
05
N

- G aphi cs -

Good Enough?

There are many ways to define and combine the termination criteria.

A convenient way for Mathematica would be, i.e. if two latest iterations output nearly equal locations, the program
doesn't go any further. (Like step 8 in the paper, we only choose interior meshpoints to compare.)

goodEnough[pl , p2_, eps_]: =

Max [Nor m/e (Extract [ (p2 -pl), Position[p2, ?d[#]<0&)1]1]1)] <
eps

Now we can assembly the whole program as predicted in the "overview" section. (It may take a while to run depending
on the speed of your computer.)

Printed by Mathematica for Students



22 mesh111604.nb

pp2 =
Nest Wi | e [f or cenpve, p2, ! (goodEnough[#1, #2, 0.02]) & 2, 501;

Li st Pl ot [pp2, AspectRati o -» Automati c,
Pl ot Styl e » {Poi nt Si ze[0. 02], RGBCol or [1, 0, 0]}]

- G aphi cs -

The boundary looks rough above. To complete the algorithm, we need to add the section that brings points outside
onto the boundary.

Mesh Generator as a Mathematica Package

All the previous sections have taken the original code pieces apart so that we can experiment with each component of
the algorithm. To assemble them together, we can put it into a Mathematica package (.m) file and fasten some screws
along the way. The package effectively hides the details of the algorithm so that end users can simply load the package
and use the functions available.

The Mathematica package is in a separate file (meshgener at or . ). To construct the package, | basically copy and
paste the cells from these previous sections into it. This could become tedious when the functions are numerous.
However there is no reason why an automatic process (maybe called Mat hemat i caTangl e) can't be used for larger
package constructions. Each code piece in an input cell can be tagged by a section name. And by using Aut hor -

Printed by Mathematica for Students



mesh111604.nb 23

Tool s and Not ebookFi nd, Not ebookW i t e functions, etc., one can extract and assemble the pieces into a new
notebook. The whole notebook cell can then be marked as ainitialization cell and saved as Mathematica packagefile.

Here is an example of using the package:

(» clear everything defined beforex)
Renpbve ["d obal ™ %" ]

(» set the current directory to where the
package file is stored and read in the package =x)
SetDirectory["c:\\"]; << meshgenerator"

? gener at eMesh

generateMesh[d_,h_,hO0_, {x1_,yl ,x2 ,y2 }] generates a nesh
for a region defined by the distance function d(x,y) and
size function h(x,y). The nmesh sise is hO and an initial
rectangl e region is defined by (x1,yl) and (x2,y2).

Opt i ons [gener at eMesh]

{Fscale - 1.2, DeltaT - 0.2, Eps - 0.2, MaxSteps - 50}

di{x_, y_}1:=
ddi ff [dcircle[{X, Yy}, {0, O, 4}], dcircle[{x, ¥y}, {O, 2, 1}11;

hIEX_, y_}1:=0.1+0.44/x2+ (y -2)2;

(» It my take quite a while to run x)
p2 = gener at eMesh[d, h, 0.1, {-10, -10, 10, 10}1;

Printed by Mathematica for Students



24 mesh111604.nb

Li st Pl ot [p2, AspectRati o -» Automati c]

- G aphi cs -

Summary and Discussion

This Mathematica notebook sets up an experiment environment for Persson and Strang's mesh generation agorithm. It
also tries to document the program in aliterate programming style.

The trandation from the originad MATLAB code to the Mathematica code is far from complete. It only touches the
program in Figure 3.1 of the paper, though, | hope, it provides a good starting point for testing and understanding the
algorithm. Various experiments can be run from this point, such as defining different distance functions or size func-
tions, testing different scaling process or objective function, etc., especially when the optimization process gets stuck,
you can try many places to shake.

There are multiple ways to program in Mathematica, thus to transcribe the original MATLAB code. The origina
MATLAB code makes good use of MATLAB's list processing ability and therefore is very concise. Here we adopted a
somewhat functional programming style in Mathematica. Like structure programming isn't really about getting rid of
"goto"s, functional programming isn't really about getting rid of "for" loops. A functional program avoids relying on
variables while builds up on definitions of functions. It then uses Map (/ @, Apply (@@, and Nest, etc, to
glue these functions together. The advantage is that once these functions are declared, they won't change anymore. So
testing or running the program becomes declarative rather than imperative, which means the order of which expres-

Printed by Mathematica for Students



mesh111604.nb 25

sions are evaluated doesn't matter so much. Whereas the expressions that make heavy use of variables can have trouble

(side-effects) brought by changing the evaluation order or reevaluating them, which is not favorable for testing and
experimenting.

| am till learning to program in Mathematica. So the code here can certainly be improved both towards more elegant
in style and faster in speed, not to mention the hidden bugs to squash. Like so many open software and open docu-
ments on the internet, future versions of this notebook will be better through suggestions and advice from readers like
you.

My email address: huzhe@iit.edu

Mathematica Packages Needed

<< Nunerical Mat h™ NLi mi t°

<< Di scret eMat h™ Conput at i onal Geonetry"

References

[1] Per-Olof Persson and Gilbert Strang, "A Simple Mesh Generator in MATLAB," SIAM Review (August, 2004)
[2] Roman Maeder, "Programming in Mathematica," Addison-Wesley, 1997

Printed by Mathematica for Students



