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These  notes  form  the  basis  of  a  series  of  lectures  in
which the fundamental principles underlying the Wolfram pro-
gramming  language  (WL)  are  discussed  and  illustrated  with
carefully  chosen  examples. This  is  not  a  transcription of
those lectures, but rather, the note set that was used to
create  a  set  of  transparencies  which  I  showed  and  spoke
about during my lectures. These notes formed the basis for
both a single 6-hour one-day lecture and a series of four
90-minute  lectures,  field-tested  over  many  years,  to  stu-
dents and professionals at university, commercial and gov-
ernment  organizations.  In  the  final  section  of  this  note
set,  the  use  of  WL  in  writing  various  programs  for  the
‘Game of Life’ is demonstrated.

Introduction

In order to use WL efficiently, you need to understand the
details of how a WL program is executed when it is entered
and run. This tutorial is intended to provide you with the
necessary background for writing your own code in an opti-
mum manner.

Note:  This  material  will  also  make  you  more  comfortable
with  WL  which  often  seems  obscure,  even  enigmatic,  when
first  encountered  by  someone  whose  programming  experience
is with one of the traditional procedural languages.

In  this  note  set,  the  following  aspects  of  WL  are  empha-
sized: the nature of expressions, how expressions are evalu-
ated,  how  pattern-matching  works,  creating  rewrite  rules,
and using higher-order functions.

à Summing the elements in a list

Consider the data structure {1,2,3}. How can we add up the
elements in the list?



Consider the data structure {1,2,3}. How can we add up the
elements in the list?

In[1]:= Apply@Plus, 81, 2, 3<D
Out[1]= 6

What’s going on here?

à Everything is an expression

Every  quantity  entered  into  WL  is  represented  internally
as an expression. An expression has the form

head@arg1, arg2, …, argnD
where the head and argi can be other expressions.

For  example,  if  we  look  at  two  common  quantities,  a  list
data  structure,  {a,b,c},  and  an  arithmetic  operation,
a+b+c,  they  appear  to  be  quite  different,  but  if  we  use
the  FullForm  function  to  look  at  their  internal
representation

In[2]:= FullForm@8a, b, c<D
Out[2]//FullForm=

List@a, b, cD
In[3]:= FullForm@a + b + cD

Out[3]//FullForm=

Plus@a, b, cD
we see that they differ only in their heads.

The use of a common expression structure to represent every-
thing is not merely cosmetic; it allows us to perform some
computations  quite  simply.  For  example,  to  add  the  ele-
ments  in  a  list,  it  is  only  necessary  to  change  the  head
of  the  expression,  List,  to  Plus.  This  can  be  done  using
the built-in Apply function.
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In[4]:= ? Apply

Apply@f, exprD or f �� expr replaces
the head of expr by f. Apply@f, expr,
levelspecD replaces heads in parts
of expr specified by levelspec. More…

In[5]:= Trace@Apply@Plus, 81, 2, 3<DD
Out[5]= 8Plus �� 81, 2, 3<, 1 + 2 + 3, 6<

à Changing a sum into a list

The  obvious  approach  to  this  task  is  to  do  the  same  sort
of thing that we did to add the elements in a list.

In[6]:= Apply@List, a + b + cD
Out[6]= 8a, b, c<
This works when the list elements are symbols, but it does-
n’t work for a list of numbers.

In[7]:= Apply@List, 1 + 2 + 3D
Out[7]= 6

In  order  to  understand  the  reason  for  the  different
results  obtained  above,  it  is  necessary to  understand how
WL evaluates expressions. 

Expressions

à Non-atomic expressions

Non-atomic  expressions  have  parts  which  can  be  extracted
from  the  expression  with  the  Part  function,  and  can  be
replaced with the ReplacePart function. For example:

In[8]:= Part@8a, 7, c<, 1D
Out[8]= a

In[9]:= 8a, 7, c<@@0DD
Out[9]= List
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In[10]:= Part@a + b + c, 0D
Out[10]= Plus

In[11]:= ReplacePart@8a, 7, c<, e, 2D
Out[11]= 8a, e, c<

à Atomic expressions

Atomic  expressions  constitute  the  basic  “building  blocks”
of WL. There are three kinds of atomic expressions:

1.  A  symbol,  consisting  of  a  letter  followed  by  letters
and numbers (eg., darwin)

2. Four kinds of numbers:

integer numbers (eg., 4)

real numbers (eg., 5.201)

complex numbers (eg., 3+4I)

rational numbers (eg., 5/7)

3.  A  string,  comprised  of  letters,  numbers  and  spaces
(ie., ASCII characters) between quotes (eg., "Computer Simu�
lations with Mathematica")

Atomic  expressions  differ  from  non-atomic  expressions  in
several ways:

The FullForm of an atomic expression is the atom itself.

In[12]:= 8FullForm@darwinD, FullForm@4D,
FullForm@"Computer Simulations with Mathematica"D<

Out[12]= 8darwin, 4, "Computer Simulations with Mathematica"<
The head (or 0th part) of an atom is the type of atom that
it is.

In[13]:= 8Head@ListD, Head@
"Computer Simulations with Mathematica"D, 5@@0DD<

Out[13]= 8Symbol, String, Integer<
An  atomic  expression  has  no  parts  which  can  be  extracted
or replaced.
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An  atomic  expression  has  no  parts  which  can  be  extracted
or replaced.

In[14]:= Part@"Computer Simulations with Mathematica", 1D
Part::partd : Part specification

Computer Simulations with MathematicaP1T
is longer than depth of object. More…

Out[14]= Computer Simulations with MathematicaP1T

à Compound expressions

A  CompoundExpression  is  an  expression  consisting  of  a
sequence of expressions separated by semi-colons (;).

expr1; expr2; …; exprn

In[15]:= a = 5 + 3; 4 a

Out[15]= 32

à Entering an expression

When  an  expression  is  entered  in  WL,  it  is  evaluated  and
the  result  is  returned,  unless  it  is  followed  by  a  semi-
colon.

In[16]:= 4^3

Out[16]= 64

When an expression is followed by a semi-colon, the expres-
sion is also evaluated, even though nothing is returned.

In[17]:= 2 - 6;

In[18]:= % + 3

Out[18]= -1

In[19]:= %%

Out[19]= -4

When  the  entered  expression is  a  compound  expression, its
contents  are  evaluated sequentially and  the  result  of  the
last evaluation is returned.

Wolfram Programming Language Fundamentals.nb 5



In[20]:= Trace@a = 3 + 5; 4 aD
Out[20]= 8a = 3 + 5; 4 a, 883 + 5, 8<, a = 8, 8<,

88a, 8<, 4 ´ 8, 32<, 32<

à How expressions are evaluated

WL  is  a  term  rewriting  system  (TRS).  Whenever  an  expres-
sion  is  entered,  it  is  evaluated  by  term  rewriting  using
rewrite rules. These rules consist of two parts: a pattern
on the left-hand side and a replacement text on the right-
hand side. When the lhs of a rewrite rule is found to pat-
tern-match  part  of  the  expression,  that  part  is  replaced
by  the  rhs  of  the  rule,  after  substituting  values  in  the
expression which match labelled blanks in the pattern into
the rhs of the rule. Evaluation then proceeds by searching
for further matching rules until no more are found.

The evaluation process in WL can be easily understood with
the following analogy:

Think of your experiences with using a handbook of mathemat-
ical  formulas,  such  as  the  integral  tables  of  Gradshteyn
and Ryzhik. In order to solve an integral, you consult the
handbook which contains formulas consisting of a left-hand
side  (lhs)  and  a  right-hand  side  (rhs),  separated  by  an
‘equals’ sign. You look for an integration formula in the
handbook  whose  left-hand  side  has  the  same  form  as  your
integral.

Note: While no two formulas in the handbook have the identi-
cal lhs, there may be several whose lhs have the same form
as your integral (eg., one lhs might have specific values
in  the  integration  limits  of  in  the  integrand,  while
another  lhs  has  unspecified  (dummy)  variables  for  these
quantities). When  this  happens,  you  use  the  formula  whose
lhs gives the closest fit to your integral.

à
0

1

x2 âx

à xn âx =
xn+1

n + 1
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à x2 âx =
x3

3

à
a

b

xn âx =
bn+1 - an-1

n + 1

à
0

1

xn âx =
1

n + 1

à
a

b

x2 âx =
b3 - a3

n + 1

à
0

1

x2 âx =
1

3

You then replace your integral with the right-hand side of
the matching lhs and you substitute the specific values in
your  integral  for  the  corresponding  variable  symbols  in
the rhs.

Finally,  you  look  through  the  handbook  for  formulas  (eg.,
trigonometric  identities  or  algebraic  manipulation)  that
can be used to change the answer further.

This depiction provides an excellent description of the WL
evaluation process.

However,  the  application of  the  term  rewriting process  to
a  WL  expression  requires  a  bit  more  discussion  because  a
WL  expression  consists  of  parts,  a  head  and  zero  or  more
arguments which are themselves expressions.

expr@expr1, expr2, …, exprnD
It is therefore necessary to understand the order in which
the  various  parts  of  an  expression  are  evaluated  by  term
rewriting.

The  implementation of  the  evaluation procedure is  (with  a
few exceptions) straightforward:

1.  If  the  expression  is  a  number  or  a  string,  it  isn’t
changed.
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1.  If  the  expression  is  a  number  or  a  string,  it  isn’t
changed.

2. If the expression is a symbol, it is rewritten if there
is an applicable rewrite rule in the global rule base; oth-
erwise, it is unchanged.

3.  If  the  expression  is  not  a  number,  string  or  symbol,
its parts are evaluated in a specific order:

a. The head of the expression is evaluated.

b. The arguments of the expression are evaluated from left
to  right  in  order.  An  exception  to  this  occurs  when  the
head  is  a  symbol  with  a  hold  attribute  (eg.,  HoldFirst,
HoldRest,  or  HoldAll),  so  that  some  of  its  arguments  are
left  in  their  unevaluated  forms  (unless  they,  in  turn,
have  the  head  Evaluate).  For  example,  the  Set  or  SetDe�
layed function which we will discuss in a moment.

4. After the head and arguments of an expression are each
completely evaluated, the expression consisting of the eval-
uated head and arguments is rewritten, after making any nec-
essary  changes  to  the  arguments  based  on  the  Attributes
(such as Flat, Listable, Orderless) of the head, if there
is an applicable rewrite rule in the global rule base.

5.  After  carrying  out  the  previous  steps,  the  resulting
expression  is  evaluated  in  the  same  way  and  then  the
result  of  that  evaluation  is  evaluated,  and  so  on  until
there are no more applicable rewrite rules.

The details of the term-rewriting process in steps 2 and 4
are as follows:

a. part of an expression is pattern-matched by the lhs of
a rewrite rule

b.  the  values  which  match  labelled  blanks  in  the  pattern
are  substituted  into  the  rhs  of  the  rewrite  rule  and
evaluated.

c.  the  pattern-matched part  of  the  expression is  replaced
with the evaluated result.

With  this  understanding  of  the  evaluation  procedure,  we
can now understand what happened when we entered
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In[21]:= Apply@List, 1 + 2 + 3D
Out[21]= 6

In evaluating this expression, the argument 1+2+3 was evalu-
ated before the Apply function was employed.

à Controlling the evaluation

We  should  point  out  that  the  user  can  (to  some  extent)
wrest control of the evaluation process from WL and either
force or prevent evaluation. We won’t go into the details
of  doing  this  but  we  can  indicate  functions  that  can  be
used for this purpose: Hold, HoldAll, HoldFirst, HoldRest,
HoldForm,  HeldPart,  ReleaseHold,  Evaluate,  Unevaluated,
and Literal.

In order to turn the sum into a list, it is necessary to
prevent  the  argument  Plus[1,2,3]  from  being  prematurely
evaluated before the symbol Plus is replaced with the sym-
bol List.

In[22]:= Apply@List, Unevaluated@1 + 2 + 3DD
Out[22]= 81, 2, 3<
Since term rewriting is based on pattern-matching, we need
to  look  at  the  various  sorts  of  patterns  that  WL
recognizes.

Patterns

à Blanks

Patterns  are  defined  syntactically,  ie.,  by  the  internal
representation of an expression as given using FullForm.

In general, an expression will be matched by several pat-
terns, of differing specificity. For example, constructing
as  many  patterns  to  match  x^2,  in  order  of  increasing
generality.

1. x raised to the power of two.

2. x raised to the power of a number.
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3. x raised to the power of something.

4. a symbol raised to the power of two.

5. a symbol raised to the power of a number.

6. a symbol raised to the power of something.

7. something raised to the power of two.

8. something raised to the power of a number.

9. something raised to the power of something.

10. something.

The  term  ‘something’  used  above  can  be  replaced  by  the
term  ‘an  expression’,  so  that  for  example,  the  last  case
says that x^2 pattern-matches an expression (which is true
since x^2 is an expression). To be precise, we need a nota-
tion to designate a pattern that has the form of an expres-
sion.  We  also  need  to  designate  a  pattern  that  has  the
form of a sequence of expressions, consecutive expressions
separated by commas.

Patterns are defined in WL as expressions that may contain
blanks. A pattern may contain a single (_) blank, a double
(__) blank, or a triple (___) blank (the differences will
be discussed shortly).

Note: A pattern can be labelled (given a name) by preced-
ing  the  blank(s)  by  a  symbol,  eg.,  name_  or  name__  or
name___.  The  labelled  pattern  is  matched  by  exactly  the
same  expression  that  matches  its  unlabeled  counterpart
(pattern labeling, as we will see, is used to create dummy
variables).

Note: A blank can be followed by a symbol, eg., _h or __h
or ___h, in which case, an expression must have the head h
to  match  the  pattern  (this  is  used  to  perform  type
checking).

à Pattern-matching an expression

We can use the MatchQ function to determine if a particu-
lar pattern matches an expression or a sequence of expres-
sions. The most specific pattern-match is between an expres-
sion and itself.
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We  can  use  the  MatchQ  function  to  determine  if  a  particu-
lar pattern matches an expression or a sequence of expres-
sions. The most specific pattern-match is between an expres-
sion and itself.

In[23]:= MatchQ@x^2, x^2D
Out[23]= True

To make more general (less specific) pattern-matches, a sin-
gle  blank  is  used  to  represent  an  individual  expression,
which can be any data object.

We’ll  work  with  x^2  to  demonstrate  the  use  of  the  Blank
function  in  pattern-matching.  In  the  following  examples
(which  are  arbitrarily chosen  from  the  many  possible  pat-
tern  matches),  we’ll  first  state  the  pattern-match  and
then check it using MatchQ.

x^2 pattern matches ‘an expression’.

In[24]:= MatchQ@x^2, _D
Out[24]= True

x^2  pattern-matches  ‘x  raised  to  the  power  of  an
expression’.

In[25]:= MatchQ@x^2, x^_D
Out[25]= True

x^2 pattern-matches ‘x raised to the power of an integer’
(to  put  it  more  formally,  ‘x  raised  to  the  power  of  an
expression whose head is Integer’).

In[26]:= MatchQ@x^2, x^_IntegerD
Out[26]= True

x^2 pattern-matches ‘an expression whose head is Power’.

In[27]:= MatchQ@x^2, _PowerD
Out[27]= True

x^2  pattern-matches ‘an  expression whose  head  is  a  symbol
and which is raised to the power 2’.
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In[28]:= MatchQ@x^2, _Symbol^2D
Out[28]= True

x^2 pattern-matches ‘an expression raised to the power 2’.

In[29]:= MatchQ@x^2, _^2D
Out[29]= True

x^2  pattern-matches ‘an  expression whose  head  is  a  symbol
and  which  is  raised  to  the  power  of  an  expression  whose
head  is  an  integer’  (or  stated  less  formally,  ‘a  symbol
raised to the power of an integer’).

In[30]:= MatchQ@x^2, _Symbol^_IntegerD
Out[30]= True

x^2  pattern-matches ‘an  expression raised  to  the  power  of
an expression’.

In[31]:= MatchQ@x^2, _^_D
Out[31]= True

x^2  pattern-matches  ‘x  raised  to  the  power  of  an  expres-
sion’ (the label y does not affect the pattern-match).

In[32]:= MatchQ@x^2, x^y_D
Out[32]= True

As a final example, we look at

In[33]:= MatchQ@5^2, _^_D
Out[33]= False

à Pattern-matching a sequence of one or more expressions

A sequence consists of a number of expression separated by
commas.  A  double  blank  represents  a  sequence  of  one  or
more  expressions  and  __h  represents  a  sequence  of  one  or
more expressions, each of which has head h.

For example a sequence in a list pattern-matches a double
blank  (note:  we  are  pattern-matching  the  sequence  in  the
list, not the list itself)
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For example a sequence in a list pattern-matches a double
blank  (note:  we  are  pattern-matching  the  sequence  in  the
list, not the list itself)

In[34]:= MatchQ@8a, b, c<, 8__<D
Out[34]= True

but  the  arguments  of  an  empty  list  (which  has  no  argu-
ments) do not pattern-match a double blank.

In[35]:= MatchQ@8<, 8__<D
Out[35]= False

An  expression that  pattern-matches a  blank  will  also  pat-
tern match a double blank. For example,

In[36]:= MatchQ@x^2, __D
Out[36]= True

à Pattern-matching a sequence of zero or more expressions

A triple blank represents a sequence of zero or more expres-
sions and ___h represents a sequence of zero or more expres-
sions,  each  of  which  has  the  head  h.  For  example,  the
triple blank pattern-matches the empty list.

In[37]:= MatchQ@8<, 8___<D
Out[37]= True

An  expression that  pattern-matches a  blank  and  a  sequence
that  pattern-matches  a  double  blank  pattern  both  pattern-
match a triple blank pattern.

In[38]:= MatchQ@x^2, ___D
Out[38]= True

It is important to be aware that for the purposes of pat-
tern-matching,  a  sequence  is  not  an  expression.  For
example,

In[39]:= MatchQ@8a, b, c<, 8_<D
Out[39]= False

à Alternative pattern-matching

We can make a pattern-match less restrictive by specifying
alternative patterns that can be matched.
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We can make a pattern-match less restrictive by specifying
alternative patterns that can be matched.

In[40]:= MatchQ@x^2, 8_< _^2D
Out[40]= True

à Conditional pattern-matching

We can make a pattern-match more restrictive by making it
contingent upon meeting certain conditions. (Note: satisfy-
ing  these  conditions  will  be  a  necessary,  but  not  suffi-
cient, requirement for a successful pattern-match.)

If  the  blanks  of  a  pattern  are  followed  by  ?test,  where
test  is  a  predicate  (ie.,  a  function  that  returns  a  True
or  False),  then  a  pattern-match  is  only  possible  if  test
returns  True  when  applied  to  the  entire  expression. ?test
is  used  with  built-in  predicate functions and  with  anony-
mous predicate functions.

In[41]:= MatchQ@x^2, _^_?OddQD
Out[41]= False

In[42]:= MatchQ@2, _?Hð > 3 &LD
Out[42]= False

In[43]:= MatchQ@2, _?Hð > 1.5 &LD
Out[43]= True

In[44]:= MatchQ@2, _Integer?Hð > 3 &LD
Out[44]= False

If part of a labeled pattern is followed by /; condition,
where  condition  contains  labels  appearing  in  the  pattern,
then a pattern-match is possible only if condition returns
True when applied to the labelled parts of an expression.
For example,

In[45]:= MatchQ@x^2, _^y_D
Out[45]= True
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In[46]:= MatchQ@a^b, _^y_ �; Head@yD � SymbolD
Out[46]= True

With  this  understanding  of  how  pattern-matching  works  in
WL,  we  can  discuss  how  to  create  our  own  rewrite  rules
which can be used in term rewriting.

Rewrite rules

à Built-in functions

WL  provides  many  built-in  functions  that  can  be  used  for
term rewriting. These rules are located in the global rule
base whenever WL is running. Functions defined in a pack-
age are also placed in the global rule base during the ses-
sion  in  which  the  package  is  loaded.  Functions  in  the
global  rule  base  are  always  available  for  term  rewriting
and they are always used whenever applicable.

à User-defined functions

In  addition  to  the  built-in  rewrite  rules,  user-defined
rewrite rules can be created and placed in the global rule
base  where  they  are  always  available,  and  always  used,
when  applicable  for  the  duration  of  the  ongoing  session.
However,  they  are  not  automatically  preserved  beyond  the
session in which they are created.

There  are  basically  two  ways  to  create  a  user-defined
rewrite  rule:  with  the  Set  function  and  with  the  SetDe�
layed function.

à Declaring a value using the Set (=) function

A value declaration is essentially a nickname for a value
(eg., for a list or number) which can be used in place of
the value. It is written using Set[lhs, rhs] or, more com-
monly, as

lhs = rhs

The  lhs  starts  with  a  name,  starting  with  a  letter  fol-
lowed by letters and/or numbers (with no spaces). The rhs
is  either  an  expression or  a  compound  expression enclosed
in parentheses.
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The  lhs  starts  with  a  name,  starting  with  a  letter  fol-
lowed by letters and/or numbers (with no spaces). The rhs
is  either  an  expression or  a  compound  expression enclosed
in parentheses.

Note:  the  name  on  the  lhs  may  be  followed  by  a  set  of
square  brackets  containing  a  sequence  of  patterns  or
labelled patterns, and the rhs may contain the labels, with-
out the blanks.

For  example,  consider  the  following  two  simple  Set
functions

In[47]:= a = 8-1, 1<
Out[47]= 8-1, 1<
In[48]:= rand1 = RandomInteger@81, 2<D
Out[48]= 2

Notice  that  when  a  Set  function  is  entered,  a  value  is
returned  (unless  it  is  followed  by  a  semi-colon).  If  we
look  into  the  global  rule  base  to  see  what  rewrite  rules
have been created when a and rand1 were entered

In[49]:= ? a

Global`a

a = 8-1, 1<
In[50]:= ? rand1

Global`rand1

rand1 = 2

we  find  that  the  rewrite  rule  associated  with  a  is  the
same as the Set function we entered, but the rewrite rule
associated  with  rand1  differs  from  the  corresponding  Set
function. The reason for this is that when a Set function
is  entered  into  the  global  rule  base,  its  lhs  is  left
unevaluated  while  its  rhs  is  evaluated  and  when  the
rewrite  rule  that  has  been  created  is  used,  the  unevalu-
ated  lhs  and  the  evaluated  rhs  of  the  function  are  used.
This property is known as the HoldFirst attribute.

In[51]:= Attributes@SetD
Out[51]= 8HoldFirst, Protected, SequenceHold<
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In[52]:= ? HoldFirst

HoldFirst is an attribute which specifies that
the first argument to a function is to be
maintained in an unevaluated form. More…

The  reason  for  the  Set  function  having  the  HoldFirst
attribute  is  easily  demonstrated  by  seeing  what  happens
when Set does not have this attribute.

In[53]:= Set@a, 6D
Out[53]= 6

In[54]:= a

Out[54]= 6

In[55]:= ClearAttributes@Set, HoldFirstD
In[55]:= Attributes@SetD
Out[55]= 8Protected, SequenceHold<
In[55]:= Set@a, 7D

Set::setraw : Cannot assign to raw object 6. More…

Out[55]= 7

In[55]:= SetAttributes@Set, HoldFirstD
In[56]:= Attributes@SetD
Out[56]= 8HoldFirst, Protected, SequenceHold<
When the rhs is a compound expression enclosed in parenthe-
ses, the expressions of the rhs are evaluated in sequence
and the rhs of the resulting rewrite rule is the result of
the final evaluation. For example,

In[57]:= rand2 = Hb = 8-1, 1<; RandomReal@bDL
Out[57]= -0.642186

In[58]:= ? rand2

Global`rand2

rand2 = -0.642186

What  happened  here  is  that  the  b  was  first  evaluated  to
give  {-1,1}  and  this  value  was  then  used  to  evaluate  the
random number function.
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What  happened  here  is  that  the  b  was  first  evaluated  to
give  {-1,1}  and  this  value  was  then  used  to  evaluate  the
random number function.

The order of expressions on the rhs is important. An expres-
sion  on  the  rhs  must  appear  before  it  is  used  in  another
expression on the rhs. For example,

In[59]:= rand3 = HRandomReal@cD; c = 8-1, 1<L
Random::randn :
Range specification c in Random@Real, cD is

not a valid number or pair of numbers. More…

Out[59]= 8-1, 1<
Note that even though an error message was generated when
the first expression in the compound expression was evalu-
ated, the overall evaluation of the compound expression con-
tinued  by  evaluated  the  second  expression  and  its  value
was then entered into the global rule base.

In[60]:= ? rand3

Global`rand3

rand3 = 8-1, 1<
In[61]:= ? c

Global`c

c = 8-1, 1<
When  a  Set  function  is  entered,  both  it  and  any  Set  or
SetDelayed  functions  on  the  rhs  create  rewrite  rules  in
the global rule base.

In[62]:= ? b

Global`b

b = 8-1, 1<
In[63]:= ? c

Global`c

c = 8-1, 1<
After  a  value  has  been  declared  by  entering  a  Set  func-
tion, the appearance of the value’s name during an evalua-
tion  causes  the  value  itself  to  be  substituted  in  (which
is why we say that it acts like a nickname). For example,
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After  a  value  has  been  declared  by  entering  a  Set  func-
tion, the appearance of the value’s name during an evalua-
tion  causes  the  value  itself  to  be  substituted  in  (which
is why we say that it acts like a nickname). For example,

In[64]:= Abs@rand2D
Out[64]= 0.642186

What  happened  here  was  that  the  rewrite  rule  associated
with rand2 in the global rule base was used as an argument
to the Abs function.

The lhs of a rewrite rule can only be associated with one
value at a time. When a Set function is entered, the result-
ing  rewrite  rule  ‘overwrites’  any  previous  rewrite  rule
with the identical lhs. For example,

In[65]:= rand4 = RandomInteger@81, 2<D;
In[66]:= ? rand4

Global`rand4

rand4 = 2

In[67]:= rand4 = RandomInteger@81, 2<D;
In[68]:= ? rand4

Global`rand4

rand4 = 1

What we see is that the value of rand4 was 2 after rand4
was  first  entered  and  this  value  was  then  changed  to  1
after rand4 was re-entered.

While  the  lhs  of  a  rewrite  rule  can  only  be  associated
with  one  value  at  a  time,  a  value  can  be  associated  with
several names, simultaneously. We made use of this earlier
when we defined both b and c as {-1,1}.

Finally,  user-defined  rewrite  rules  can  be  removed  from
the  global  rule  base  using  either  the  Clear  or  Remove
function.

In[69]:= Clear@bD
In[70]:= ? b

Global`b
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In[71]:= Remove@cD
In[72]:= ? c

Information::notfound : Symbol c not found. More…

à Defining a function using the SetDelayed (:=) function

Function definitions (ie., programs) are written as 

name@arg1_, arg2_, …, argn_D := Hexpr1; expr2; … exprmL

The lhs starts with a name. The name is followed by a set
of  square  brackets  containing a  sequence  of  labelled  pat-
terns,  which  are  symbols  ending  with  one  or  more  under-
scores (ie., blanks). The rhs is either an expression or a
compound  expression  enclosed  in  parentheses,  containing
the labels on the lhs (without the blanks).

For example, consider the function definition

f@x_D := Random@Real, 80, x<D

We’ll enter this program

In[73]:= f@x_D := RandomReal@80, x<D
The  first  thing  we  notice  is  that,  in  contrast  to  a  Set
function,  nothing  is  returned  when  a  SetDelayed  function
is entered. If we query the rule base,

In[74]:= ? f

Global`f

f@x_D := Random@Real, 80, x<D
we  see  that  a  rewrite  rule  associated  with  f  has  been
placed  in  the  global  rule  base  that  is  identical  to  the
SetDelayed  function. The  reason  is  that  when  a  SetDelayed
function  is  entered  both  its  lhs  and  the  rhs  are  left
unevaluated.  This  property  is  known  as  the  HoldAll
attribute.

In[75]:= Attributes@SetDelayedD
Out[75]= 8HoldAll, Protected, SequenceHold<
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In[76]:= ? HoldAll

HoldAll is an attribute which specifies that
all arguments to a function are to be
maintained in an unevaluated form. More…

A  user-defined  function  is  called  in  the  same  way  as  a
built-in function is called, by entering its name with spe-
cific argument value(s).

In[77]:= f@8D
Out[77]= 0.791243

Each time the lhs of a SetDelayed rewrite rule is entered
with specific argument values, the rhs of the rule is evalu-
ated using these values, and the result is returned.

In[78]:= f@8D
Out[78]= 3.20796

Note: In contrast to the := function, the = function only
evaluates the rhs when it is first entered and thereafter,
that  same  evaluated  rhs  is  returned  each  time  the  lhs  is
entered  with  specific  argument  values.  For  example,
consider

In[79]:= f@x_D = x;

In[80]:= ? f

Global`f

f@x_D = x

In[81]:= f@9D
Out[81]= 9

In[82]:= f@7D
Out[82]= 7

In[83]:= ? f

Global`f

f@x_D = x

The definition of f above seems to work fine. However, the
problem  arises  when  the  rhs  of  the  Set  function  has
already  had  a  value  assigned  to  it  prior  to  the  entry  of
the Set function.
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The definition of f above seems to work fine. However, the
problem  arises  when  the  rhs  of  the  Set  function  has
already  had  a  value  assigned  to  it  prior  to  the  entry  of
the Set function.

In[84]:= y = 7;

In[85]:= g@y_D = y;

In[86]:= ? g

Global`g

g@y_D = 7

In[87]:= g@3D
Out[87]= 7

This  problem  does  not  arise  when  the  SetDelayed  function
is used.

In[88]:= z = 8;

In[89]:= g@z_D := z

In[90]:= ? g

Global`g

g@z_D := z

In[91]:= g@2D
Out[91]= 2

This property of fresh evaluation of both the lhs and rhs
of  the  :=  function  with  each  use,  is  why  the  :=  function
is used to write programs rather than the = function.

When  the  rhs  of  the  SetDelayed  function  is  a  compound
expression  enclosed  in  parentheses,  no  rewrite  rules  are
created  from  the  auxiliary  functions  on  the  rhs  when  the
function is entered (this is because the rhs is not evalu-
ated).  When  the  program  is  run  (or  equivalently,  a  user-
defined function is called) for the first time, all of the
auxiliary  functions  are  then  placed  in  the  global  rule
base.

In[92]:= g@x_D := Hd = 2; x + dL
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In[93]:= ? g

Global`g

g@x_D := Hd = 2; x + dL
In[94]:= ? d

Global`d

In[95]:= g@3D
Out[95]= 5

In[96]:= ? d

Global`d

d = 2

à Placing constraints on a rewrite rule

The  use  of  a  rewrite  rule  can  be  restricted  by  attaching
constraints  on  either  the  lhs  or  the  rhs  of  a  SetDelayed
rule.  Conditional pattern-matching with  _h  or  with  _?  and
_/; can be attached to the dummy variable arguments on the
lhs. Also, /; can be placed on the rhs, immediately after
the (compound) expression.

In[97]:= s@x_?EvenQD := N@Sqrt@xDD
In[98]:= s@6D
Out[98]= 2.44949

In[99]:= s@5D
Out[99]= s@5D

à Localizing names in a rewrite rule

As  we  have  pointed  out,  when  the  lhs  of  a  Set  or  SetDe�
layed function is evaluated (which occurs when a Set func-
tion  is  first  entered  and  when  a  SetDelayed  rewrite  rule
is  first  called),  rewrite  rules  for  all  of  its  auxiliary
functions  are  placed  in  the  global  rule  base.  This  can
cause  a  problem  if  a  name  being  used  in  a  program  con-
flicts with the use of the name elsewhere.

We can prevent a name clash by ‘insulating’ the auxiliary
functions  within  the  rewrite  rule  so  that  they  are  not
placed in the global rule base as separate rewrite rules;
they will only ‘exist’ while being used in the evaluation
of the rule.
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We can prevent a name clash by ‘insulating’ the auxiliary
functions  within  the  rewrite  rule  so  that  they  are  not
placed in the global rule base as separate rewrite rules;
they will only ‘exist’ while being used in the evaluation
of the rule.

This is usually done using the Module function.

lhs := Module@8name1 = val1, name2, …<, rhsD
For example,

In[100]:=

t@y_D := Module@8m<, m = 2; y + mD
In[101]:=

? m

Global`m
In[102]:=

t@3D
Out[102]=

5

In[103]:=

? m

Global`m

à Ordering rewrite rules

When the lhs of more than one built-in and/or user-defined
rewrite  rule  is  found  to  pattern-match  an  expression
(which  occurs  when  the  lhs’s  only  differ  in  their  speci-
ficity), the choice of which rule to use is determined by
the order of precedence:

A user-defined rule is used before a built-in rule.

A more specific rule is used before a more general rule (a
rule  is  more  specific,  the  fewer  expression  it  pattern-
matches).

So, for example, if we have two rewrite rules whose lhs’s
have the same name but whose labelled patterns have differ-
ent specificity, both rules will appear in the global rule
base (since their lhs’s are not identical) and the more spe-
cific rule will be used in preference to the more general
rule. For example, if we enter both of the following func-
tion definitions
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So, for example, if we have two rewrite rules whose lhs’s
have the same name but whose labelled patterns have differ-
ent specificity, both rules will appear in the global rule
base (since their lhs’s are not identical) and the more spe-
cific rule will be used in preference to the more general
rule. For example, if we enter both of the following func-
tion definitions

In[104]:=

f@x_D := x ^2
f@x_IntegerD := x ^3

and then query the rule base,

In[106]:=

? f

Global`f

f@x_IntegerD := x3

f@x_D := x2

Now, entering f with a real-valued argument

In[107]:=

f@6.D
Out[107]=

36.

returns a different result from entering f with an integer-
valued argument.

In[108]:=

f@6D
Out[108]=

216

This  occurs  because  while  an  integer-valued  argument  pat-
tern-matches  both  x_  and  x_Integer  (and  hence  pattern-
matches both of the f rewrite rules), the second rule is a
more specific pattern-match for the integer value 6.

Note:  If  WL  cannot  deduce  which  rule  is  more  general,  it
uses  the  rules  in  the  order  in  which  they  appear  in  the
global rule base.

The ordering of rewrite rules makes it possible for us to
create sets of rewrite rules with the same name that give
different  results,  depending  on  the  arguments  used.  This
is key to writing rule-based programs.

Note: It is necessary to be careful about the labelling of
patterns in rewrite rules because if two or more rules are
identical  except  for  the  labelling,  these  rules  will  all
be placed in the global rule base and it may not be obvi-
ous which rule will be used. For example,
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Note: It is necessary to be careful about the labelling of
patterns in rewrite rules because if two or more rules are
identical  except  for  the  labelling,  these  rules  will  all
be placed in the global rule base and it may not be obvi-
ous which rule will be used. For example,

In[109]:=

w@x_D := x ^4

In[110]:=

w@_D := RandomReal@D
In[111]:=

w@2D
Out[111]=

16

In[112]:=

? w

Global`w

w@x_D := x4

w@_D := Random@D

Transformation rules

There  are  times  when  we  want  a  rewrite  rule  to  only  be
applied  to  (ie.,  used  inside)  a  specific  expression,
rather than being placed in the global rule base where it
will  be  used  whenever  it  pattern-matches  an  expression.
For example, the ‘temporary’ substitution of a value for a
name  in  an  expression  may  be  preferable  to  the  permanent
assignment  of  the  name  to  the  value  via  a  Set  function.
When this is the case, the ReplaceAll function can be used
together  with  a  Rule  or  RuleDelayed  function  to  create  a
transformation  (or  local  rewrite)  rule  which  is  placed
directly after the expression to which it is to be applied.

à Using the Rule (->) function

A Rule function is attached to an expression. It is written

expression �. lhs ® rhs

The lhs can be written using symbols, numbers or labelled
patterns.

When  an  expression  with  an  attached  Rule  transformation
rule is entered, the expression itself is evaluated first.
Then, both the lhs and the rhs of the Rule transformation
rule are evaluated. Finally, the fully evaluated transforma-
tion rule is used in the evaluated expression. For example
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When  an  expression  with  an  attached  Rule  transformation
rule is entered, the expression itself is evaluated first.
Then, both the lhs and the rhs of the Rule transformation
rule are evaluated. Finally, the fully evaluated transforma-
tion rule is used in the evaluated expression. For example

In[113]:=

Clear@aD
In[114]:=

Table@1, 84<D �. RandomInteger@80, 1<D ® a
Out[114]=

8a, a, a, a<
In[115]:=

Table@1, 84<D �. RandomInteger@80, 1<D ® a
Out[115]=

81, 1, 1, 1<
In[116]:=

Table@1, 84<D �.
RandomInteger@80, 1<D ® 8a, b<PRandomInteger@81, 2<DT

Out[116]=

8b, b, b, b<
In[117]:=

Table@1, 84<D �.
RandomInteger@80, 1<D ® 8a, b<PRandomInteger@81, 2<DT

Out[117]=

81, 1, 1, 1<
In[118]:=

Table@1, 84<D �.
RandomInteger@80, 1<D ® 8a, b<PRandomInteger@81, 2<DT

Out[118]=

8a, a, a, a<
We can attach a list of rules to an expression using 

expression �. 8lhs1 ® rhs1, lhs2 ® rhs2, …<
For example,

In[119]:=

8a, b, c< �. 8c ® b, b ® a<
Out[119]=

8a, a, b<
Multiple  transformation  rules  are  used  in  parallel.  The
rules  are  applied  in  order  so  that  a  later  rule  in  the
list  is  used  only  if  all  the  earlier  rules  do  not  match,
and only one transformation rule at most, is applied to a
given  part  of  an  expression,  and  no  matching  rules  are
used thereafter, as the above example illustrates.
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Multiple  transformation  rules  are  used  in  parallel.  The
rules  are  applied  in  order  so  that  a  later  rule  in  the
list  is  used  only  if  all  the  earlier  rules  do  not  match,
and only one transformation rule at most, is applied to a
given  part  of  an  expression,  and  no  matching  rules  are
used thereafter, as the above example illustrates.

à Using the RuleDelayed (:>) function

A RuleDelayed function is attached to an expression. It is
written

expression �. lhs ¦ rhs

or, for a list of rules

expression �. 8lhs1 ¦ rhs2, lhs2 ¦ rhs2, …<
The lhs can be written using symbols, numbers or labelled
patterns.

When  an  expression  with  an  attached  rule  is  entered,  the
expression itself is evaluated first. Then, the lhs of the
RuleDelayed  transformation  rule  is  evaluated  but  the  rhs
is not evaluated. Finally, the partially evaluated transfor-
mation rule is used in the evaluated expression (the uneval-
uated rhs will be evaluated subsequently).

For example,

In[120]:=

Table@1, 84<D �.
RandomInteger@80, 1<D ¦ 8a, b<PRandomInteger@81, 2<DT

Out[120]=

8a, b, b, b<
In[121]:=

Table@1, 84<D �.
RandomInteger@80, 1<D ¦ 8a, b<PRandomInteger@81, 2<DT

Out[121]=

8b, a, b, a<
In[122]:=

Table@1, 84<D �.
RandomInteger@80, 1<D ¦ 8a, b<PRandomInteger@81, 2<DT

Out[122]=

81, 1, 1, 1<
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à Placing constraints on a transformation rule

By placing /; condition immediately after a RuleDelayed :>
transformation rule, its use can be restricted in the same
way  that  using  /;  condition  can  be  used  to  restrict  the
use of a SetDelayed rewrite rule.

Note:  Placing  a  /;  condition  after  a  Rule  ->  transforma-
tion rule serves no purpose since the rhs of the rule has
already been evaluated before it is used and hence the con-
ditional restriction is ignored.

à Applying a transformation rule repeatedly

To apply one or more transformation rules repeatedly to an
expression  until  the  expression  no  longer  changes,  the
ReplaceRepeated function is used. For example,

In[123]:=

8a, b, c< ��. 8c ® b, b ® a<
Out[123]=

8a, a, a<
Note: In using //. with a list of transformation rules, it
is  important  to  keep  in  mind  the  order  of  application  of
the  rules.  The  transformation  rules  are  not  repeatedly
applied  in  order.  Rather,  each  rule,  in  turn,  is  applied
repeatedly.

rule evaluated unevaluated

lhs = rhs rhs lhs
lhs := rhs lhs, rhs
expr �. lhs ® rhs expr, lhs, rhs
expr �. lhs ¦ rhs expr, lhs rhs

Functional programming style

WL  works  with  built-in  and  user-defined functions in  ways
which  are  characteristic  of  the  ‘functional’  style  of
programming.

à Nested function calls

Consider the following consecutive computations:
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In[124]:=

Tan@4.0D
Out[124]=

1.15782

In[125]:=

Sin@%D
Out[125]=

0.915931

In[126]:=

Cos@%D
Out[126]=

0.609053

We can combine these function calls into a nested function
call.

In[127]:=

Cos@Sin@Tan@4.0DDD
Out[127]=

0.609053

Notice that the result of one function call is immediately
fed into another function without having to first name (or
declare) the result.

A nested function call is the application of a function to
the  result  of  applying  another  function  to  some  argument
value. In applying functions successively, it is not neces-
sary  to  declare  the  value  of  the  result  of  one  function
call prior to using it as an argument in another function
call.

We can illustrate the use of nested function calls using a
deck of playing cards:

In[128]:=

Range@2, 10D
Out[128]=

82, 3, 4, 5, 6, 7, 8, 9, 10<
In[129]:=

Join@%, 8J, Q, K, A<D
Out[129]=

82, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A<
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In[130]:=

Outer@List, 8§, ¨, ©, ª<, %D
Out[130]=

888§, 2<, 8§, 3<, 8§, 4<, 8§, 5<, 8§, 6<, 8§, 7<, 8§, 8<,
8§, 9<, 8§, 10<, 8§, J<, 8§, Q<, 8§, K<, 8§, A<<,

88¨, 2<, 8¨, 3<, 8¨, 4<, 8¨, 5<, 8¨, 6<, 8¨, 7<, 8¨, 8<,
8¨, 9<, 8¨, 10<, 8¨, J<, 8¨, Q<, 8¨, K<, 8¨, A<<,

88©, 2<, 8©, 3<, 8©, 4<, 8©, 5<, 8©, 6<, 8©, 7<, 8©, 8<,
8©, 9<, 8©, 10<, 8©, J<, 8©, Q<, 8©, K<, 8©, A<<,

88ª, 2<, 8ª, 3<, 8ª, 4<, 8ª, 5<, 8ª, 6<, 8ª, 7<, 8ª, 8<,
8ª, 9<, 8ª, 10<, 8ª, J<, 8ª, Q<, 8ª, K<, 8ª, A<<<

In[131]:=

Flatten@%, 1D
Out[131]=

88§, 2<, 8§, 3<, 8§, 4<, 8§, 5<, 8§, 6<, 8§, 7<, 8§, 8<,
8§, 9<, 8§, 10<, 8§, J<, 8§, Q<, 8§, K<, 8§, A<,
8¨, 2<, 8¨, 3<, 8¨, 4<, 8¨, 5<, 8¨, 6<, 8¨, 7<, 8¨, 8<,
8¨, 9<, 8¨, 10<, 8¨, J<, 8¨, Q<, 8¨, K<, 8¨, A<,
8©, 2<, 8©, 3<, 8©, 4<, 8©, 5<, 8©, 6<, 8©, 7<, 8©, 8<,
8©, 9<, 8©, 10<, 8©, J<, 8©, Q<, 8©, K<, 8©, A<,
8ª, 2<, 8ª, 3<, 8ª, 4<, 8ª, 5<, 8ª, 6<, 8ª, 7<, 8ª, 8<,
8ª, 9<, 8ª, 10<, 8ª, J<, 8ª, Q<, 8ª, K<, 8ª, A<<

Combining these operations, we can define cardDeck by com-
bining the operations above.

In[132]:=

cardDeck = Flatten@Outer@List, 8§, ¨, ©, ª<,
Join@Range@2, 10D, 8J, Q, K, A<DD, 1D

Out[132]=

88§, 2<, 8§, 3<, 8§, 4<, 8§, 5<, 8§, 6<, 8§, 7<, 8§, 8<,
8§, 9<, 8§, 10<, 8§, J<, 8§, Q<, 8§, K<, 8§, A<,
8¨, 2<, 8¨, 3<, 8¨, 4<, 8¨, 5<, 8¨, 6<, 8¨, 7<, 8¨, 8<,
8¨, 9<, 8¨, 10<, 8¨, J<, 8¨, Q<, 8¨, K<, 8¨, A<,
8©, 2<, 8©, 3<, 8©, 4<, 8©, 5<, 8©, 6<, 8©, 7<, 8©, 8<,
8©, 9<, 8©, 10<, 8©, J<, 8©, Q<, 8©, K<, 8©, A<,
8ª, 2<, 8ª, 3<, 8ª, 4<, 8ª, 5<, 8ª, 6<, 8ª, 7<, 8ª, 8<,
8ª, 9<, 8ª, 10<, 8ª, J<, 8ª, Q<, 8ª, K<, 8ª, A<<
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Shuffling a deck of cards

In[133]:=

Transpose@Sort@
Transpose@8RandomReal@80, 1<, 52D, cardDeck<DDDP2T

Out[133]=

88ª, 6<, 8ª, A<, 8©, 9<, 8©, 10<, 8¨, 6<, 8©, 7<,
8§, K<, 8¨, 4<, 8ª, 7<, 8§, 6<, 8§, 9<, 8©, A<, 8©, 3<,
8ª, 10<, 8ª, J<, 8¨, 2<, 8©, 2<, 8ª, 5<, 8§, J<,
8§, 4<, 8¨, A<, 8ª, K<, 8©, 5<, 8§, 3<, 8§, Q<, 8§, A<,
8©, 6<, 8©, Q<, 8ª, Q<, 8¨, 9<, 8§, 5<, 8ª, 3<, 8¨, J<,
8ª, 9<, 8©, 4<, 8ª, 4<, 8©, K<, 8§, 2<, 8¨, 10<,
8§, 10<, 8¨, Q<, 8¨, K<, 8¨, 7<, 8¨, 5<, 8§, 8<,
8¨, 3<, 8©, 8<, 8¨, 8<, 8ª, 8<, 8ª, 2<, 8§, 7<, 8©, J<<

Note: We can also shuffle a deck of cards using a transfor-
mation rule.

In[134]:=

Sort@Transpose@8RandomReal@80, 1<, 52D, cardDeck<DD �.
8_, y_< ¦ y

Out[134]=

88ª, K<, 8ª, 6<, 8¨, 4<, 8§, K<, 8¨, A<, 8©, Q<, 8ª, 4<,
8§, 7<, 8§, 3<, 8¨, 10<, 8ª, 10<, 8¨, 9<, 8§, 10<,
8¨, J<, 8ª, 7<, 8¨, 3<, 8§, J<, 8©, 2<, 8ª, 9<, 8©, A<,
8ª, A<, 8©, 6<, 8¨, 5<, 8©, 9<, 8ª, 3<, 8§, 2<, 8§, A<,
8¨, K<, 8ª, J<, 8¨, 2<, 8©, 8<, 8¨, 7<, 8ª, 5<,
8§, 6<, 8§, Q<, 8¨, 6<, 8©, 10<, 8¨, Q<, 8¨, 8<,
8ª, 2<, 8©, 3<, 8©, J<, 8ª, Q<, 8©, 7<, 8©, K<,
8ª, 8<, 8§, 8<, 8©, 5<, 8§, 4<, 8©, 4<, 8§, 5<, 8§, 9<<

à Anonymous functions

User-defined  anonymous  functions  can  be  created  and  used
‘on  the  spot’  without  being  named  or  entered  prior  to
being used.

An  anonymous  function  is  written  using  the  same  form  as
the rhs of a rewrite rule, replacing variable symbols with
#1, #2, … and enclosing the expression in parentheses fol-
lowed by an ampersand (&).

This  notation  can  be  demonstrated by  converting some  sim-
ple  user-defined  functions  into  anonymous  functions.  For
example, a rewrite rule that squared a value
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This  notation  can  be  demonstrated  by  converting  some  sim-
ple  user-defined  functions  into  anonymous  functions.  For
example, a rewrite rule that squared a value

In[135]:=

square@x_D := x ^2

can be written as an anonymous function and applied to an
argument, eg., 5, instantly.

In[136]:=

Hð ^2L &@5D
Out[136]=

25

An  example  of  an  anonymous  function  with  two  arguments,
raises  the  first  argument  to  the  power  of  the  second
argument.

In[137]:=

Hð1^ð2L &@5, 3D
Out[137]=

125

It  is  important to  distinguish between  an  anonymous func-
tion which takes multiple arguments and an anonymous func-
tion  which  takes  a  list  with  multiple  elements  as  its
argument.

For  example,  the  anonymous  function  just  given  doesn’t
work with an ordered pair argument.

In[138]:=

Hð1^ð2L &@82, 3<D
Function::slotn :

Slot number 2 in ð1ð2 & cannot be filled

from Ið1ð2 &M@82, 3<D. More…

Out[138]=

92ð2, 3ð2=

If  we  want  to  perform  the  operation  on  the  components  of
an ordered pair, the appropriate anonymous function is
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In[139]:=

Hð@@1DD^ð@@2DDL &@82, 3<D
Out[139]=

8

à Nesting anonymous functions

Anonymous functions can be nested, in which case it is some-
times necessary to use the form

Function@x, bodyD
Function@8x, y, …<, bodyD

rather than the #·& form, in order to distinguish between
the arguments of the different anonymous functions.

In[140]:=

Hð ^3L &@Hð + 2L &@3DD
Out[140]=

125

In[141]:=

Function@y, y ^3D@Function@x, x + 2D@3DD
Out[141]=

125

The two forms can also be used together.

In[142]:=

Function@y, y ^3D@Hð + 2L &@3DD
Out[142]=

125

In[143]:=

Hð ^3L &@Function@x, x + 2D@3DD
Out[143]=

125

Anonymous  functions  are  useful  for  making  predicates  and
arguments for higher-order functions.

Note:  An  anonymous  predicate  function  must  be  written
using the #·& form.

à Higher-order functions

A  higher-order  function  takes  a  function  as  an  argument
and/or  returns  a  function  as  a  result.  This  is  known  as
‘treating  functions  as  first-class  objects’.  We’ll  illus-
trate  the  use  of  some  of  the  most  important  built-in
higher order functions.
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A  higher-order  function  takes  a  function  as  an  argument
and/or  returns  a  function  as  a  result.  This  is  known  as
‘treating  functions  as  first-class  objects’.  We’ll  illus-
trate  the  use  of  some  of  the  most  important  built-in
higher order functions.

Apply
In[144]:=

? Apply

Apply@f, exprD or f �� expr replaces
the head of expr by f. Apply@f, expr,
levelspecD replaces heads in parts
of expr specified by levelspec. More…

We  have  already  seen  Apply  used  to  add  the  elements  of  a
linear  list.  Given  a  nested  list  argument,  Apply  can  be
used on the outer list or the interior lists. For example,
for a general function, f, and a nested list.

In[145]:=

Apply@f, 88a, b<, 8c, d<<D
Out[145]=

f@8a, b<, 8c, d<D
In[146]:=

Apply@f, 88a, b<, 8c, d<<, 2D
Out[146]=

8f@a, bD, f@c, dD<

Map
In[147]:=

? Map

Map@f, exprD or f �� expr applies f to
each element on the first level in expr.
Map@f, expr, levelspecD applies f to
parts of expr specified by levelspec. More…

For a general function, f, and a linear list.

In[148]:=

Map@f, 8a, b, c, d<D
Out[148]=

8f@aD, f@bD, f@cD, f@dD<
For a nested list structure, Map can be applied to either
the  outer  list  or  to  the  interior  lists,  or  to  both.  For
example, for a general function g:
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For a nested list structure, Map can be applied to either
the  outer  list  or  to  the  interior  lists,  or  to  both.  For
example, for a general function g:

In[149]:=

Map@g, 88a, b<, 8c, d<<D
Out[149]=

8g@8a, b<D, g@8c, d<D<
In[150]:=

Map@g, 88a, b<, 8c, d<<, 82<D
Out[150]=

88g@aD, g@bD<, 8g@cD, g@dD<<

MapThread
In[151]:=

? MapThread

MapThread@f, 88a1, a2, ... <, 8b1,
b2, ... <, ... <D gives 8f@a1, b1, ...
D, f@a2, b2, ... D, ... <. MapThread@f,
8expr1, expr2, ... <, nD applies f to
the parts of the expri at level n. More…

For a general function, g, and a nested list.

In[152]:=

MapThread@g, 88a, b, c<, 8x, y, z<<D
Out[152]=

8g@a, xD, g@b, yD, g@c, zD<
In[153]:=

MapThread@List, 88a, b, c<, 8x, y, z<<D
Out[153]=

88a, x<, 8b, y<, 8c, z<<
In[154]:=

MapThread@Plus, 88a, b, c<, 8x, y, z<<D
Out[154]=

8a + x, b + y, c + z<

NestList and Nest

Nest  performs  a  nested  function  call,  applying  the  same
function repeatedly.
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Nest  performs  a  nested  function  call,  applying  the  same
function repeatedly.

The  Nest  operation  applies  a  function  to  a  value,  then
applies  the  function  to  the  result,  and  then  applies  the
function to that result and then applies… and so on a speci-
fied number of times.

In[155]:=

? NestList

NestList@f, expr, nD gives a list of the results of
applying f to expr 0 through n times. More…

In[156]:=

80.7, Sin@0.7D, Sin@Sin@0.7DD, Sin@Sin@Sin@0.7DDD<
Out[156]=

80.7, 0.644218, 0.600573, 0.565115<
In[157]:=

NestList@Sin, 0.7, 3D
Out[157]=

80.7, 0.644218, 0.600573, 0.565115<
If  we  are  only  interested  in  the  final  result  of  the
NestList  operation,  we  can  use  the  Nest  function  which
does not return the intermediate results.

In[158]:=

? Nest

Nest@f, expr, nD gives an expression
with f applied n times to expr. More…

In[159]:=

Nest@Sin, 0.7, 3D
Out[159]=

0.565115

FixedPointList and FixedPoint

The Nest operation does not stop until it has completed a
specified  number  of  function  applications.  There  is
another  function  which  performs  the  Nest  operation,  stop-
ping  after  whichever  of  the  following  occurs  first:  (a)
there  have  been  a  specified  number  of  function  applica-
tions,  (b)  the  result  stops  changing,  or  (c)  some  predi-
cate condition is met.
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The Nest operation does not stop until it has completed a
specified  number  of  function  applications.  There  is
another  function  which  performs  the  Nest  operation,  stop-
ping  after  whichever  of  the  following  occurs  first:  (a)
there  have  been  a  specified  number  of  function  applica-
tions,  (b)  the  result  stops  changing,  or  (c)  some  predi-
cate condition is met.

In[160]:=

? FixedPointList

FixedPointList@f, exprD generates a list giving the
results of applying f repeatedly, starting with
expr, until the results no longer change. More…

In[161]:=

? FixedPoint

FixedPoint@f, exprD starts with
expr, then applies f repeatedly until
the result no longer changes. More…

As an example,

In[162]:=

FixedPointList@Sin, 0.7, 5, SameTest ® Hð2 < 0.65 &LD
Out[162]=

80.7, 0.644218<
In[163]:=

FixedPointList@Sin, 0.7,
5, SameTest ® HHð1 - ð2L < 0.045 &LD

Out[163]=

80.7, 0.644218, 0.600573<
Note: In these examples, #1 refers to the next-to-last ele-
ment in the list being generated and #2 refers to the last
element in the list.

FoldList and Fold
In[164]:=

? FoldList

FoldList@f, x, 8a, b, ... <D gives
8x, f@x, aD, f@f@x, aD, bD, ... <. More…

In[165]:=

? Fold

Fold@f, x, listD gives the last
element of FoldList@f, x, listD. More…

The  Fold  operation  takes  a  function,  a  value  and  a  list,
applies  the  function  to  the  value,  and  then  applies  the
function to the result and the first element of the list,
and then applies the function to the result and the second
element of the list and so on. For example,
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The  Fold  operation  takes  a  function,  a  value  and  a  list,
applies  the  function  to  the  value,  and  then  applies  the
function to the result and the first element of the list,
and then applies the function to the result and the second
element of the list and so on. For example,

In[166]:=

Fold@Plus, 0, 8a, b, c, d<D
Out[166]=

a + b + c + d

In[167]:=

FoldList@Plus, 0, 8a, b, c, d<D
Out[167]=

80, a, a + b, a + b + c, a + b + c + d<
In[168]:=

FoldList@Plus, 0, RandomInteger@80, 1<, 5DD
Out[168]=

80, 1, 1, 2, 2, 2<

Examples of WL Programs 

The Game of Life (GoL) is undoubtably, the most famous cel-
lular  automaton  (CA)  and  watching  the  GoL  program  run
offers deep insight into fundamental tenets concerning the
modeling of natural phenomena.  The GoL was created in 1969
by the mathematician John Conway and was published in Mar-
tin Gardner’s Scientific American column (see http://www.-
maa.org/sites/default/files/pdf/pubs/focus/Gardner_GameofLi
fe10-1970.pdf). The GoL can be described as follows:

On  an  ‘n  by  n’  two-dimensional  square  grid  (aka
‘checkerboard’),  each  of  the  n^2  cells  (aka  ‘sites’)  can
have two possible values, 0 (aka a ‘dead’ cell) or 1 (aka
a  ‘live’  cell).  On  each  time  step,  the  values  of  all  of
the  cells  are  updated  simultaneously,  based  on  the  value
of a cell and the sum of the values of the cells adjacent
to  (i.e.  touching)  the  cell  being  updated.  The  neighbor-
hood’  of  a  cell  is  comprised  of  the  8  nearest-neighbor
(nn)  cells,  lying  north,  northeast,  east,  southeast,
south,  southwest,  west,  and  northwest  of  the  cell  (these
nn  cells  comprise  what  is  known  as  the  Moore  neighbor-
hood). The rules governing the updating are as follows:

(1) if a cell is alive and has exactly two living nn cell,
the cell remains alive (if its value is 1, it remains 1).

(2) if a cell has exactly three living nn sites, the cell
remains alive (if its value is 1, it remains 1) or

    is  ‘born’and  becomes  alive  (if  its  value  is  0,  it
changes to 1).

(3) any other cell either remains dead (if its value is 0,
it remains 0) or ‘dies’ and becomes dead (if its value is
1, it changes to 0). 
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On  an  ‘n  by  n’  two-dimensional  square  grid  (aka
‘checkerboard’),  each  of  the  n^2  cells  (aka  ‘sites’)  can
have two possible values, 0 (aka a ‘dead’ cell) or 1 (aka
a  ‘live’  cell).  On  each  time  step,  the  values  of  all  of
the  cells  are  updated  simultaneously,  based  on  the  value
of a cell and the sum of the values of the cells adjacent
to  (i.e.  touching)  the  cell  being  updated.  The  neighbor-
hood’  of  a  cell  is  comprised  of  the  8  nearest-neighbor
(nn)  cells,  lying  north,  northeast,  east,  southeast,
south,  southwest,  west,  and  northwest  of  the  cell  (these
nn  cells  comprise  what  is  known  as  the  Moore  neighbor-
hood). The rules governing the updating are as follows:

(1) if a cell is alive and has exactly two living nn cell,
the cell remains alive (if its value is 1, it remains 1).

(2) if a cell has exactly three living nn sites, the cell
remains alive (if its value is 1, it remains 1) or

    is  ‘born’and  becomes  alive  (if  its  value  is  0,  it
changes to 1).

(3) any other cell either remains dead (if its value is 0,
it remains 0) or ‘dies’ and becomes dead (if its value is
1, it changes to 0). 

note: T.H. Huxley’s statement that “The chess-board is the
world;  the  pieces  are  the  phenomena  of  the  universe;  the
rules of the game are what we call the laws of Nature” is
often used in conjunction with cellular automata; however,
this  is  an  incorrect,  or  at  least  imprecise,  analogy
because in a CA, it is the values of the cells themselves
that we are conerned with.  

à Creating Four WL Programs for ‘The Game of Life’

The LifeGame program is basically a straightforward imple-
mentation of GoL employing the rule-making, array-process-
ing and pattern-matching capabilities of WL.

LifeGame@n_, steps_D :=
Module@8gameboard, liveNeighbors, update<,

gameboard = Table@Random@IntegerD, 8n<, 8n<D;
liveNeighbors@mat_D :=

Apply@Plus, Map@RotateRight@mat, ðD &,
88-1, -1<, 8-1, 0<, 8-1, 1<, 80, -1<,
80, 1<, 81, -1<, 81, 0<, 81, 1<<DD;

update@1, 2D := 1;
update@_, 3D := 1;
update@_, _D := 0;
SetAttributes@update, ListableD;

Nest@update@ð, liveNeighbors@ðDD &, gameboard, stepsDD
The  bowlOfCherries  program  is  a  ‘one-liner’,  employing  a
nested anonymous (aka pure) function which uses the short-
hand notation (...)& and is comprised of three other anony-
mous  functions  which  are  written  using  Function  with  one
formal  parameter  (Function[x,  ...],  Function[y,  ...]  and
Function[z, ...]).

The  behaviors  of  the  three  anonymous  functions  nested
within the outermost anonymous function, do can be readily
discerned by referring to the LifeGame program:

Values of the sum of each cell’s eight nn cells (0 thru 8)
are calculated by adding together the results of eight rota-
tions of the gameboard matrix (the values of the sums are
the  same  as  the  values  determined  using  liveNeighbors  in
LifeGame). 

Ordered pairs are created, in each of which the first ele-
ment is the value of a cell (0 or 1) and the second ele-
ment  is  the  sum  of  the  values  (0  thru  8)  of  the  cell’s
eight nn cells (the two elements in each ordered pair are
the same as the two arguments used in the update rules of
LifeGame). 

Transformation  rules  are  applied  to  each  of  the  ordered
pairs  (the  rules  are  analagous  to  the  update  rules  of
LifeGame).
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The  bowlOfCherries  program  is  a  ‘one-liner’,  employing  a
nested anonymous (aka pure) function which uses the short-
hand notation (...)& and is comprised of three other anony-
mous  functions  which  are  written  using  Function  with  one
formal  parameter  (Function[x,  ...],  Function[y,  ...]  and
Function[z, ...]).

The  behaviors  of  the  three  anonymous  functions  nested
within the outermost anonymous function, do can be readily
discerned by referring to the LifeGame program:

Values of the sum of each cell’s eight nn cells (0 thru 8)
are calculated by adding together the results of eight rota-
tions of the gameboard matrix (the values of the sums are
the  same  as  the  values  determined  using  liveNeighbors  in
LifeGame). 

Ordered pairs are created, in each of which the first ele-
ment is the value of a cell (0 or 1) and the second ele-
ment  is  the  sum  of  the  values  (0  thru  8)  of  the  cell’s
eight nn cells (the two elements in each ordered pair are
the same as the two arguments used in the update rules of
LifeGame). 

Transformation  rules  are  applied  to  each  of  the  ordered
pairs  (the  rules  are  analagous  to  the  update  rules  of
LifeGame).

bowlOfCherries@n_, steps_D :=
Nest@HMapThread@List, Function@x,

8x, Function@y, Apply@Plus, Map@Function@
z, RotateRight@y, zDD,
88-1, -1<, 8-1, 0<, 8-1, 1<, 80, -1<,
80, 1<, 81, -1<, 81, 0<, 81, 1<<DDD@

xD<D@ðD, 2D �. 881, 2< -> 1,
8_, 3< -> 1, 8_, _< -> 0<L &,

Table@Random@IntegerD, 8n<, 8n<D, stepsD
The OblaDeOblaDa program creates and then employs a lookup
table  comprised  of  512  update  rules,  one  for  each  of  the
2^9 possible configurations of a cell and its eight near-
est-neighbor cells.
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OblaDeOblaDa@n_, steps_D :=
Module@8gameboard, Moore,

update, LiveConfigs, DieConfigs<,
gameboard = Table@Random@IntegerD, 8n<, 8n<D;
LiveConfigs = Join@Map@Join@80<, ðD &,

Permutations@81, 1, 1, 0, 0, 0, 0, 0<DD,
Map@Join@81<, ðD &,

Permutations@81, 1, 1, 0, 0, 0, 0, 0<DD,
Map@Join@81<, ðD &,

Permutations@81, 1, 0, 0, 0, 0, 0, 0<DD D;
DieConfigs = Complement@Flatten@Map@Permutations,

Map@Join@Table@1, 8ð<D, Table@0, 8H9 - ðL<D D &,
Range@0, 9DDD, 1D, LiveConfigsD;

Apply@Hupdate@ððD = 1L &, LiveConfigs, 1D;
Apply@Hupdate@ððD = 0L &, DieConfigs, 1D;
Moore@func__, lat_D :=
MapThread@func, Map@RotateRight@lat, ðD &,

880, 0<, 81, 0<, 80, -1<, 8-1, 0<, 80, 1<,
81, -1<, 8-1, -1<, 8-1, 1<, 81, 1<<D, 2D;

Nest@Moore@update, ðD &, gameboard, stepsD D
note:  A  GoL  program  in  WL  that  is  very  much  faster  than
any  of  the  three  ‘home-brewed’  programs  above,  uses  WL’s
built-in CellularAutomaton function.

WLLife@n_, steps_D := CellularAutomaton@
8224, 82, 882, 2, 2<, 82, 1, 2<, 82, 2, 2<<<, 81, 1<<,
Table@Random@IntegerD, 8n<, 8n<D, 888steps<<<D

Unfortuntely,  it  is  not  clear  (to  me)  what  the  arguments
used in the one-liner CellularAutomaton version of GoL rep-
resent, what algorithm is being used, or if the algorithm
is  implemented  in  WL  or  in  another  programming  language
(such as C). It would be interesting to compare the speed
of running the GoL in WLLife with the speed of running the
GoL  in  the  blazingly fast  ‘Golly’  app  (see  http://golly.-
sourceforge.net and also http://www.drdobbs.com/jvm/an-algo-
rithm-for-compressing-space-and-t/184406478).
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à end notes on GoL: 

The  use  of  the  built-in  Compile  function  might  speed  up
some of the GoL programs (see http://www.cs.berkeley.edu/~-
fateman/papers/cashort.pdf  (note:  the  Lisp  version  of  the
forest fire CA program given therein is IMO repulsive and
speaks to the benefit of programming in WL) and http://math-
ematica.stackexchange.com/questions/1803/how-to-compile-
effectively and http://blog.wolfram.com/2011/12/07/10-tips-
for-writing-fast-mathematica-code/). 

GoL programs written in other programming languages can be
found at http://rosettacode.org/wiki/Conway’s_Game_of_Life.

Finally, as an philosophical aside, the GoL is relevant to
fundamental issues  in  the  natural  sciences, such  as  emer-
gent  phenomena,  theoretical  modeling  of  behavior  in  natu-
ral systems, and the nature of reality. For those individu-
als  interested  in  this,  see  the  book:  “The  Grand  Design”
by Stephen Hawking and Leonard Mlodinow (the relevant sec-
tion in this book can also be found at http://aminotes.tum-
blr.com/post/27848853009/s-hawking-l-mlodinow-on-why-is-
there-something), and the two articles by Israeli and Gold-
enfeld: “Computational Irreducibility and the predictabil-
ity  of  complex  physical  systems”  in  Physical  Review  Let-
ters,  92(7),  074105  (2004)  (accessible  at  http://arx-
iv.org/pdf/nlin/0309047.pdf) and “Coarse-graining of cellu-
lar automata, emergence, and the predictability of complex
systems”  in  Physical  Review  E,  73,  026203  (2006)
(accessible at http://arxiv.org/pdf/nlin/0508033.pdf).
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