Wol f ram Programm ng Language Fundanental s
Professor Richard J. Gaylord

rjgaylord@gmail.com

These notes form the basis of a series of lectures in
whi ch the fundanental principles underlying the Wl fram pro-
gramm ng | anguage (W.) are discussed and illustrated wth
carefully chosen exanples. This is not a transcription of
those lectures, but rather, the note set that was used to
create a set of transparencies which |I showed and spoke
about during nmy lectures. These notes fornmed the basis for
both a single 6-hour one-day |ecture and a series of four
90-m nute lectures, field-tested over nmany years, to stu-
dents and professionals at university, comercial and gov-
ernment organi zations. In the final section of this note
set, the use of W in witing various prograns for the
“Gane of Life is denonstrated.

| nt r oducti on

In order to use WL efficiently, you need to understand the
details of how a W. programis executed when it is entered
and run. This tutorial is intended to provide you with the
necessary background for witing your own code in an opti-
nmum menner .

Note: This material will also nmake you nore confortable
with W which often seens obscure, even enigmatic, when
first encountered by sonmeone whose progranm ng experience
Is with one of the traditional procedural | anguages.

In this note set, the followng aspects of W are enpha-
sized: the nature of expressions, how expressions are eval u-
ated, how pattern-matching works, creating rewite rules,
and usi ng hi gher-order functions.

m Summ ng the elenents in a |ist

2 Wolfram Programming Language Fundamentals.nb

Consi der the data structure {1,2,3}. How can we add up the
el ements in the list?

inf21:= Appl y [Plus, {1, 2, 3}]
out[1]= O

What’ s going on here?

m Everything is an expression

Every quantity entered into W. is represented internally
as an expression. An expression has the form

head[argl, arg2, .., argn]
where the head and argi can be ot her expressions.

For exanple, if we look at two common quantities, a |ist
data structure, {a,b,c}, and an arithnmetic operation,
atb+c, they appear to be quite different, but if we use
the FullForm function to |ook at their I nt ernal
representation

infz1:= Ful | Form[{a, b, c}]

Out[2]//FullForm=

List [a, b, c]

ingz1:= Ful | Form[a + b + ¢

Out[3]//FullForm=
Plus[a, b, c]

we see that they differ only in their heads.

The use of a conmmpn expression structure to represent every-
thing is not nerely cosnetic; it allows us to perform sone
conputations quite sinply. For exanple, to add the ele-
ments in a list, it is only necessary to change the head
of the expression, List, to Plus. This can be done using
the built-in Apply function.

Wolfram Programming Language Fundamentals.nb 3

? Appl y
Apply[f, expr] or f @@ expr replaces
t he head of expr by f. Apply[f, expr,
| evel spec] replaces heads in parts
of expr specified by |Ievel spec. More...

In[4]:

ings1:= Trace [Apply [Plus, {1, 2, 3}]]
outrs]= {Plusee {1, 2, 3}, 1+2+3, 6}

m Changing a suminto a |ist

The obvious approach to this task is to do the sanme sort
of thing that we did to add the elenents in a |ist.

inte1:= Appl y [List, a+b+c]
outfel= {a, b, C}

This works when the list elenents are synbols, but it does-
nt work for a list of nunbers.

inf71:= Appl y [List, 1+2+3]
out[71= 6

In order to wunderstand the reason for the different
results obtained above, it is necessary to understand how
WL eval uat es expressi ons.

Expr essi ons

m Non-at om c expressions

Non- at om ¢ expressions have parts which can be extracted
from the expression with the Part function, and can be
replaced with the ReplacePart function. For exanpl e:

infe1:= Part [{a, 7, c}, 1]
out[8]= A

In[9]:= {al 71 C} [[O]]
outro]= Li St

4 Wolfram Programming Language Fundamentals.nb

Part [a+b+c, O]
Pl us

In[10]:

Out[10]

Repl acePart [{a, 7, c}, e, 2]

In[11]:

out[11]= {4, €, C}

m Atom c expressions

Atom c expressions constitute the basic “building blocks”
of W.. There are three kinds of atom c expressions:

1. A synbol, consisting of a letter followed by letters
and nunbers (eg., darw n)

2. Four kinds of nunbers:
I nt eger nunbers (eg., 4)
real nunbers (eg., 5.201)
conpl ex nunbers (eg., 3+4l)
rati onal nunbers (eg., 5/7)

3. A string, conprised of letters, nunbers and spaces
(ie., ASCII characters) between quotes (eg., "Conputer Sinmu
| ati ons w th Mathematica")

Atom c expressions differ from non-atomc expressions in
several ways:

The Full Form of an atomic expression is the atomitself.

inf121:= {Ful | For m(darwi n], Ful | Form[4],
Ful | Form[" Conputer Sinmulations wth Mathematica"]}

outf121= {darw n, 4, "Conputer Sinmulations wth Mathematica"}
The head (or Oth part) of an atomis the type of atom that
It is.
In[13]:= {Head [L| St], Head[

"Conputer Sinulations with Mathematica"], 5[[0]]}

outf13l= {Synbol, String, |Integer}

An atom c expression has no parts which can be extracted

Wolfram Programming Language Fundamentals.nb 5

or repl aced.

inf241:= Part [" Conput er Sinulations with Mathematica", 1]

Part::partd: Part specification
Conputer Sinulations with Mathematicafl]
I's | onger than depth of object. More...

outf141= Conput er Sinul ations with Mathematicaf[l]

m Conpound expressions

A ConpoundExpression is an expression consisting of a
sequence of expressions separated by sem -colons (;).

exprl; expr2; .., exprn

mpsl:= a=5+3; 4a
out[15]= 32

m Entering an expression

When an expression is entered in W, it is evaluated and
the result is returned, unless it is followed by a sem -
col on.

In[16]:= 41 3
out[16]= 64

When an expression is followed by a sem -colon, the expres-
sion is also evaluated, even though nothing is returned.

2 -6;
3

In[17]:

o

|
=4

In[18]:=

out[18]=

o

In[19]:= %

4

out[19]=

When the entered expression is a conpound expression, its
contents are evaluated sequentially and the result of the
| ast eval uation is returned.

6 Wolfram Programming Language Fundamentals.nb

Inf201:= Trace[a=3+5; 4a]

outf20l= {a=3+5; 4a, {{3+5, 8}, a=8, 8},
{{a, 8}, 4«8, 32}, 32}

m How expressions are eval uat ed

W. is a termrewiting system (TRS). Wenever an expres-
sion is entered, it is evaluated by term rewiting using
rewite rules. These rules consist of two parts: a pattern
on the |eft-hand side and a replacenent text on the right-
hand side. Wien the |hs of a rewite rule is found to pat-
tern-match part of the expression, that part is replaced
by the rhs of the rule, after substituting values in the
expression which match | abelled blanks in the pattern into
the rhs of the rule. Evaluation then proceeds by searching
for further matching rules until no nore are found.

The eval uation process in W. can be easily understood wth
the foll ow ng anal ogy:

Thi nk of your experiences with using a handbook of mathenmat -
ical formulas, such as the integral tables of G adshteyn
and Ryzhik. In order to solve an integral, you consult the
handbook whi ch contains fornulas consisting of a |eft-hand
side (lhs) and a right-hand side (rhs), separated by an
“equal s’ sign. You look for an integration fornula in the
handbook whose left-hand side has the sanme form as your
I ntegral .

Note: Wiile no two fornulas in the handbook have the identi -
cal Ihs, there may be several whose | hs have the same forn
as your integral (eg., one |lhs mght have specific values
in the integration limts of in the integrand, while
another |hs has wunspecified (dunmmy) variables for these
quantities). Wen this happens, you use the fornula whose
| hs gives the closest fit to your integral.

x? dx
JO
n+1
f‘n X+
X' dX =
J n+1

Wolfram Programming Language Fundamentals.nb 7

3
f‘2 _X
X“dX = —
J 3
b n+1 n-1
™ b"t -a
X' 'dX =
Ja n+1
1
. n 1
X' 'dX =
Jo n+1
~ 3 3
5 ~b°-a
X“dX =
Ja n+1
1
r. 5 _1
X“dX = —
Jo 3

You then replace your integral with the right-hand side of
the matching | hs and you substitute the specific values in
your integral for the corresponding variable synbols in
t he rhs.

Finally, you look through the handbook for formulas (eg.,
trigononetric identities or algebraic manipulation) that
can be used to change the answer further.

This depiction provides an excellent description of the W
eval uati on process.

However, the application of the termrewiting process to
a WL expression requires a bit nore discussion because a
WL expression consists of parts, a head and zero or nore
argunents which are thensel ves expressions.

expr [exprl, expr2, .., exprn]

It is therefore necessary to understand the order in which
the various parts of an expression are evaluated by tern
rewiting.

The inplenentation of the evaluation procedure is (Wwth a
few exceptions) straightforward:

1. If the expression is a nunber or a string, it isn't
changed.

8 Wolfram Programming Language Fundamentals.nb

2. If the expression is a synbol, it is rewitten if there
Is an applicable rewite rule in the global rule base; oth-
erw se, it is unchanged.

3. If the expression is not a nunmber, string or synbol,
its parts are evaluated in a specific order:

a. The head of the expression is eval uated.

b. The argunents of the expression are evaluated from |l eft
to right in order. An exception to this occurs when the
head is a synbol with a hold attribute (eg., HoldFirst,
Hol dRest, or HoldAIl), so that sone of its argunents are

left in their wunevaluated forns (unless they, in turn,
have the head Evaluate). For exanple, the Set or SetDe-
| ayed function which we wll discuss in a nonent.

4. After the head and argunents of an expression are each
conpl etely eval uated, the expression consisting of the eval-
uated head and argunents is rewitten, after nmaking any nec-
essary changes to the argunents based on the Attributes
(such as Flat, Listable, Orderless) of the head, if there
Is an applicable rewite rule in the global rule base.

5. After carrying out the previous steps, the resulting
expression is evaluated in the sanme way and then the
result of that evaluation is evaluated, and so on until
there are no nore applicable rewite rules.

The details of the termrewiting process in steps 2 and 4
are as foll ows:

a. part of an expression is pattern-matched by the |hs of
arewite rule

b. the values which match | abelled blanks in the pattern
are substituted into the rhs of the rewite rule and
eval uat ed.

c. the pattern-matched part of the expression is replaced
wth the evaluated result.

Wth this understanding of the evaluation procedure, we
can now under st and what happened when we entered

Wolfram Programming Language Fundamentals.nb 9

inf211:= Appl y [List, 1+2+3]
out[21]= 6

In evaluating this expression, the argunent 1+2+3 was eval u-
ated before the Apply function was enpl oyed.

m Controlling the eval uation

W should point out that the user can (to sone extent)
wrest control of the evaluation process from W and either
force or prevent evaluation. W won't go into the details
of doing this but we can indicate functions that can be
used for this purpose: Hold, HoldAll, HoldFirst, Hol dRest,
Hol dForm Hel dPart, ReleaseHold, Evaluate, Uneval uated,
and Literal.

In order to turn the suminto a list, it is necessary to
prevent the argunment Plus[1,2,3] from being prematurely
eval uated before the synbol Plus is replaced with the sym
bol List.

inf221:= Appl y [Li st, Unevaluated[l+2 +3]]
outr21= {1, 2, 3}

Since termrewiting is based on pattern-matching, we need
to look at the wvarious sorts of patterns that W
recogni zes.

Patt erns

m Bl anks

Patterns are defined syntactically, ie., by the internal
representati on of an expression as given using Full Form

In general, an expression will be matched by several pat-
terns, of differing specificity. For exanple, constructing
as many patterns to match x72, in order of increasing

generality.
1. x raised to the power of two.

2. X raised to the power of a nunber.

10 Wolfram Programming Language Fundamentals.nb

X raised to the power of sonething.

a synbol raised to the power of two.

a synbol raised to the power of a nunber.
a synbol raised to the power of sonething.
sonething raised to the power of two.

sonething raised to the power of a nunber.

© ® N o 0 & W

sonet hing rai sed to the power of sonething.
10. sonet hi ng.

The term ‘sonething’ used above can be replaced by the
term ‘an expression’, so that for exanple, the |ast case
says that x”"2 pattern-nmatches an expression (which is true
since x"2 is an expression). To be precise, we need a nota-
tion to designate a pattern that has the formof an expres-
sion. W also need to designate a pattern that has the
form of a sequence of expressions, consecutive expressions
separated by commmas.

Patterns are defined in W. as expressions that may contain
bl anks. A pattern may contain a single (_) blank, a double
(_) blank, or a triple (__) blank (the differences wl|
be di scussed shortly).

Note: A pattern can be labelled (given a nane) by preced-

ing the blank(s) by a synbol, eg., nane_ or nane__ or
nane_ . The labelled pattern is matched by exactly the
sanme expression that matches its unlabeled counterpart
(pattern labeling, as we will see, is used to create dummy

vari abl es) .

Note: A blank can be followed by a synbol, eg., _h or __h
or ___h, in which case, an expression nust have the head h
to match the pattern (this is used to perform type
checki ng) .

m Pattern-matchi ng an expression

W can use the MatchQ function to determne if a particu-
| ar pattern matches an expression or a sequence of expres-

Wolfram Programming Language Fundamentals.nb 11

sions. The nost specific pattern-match is between an expres-
sion and itself.

in[231:= Mat chQ[x "2, x"2]
out[23]= Irue
To nmake nore general (less specific) pattern-nmatches, a sin-

gle blank is used to represent an individual expression
whi ch can be any data object.

W'll work with x*"2 to denonstrate the use of the Bl ank
function in pattern-matching. In the follow ng exanples
(which are arbitrarily chosen from the nmany possible pat-
tern matches), we'll first state the pattern-match and
then check it using MatchQ

x"2 pattern matches ‘an expression’.
In[24]:= I\/HtChQ[X"Z, _]
out[24]1= True

x"2 pattern-matches
expression’.

in[251:= Mat chQ[x "2, x™]

out[25]= True

X raised to the power of an

x"2 pattern-matches ‘x raised to the power of an integer’
(to put it nore formally, ‘x raised to the power of an
expr essi on whose head is Integer’).

in[261:= Mat chQ[x "2, x”™ | nteger]

out[26]= True

x"2 pattern-matches ‘an expressi on whose head is Power’ .
in[271:= Mat chQ[x " 2, Power]

out[27]1= True

x"2 pattern-matches ‘an expression whose head is a synbol
and which is raised to the power 2.

12 Wolfram Programming Language Fundamentals.nb

infze1:= Mat chQ[x” 2, _Synbol ~ 2]

out[28]= True

x"2 pattern-matches ‘an expression raised to the power 2.
infze1:= Mt chQ[x”~2, " 2]

out[29]= I ue

x"2 pattern-matches ‘an expression whose head is a synbol
and which is raised to the power of an expression whose
head is an integer’ (or stated less formally, ‘a synbol
rai sed to the power of an integer’).

in[z01:= Mat chQ[x” 2, Synbol * | nteger]
out[30]= True

x"2 pattern-matches ‘an expression raised to the power of
an expression’ .

in[311:= Mat chQ[x”™2, N]
out[31]= True

x"2 pattern-matches ‘x raised to the power of an expres-
sion” (the label y does not affect the pattern-match).

inz21:= Mat chQ[x "2, x"y_]

out[32]= Irue

As a final exanple, we | ook at
inpz31:= Mt chQ[572, A]

out[33]= Fal se

m Pattern-matchi ng a sequence of one or nore expressions

A sequence consists of a nunber of expression separated by
commas. A double blank represents a sequence of one or
nore expressions and __h represents a sequence of one or
nore expressions, each of which has head h.

For exanple a sequence in a list pattern-matches a double
blank (note: we are pattern-matching the sequence in the

Wolfram Programming Language Fundamental s.nb 13

list, not the list itself)
in[341:= Mat chQ[{a, b, ¢}, {_}]
out[34]= lrue

but the argunents of an enpty list (which has no argu-
ments) do not pattern-match a doubl e bl ank.

ingss1:= Mat chQ{}, {)]
out[ss]= Fal se

An expression that pattern-matches a blank wll also pat-
tern match a doubl e bl ank. For exanpl e,

ingze1:= Mat chQ[x N2,]

out[36]= True

m Pattern-matching a sequence of zero or nore expressions

A triple blank represents a sequence of zero or nore expres-
sions and ___h represents a sequence of zero or nore expres-
sions, each of which has the head h. For exanple, the
triple blank pattern-matches the enpty Ilist.

ings71:= Mat chQ {3}, {)]
out[37]= True

An expression that pattern-matches a blank and a sequence
that pattern-matches a double blank pattern both pattern-
match a triple blank pattern.

ingzs1:= Mat chQ[x”™2,]
out[3s]= Irue

It is inportant to be aware that for the purposes of pat-
tern-matching, a sequence is not an expression. For
exanpl e,

in[z91:= Mat chQ[{a, b, ¢}, {_}]

outp3ol= Fal se

m Alternative pattern-matching

14 Wolfram Programming Language Fundamentals.nb

W can nmake a pattern-match less restrictive by specifying
alternative patterns that can be matched.

In[40]:= NHtChQ[XAZ, {_} |_A2]

out[40]= True

m Conditional pattern-nmatching

W can nake a pattern-match nore restrictive by making it
conti ngent upon neeting certain conditions. (Note: satisfy-
ing these conditions will be a necessary, but not suffi-
cient, requirenent for a successful pattern-match.)

|f the blanks of a pattern are followed by ?test, where
test is a predicate (ie., a function that returns a True
or False), then a pattern-match is only possible if test
returns True when applied to the entire expression. ?test
Is used with built-in predicate functions and with anony-
nous predicate functions.

infs11:= Mat chQ[x”2, A ?20QddQ]

out[41]= Fal se

inp421:= Mat chQ[2, _? (1 >3 &)]

outf421= Fal se

in(431:= Mat chQ[2, ? (4 >1.5&)]
out[43]= True

inf441:= Mat chQ[2, I nteger ? (it >3 &)]
outf441= Fal se

If part of a |abeled pattern is followed by /; condition,
where condition contains |abels appearing in the pattern,
then a pattern-match is possible only if condition returns
True when applied to the labelled parts of an expression
For exanpl e,

inps1:= Mat chQ[x”2, Ay]

out[45]= True

Wolfram Programming Language Fundamental s.nb 15

inps61:= Mat chQ[a”~b, "y /; Head[y] == Synbol]

out[46]= True

Wth this understanding of how pattern-matching works in
W., we can discuss how to create our own rewite rules
whi ch can be used in termrewiting.

Rewite rul es

mBuilt-in functions

WL provides many built-in functions that can be used for
termrewiting. These rules are located in the global rule
base whenever WL is running. Functions defined in a pack-
age are also placed in the global rule base during the ses-
sion in which the package is |oaded. Functions in the
gl obal rule base are always available for term rewiting
and they are always used whenever applicabl e.

m User-defined functions

In addition to the built-in rewite rules, user-defined
rewite rules can be created and placed in the global rule
base where they are always available, and always used,
when applicable for the duration of the ongoing session.
However, they are not automatically preserved beyond the
session in which they are created.

There are basically two ways to create a user-defined
rewite rule: with the Set function and with the SetDe-
| ayed function.

m Declaring a value using the Set (=) function

A value declaration is essentially a nicknane for a value
(eg., for a list or nunber) which can be used in place of
the value. It is witten using Set[lhs, rhs] or, nore com
nonly, as

| hs =rhs

The | hs starts with a nanme, starting with a letter fol-
| owed by letters and/or nunbers (with no spaces). The rhs

16 Wolfram Programming Language Fundamentals.nb

Is either an expression or a conpound expression enclosed
I n par ent heses.

Note: the name on the |lhs may be followed by a set of
square brackets containing a sequence of patterns or
| abel l ed patterns, and the rhs may contain the [abels, wth-
out the bl anks.

For exanple, consider the following tw sinple Set
functions

In(a71:= a = {-1, 1}

outfa71= {-1, 1}

inps1:= andl = Random nteger [{1, 2}]
out[48]= 2

Notice that when a Set function is entered, a value is
returned (unless it is followed by a sem-colon). If we
l ook into the global rule base to see what rewite rules
have been created when a and randl were entered

In[49]:= 7 A
G obal "a
a={-1, 1)
ingso1:= 2 randl
d obal "randl
randl = 2

we find that the rewite rule associated with a is the
sane as the Set function we entered, but the rewite rule
associated wth randl differs from the corresponding Set
function. The reason for this is that when a Set function
Is entered into the global rule base, i1ts lhs i1s left
unevaluated while 1ts rhs 1i1s evaluated and when the
rewwite rule that has been created is used, the uneval u-
ated Ilhs and the evaluated rhs of the function are used.
This property is known as the HoldFirst attribute.

in[s11:= At tri but es [Set]
outs1l= {Hol dFi rst, Protected, SequenceHol d}

Wolfram Programming Language Fundamentals.nb 17

In[52]:= ? Hol dFi r st

Hol dFirst is an attribute which specifies that
the first argunent to a function is to be
mai ntai ned i n an uneval uated form More...

The reason for the Set function having the Hol dFirst
attribute is easily denonstrated by seeing what happens
when Set does not have this attribute.

in[s31:= Set [a, 6]
out[53]= O
In[54]:= A
out[54]= O

ClearAttributes[Set, Hol dFirst]

Attributes[Set]
outpssl= {Prot ect ed, SequenceHol d}

In[55]:

In[55]:

in[ss1:= Set [a, 7]
Set::setraw: Cannot assign to raw object 6. Mre...
out[ss]= 1
inpss]:= Set Attri butes[Set, Hol dFirst]
infse1:= At tri but es [Set]
outpsel= {Hol dFi rst, Protected, SequenceHol d}

When the rhs is a conpound expression enclosed in parenthe-
ses, the expressions of the rhs are evaluated in sequence
and the rhs of the resulting rewite rule is the result of
the final evaluation. For exanple,

in(s71:= rand2 = (b = {-1, 1}; RandonReal [b])
outfs71= — 0. 642186
ingssl:= 2 rand2

A obal “rand2

rand2 = -0. 642186

18 Wolfram Programming Language Fundamentals.nb

What happened here is that the b was first evaluated to
give {-1,1} and this value was then used to evaluate the
random nunber functi on.

The order of expressions on the rhs is inportant. An expres-
sion on the rhs nust appear before it is used in another
expression on the rhs. For exanpl e,

ingse1:= and3 = (RandonReal [c]; ¢ = {-1, 1})

Random : randn:
Range specification ¢ in RandomReal, c] is
not a valid nunber or pair of nunbers. More...

outfsol= {-1, 1}

Note that even though an error nessage was generated when
the first expression in the conpound expression was eval u-
ated, the overall evaluation of the conpound expression con-
tinued by evaluated the second expression and its value
was then entered into the global rul e base.

inpeo1:= ? rand3

G obal “rand3

rand3 = {-1, 1}
Inf61]:= 7 C

G obal "¢

c=1{-1, 1}

Wen a Set function is entered, both it and any Set or
Set Del ayed functions on the rhs create rewite rules in
t he gl obal rule base.

Ings21:= 2?2 D
G obal " b
b={-1, 1}
Inf631:= 7 C
A obal "¢
c=1{-1, 1}

After a value has been declared by entering a Set func-
tion, the appearance of the value’'s nane during an eval ua-

Wolfram Programming Language Fundamentals.nb 19

tion causes the value itself to be substituted in (which
Is why we say that it acts |ike a nicknane). For exanpl e,

infe41:= AbS [rand2]
outfeal= 0. 642186
What happened here was that the rewite rule associated

with rand2 in the global rule base was used as an argunent
to the Abs function.

The Ihs of a rewite rule can only be associated with one
value at a tinme. Wien a Set function is entered, the result-
ing rewite rule ‘overwites’ any previous rewite rule
with the identical |hs. For exanple,

inges1:= ' and4 = Random nt eger [{1, 2}];

infes]1:= ? rand4
d obal "rand4

rand4 = 2
inge71:= I and4 = Random nt eger [{1, 2}];
infes]:= ? rand4

d obal "rand4

rand4 =1

What we see is that the value of rand4d was 2 after rand4
was first entered and this value was then changed to 1
after rand4 was re-entered.

Wile the Ihs of a rewite rule can only be associated
wth one value at a tinme, a value can be associated wth
several nanes, sinmultaneously. W nade use of this earlier
when we defined both b and ¢ as {-1, 1}.

Finally, wuser-defined rewite rules can be renoved fron
the global rule base using either the Cear or Renove
functi on.

inteo1:= Cl ear [b]
?b
G obal " b

In[70]:

20 Wolfram Programming Language Fundamentals.nb

in[711:= Renove [C]

Inf72]:= 2 C

| nf ormation:: notfound: Synbol ¢ not found. Mbre...

m Defining a function using the SetDelayed (:=) function
Function definitions (ie., prograns) are witten as

nanmef[argl , arg2 , .., argn_] := (exprl; expr2; ..exprm)

The |l hs starts with a nane. The nane is followed by a set
of square brackets containing a sequence of |abelled pat-
terns, which are synbols ending with one or nore under-
scores (ie., blanks). The rhs is either an expression or a
conmpound expression enclosed in parentheses, containing
the I abels on the I hs (w thout the bl anks).

For exanpl e, consider the function definition

f [x_]:=Random[Real, {0, x}]
W'l enter this program
inf731:= T [X] : = RandonReal [{0, x}]
The first thing we notice is that, in contrast to a Set

function, nothing is returned when a SetDelayed function
Is entered. If we query the rul e base,
inf741:= 2 f

A obal " f

f [x_]:=Random[Real, {0, Xx}]

we see that a rewite rule associated with f has been
placed in the global rule base that is identical to the
Set Del ayed function. The reason is that when a SetDelayed
function 1s entered both i1ts lhs and the rhs are left
unevaluated. This property is knowm as the HoldAl
attri bute.

inf7s1:= At tri but es [Set Del ayed]
outf7s1= {Hol dAlI'l , Protected, SequenceHol d}

Wolfram Programming Language Fundamentals.nb 21

In[76]:= ’) I"OI dAI |

Hol dAI'l is an attribute which specifies that
all argunents to a function are to be
mai ntai ned i n an uneval uated form More...

A user-defined function is called in the sane way as a
built-in function is called, by entering its nane wth spe-
cific argunent val ue(s).

inf771:= T [8]

outf771= 0. 791243

Each time the Ihs of a SetDelayed rewite rule is entered
Wi th specific argunent values, the rhs of the rule is eval u-
ated using these values, and the result is returned.

In[78]:= f [8]

outf7el= 3. 20796

Note: In contrast to the := function, the = function only
eval uates the rhs when it is first entered and thereafter,
that sanme evaluated rhs is returned each tine the |lhs is

entered wth specific argunent val ues. For exanpl e,
consi der

in[7o1:= T [X] = X;

infso]:= 2 f
d obal " f
fx_]=
ing11:= T [9]
out[s1l= 9
ing21:= T [7]
out[sz2l= 1
ingg3:= 2 f
A obal " f
f[x_]=X

The definition of f above seens to work fine. However, the
problem arises when the rhs of the Set function has

22 Wolfram Programming Language Fundamentals.nb

already had a value assigned to it prior to the entry of
the Set function.

In[sa1:= Y = 7,
nfesl:= gLy] =Y,
In[g6l:= ? g
A obal g
gly_1l =17
Ings71:= g [3]
out[s71= [

This problem does not arise when the SetDelayed function
I s used.

Inss]:= Z = 8;
Infso]:= §[Z | :=7Z
In[90]:= ? O
d obal g
glz_]:=2
infe11:= g [2]
out[o1]= 2

This property of fresh evaluation of both the |Ihs and rhs
of the := function with each use, is why the := function
Is used to wite prograns rather than the = function.

Wen the rhs of the SetDelayed function is a conpound
expression enclosed in parentheses, no rewite rules are
created from the auxiliary functions on the rhs when the
function is entered (this is because the rhs is not eval u-
ated). \When the program is run (or equivalently, a user-
defined function is called) for the first tine, all of the
auxiliary functions are then placed in the global rule
base.

infe21:= g [X] := (d=2; x+d)

Wolfram Programming Language Fundamental s.nb 23

?9

A obal " g

g[x_]:=(d=2; x+d)
?d

d obal " d

g[3]

out[95]= D

In[93]:

In[94]:

In[95]:

infos]:= 2 d
d obal " d
d=2

m Placing constraints on a rewite rule

The use of a rewite rule can be restricted by attaching
constraints on either the Ihs or the rhs of a SetDel ayed
rule. Conditional pattern-matching with _h or with _? and
_/; can be attached to the dummy variable argunents on the
| hs. Also, /; can be placed on the rhs, immediately after
t he (conpound) expression.

infe71:= S [X_?EvenQ] : = N[Sgrt [x]]
S[6]
2.44949

S[5]
out[991= S [5]

In[98]:

out[98]

In[99]:

m Localizing nanes in arewite rule

As we have pointed out, when the Ihs of a Set or SetDe-
| ayed function is evaluated (which occurs when a Set func-
tion is First entered and when a SetDelayed rewite rule
Is First called), rewite rules for all of its auxiliary
functions are placed in the global rule base. This can
cause a problem if a nanme being used in a program con-
flicts with the use of the nane el sewhere.

W can prevent a nane clash by ‘insulating’ the auxiliary
functions wthin the rewite rule so that they are not

24 Wolfram Programming Language Fundamentals.nb

placed in the global rule base as separate rewite rules;
they will only ‘exist’ while being used in the eval uation
of the rule.

This is usually done using the Mdul e function.
| hs : = Mbdul e[{nanel =val 1, nane2, ..}, rhs]

For exanpl e,

In[100]:=

t[y]:=Mdule[{m}, m=2; y+m
In[101]:=
?m
d obal "m
In[102]:=
t[3]
out[102]=
5
In[103]:=
?m
d obal "m

m Odering rewmite rules

When the | hs of nore than one built-in and/or user-defined
rewite rule is found to pattern-match an expression
(which occurs when the |Ihs’s only differ in their speci-
ficity), the choice of which rule to use is determ ned by
the order of precedence:

A user-defined rule is used before a built-in rule.

A nore specific rule is used before a nore general rule (a
rule is nore specific, the fewer expression it pattern-
mat ches) .

So, for exanple, if we have two rewite rules whose |hs's
have the sane nane but whose | abelled patterns have differ-

ent specificity, both rules wll appear in the global rule
base (since their Ihs’s are not identical) and the nore spe-
cific rule wll be used in preference to the nore genera

rule. For exanple, if we enter both of the follow ng func-

Wolfram Programming Language Fundamentals.nb 25

tion definitions
In[104]:=
f[x]:=x"2
f [x_Integer] :=x"3
and then query the rul e base,

In[106]:=

?f
A obal " f
f [x_Integer]:=x3
f[x_]:=x?

Now, entering f with a real-val ued argunent

In[107]:=
f [6.]
Out[107]=

36.

returns a different result fromentering f with an integer-
val ued ar gunent.

In[108]:=
f 6]
out[108]=

216

This occurs because while an integer-valued argunent pat-
tern-matches both x_ and x_Integer (and hence pattern-
mat ches both of the f rewite rules), the second rule is a
nore specific pattern-match for the integer val ue 6.

Note: If WL cannot deduce which rule is nore general, it
uses the rules in the order in which they appear in the
gl obal rul e base.

The ordering of rewite rules nmakes it possible for us to
create sets of rewite rules with the sane nane that give
different results, depending on the argunents used. This
iIs key to writing rule-based programs.

Note: It is necessary to be careful about the |abelling of
patterns in rewite rules because if two or nore rules are

26 Wolfram Programming Language Fundamentals.nb

I dentical except for the labelling, these rules wll all
be placed in the global rule base and it nmay not be obvi-
ous which rule wll be used. For exanple,
In[109]:=
W[X]:=x"4
In[110]:=
w[_] : = RandonReal []
In[111]:=
w[2]
out[111]=
16
In[112]:=
?w
A obal "w
w[x_]:=x*
w[_] :=Random[]

Transformati on rul es
There are tines when we want a rewite rule to only be

applied to (ie., wused inside) a specific expression,
rather than being placed in the global rule base where it
wll be used whenever it pattern-matches an expression.

For exanple, the ‘tenporary’ substitution of a value for a
name in an expression may be preferable to the pernmanent
assignnent of the nanme to the value via a Set function.
When this is the case, the ReplaceAll function can be used
together with a Rule or RuleDelayed function to create a
transformation (or local rewite) rule which is placed
directly after the expression to which it is to be appli ed.

m Using the Rule (->) function
A Rule function is attached to an expression. It is witten

expression /. | hs ->rhs

The | hs can be witten using synbols, nunbers or | abelled
patterns.

When an expression with an attached Rule transformation
rule is entered, the expression itself is evaluated first.

Wolfram Programming Language Fundamentals.nb 27

Then, both the Ihs and the rhs of the Rule transformation
rule are evaluated. Finally, the fully eval uated transforna-
tion rule is used in the eval uated expression. For exanple

In[113]:=
Cl ear [a]

In[114]:=

Table[1, {4}] /. Randoni nteger [{0, 1}] —»a

out[114]=
{a, a, a, a}

In[115]:=

Tabl e[1, {4}] /. Random nteger [{0, 1}] —» a
Out[115]=

(1, 1, 1, 1}
In[116]:=

Tabl e[1l, {417 /.

Random nteger [{0, 1}] - {a, b}[Random nteger [{1, 2}]]
out[116]=

{b, b, b, b}
In[117]:=

Table[l, {(4}] /.

Random nteger [{0, 1}] —» {a, b} [Randonl nteger [{1, 2}]]

out[117]=

{1, 1, 1, 1}

In[118]:=
Table[1l, {(4}] /.
Random nteger [{0, 1}] - {a, b} [Random nteger [{1, 2}]]

out[118]=
{a, a, a, a}

We can attach a list of rules to an expression using
expression /. {Ihsl ->rhsl, |hs2->rhs2, ..}

For exanpl e,

In[119]:=
{a, b, c} /. {c>Db, b-a}
out[119]=
{a, a, b}
Multiple transformation rules are used in parallel. The

rules are applied in order so that a later rule in the

28 Wolfram Programming Language Fundamentals.nb

list is used only if all the earlier rules do not match,
and only one transformation rule at most, is applied to a
given part of an expression, and no matching rules are
used thereafter, as the above exanple illustrates.

m Usi ng the RuleDelayed (:>) function

A Rul eDel ayed function is attached to an expression. It is
witten

expression /. | hs >rhs
or, for a list of rules
expression /. {lhsl:>rhs2, | hs2:rhs2, ..}

The I hs can be witten using synbols, nunbers or |abelled
patterns.

When an expression with an attached rule is entered, the
expression itself is evaluated first. Then, the I hs of the
Rul eDel ayed transformation rule is evaluated but the rhs
I's not evaluated. Finally, the partially eval uated transfor-
mation rule is used in the eval uated expression (the uneval -
uated rhs will be eval uated subsequently).

For exanpl e,
In[120]:=
Tabl e[1l, {4}] /.
Random nteger [{0, 1}] > {a, b}[Random nteger [{1, 2}]]
Out[120]=
{a, b, b, b}
In[121]:=
Table[l, {(4}] /.
Random nteger [{0, 1}] > {a, b}[Randonm nteger [{1, 2}]]
out[121]=
{b, a, b, a}
In[122]:=
Tabl e[1l, {417 /.
Random nteger [{0, 1}] > {a, b}[Random nteger [{1, 2}]]

out[122]=

{1, 1, 1, 1}

Wolfram Programming Language Fundamental s.nb 29

m Pl acing constraints on a transformation rule

By placing /; condition inmrediately after a Rul eDel ayed :>
transformation rule, its use can be restricted in the sane
way that using /; condition can be used to restrict the
use of a SetDel ayed rewite rule.

Note: Placing a /; condition after a Rule -> transforna-
tion rule serves no purpose since the rhs of the rule has
al ready been eval uated before it is used and hence the con-
ditional restriction is ignored.

m Applying a transformation rule repeatedly

To apply one or nore transformation rules repeatedly to an
expression until the expression no |onger changes, the
Repl aceRepeat ed function is used. For exanple,

In[123]:=

{a, b, c}//. {c>b, b>sa}
out[123]=

{a, a, a}

Note: In using //. with a list of transformation rules, it
Is inportant to keep in mnd the order of application of
the rules. The transformation rules are not repeatedly
applied in order. Rather, each rule, in turn, is applied
repeat edl vy.

rule evaluated unevaluated
| hs =rhs rhs | hs
lhs:=rhs I hs, rhs
expr /. lhs ->rhs |expr, I hs, rhs

expr /. lhs:=rhs |expr, | hs rhs

Functi onal programm ng style

W. works with built-in and user-defined functions in ways
which are characteristic of the ‘functional’ style of
progranm ng.

m Nested function calls
Consi der the foll ow ng consecutive conputati ons:

30 Wolfram Programming Language Fundamentals.nb

In[124]:=
Tan[4.0]
out[124]=
1.15782
In[125]:=
Sin[%]
out[125]=
0. 915931
In[126]:=
Cos [%]
out[126]=
0. 609053
We can conbine these function calls into a nested function
call.
In[127]:=
Cos[Sin[Tan[4.0]]]
out[127]=
0. 609053
Notice that the result of one function call is imediately

fed into another function w thout having to first name (or
declare) the result.

A nested function call is the application of a function to
the result of applying another function to sonme argunent
val ue. In applying functions successively, it is not neces-
sary to declare the value of the result of one function
call prior to using it as an argunent in another function
cal l.

W can illustrate the use of nested function calls using a
deck of playing cards:

In[128]:=

Range [2, 10]
out[128]=

{2, 3, 4, 5, 6, 7, 8, 9, 10}
In[129]:=

Join[%, {7, Q K, A}]
Out[129]=

{2, 3, 4, 5, 6, 7, 8, 9, 10, 7, Q, K, A}

Wolfram Programming Language Fundamental s.nb 31

In[130]:=
Quter [List, {&, ¢, O, &}, %]
Out[130]=

{{{% 2}, {#, 3}, (&, 4}, {& 5}, {& 6}, {& 7}, {s, 8},
{#, 9}, {&, 10}, {&, T}, (% Q}, {& %}, {& A}},

{{o, 23, {o, 3}, {0, 4}, {0, 3}, {0, 6}, {0, 7}, {0, 8},
{¢, 9}, {0, 10}, {¢, T}, {0, Q}, {0, %}, {0, A}},

(o, 2}, {9, 3}, {9 4}, {9, 3}, {9, 6}, {9, 7}, {9, 8},
{9, 9}, {9 10}, {9, 7}, {9 @}, {9 x}, {9, A}},

{{s, 2}, {s, 3}, {a, 4}, (s, 5}, {s, 6}, {&, 7}, {s, 8},
{#, 9}, {a, 10}, {a, T}, {&, Q}, {& K}, {&, A}}}

In[131]:=
Flatten[%, 1]
out[131]=

{{# 2}, {& 3}, {& 4}, (% 5}, {# 6}, {& 7}, {s 8},
{# 9}, {% 10}, {& T}, {& Q}, {& K}, {4, A},
{0, 2}, {0, 3}, {0, 4}, {¢, 5}, {¢o, 6}, {0, 7}, {0, 8},
{0, 93, {¢, 10}, {0, T}, {0, Q} {0, ®}, {0, A},
(o, 2}, {9, 3}, {9, 4}, {9, 5}, {9, 6}, {9 7}, {9 8},
{©, 9}, {9, 10}, {9, 7}, {9, Q}, {9 %}, {9, A},
{4, 2}, {s, 3}, (s, 4}, {s, 5}, {s, 6}, {a 7}, {s 8},
{4, 9}, {s, 10}, {&, T}, (s, Q}, (s, %}, {8, A}}

Conbi ning these operations, we can define cardDeck by com
bi ni ng the operations above.

In[132]:=
[gardDeck:FI atten[Quter [List, {&, ¢, O, &},
Join[Range[2, 10], {J, @ %, #}]1]1, 1]

out[132]=
{{% 2}, {% 3}, {& 4}, {& 35}, {& 6}, {& 7}, {4, 8},
{%, 9}, {&, 10}, {&, T}, {%, Q}, {& %}, (& A},
{0, 2}, {0, 3}, {o, 4}, {¢, 3}, {¢, 6}, {¢o, 7}, {0, 8},
{0, 9}, {¢, 10}, {o, T}, {0, @}, {0, K}, {0, A},
{9, 2}, {9, 3}, {9, 4}, {9, 3}, {9, 6}, {9, 7}, {9, 8},
{9, 9}, {9, 10}, {9, T}, {9 @}, {9, K}, {9, A},
{a, 2}, {a 3}, {& 4}, {&, 5}, (& 6}, {& 7}, {s, 8},
{a, 9}, {a, 10}, (&, T}, {s, Q}, {s, K}, {&, #A}}

32 Wolfram Programming Language Fundamentals.nb

Shuffling a deck of cards
In[133]:=
Transpose[Sort |
Transpose [{RandonReal [{0, 1}, 527, cardDeck}]1]1[2]
out[133]=
{{s 6}, {a A}, {© 9}, {© 10}, {¢, 6}, {9, 7},
{%, K}, {0, 4}, (s, 7}, {# 6}, {& 9}, {90 A}, {9 3},
{a, 10}, {&, 7}, {0, 2}, {9, 2}, {&, 3}, {% T},
{%, 4}, {0, A}, {&, K}, (O, 5}, {& 3}, (&, Q}, {4, 7},
{0, 6}, {9, Q) {&, Q}, {0, 9}, {#, 5}, {a 3}, {0, T},
(s, 9}, (O, 41, (s, 4}, (O, K}, {%, 2}, {0, 10},
{%, 103}, {0, Q}, {0, K}, {o, 7}, {¢, 5}, {%, 8},
{0, 3}, {9, 8}, {0, 8}, {s, 8}, {&, 2}, {& 7}, {9, J}}

Note: We can also shuffle a deck of cards using a transfor-
mation rul e.

In[134]:=
Sort [Transpose [{RandonReal [{0, 1}, 52], cardDeck}]] /.
(L, Y_}»Y
out[134]=

{{s, K}, {s, 6}, {0, 4}, {& %}, {0, A}, {O, Q}, {s, 4},
(&, 7}, {%, 3}, {0, 10}, {s, 10}, {0, 9}, {%, 10},

{0, T}, (& 7}, {0, 3}, {& T}, {9 2}, {s, 9}, {9, A},
{4, A}, {9 6}, {0, 3}, {9, 9}, {a, 3}, {& 2}, (&, 7A},
{0, ¥}, {&, T}, {0, 2}, {9, 8}, {o, 7}, {s, 5},

{%, 6}, {&, Q}, {0, 6}, {9, 10}, {0, @}, {¢, 8},

{2}, {9, 3}, {9, T}, {& @Q}, {9 7}, {9 %},

{#, 8}, {#, 8}, {9 5}, {& 4}, {9, 4}, (& 5}, (% 9}}

m Anonynous functions

User - defi ned anonymous functions can be created and used
‘on the spot’ wthout being nanmed or entered prior to
bei ng used.

An anonynous function is witten using the sanme form as
the rhs of a rewite rule, replacing variable synbols with
#1, #2, ...and enclosing the expression in parentheses fol-
| oned by an anpersand (&).

Wolfram Programming Language Fundamentals.nb 33

This notation can be denonstrated by converting sone sim
ple user-defined functions into anonynous functions. For
exanple, a rewite rule that squared a val ue

In[135]:=
square[x] :=x"2

can be witten as an anonynous function and applied to an
argunent, eg., 5, instantly.
In[136]:=
(" 2) &[3]

out[136]=

25

An exanple of an anonynous function with two argunents,
raises the first argunent to the power of the second
ar gument .

In[137]:=
(1M H2) &[5, 3]
Out[137]=

125

It is inportant to distinguish between an anonynous func-
tion which takes nultiple argunents and an anonynous func-
tion which takes a list with nmultiple elenents as its
ar gument .

For exanple, the anonynous function just given doesn't
work with an ordered pair argunent.

In[138]:=

(H1 M a2) &[{2, 3}]

Function::slotn:

Sl ot number 2 in £#1"2 & cannot be filled
from (212 &) [{2, 3}]. More...

out[138]=

{2112’ 3112}

If we want to perform the operation on the conponents of
an ordered pair, the appropriate anonynous function is

34 Wolfram Programming Language Fundamentals.nb

In[139]:=
(2 [[1)]"=[[2]]) &[{2, 3}]
Oout[139]=

8

m Nesting anonynous functions

Anonynous functions can be nested, in which case it is sone-
times necessary to use the form

Functi on[x, body]
Function[{x, vy, ..}, body]

rather than the # & form 1in order to distinguish between
the argunents of the different anonynous functions.

In[140]:=
(1™ 3) &[(H+2) &[3]]
out[140]=
125
In[141]:=
Function[y, y*3][Function[x, x+2][3]]

out[141]=

125

The two forns can al so be used together.
In[142]:=
Function[y, y"3][(# +2) &[3]]
out[142]=
125
In[143]:=
("M 3) &[Function([x, x+2][3]]

out[143]=

125

Anonynous functions are useful for nmaking predicates and
argunents for higher-order functions.

Note: An anonynous predicate function must be witten
using the # & form

m Hi gher-order functions

A higher-order function takes a function as an argunent
and/or returns a function as a result. This is known as

Wolfram Programming Language Fundamental s.nb

35

‘“treating functions as first-class objects’. W'l
trate the wuse of sonme of the nost
hi gher order functi ons.

I 11 us-
I nportant built-in

Apply

In[144]:=

? Apply

Apply[f, expr] or f @@ expr replaces
the head of expr by f. ApplyI[f, expr,
| evel spec] replaces heads in parts
of expr specified by Ievel spec. More...

W have already seen Apply used to add the elenents of

linear list. Gven a nested list argunent, Apply can be
used on the outer list or the interior |lists. For exanple,
for a general function, f, and a nested list.

In[145]:=

Apply[f, {{a, b}, {c, d}}]

out[145]=
f[{a, b}, {c, d}]
In[146]:=

Apply [f, {{a, b}, {c, d}}, 2]

out[146]=

(f [a, b], f[c, d]}

a

Map
In[147]:=

? Map

Map [f, expr] or f /@ expr applies f to
each elenment on the first level in expr.
Map [f, expr, levelspec] applies f to
parts of expr specified by | evel spec. More...

For a general function, f, and a |inear
In[148]:=

Map [f, {a, b, c, d}]

out[148]=

{ffaj, f[b], fc], f[d]}

| i st.

36 Wolfram Programming Language Fundamentals.nb

For a nested list structure, Map can be applied to either

the outer list or to the interior lists, or to both. For
exanple, for a general function g:
In[149]:=
Map (g, {{a, b}, {c, d}}]
out[149]=
{g[{a, b}], gl{c, d}]}
In[150]:=
Map (g, {{a, b}, {c, d}}, {2}]
out[150]=

{{gla], g[b]}, {glc], gld]}}

MapThread
In[151]:=
? MapThr ead
MapThread[f, {{al, a2, ... }, {bl,
b2, ... }, ... }] gives {f[al, b1, .
], fraz, b2, ... 1, ... }. MapThread][f,
{exprl, expr2, ... }, n] applies f to

the parts of the expri at |evel n. More...

For a general function, g, and a nested |ist.

In[152]:=

MapThread[g, {{a, b, ¢}, {X, vV, z}}]
out[152]=

{gla, x], g[b, y], glc, z]}
In[153]:=

MapThread[List, {{a, b, ¢}, {X, VY, z}}]
Out[153]=

{{a, x}, {b, ¥y}, {c, z}}
In[154]:=

MapThread [Pl us, {{a, b, ¢}, {X, V, 2}}]
out[154]=

{a+X, b+y, c+2z}

NestList and Nest
Nest perforns a nested function call, applying the sane

Wolfram Programming Language Fundamentals.nb 37

function repeatedly.

The Nest operation applies a function to a value, then
applies the function to the result, and then applies the
function to that result and then applies...and so on a speci -
fied nunber of tines.

In[155]:=
? Nest Li st
Nest Li st [f, expr, n] gives a list of the results of
applying f to expr 0 through n tines. More...
In[156]:=
{0.7, Sin[0.7], SIin[Sin[0.7]], SIn[SIin[SIn[0.7]]7}
out[156]=
{0.7, 0.644218, 0.600573, 0.565115}
In[157]:=
Nest Li st [Sin, 0.7, 3]

out[157]=

(0.7, 0.644218, 0. 600573, 0.565115)

If we are only interested in the final result of the
Nest Li st operation, we can use the Nest function which
does not return the internediate results.

In[158]:=

? Nest

Nest [f, expr, n] gives an expression
wth f applied n tinmes to expr. More...

In[159]:=

Nest [Sin, 0.7, 3]

out[159]=

0. 565115

FixedPointList and FixedPoint

The Nest operation does not stop until it has conpleted a
specified nunber of function applications. There is
anot her function which perforns the Nest operation, stop-
ping after whichever of the followng occurs first: (a)
there have been a specified nunber of function applica-
tions, (b) the result stops changing, or (c) sone predi-
cate condition is net.

38 Wolfram Programming Language Fundamentals.nb

In[160]:=
? Fi xedPoi nt Li st
Fi xedPoi nt Li st [f, expr] generates a |list giving the
results of applying f repeatedly, starting with
expr, until the results no | onger change. More...
In[161]:=
? Fi xedPoi nt
Fi xedPoi nt [f, expr] starts with
expr, then applies f repeatedly until
the result no | onger changes. More...

As an exanpl e,

In[162]:=

Fi xedPoi ntLi st [Sin, 0.7, 5, SaneTest —» (712 < 0. 65 &)]

out[162]=

{0.7, 0.644218)
In[163]:=
Fi xedPoi nt Li st [Sin, 0.7,
5, SanmeTest —» ((8l -12) <0.045 &)]

out[163]=

{0.7, 0.644218, 0.600573)}

Note: In these exanples, #1 refers to the next-to-last ele-
ment in the |list being generated and #2 refers to the | ast

elenent in the |ist.

FoldList and Fold

In[164]:=
? Fol dLi st
FoldList [f, x, {a, b, ... 1}] gives
{(x, f[x, aj, f[f[x, aj, bj], ... }. More...
In[165]:=
?Fold
Fold[f, x, list] gives the | ast
el enent of FoldList [f, x, list]. More...

The Fold operation takes a function, a value and a |ist,
applies the function to the value, and then applies the

Wolfram Programming Language Fundamentals.nb 39

function to the result and the first elenment of the |ist,
and then applies the function to the result and the second
el ement of the list and so on. For exanpl e,

In[166]:=

Fold[Plus, 0, {a, b, c, d}]
Out[166]=

a+b+c+d

In[167]:=

Fol dLi st [Plus, 0, {a, b, c, d}]
Out[167]=

(0, a, a+b, a+b+c, a+b+c+d}

In[168]:=
Fol dLi st [Pl us, 0, Randonl nteger [{0, 1}, 5]]

Out[168]=

{0, 1, 1, 2, 2, 2}

Exanpl es of WL Prograns

The Gane of Life (GoL) is undoubtably, the nost fanous cel -
lular automaton (CA) and watching the GoL program run
offers deep insight into fundanental tenets concerning the

nodel i ng of natural phenonena. The GoL was created in 1969
by the mathematician John Conway and was published in Mar-
tin Gardner’s Scientific American colum (see http://ww. -
maa. or g/ sites/defaul t/fil es/ pdf/pubs/focus/ Gardner Ganeof Li
fel0-1970. pdf). The GoL can be described as foll ows:

Oh an ‘n by n t wo- di nensi onal square grid (aka
‘checkerboard’), each of the n"2 cells (aka ‘sites’) can
have two possible values, 0 (aka a ‘dead’ cell) or 1 (aka
a ‘live cell). On each tinme step, the values of all of
the cells are updated simultaneously, based on the value
of a cell and the sum of the values of the cells adjacent
to (i.e. touching) the cell being updated. The nei ghbor-
hood” of a cell is conprised of the 8 nearest-neighbor
(nn) cells, lying north, northeast, east, southeast,
sout h, southwest, west, and northwest of the cell (these
nn cells conprise what is known as the WMore neighbor-
hood). The rul es governing the updating are as foll ows:

(1) if a cell is alive and has exactly two living nn cell,
the cell remains alive (if its value is 1, it remains 1).

40 Wolfram Programming Language Fundamentals.nb

(2) if a cell has exactly three living nn sites, the cel
remains alive (if its value is 1, it remains 1) or

is ‘born and becones alive (if its value is 0, it
changes to 1).

(3) any other cell either remains dead (if its value is O,
it remains 0) or ‘dies’ and becones dead (if its value is
1, it changes to 0).

note: T.H Huxley' s statenent that “The chess-board is the
worl d; the pieces are the phenonena of the universe; the
rules of the gane are what we call the laws of Nature” is
often used in conjunction wth cellular automata; however,
this is an incorrect, or at |east inprecise, analogy
because in a CA it is the values of the cells thensel ves
that we are conerned wth.

m Creating Four WL Prograns for ‘The Gane of Life’

The LifeGane programis basically a straightforward inple-
mentati on of GoL enploying the rul e-making, array-process-
i ng and pattern-matching capabilities of W.

LifeGane[n_, steps_] : =
Modul e[{ganeboard, |iveNei ghbors, update},
ganeboar d = Tabl e[Random[Il nt eger], {n}, {n}7];
| i veNei ghbors[mat] : =
Appl y [Pl us, Map[RotateRi ght [mat,] &,
{{-1, -13, {-1, O3, ({-1, 13, {0, -13},
{0, 13, {1, -13, {1, O}, {1, 1}}]];

update[l, 2] :=1;
update[_ , 3] :=1;
update[_ , _] :=0;

Set Attributes[update, Listabler;

Nest [updat e[tf, |1 veNei ghbors[t]] & ganeboard, steps]]

The bowl O Cherries program is a ‘one-liner’, enploying a
nest ed anonynous (aka pure) function which uses the short-
hand notation (...)& and is conprised of three other anony-
mous functions which are witten using Function with one

Wolfram Programming Language Fundamentals.nb 41

formal paraneter (Function[x, ...], Function[y, ...] and
Function[z, ...]).

The behaviors of the three anonynous functions nested
within the outernost anonynous function, do can be readily
di scerned by referring to the LifeGane program

Val ues of the sum of each cell’s eight nn cells (0 thru 8)
are cal cul ated by adding together the results of eight rota-
tions of the ganeboard matrix (the values of the sunms are
the same as the values determned using |iveNeighbors in
Li feGane) .

Ordered pairs are created, in each of which the first ele-
ment is the value of a cell (0 or 1) and the second ele-
ment is the sum of the values (0 thru 8) of the cell’s
eight nn cells (the two elenents in each ordered pair are
the sane as the two argunents used in the update rules of
Li feGane).

Transformation rules are applied to each of the ordered
pairs (the rules are analagous to the update rules of
Li feGane).

bow OF Cherries[n , steps_] :=
Nest [(MapThread[Li st, Function[x,
{x, Function[y, Apply[Plus, Map[Function]
z, RotateRi ght [y, z]],
{{-1, -13, {-1, 0}, (-1, 1}, {0, -13},
{0, 13, {1, -1}, {1, O}, {1, 1}}]]11I
X111, 2] 7. ({1, 2y -> 1,
{_, 3}y —>1, (., _} ->0})4&

Tabl e [Random[I nteger], {n}, {n}], steps]

The bl aDeCbl aDa program creates and then enploys a | ookup
table conprised of 512 update rules, one for each of the
2"9 possible configurations of a cell and its eight near-
est - nei ghbor cells.

42 Wolfram Programming Language Fundamentals.nb

ol aDeObl aDa[n_, steps_]: =
Modul e[{ganeboard, WMbor e,
updat e, LiveConfigs, D eConfigs},
ganeboard = Tabl e[Random[l nteger], {n}, {n}];
LiveConfigs = Join[Map[Join[{0},] &,
Permutations({1, 1, 1, 0, 0, 0O, 0O, 0}]],
Map[Join[{1l}, @] &
Permutations({1, 1, 1, 0, 0, 0O, 0O, 0}]],
Map[Join[{1l}, @] &
Permutations[{1, 1, 0, O, 0, O, 0, 0}]71 1;
Di eConfigs = Conpl enent [Fl atten[Map [Pernutati ons,

Map [Joi n[Tabl e[1, {t}], Table[O0, {(9 - ©)}]] &,
Range [0, 9711,], LiveConfigs];
Apply [(update[rt] = 1) & LiveConfigs, 1];
Apply [(update[tit] = 0) & DieConfigs, 17;
Moore[func _, lat] : =
MapThr ead [func, Map[Rot ateRi ght [lat,] &,
{{o, o}, {1, o}, {0, -13, {-1, O}, {O, 1},
{1, -13}, {-1, -1}, (-1, 1}, (1, 13311, 2];
Nest [Mobor e [update,] & ganeboard, steps]]

note: A GoL program in W. that is very nuch faster than
any of the three ‘hone-brewed prograns above, uses W's
built-in Cellul arAut omat on functi on.

W.Life[n , steps_] :=Cellul arAutomaton]
(224, {2, {{2, 2, 2}, {2, 1, 2}, {2, 2, 2}}}, {1, 1}},
Tabl e [Random[I nteger], {n}, {n}], {{{steps}}}]

Unfortuntely, it is not clear (to ne) what the argunents
used in the one-liner Cellul ar Automaton version of GoL rep-
resent, what algorithmis being used, or if the algorithn
Is inplemented in W or in another progranmm ng |anguage
(such as C. It would be interesting to conpare the speed
of running the GoL in W.Life with the speed of running the
&L in the blazingly fast ‘Golly’ app (see http://golly.-
sourceforge. net and al so http://ww. drdobbs. contjvni an-al go-
rithmfor-conpressi ng-space-and-t/184406478).

Wolfram Programming Language Fundamentals.nb 43

m end notes on (oL:

The use of the built-in Conpile function mght speed up
sone of the GoL progranms (see http://ww.cs. berkel ey. edu/ ~-
f at eman/ paper s/ cashort. pdf (note: the Lisp version of the
forest fire CA program given therein is |IMO repul sive and
speaks to the benefit of programmng in W.) and http://math-
emati ca. st ackexchange. com questi ons/ 1803/ how-t o- conpi | e-
effectively and http://blog.wol framcom 2011/12/07/10-ti ps-
for-witing-fast-nathematica-code/).

GoL prograns witten in other programm ng |anguages can be
found at http://rosettacode.org/w ki/ Conway’ s_Gane_of Life.

Finally, as an philosophical aside, the GoL is relevant to
fundanental issues in the natural sciences, such as ener-
gent phenonena, theoretical nodeling of behavior in natu-
ral systens, and the nature of reality. For those individu-
als interested in this, see the book: “The G and Design”
by Stephen Hawking and Leonard M odi now (the rel evant sec-
tion in this book can also be found at http://am notes.tum
bl r.com post/ 27848853009/ s- hawki ng-1-m odi now- on-why-1i s-
there-sonething), and the two articles by Israeli and ol d-
enfeld: “Conputational Irreducibility and the predictabil-
ity of conplex physical systenms” in Physical Review Let-
ters, 92(7), 074105 (2004) (accessible at http://arx-
I v.org/ pdf/nlin/0309047. pdf) and “Coarse-graining of cellu-
| ar automata, energence, and the predictability of conplex
systens” i n Physical Review E, 73, 026203 (2006)
(accessible at http://arxiv.org/pdf/nlin/0508033. pdf).

