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Abstract

Gene expression as a biological response to environmental stimulus and as a physiological process of
development, is crucial for the study of life. Visualization is an important means to identify complex gene
networks. The primary purpose of this study is to provide immediate connection to analytics of biological
functions and visualization. We introduce a visual framework in the environment of a main computer
algebra system (CAS), Mathematica, to picture the differences in gene expression. Our computer codes
construct snapshots for gene expression patterns, with the advantage of being self-explanatory contrary to
traditional approaches using charts, indices and numerals. They also provide a dynamic interface to
facilitate comparisons among genes, indicate gene pairs at a glance and, possibly, help interpret the joint-or
interaction-effects that arise. The programming codes along with their application in examples from
selected case studies concerning genes involved in embryonic development of common sole (Solea solea)
are our methodological contribution in the visualization of gene expression patterns. This work could assist
researchers in biosciences with suggestions specific to gene expression patterns.
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Iepiinyn

H yovidwoxn éxeppaocn og Proroyikn omodkpion oe mepifordoviikd epebiopota Kot ®¢ QUOIOAOYIKN
avamTuEloKn JladIKaoio, Vol GNUAVTIKY Yo TNV KOTOVONGOT KOl TEPLYPAPT| TOV {OTIKOV AEITOVPYIDV TOV
opyovicpumv. H amewovion og péco meptypoapns twv mpoppndéviav TOATAOK®OV YOVIOWNK®OV SIKTLMV
Bewpeiton ex TV ©v ovk dvev. Koplog oxomdg g mapovoag peAETng eivor vo cuvdéoel Gueca Tig
Broloyikég Aettovpyieg OTMOG 1 YOVIOIOKY EKPPOOT), LE TOV TPOTO UMEIKOVIONS TovG. Ed®d mpoteivetar va
VTOAOYIOTIKO TAOIGI0 ©T0 TEPPAALOV  €VOG 1OYLPOL  GUOTHUOTOS VTOAOYIOTIKNG GAYEBPOSG, TOL
Mathematica, ywo. ™ Oonuovpyio. OTTIKOV ovOTaPacTdce®y. Ot VTOAOYIOTIKOT KMOIKEG OMNUOVPYOHV
OTLYIOTLTTO TOV TPOTHTMOV TNG YOVISIOKNG EKPPUOTG IE AVTOETEENYNUOATIKY TEPLYPOPT|, O OVTIOEST pE TIG
Tapadoclokes HeBOdOLG OV YpMOIOTOlOVY  Slaypappata, Ogikteg kal apiduovs. H mpotewvouevn
VTOAOYIOTIKT] TPOGEYYIOT SUVOTOL VO, OTOTUTADGCEL OTMTIKEL, GE OTATIKEG KOl OUVOIKES EIKOVES, £V SUVALLEL
yovidlokd Cevyn 1M diktva, kot mbavodg vo avadeibel — epunvevcel AavBdvovoeg (VTOKPVTTOLGEG)
ouvdécelg M aAAnAemdpdoelc. Ot LTOAOYIOTIKOL KMOIKEG KOl 1| EPUPUOYN TOVG GE GLYKEKPLUEVN
TEWPOALOTIKY UEAETN 1 oToie apopd og yovidlo mov eumAéKovTol otnv eUPpuikn avamTuén Tov €ldovg
«yhdooa 1 Kownp (Solea solea), amotehovv po peBodoroykr] GUUPBOAT GTNV ATEIKOVIOT] TOV TPOTOTMOV
g yovidtokng ékppacns. H mopovca epyacio apopd 6Tovg epevvnTég TV BLOEMOTIUMY OV £XOVV MG
OVTIKEIIEVO TO TPOTLTIOL TNG YOVIOLOKNG EKPPOCTG.

AéEeag Kheona: Tovidwkn| éxeppaon; 'doco m kown; Aviyvevon Motifov Tovidiokng
‘Exepoaong; Mnrpown Ameikovion; X0oTnue VDTOAOYIOTIKNG  GAyePpag
Mathematica.

JEL Kodwoi: C88, C63.
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1. Introduction

Over the years databases have progressed from theory, to small text files, to visual
representations, to presently include research in genetic (genome-transcriptome) databases.

This work focuses on visual interfaces for gene expression data and especially for RT-
gPCR data. We applied visualization to extract and/or verify the conclusions of gene
expression analysis and facilitate comparisons when working with transcriptional data. We
aimed at understanding different molecular/biomarker patterns which arise among different
treatments. We created the computational framework to insert transcriptome data and handle
them in a qualitative approach. For this purpose, a main computer algebra system,
Mathematica, was used to generate visual outputs out of raw data. Specifically, in
Mathematica’s computational environment, we created pattern constructs consisting of
colored patches which described the differential gene expression per treatment. In this way,
we provided a concise framework for synthesizing and displaying the RT-qPCR data. Our
programming techniques develop three different aspects of related visualization: visual query
by genes depicted in static images, comparative schemes for treatments accomplished by
dynamic images and numerical data depiction using Mathematica’s dynamic visualization
options.

Our visual interface was applied empirically by using data from six different embryos
batches (eggs) of common sole (Solea solea) in order to generate versions of comparative
snapshots, with controls added to allow the choice of two spawning seasons and the choice of
six batches, three in each season. Our approach allowed for clear visual gene expression
comparisons among treatments.

2. Literature Review

The great amount of information that new technologies provide and the complexity of
life itself, primary due to nucleic acids proprieties and the high level of polymorphism that is
observed, either genetic or phenotypic, require a more holistic overview in every particular
type of problem.

A number of computational approaches have been applied to biological data, in order
to facilitate their analysis and to attribute them more accessible and intuitive use. They
involve a variety of programming languages, software packages, web applications i.e. Perl
(Lang et al. 2015), Python (Boher et al. 2015), PHP & Java (Koch et al. 2015) and FuncTree
(Uchiyama et al. 2015). Computational approaches of gene expression analysis with
Mathematica are discussed in (Allen, 2013; Vilar and Saiz, 2010).

Graphical visualizations of gene expression patterns and networks can be found
elsewhere (Uchiyama et al. 2015; Lang et al. 2015; Koch et al. 2015; Bohler et al. 2015).
Related visualizations have been previously presented (Fails et al., 2006). Although not
directly related to the biological field, a set of visualizations that build along the same
schematic representations are already a fact (Halkos and Tsilika, 2014; Halkos and Tsilika,
2015a,b,c).

3. Methods and Data
3.1 Data Set Description

Solea solea 1s a promising species for aquaculture. Anomalies in embryonic stages are
a serious setback during intensive rearing, entailing economical, biological and welfare issues.

Our example study utilized data from six different embryo batches (eggs) of common
sole (Solea solea). Half of each collected from F1 cultured broodstock (already acclimatized
for a long time period) and naturally fished breeders (again properly acclimatized), during
winter and summer spawning period, respectively. In the following notations, winter period
samples are associated with 5,7,9 treatments and summer period samples with E, E2, E3
treatments.
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Six (6) target genes of hox family (Ala, A2a, A2b, Al3a, Bla, Blb) regarding

physiological embryo development were isolated and their expression were estimated 48

hours after spawning.

Table 1: Data matrix of Ct values' averages of three biological replications: rows E, E2, E3

correspond to summer spawning period while rows 5, 7, 9 correspond to winter spawning

period

Reference:
Ala | A2a | A2b | A13a | Bla | Blb RPS4

E [27.70 | 26.40 | 23.99 | 29.17 | 24.52 | 22.29 18.22
E2 | 2598 | 24.35 | 23.70 | 26.54 | 24.62 | 20.86 16.46
E3 ]28.29 25392693 | 24.11 | 28.24 | 24.90 19.46
5 129.68 | 27.60 | 25.27 | 28.55 | 26.03 | 21.94 19.93
7 127.61|2495|23.43 |25.84 | 24.71 | 19.93 17.79
9 130.06 | 27.75 | 25.87 | 29.32 | 25.69 | 21.10 19.74

3.2 Methods

In our computational approach, the first step is the loading of experimental data; all
experimental data are featured in a number of 1xn lists. Each cell identifies the average Ct
value which stands for a specific gene expression level. Then, a matrix results from a list of
the predefined lists. Appropriate built-in Mathematica functions generate plots, in which, the
entries in the matrix are shown in a discrete array of squares.

In black-and-white snapshots, white squares indicate the absence of gene expression
while gray-shaded squares indicate gene expressions of variant levels. For example, the row
matrix (0, 500, 1000, 10000) is depicted by ArrayPlot function in Mathematica as shown in
Fig. 1.

Figure 1: Visualization of row matrix (0, 500, 1000, 10000) using gray-shaded squares

Alternatively, we can create colored snapshots using MatrixPlot function, where
each colored cell illustrates a specific gene expression level. In the pattern construct for each
treatment, a light colored cell indicates a low gene expression while cells having more intense
colors indicate comparatively higher gene expression (Fig. 2)

Figure 2: Visualization of row matrix (0, 500, 1000, 10000) using colored squares

Additionally, the following expression pattern constructs of reference genes (Fig. 4)
are created in Mathematica. Reference genes are important for RT-qPCR data normalization.
Various visual outputs of RT-qPCR matrix (Fig. 3), corresponding to differential expression
of four reference genes in sole eggs in a time period of 0, 6, 24, 48 72, 96 h after spawning
can be constructed, but the tendencies or patterns observed in each reference are preserved.
Each colored cell illustrates a different level of gene expression in each reference. The row

' Ct is the number of the cycles required for the fluorescent signal to cross the threshold. Ct levels are inversely
proportional to the amount of target nuclear acid in the sample. High Ct values state for low expression
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having the minimum color variation indicates stability in expression. Thus the gene with a
uniform color pattern seems to be the best candidate for reference.

ach 0% mm ms 2% 21 20w

Rest se s um zm ne 2| .
sz s mm ma2 50 w6

Hours o o o a o o

plication 1 2 3 4 5 -]
Act-b 20.82 18.83 18.83 21.96 22,13 20.00
EFla 22.97 20.14 19.93 21.320 23.40 21.46
RP54 25.84 25.09 24.93 27.42 26.62 27.45
uUB 25.22 25.08 24.64 25.22 25.08 24.64

Figure 4: A Mathematica output: several versions of the same plot give an overview of
expression within these four genes of interest
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4. Empirical Results
The Mathematica modules that follow were designed to record RT-qPCR data of par.
3.1 on lists, as well as to convert the indices associated to every gene expression level (Ct
values in the technical terminology) to appropriate shades of colors/gray.
Data are inserted in lists of seven entries: the Ct values from E, E2, E3, 5, 7, 9 rows
from Table 1. In Mathematica’s internal representation the example variables that must be set
by the user are:

e:={27.7,26.4,23.99,29.17,24.52,22.29,18.22};
e2:={25.98,24.35,23.7,26.12,24.62,20.55,16.46};
e3:={28.29,25.39,26.93,24.11,28.24,24.9,19.46};
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n5:={29.68,27.6,25.27,28.99,26.03,21.94,19.93};
n7:={27.61,24.95,23.43,26.19,24.71,19.93,17.79};
n9:={30.57,27.75,25.87,29.32,25.69,21.1,19.74};

The second step involves several visual schemes of the data (using inverse Ct values)
were generated by the following Mathematica codes:

Labeled[MatrixPlot[{1l/e, 1/e2, 1/e3, 1/n5, 1/n7, 1/n9}, FrameTicks -> All, Mesh ->
True, Frame -> True, FrameStyle -> Opacity[0], FrameTicksStyle -> Opacity[1l]], {"Genes
/ Treatments"}, Top}]

Genes / Treatments

1 2 3 4 5 L] 7
| ] | | |

1 2 3 4 5 L] 7

Manipulate[MatrixPlot[{{1/n5, 1/n7, 1/n9}[[i]l], {1/e, 1/e2, 1/e3}[[j]l]}, FrameTicks ->
None, Mesh -> True, Frame -> True, FrameStyle -> Opacity[0], FrameTicksStyle ->
Opacityl[1]], {i, 1, 3, 1}, {j, 1, 3, 1}]

or

Manipulate[ArrayPlot[{{1/n5, 1/n7, 1/n9}[[i]], {1/e, 1/e2, 1/e3}[[jl11},

FrameTicks -> None, Mesh -> True, Frame -> True, FrameStyle -> Opacity[0],
FrameTicksStyle -> Opacity[1]], {i, 1, 3, 1}, {j, 1, 3, 1}]

Fig. 5 illustrates the use of dynamic visualization options in Mathematica 8,
comparing pairwise any winter with any summer treatment, in two different visual schemes.

Figure 5: A snapshot from Mathematica: comparing pairwise any winter with any summer
treatment.

Fig. 6 illustrates the use of dynamic visualization options in Mathematica 8,
comparing all treatments pairwise.
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Manipulate[ MatrixPlot[{{1/n5, 1/n7, 1/n9, 1/e, 1/e2, 1/e3}[[il]l, {1/n5, 1/n7, 1/n9,
1/e, 1/e2, 1/e3}[[j]l]}, FrameTicks -> None, Mesh -> True, Frame -> True, FrameStyle ->

Opacity[0], FrameTicksStyle -> Opacity[1]], {i, 1, 6, 1}, {j, 1, 6, 1}]
Figure 6: A snapshot from Mathematica: comparing winter treatments 5 and 9

||]
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Moreover, we provided instant creation of a dynamic interface that allowed varying
treatments per season, when comparing numerically different treatments pairwise and gaining
useful insights from Ct values dataset (Fig. 7).

Figure 7: A snapshot from Mathematica: comparing winter treatment 5 with summer
treatment E2

Manipulate[{{n53, n7, nS}[[1]], {e2, €3, €} [[111}, {1, 1, 3,1}, {1, 1, 3, 1}]
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5. Conclusions

This study focused on implementing computer codes of functional programming style
in order to develop a tool that enables biologists to place their data in Mathematica’s
computational environment and accurately depict their gene expression patterns in a variety of
snapshots. Our programming codes make use of Mathematica’s built-in matrix functions and
created an interface that automate the process of creating cognitively and aesthetically
compelling representations of RT-qPCR data of different target genes and treatments. Our
qualitative approach was applied at the empirical level, with actual estimated values related to
the development of Solea solea in early life stages. The generated output makes clear that the
present computational approach enables complex analyses and sorting strategies.
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