WEB SERVICES USER GUIDE

For use with Wolfram Mathematica® 7.0 and later.

For the latest updates and corrections to this manual:
visit reference.wolfram.com

For information on additional copies of this documentation:
visit the Customer Service website at www.wolfram.com/services/customerservice
or email Customer Service at info@wolfram.com

Comments on this manual are welcomed at:
comments@wolfram.com

Content authored by:
Chris Williamson

Printed in the United States of America.
15141312111098765432

©2008 Wolfram Research, Inc.

All rights reserved. No part of this document may be reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright
holder.

Wolfram Research is the holder of the copyright to the Wolfram Mathematica software system ("Software") described
in this document, including without limitation such aspects of the system as its code, structure, sequence,
organization, “look and feel,” programming language, and compilation of command names. Use of the Software unless
pursuant to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an infringement
of the copyright.

Wolfram Research, Inc. and Wolfram Media, Inc. ("Wolfram') make no representations, express,
statutory, or implied, with respect to the Software (or any aspect thereof), including, without limitation,
any implied warranties of merchantability, interoperability, or fitness for a particular purpose, all of
which are expressly disclaimed. Wolfram does not warrant that the functions of the Software will meet
your requirements or that the operation of the Software will be uninterrupted or error free. As such,
Wolfram does not recommend the use of the software described in this document for applications in
which errors or omissions could threaten life, injury or significant loss.

Mathematica, MathLink, and MathSource are registered trademarks of Wolfram Research, Inc. J/Link, MathLM,
.NET/Link, and webMathematica are trademarks of Wolfram Research, Inc. Windows is a registered trademark of
Microsoft Corporation in the United States and other countries. Macintosh is a registered trademark of Apple
Computer, Inc. All other trademarks used herein are the property of their respective owners. Mathematica is not
associated with Mathematica Policy Research, Inc.

Contents

Introduction..... 1
XML and HT TP .. .o e e e 1
SO AP . . 2
WS DI . . 2
XML Schemaa e 2
WS-I Basic Profiles 3
Getting Started 4
Loading the Package 4
Installing a Web Service e 4
Naming a Web Service e 4
Inspecting Web Service Functions
Executing a Web Service Function, 5
Basic EXamples 6
DataTypes: ECho 6
Images: Plot e 11
Mathematical Data: Integrate 12
SOAP Headerso e e e e 15
S I ONS e e 16
Authentication 16
TIMEOURS 17
Advanced TOoPICS 18
Working with Messages i 18
Working without @a WSDL e 19
DEebUggiNg 22

Example Applications

AMAZON e 23
GOOGIe . .. e e e 25
XMethods e 28

Introduction to Web Services

The World Wide Web is increasingly being used for communication between applications. The
programmatic interfaces made available over the web for application-to-application communica-
tion are often referred to as web services. There are many types of applications that can be
considered web services but interoperability between applications is enhanced most by the use
of familiar technologies such as XML and HTTP. These technologies allow applications using
differing languages and platforms to interface in a familiar way.

The web services client for Mathematica allows users to call operations that are based remotely
on other platforms or languages that are not immediately accessible to Mathematica. This

opens up a whole new realm of functionality and data to users of Mathematica.

There are several keys technologies that enable Mathematica to interact with web services.

Following is an explanation of each technology.

XML and HTTP

XML and HTTP are the foundation for calling web services with Web Services Link. A user inter-
acts with the web service interfaces by sending XML messages over HTTP. XML and HTTP are
useful for creating and sending messages because they are flexible and widely supported on
many platforms and languages. This interoperability allows applications to communicate using
differing languages and platforms using these common technologies. Web Services Link sup-
ports XML 1.0 and HTTP 1.1. The XML functionality is supplied by the XML capabilities built into
Mathematica. The HTTP functionality is supplied by the Apache Commons HTTP client. The user
may find knowledge of XML and HTTP to be helpful, however, it is not required. For more infor-
mation about HTTP, please see http://www.w3.org/Protocols/. For more information about XML,
please see http://www.w3.org/XML/.

2 | Web Services User Guide

SOAP

Because XML and HTTP are so flexible, a web service message may be represented and commu-
nicated in many different ways. Therefore it is important to have standards that are common
among all platforms and languages that use a web service. Simple Object Access Protocol
(SOAP) is one standard that formally sets the conventions governing the format and processing
rules of XML messages and how they are used with HTTP. Web Services Link supports SOAP
1.1. Mathematica users are not required to know any specifics of SOAP. For more information,
please see http://www.w3.0org/TR/SOAP/.

WSDL

Another useful technology that is associated with web services is Web Service Description
Language (WSDL). WSDL formally sets the format for describing a web service using XML. By
providing a Uniform Resource Identifier (URI) to a WSDL, applications can discover what opera-
tions a particular web service provides and how an operation’s messages look. With this informa-
tion Web Services Link can generate SOAP messages using input from Mathematica functions. A
web services operation may be used without a WSDL, however, the WSDL is key for promoting
a web service. Web Services Link supports WSDL 1.1. Mathematica users are not required to

know any specifics of WSDL. For more information, please see http://www.w3.0org/TR/wsdl.

XML Schema

Data types are a very important component of web services because different data types may
be used to compose SOAP messages. WSDL uses XML Schema to describe data types used in a
web service. Web Services Link uses the XML Schema package to dynamically bind Mathemat-
ica expressions to XML. This package validates data against a schema to make sure it correctly
matches the definition for a data type. Web Services Link supports XML Schema 1.0. Mathemat-
ica users are not required to know any specifics of XML Schema. For more information, please

see http://www.w3.0rg/XML/Schema.

Web Services User Guide | 3

WS-I Basic Profiles

While SOAP and WSDL are great starts for implementing web services, there are compatibility
issues that result from these specifications. WS-I Basic Profiles address all compatibility issues
by specifying implementation guidelines on how core web services specifications should be used
together to develop interoperable web services. This specification gives guidelines for WSDL,
SOAP, and Universal Description, Discovery and Integration (UDDI) implementations. The focus
of this specification is easier integration among varying implementations of web services and
their clients. The client uses these guidelines for the implementation. A web service that follows
these guidelines is more likely to work correctly with the client. Web Services Link supports WS-
I Profiles 1.1. Mathematica users are not required to know any specifics of Basic Profiles. For

more information, please see http://www.ws-i.org/.

4 | Web Services User Guide

Getting Started with Web Services

Loading the Package

Web Services Link is a Mathematica add-on application. Before any functions from the package
can be used, it must be loaded as follows.

<< WebServices"

Installing a Web Service

InstallService will install the web service operations defined by a supplied WSDL as Mathemat-

ica functions. The functions created are returned in a list.

InstallService]|
"http://localhost:8080/webMathematica/Examples/WebServices/Hello.m?wsdl"]

{HelloWorld}

Naming a Web Service

The functions created by InstallService are placed in a context based on the service name
and port name specified by the WSDL. A user can change this context by supplying a valid

Mathematica context to InstallService.

InstallService|
"http://localhost:8080/webMathematica/Examples/WebServices/Echo.m?wsdl",
"EchoService™ "]

{EchoBase64Binary, EchoBoolean, EchoDate, EchoDateTime, EchoDatum, EchoDatumArray,
EchoExpression, EchoInteger, EchoIntegerArray, EchoMathML, EchoReal, EchoString, EchoTime}

Context [EchoString]

EchoService™

By default the context of a web service is added to the $ContextPath. This allows users to call
the functions without having to specify the context. However, there is a danger that the func-
tions installed by Installservice will collide with other functions already defined in Mathemat-

Web Services User Guide | 5

ica on $contextPath. If a user does not want the web service context added to $ContextPath,
then the user should set AllowShortContext -> False. If this option is set to False, then the

entire context will need to be specified in order to call a function.

InstallService[
"http://localhost:8080/webMathematica/Examples/WebServices/Plot.m?wsdl",
AllowShortContext —» False]

{PlotServiceService PlotServicePort PlotExpression,
PlotServiceService PlotServicePort PlotString}

Inspecting Web Service Functions

$InstalledServices may be used to determine which web service functions are installed. This
is a list of all the web service functions installed.

$InstalledServices

{EchoBase64Binary, EchoBoolean, EchoDate, EchoDateTime, EchoDatum, EchoDatumArray,

EchoExpression, EchoInteger, EchoIntegerArray, EchoMathML, EchoReal, EchoString,

EchoTime, HelloWorld, PlotServiceService PlotServicePort PlotExpression,

PlotServiceService PlotServicePort PlotString}
The usage message for each function may be inspected to discover how the function works.
? SymbolName may be used to get the usage message for a symbol. For instance, ? HellowWorld
retrieves the usage message for HellowWorld. The usage message for a web service function is

populated with the documentation provided by the WSDL.

? HelloWorld

Each usage message contains a function signature that may be used to call the function. For

instance, HelloWorld does not require any parameters and returns a string.

Executing a Web Service Function

The usage message should be a starting point for determining what to input as parameters and
what to expect as a result. Once this is determined, the function may be executed. A web
service function may be executed just like any other Mathematica function.

HelloWorld[]

Hello! The current date is {2007, 3, 29, 14, 15, 17.5561239}

6 | Web Services User Guide

Basic Examples of Web Services

DataTypes: Echo

Often a web service requires using data other than a simple string. This data could be some-
thing simple like an integer or a real. Often the data is more complex and is a combination of
simple data types. This example demonstrates how to use different data types.

<< WebServices™

InstallService]

"http://localhost:8080/webMathematica/Examples/WebServices/Echo.m?wsdl"]

{EchoBase64Binary, EchoBoolean, EchoDate, EchoDateTime, EchoDatum, EchoDatumArray,
EchoExpression, EchoInteger, EchoIntegerArray, EchoMathML, EchoReal, EchoString, EchoTime}

For each of the examples, the usage message may be used to determine the data types used

by a web service.

Simple Data Types

Simple data types are the easiest data types to use in Web Services Link. Mathematica users
should be familiar with the symbols string, Integer, Real, True, and False. Each of these
may be used with a web service function.

Here is an example of using True with a web service.

? EchoBoolean

EchoBoolean [True]

True

Here is an example of using string with a web service.

? EchoString

EchoString["Hello."]

Hello.

Here is an example of using Integer with a web service.

? EchoInteger

EchoInteger[13]
13

Here is an example of using rReal with a web service.

? EchoReal

EchoReal[2.3333]

2.3333

Nonstandard Simple Data Types

Web Services User Guide | 7

Web Services Link provides some data types that may be mapped to the XML Schema of a web

service. SchemaDate, SchemaTime, SchemaDateTime,

SchemaExpr,

SchemaMathML, and

SchemaBase64Binary are each simple data types that may be used with a web service.

8 | Web Services User Guide

Here is an example of using SchemabDate with a web service.

n/19]:= ? EchoDate

SchemaDate EchoDate[d_SchemaDate]

Echos a date.

n/20]:= ? SchemaDate

SchemaDate[year_Integer, month_Integer,
day_Integer] represents a date that may be used with XMLSchema.

in/21]:~ EchoDate[SchemaDate[2005, 7, 4]]

Cut/21]~ SchemaDate[2005, 7, 4]

Here is an example of using SchemaTime with a web service.

in/22]:= ? EchoTime

SchemaTime EchoTime[t_SchemaTime]

Echos a time.

in/23]:= ? SchemaTime

SchemaDateTime[hour_Integer, minute_Integer,
second_Real] represents a time that may be used with XMLSchema.

in/24]:~ EchoTime[SchemaTime[5, 0, 0.]]
Out/24]~ SchemaTime[5, 0, 0]

Here is an example of using SchemaDateTime with a web service.

in/25]-~ ? EchoDateTime

SchemaDateTime EchoDateTime[dt_SchemaDateTime]

Echos a date time.

in/26]-— ? SchemaDateTime

SchemaDateTime[year_Integer, month_Integer, day_Integer, hour_Integer,
minute_Integer, second_Real] represents a dateTime that may be used with XMLSchema.

Web Services User Guide | 9

EchoDateTime [SchemaDateTime @@ Date[]]

SchemaDateTime [2007, 3, 29, 14, 19, 36.9501]

Examples of schemaExpr, SchemaMathML, and SchemaBase64Binary follow in the next section.

Compound Data Types

Web Services Link generates symbols that are used to build compound data types. Compound
data types are Mathematica expressions that contain instances of simple data types and/or
compound data types. Compound data types are created in Mathematica using a symbol repre-
senting the data type as the head of a Mathematica expression. The members of the data type
are represented using rules in the body of the expression. The left-hand side of the rule speci-
fies the name of a member of the data type. The right-hand side specifies the value of the

member. The value may be a simple or compound value.

Here is an example of a web service that uses a compound data type.

? EchoDatum

? Datum

NewSchemaInstance may be used to generate an instance of Datum.
datum = NewSchemaInstance[Datum, {"value" -» 5!, "text" -» "Hello!"}]

Datum[value » 120, text » Hello!]

EchoDatum[datum]

Datum|value - 120, text — Hello!]

10 | Web Services User Guide

Here is an example of how to retrieve data from a compound data type.

datum["value"]

120

ReplaceSchemaInstanceValue may be used to set a value for a compound data type.

ReplaceSchemaInstanceValue[datum, "value" - 6!]

Datum[value -» 720, text - Hello!]

Arrays

Web Services Link supports arrays using List. To use an array, you need only to use a Mathe-
matica List consisting entirely of the data type defined by the array.

Here is an example of a web service that uses an array of simple data types.

? EchoIntegerArray

EchoIntegerArray[{1l, 2, 3}]
{1, 2, 3}

Here is an example of a web service that uses an array of compound data types.

? EchoDatumArray

datum = NewSchemaInstance[Datum, {"value" - 5!, "text" - "Hello!"}]

Datum[value -» 120, text » Hello!]

EchoDatumArray [{
ReplaceSchemaInstanceValue[datum, "value" - 7!],
ReplaceSchemaInstanceValue[datum, "value" -» 8!],
ReplaceSchemaInstanceValue[datum, "value" - 91!]}]

{Datum[value » 5040, text - Hello!],
Datum([value - 40 320, text —» Hello!], Datum[value - 362880, text -» Hello!]}

Web Services User Guide | 11

Images: Plot

Strings are a natural way to transmit graphics within web services. In order to ensure its int-
egrity, binary data is encoded in base64. This example demonstrates how to use binary data
types.

<< WebServices"

InstallService[
"http://localhost:8080/webMathematica/Examples/WebServices/Plot.m?wsdl"]

{PlotExpression, PlotString}

? PlotString

In the pPlot example, PlotString takes a string and an integer as parameters and returns a
base64 binary string. The function converts the string into a Mathematica expression and then
plots this as a function of x from 0 to a limit specified by the integer. The service returns a list
of base64 binary bytes wrapped in a head of schemaBase64Binary. This head is used to identify
this data as base64 binary. FromCharacterCode can be used to decode the base64 binary data
into a string consisting of GIF data. This string may be imported to a GIF with ImportString.

ImportString[FromCharacterCode[First [PlotString["Sin[x]", 10]]], "GIF"]

10f

s/

-05F

12 | Web Services User Guide

Mathematical Data: Integrate

Web Services Link supports mathematical data using strings, typeset images, MathML, or Mathe-

matica expressions. This example demonstrates using mathematical data.
<< WebServices"

InstallService|
"http://localhost:8080/webMathematica/Examples/WebServices/Integrate.m?wsdl"]

{IntegrateExpression, IntegrateExpressionToGIF, IntegrateMathML,
IntegrateMathMLToGIF, IntegrateString, IntegrateStringToGIF}

Strings

Mathematical data can be used with a web service by using Mathematica expressions within a
string. The string data type has some limitations for communicating mathematical data. For
one, it is one-dimensional. If you use InputForm or FullForm to represent the data, informa-
tion about its presentation may be left out. It is also worth noting that while all web services
support strings, they may not all support parsing Mathematica expressions from a string. How-
ever, sending a string to web service is probably the simplest way to communicate mathemati-

cal data, if not the most advanced.

This example demonstrates using strings to communicate mathematical data.

? IntegrateString

result = IntegrateString["Sin[x]"]

-Cos [x]

Web Services Link does not take a string and automatically convert it into a Mathematica expres-
sion. This is because all strings are not necessarily Mathematica expressions.

result // InputForm

"_Cos[x]"

Web Services User Guide | 13

But because this is Mathematica, the result can easily be turned into an expression.

expr = ToExpression[result]

-Cos [x]

Typeset Images

Mathematical data can be presented with a web service by using images. An image has one
major limitation for communicating mathematical data. An image cannot be easily manipulated
or processed. This means data cannot be easily taken from it except visually and it cannot be
changed and updated easily. Images are often useful, however, because typeset equations are
not supported on nearly as many systems as images. So generating an image of a typeset
equation is a nice way to present typeset equations on systems that do not support them.

The following example demonstrates using images to communicate mathematical data. The
service returns a list base64 binary bytes wrapped in a head of SchemaBase64Binary. This head
is used to identify this data as base64 binary. FromCharacterCode can be used to decode the
base64 binary data into a string consisting of GIF data. This string may be imported to a GIF
with ImportString.

? IntegrateStringToGIF

ImportString[FromCharacterCode [First [IntegrateStringToGIF["x"2"]]], "GIF"]

%3
3

Mathematica Expression

Mathematical data can be presented with a web service by using Mathematica expressions.
Expressions are how data is represented in Mathematica. Expressions address some of the
limitations of strings and images. However, expressions do have a few limitations of their own,
the biggest being that they are not supported on all systems. However, since expressions are
the standard for using mathematical data with Mathematica, they can be very useful for interfac-

ing with other Mathematica systems.

14 | Web Services User Guide

The following example demonstrates using Mathematica expressions to communicate mathemati-
cal data. The service returns an expression wrapped in a head of schemaExpr. This head is used

to identify the following data as an expression.

? IntegrateExpression

IntegrateExpression[SchemaExpr[Sin[x]]]

SchemaExpr [-Cos [x]]

Web Services Link encodes Mathematica expressions as ExpressionML within web services

messages. The ExpressionML is automatically converted into an expression.

MathML

Mathematical data can be presented with a web service by using MathML. MathML is the stan-
dard for representing mathematical data across systems. MathML addresses some of the limita-
tions that strings and images have. However, MathML does have a few limitations of its own,
the biggest being that it is not supported on all systems. Another limitation is its complexity.
MathML is more difficult to look at than something like InputForm. However, since it is the
standard for using mathematical data outside of Mathematica, it can be very useful for interfac-

ing with other systems that do not use Mathematica.

This example demonstrates using MathML to communicate mathematical data. The service
returns symbolic MathML wrapped in a head of schemaMathML, which is used to identify the data
as MathML.

? IntegrateMathML

Web Services User Guide | 15

result =
IntegrateMathML [SchemaMathML [XML MathML ExpressionToSymbolicMathML[Sin[x]]]]

SchemaMathML [XMLElement [{http://www.w3.0rg/1998/Math/MathML, math},

{}, {XMLElement [{http://www.w3.0rg/1998/Math/MathML, mrow},
{{http://www.w3.0rg/2000/xmlns/, nsO0} - http://www.w3.0rg/1998/Math/MathML},
{XMLElement [{http://www.w3.0rg/1998/Math/MathML, mo}, {}, {-}1,

XMLElement [{http://www.w3.0rg/1998/Math/MathML, mrow}, {
{XMLElement [{http://www.w3.0rg/1998/Math/MathML, mi}, {
XMLElement [{http://www.w3.0rg/1998/Math/MathML, mo}, {
XMLElement [{http://www.w3.0rg/1998/Math/MathML, mo}, {
XMLElement [{http://www.w3.0rg/1998/Math/MathML, mi}, ({
XMLElement [{http://www.w3.0rg/1998/Math/MathML, mo}, {

Web Services Link does not take a MathML expression and automatically convert it into a Mathe-
matica expression, because not all MathML instances are necessarily supported by Mathematica

expressions. But because this is Mathematica, the result can easily be turned into an expression.

XML MathML" SymbolicMathMLToExpression[First[result]]

-Cos [x]

SOAP Headers

SOAP headers are an important component to web services because they allow web services to
process metadata separate from the body of a SOAP message. The body will contain informa-
tion directly related to the web service operation being invoked. However, a header may con-
tain more general content that is used across any number of the web service operations. For
example, a header may contain a username and password. It is useful to include the username
and password as a header, because a separate component can be used to process the user-
name and password without needing to know anything about the body.

Web Services Link supports headers by including the header as part of the function signature of
an operation. So it will look like any other parameter of the operation. If an operation requires
two strings defining the username and password as headers, then these two strings will be
expected when calling this function.

<< WebServices"

InstallService|
"http://localhost:8080/webMathematica/Examples/WebServices/SOAPHeaders.m?wsdl"]
{Authenticate}

? Authenticate

16 | Web Services User Guide

Authenticate["anonymous", "password"]

Hello anonymous.

Sessions

Sessions are used by web services to persist user data over multiple calls to a web service. For
example, they can be used to save a user’s settings, data, or other things. Sessions are sup-
ported by Web Services Link. However, there are no special functions or options. If a web

service provides operations that use sessions, then sessions should be used by the Java client.

Here is an example that uses sessions. This example returns how many times a user has
accessed the operation.

<< WebServices"
InstallService|

"http://localhost:8080/webMathematica/Examples/WebServices/Session.m?wsdl"]

{GetAccesses}

? GetAccesses

GetAccesses|[]

0

Additional calls to GetAccesses increments the counter.

GetAccesses|[]

1

Authentication

Authentication is used by some web services to validate a user. This is based on functionality
provided by HTTP. Digest and basic authentication are supported. A user can set the username
and password by using the Username and password options. These can be passed into any web
service function and used for authentication.

Web Services User Guide | 17

<< WebServices"™
InstallService|

"http://localhost:8080/webMathematica/Examples/WebServices/Hello.m?wsdl",
"Username" - "user", "Password" - "password"]

{HelloWorld}

HTTP authentication is reused for supplemental calls to a URL. The username and password are

stored in memory and will be required every time the Java Virtual Machine (JVM) is shut down.

HelloWorld][]

Hello! The current date is {2007, 1, 31, 12, 32, 35.848595}

Timeouts

A timeout may be required when calling a web service operation. A user can set the timeout by
using the Timeout option. This can be passed into any web service function. The value of the
option must be a positive integer specifying the timeout in milliseconds.

<< WebServices"

InstallService|

"http://localhost:8080/webMathematica/Examples/WebServices/Hello.m?wsdl"]
{HelloWorld}

Here is an example setting the timeout to 10 milliseconds.

HelloWorld[Timeout - 10]

>

$Failed

Here is an example setting the timeout to 1 second.

HelloWorld[Timeout -» 1000]

Hello! The current date is {2007, 3, 29, 14, 38, 39.6414826}

18 | Web Services User Guide

Advanced Topics in Web Services

Working with Messages

Sometimes it is useful to work directly with the request message that is sent to a web service.
This message may be retrieved using the ToserviceRequest function. ToServiceRequest is
called by providing a web service function as the first parameter and its parameters as the
additional parameters. The function will not invoke the web service operation. Rather the func-
tion will return the symbolic XML representation of the request message that would generally be
sent to the web service.

<< WebServices"™

InstallService|[
"http://localhost:8080/webMathematica/Examples/WebServices/Integrate.m?wsdl"]

{IntegrateExpression, IntegrateExpressionToGIF, IntegrateMathML,
IntegrateMathMLToGIF, IntegrateString, IntegrateStringToGIF}

symbolicXML = ToServiceRequest[IntegrateString, "Sin[x]"]

XMLObject [Document] [{},
XMLElement [{soapenv, Envelope}, {{xmlns, soapenv} - http://schemas.xmlsoap.org/soap/envelope/,

{xmlns, xsd} - http://www.w3.0rg/2001/XMLSchema,

{xmlns, xsi} -» http://www.w3.0rg/2001/XMLSchema-instance,

{xmlns, soapenc} - http://schemas.xmlsoap.org/soap/encoding/},

{XMLElement [{soapenv, Body}, {}, {XMLElement[{ns0, IntegrateString},

{{xmlns, ns0} > http://localhost:8080/webMathematica/Examples/WebServices/Integrate.m},
{(XMLElement [{, str}, {}, {Sin[x]}]}1}1}1, {}]

A user may change the request message to have different values or different attributes. In fact,
the user may create an entirely new message. However, the message must still follow the
format specified in the SOAP specification. Using ToServiceRequest gives the user a nice
starting point. The request message can then be invoked using the InvokeServiceOperation
function. The first parameter of this function is the endpoint URI or the symbol representing a
web service function. The web service function specifies the endpoint URI internally along with
other options for invoking the service. The second argument is the symbolic XML representation
of the request message.

InvokeServiceOperation[IntegrateString, symbolicXML]

XMLObject [Document] [{}, XMLElement[{http://schemas.xmlsoap.org/soap/envelope/, Envelope},
{{http://www.w3.0rg/2000/xmlns/, soapenv} - http://schemas.xmlsoap.org/soap/envelope/},
{XMLElement [{http://schemas.xmlsoap.org/soap/envelope/, Body}, {},

{XMLElement [{http://localhost:8080/webMathematica/Examples/WebServices/Integrate.m,
IntegrateStringReturn}, {{http://www.w3.0rg/2000/xmlns/, nsl} -
http://localhost:8080/webMathematica/Examples/WebServices/Integrate.m},
{XMLElement [{, element}, {}, {-Cos[x]}]}]}]}], {}]

Web Services User Guide | 19

The result of this call is the response message. Sometimes it is useful to work directly with the
response message. However, web service functions by default return a deserialized version of
the response message. The original response message may be retrieved using the
InvokeServiceOperation function. The first parameter is the web service function, and the
function’s parameters follow. InvokeServiceOperation invokes the service and returns the
entire response message in symbolic XML. This will allow the user to customize how the data is
deserialized into Mathematica representation.

response = InvokeServiceOperation[IntegrateString, "Sin[x]"]

XMLObject [Document] [{}, XMLElement [{http://schemas.xmlsoap.org/soap/envelope/, Envelope},
{{http://www.w3.0rg/2000/xmlns/, soapenv} - http://schemas.xmlsoap.org/soap/envelope/},
{XMLElement [{http://schemas.xmlsoap.org/soap/envelope/, Body}, {},
{XMLElement [{http://localhost:8080/webMathematica/Examples/WebServices/Integrate.m,
IntegrateStringReturn}, {{http://www.w3.0rg/2000/xmlns/, nsl} —
http://localhost:8080/webMathematica/Examples/WebServices/Integrate.m},
{XMLElement [{, element}, {}, {-Cos[x]}]}]}]}], {}]
Once a web service function is called using InvokeServiceOperation, the results come back in
the form of a SOAP envelope. FromServiceResponse can be used to extract the results from
the SOAP envelope. The data will be deserialized into the proper Mathematica types specified
by the operation symbol.
FromServiceResponse[IntegrateString, response]

-Cos [x]

Working without a WSDL

Web services will work without a WSDL file, and sometimes the user may be forced into a
situation where a WSDL file is not available. Although it is much more convenient to use web
services with a WSDL file, it is possible to use the Mathematica web services client without a
WSDL. A user can build the SOAP message from scratch in Mathematica using symbolic XML.

ToServiceRequest can also be used to build a SOAP message using XML Schema definitions.
DefineSchema can be used to define type definitions for a web service. In this example, the
IntegrateString web services have a root element of IntegratesString, have a namespace of
http://localhost:8080/webMathematica/Examples/WebServices/Integrate.m, and take a string
named str as a parameter.

20 | Web Services User Guide

<< WebServices"™

DefineSchema|[
"http://localhost:8080/webMathematica/Examples/WebServices/Integrate.m",

IntegrateString : IntegrateStringType[str_String]
}
1

{IntegrateString}

NewSchemaInstance can be used to create an instance of the type just defined and this can be
passed into ToServiceRequest, which takes two parameters. First, it takes a list of parameters
for the body of the message. Second, it takes a list of parameters for the header.

ToServiceRequest [{NewSchemaInstance[IntegrateString, {"str" - "Sin[x]"}]}, {}]

XMLObject [Document] [{},
XMLElement [{soapenv, Envelope}, {{xmlns, soapenv} - http://schemas.xmlsoap.org/soap/envelope/,

{xmlns, xsd} - http://www.w3.0rg/2001/XMLSchema,

{xmlns, xsi} - http://www.w3.0rg/2001/XMLSchema-instance,

{xmlns, soapenc} - http://schemas.xmlsoap.org/soap/encoding/},

{XMLElement [{soapenv, Body}, {}, {XMLElement[{nsl, IntegrateString},

{{xmlns, nsl} - http://localhost:8080/webMathematica/Examples/WebServices/Integrate.m},
{XMLElement [{, str}, {}, {Sin[x]}]}]}]}], {}]

ToServiceRequest supports two options as well. First, OperationName can be used to wrap an
element that identifies a web service operation around the parameters. This is often useful
when using RPC-style web services or when mapping document-style web services to functions.
Second, EncodingStyleURI may be used to set the encoding style. The only encoding style

supported is SOAP encoding as demonstrated next. This adds type attributes to the parameters.

msg = ToServiceRequest[{"str" -» "Sin[x]"}, {},
OperationName -
{"http://localhost:8080/webMathematica/Examples/WebServices/Integrate.m",
"IntegrateString"},
EncodingStyleURI -» {"http://schemas.xmlsoap.org/soap/encoding/"}
]

XMLObject [Document] [{},
XMLElement [{ soapenv, Envelope}, {{xmlns, soapenv} - http://schemas.xmlsoap.org/soap/envelope/,
{xmlns, xsd} - http://www.w3.0rg/2001/XMLSchema,
{xmlns, xsi} - http://www.w3.0rg/2001/XMLSchema-instance,
{xmlns, soapenc} - http://schemas.xmlsoap.org/soap/encoding/},

{XMLElement [{soapenv, Body}, {{soapenv, encodingStyle} -
http://schemas.xmlsoap.org/soap/encoding/}, {XMLElement|[{ns0, IntegrateString},
{{xmlns, ns0} > http://localhost:8080/webMathematica/Examples/WebServices/Integrate.m},
{XMLElement [{, str}, {{xsi, type} » xsd:string}, {Sin[x]}]}]}1}], {}]

InvokeServiceOperation can then be used to invoke the service with the message that has
been generated. InvokeServiceOperation requires two parameters. First the endpoint is

required, which specifies the URL where the message will be sent. The second parameter is the

message. A couple of options are supported as well. SOAPActionURI may be used to set a SOAP

Web Services User Guide | 21

Action header. TransportStyleURI may be used to set the transport style (although http is the
only transport currently supported). Username and Password may be used for authentication

and Timeout may be used to set a timeout.

response = InvokeServiceOperation|[
"http://localhost:8080/webMathematica/Examples/WebServices/Integrate.m", msg]

XMLObject [Document] [{}, XMLElement [{http://schemas.xmlsoap.org/soap/envelope/, Envelope},
{{http://www.w3.0rg/2000/xmlns/, soapenv} - http://schemas.xmlsoap.org/soap/envelope/},
{XMLElement [{http://schemas.xmlsoap.org/soap/envelope/, Body}, {},

{XMLElement [{http://localhost:8080/webMathematica/Examples/WebServices/Integrate.m,
IntegrateStringReturn}, {{http://www.w3.0rg/2000/xmlns/, nsl} -
http://localhost:8080/webMathematica/Examples/WebServices/Integrate.m},
{XMLElement [{, element}, {}, {-Cos[x]}]}]}]}], {}]

FromServiceResponse can be used to process a SOAP message using XML Schema definitions.
DefineSchema can be used to define a return type for a web service. In this example, the
IntegrateString returns an element with a string named element. FromServiceResponse
takes the message as a parameter and the option ReturnType is used to specify the return
type.

DefineSchema|[
"http://localhost:8080/webMathematica/Examples/WebServices/Integrate.m",

IntegrateStringReturnType[element_String]
}
1

{IntegrateStringReturnType}

FromServiceResponse[response, ReturnType -» IntegrateStringReturnType]

-Cos [x]

InstallServiceOperation can be used to install these definitions as a Mathematica function.
It takes a symbol as its first parameter that the function definition will be associated with. It
takes a URL as its second parameter that will define where a message is sent. The third parame-
ter is a list of parameters for the function. These parameters are defined using XML Schema
element definition symbols defined using DefineSchema. The fourth parameter is a list of
header parameters. Finally, options may be used. Each option from ToServiceRequest,

InvokeServiceOperation, and FromServiceResponse is valid.

InstallServiceOperation|

integrateString,
"http://localhost:8080/webMathematica/Examples/WebServices/Integrate.m",
TypeElements [ElementType[IntegrateString]],

{},

OperationName -

{"http://localhost:8080/webMathematica/Examples/WebServices/Integrate.m",
"IntegrateString"},
ReturnType -» IntegrateStringReturnType]

integrateString

22 | Web Services User Guide

Once the function is installed, it may be used just like other functions installed using Web
Services Link.

? integrateString

integrateString["Cos[x]"]

Sin[x]

Debugging

Web Services Link provides a few symbols that can help in debugging. The debugging symbols

are defined in the following table.

Symbol Description

$PrintServiceRequest use the Print function to print the message in XML
format sent to a web service

$PrintServiceResponse use the Print function to print the message in XML
format received from a web service before it is deserialized
into a rule syntax expression

$PrintWSDLDebug print information about web services being installed that
can be used to debug; information printed includes option
values, parameter signatures, and the endpoint URI for
web service operation

$PrintShortErrorMessages specify whether error messages will be shortened for the
user to avoid long intimidating error messages

Debugging symbols.

Web Services User Guide | 23

Example Applications

Amazon Web Services Example

Amazon.com is a well-known web retailer that specializes in books, music, movies, and many
other products. Amazon has made a web service available that allows developers to interface
with their database of products. A user can search for specific products, authors, artists, and so
on. A query will return information (price, description, location, and so on) about the products

that are found. This example demonstrates a Mathematica interface to the Amazon web service.

The Amazon web services are good demonstrations of using web services to retrieve data. This
example searches the Amazon database for books written by certain authors, published by a
certain manufacturer, or containing a certain keyword. The example code then places the
results in a new notebook. The example has one option. Setting the ShowPictures option to

True Will force the code to retrieve and display the cover image of the book.

To try this example, evaluate all the initialization cells. (You can do this using Evaluation »
Evaluate Initialization Cells.) Then go to the examples here.

m Code

BeginPackage["WebServices Examples Amazon ", {"WebServices ", "JLink "}];

AuthorSearch;
ManufacturerSearch;
KeywordSearch;
ShowPictures;

Begin[" Private™"];

InstallService["http://soap.amazon.com/schemas3/AmazonWebServices.wsdl"];

Options[AuthorSearch] = {ShowPictures - False};

AuthorSearch[keyword_String, pages_Integer, options ?0ptionQ] :=
Module[{result}, result = AuthorSearchRequest [

AuthorRequest["author" -» keyword, "page" -» ToString[pages], "mode" - "books",
"tag" -» "webservices-20", "type" - "lite", "devtag" - "D3VZJS46JD5U9D"]];

If[result === $Failed, Return[$Failed]];
result = result["Details"];
NotebookPut [

resultNotebook["Amazon Author Search", keyword, result, options]]

]

24 | Web Services User Guide

ManufacturerSearch[keyword_String, pages_Integer, options___ ?OptionQ] :=
Module[{result}, result = ManufacturerSearchRequest [ManufacturerRequest [
"manufacturer" » keyword, "page" - ToString[pages], "mode" - "books",
"tag" » "webservices-20", "type" - "lite", "devtag" - "D3VZJS46JD5U9D"]];

If[result === $Failed, Return[$Failed]];
result = result["Details"];
NotebookPut [

resultNotebook["Amazon Manufacturer Search", keyword, result, options]]

1

KeywordSearch [keyword_String, pages_Integer, options____ ?OptionQ] :=
Module[{result}, result = KeywordSearchRequest [KeywordRequest [
"keyword" - keyword, "page" - ToString[pages], "mode" - "books",
"tag" -» "webservices-20", "type" -» "lite", "devtag" -» "D3VZJS46JD5U9D"]];
If [result === $Failed, Return[$Failed]];
result = result["Details"];
NotebookPut [
resultNotebook["Amazon Keyword Search", keyword, result, options]]
1;

resultNotebook|[title_String, keyword_String, result_List, options___ ?OptionQ] :=
Notebook [Flatten[{
Cell[title, "Subtitle"],
Cell["Results for: " <> keyword, "Section"],
resultCells[#, options] & /@ result
}]1, CellGrouping -» Manual, WindowTitle » (title<> ": " <> keyword)]

resultCells[d_, options___ ?OptionQ] :=
Module[{url, asin, productName, authorNames, releaseDate, manufacturer,
imageUrlMedium, listPrice, ourPrice, usedPrice, showPictures, celllList},
{showPictures} = {ShowPictures} /. Flatten[{options}] /. Options[AuthorSearch];
url = d["Url"];
asin = d["Asin"];
productName = d["ProductName"];
authorNames = d["Authors"];
releaseDate = d["ReleaseDate"];
manufacturer = d["Manufacturer"];
imageUrlMedium = d["ImageUrlMedium"];
listPrice = d["ListPrice"];
ourPrice = d["OurPrice"];
usedPrice = d["UsedPrice"];
authorNames = ToString[authorNames];
authorNames = StringDrop[authorNames, 1];
authorNames = StringDrop[authorNames, -1];
If[TrueQ[showPictures], imageUrlMedium = getImageData|[imageUrlMedium] ;
If [StringMatchQ[imageUrlMedium, "GIF%"], imageCell =
ToExpression[ExportString[ImportString[imageUrlMedium, "GIF"], "MGFCell"]],
imageCell = ToExpression[ExportString|[
ImportString[imageUrlMedium, "JPEG"], "MGFCell"]]11;1;
{Cell[CellGroupData[Flatten]{
Cell[TextDatal{
ButtonBox [StyleBox [productName, FontWeight -» "Bold"],
ButtonData » {URL[url], None}, ButtonStyle -» "Hyperlink"],
" by ", StyleBox[authorNames, FontSlant -» "Italic"]}],
"Text", ShowGroupOpenCloseIcon -» True], If[TrueQ[showPictures],
Cell[TextData[imageCell], "Text"], {}], Cell[TextData|
{StyleBox["Release Date: ", FontWeight -» "Bold"], releaseDate, "\n",
StyleBox["ASIN: ", FontWeight -» "Bold"], asin, "\n",
StyleBox["List Price: ", FontWeight -» "Bold"], listPrice, "\n",
StyleBox["Our Price: ", FontWeight -» "Bold"], ourPrice}], "Text"]}],
Closed]]}]

Web Services User Guide | 25

getImageData[url_String] :=
JavaBlock [Module[{u, connection, stream, input = , numRead = 0,

bytesRead = 0, buf}, u = JavaNew["java.net.URL", url];

connection = u@openConnection|[];

stream = connection@getInputStream[];

If [stream == $Failed, Return[URLError["Failed to open URL stream"]]];

buf = JavaNew[" [B", 5000];

While[(numRead = stream@read[buf]) > 0, AddTo[bytesRead, numRead] ;
input = StringJoin[input, ToString[FromCharacterCode|[

If[# <0, #+ 256, #] & /@ Take[JavaObjectToExpression[buf], numRead]]]]1;];
stream@close([];
input]]

End[];
EndPackage[];

AuthorSearch["Stephen Wolfram", 1]
ManufacturerSearch["Addison-Wesley", 1]

KeywordSearch["Mathematica", 1, ShowPictures - True]

Google Web Services Example

Google.com is a well-known web search engine. Google has made a web service available that
allows developers to interface with their search engine within their own applications. A user can
search for any topic on the web. A query will return data about the web pages that are found.

This example demonstrates a Mathematica interface to the Google web service.

The Google web service provides a good demonstration of the use of web services to retrieve
data. This example searches the Google database for web pages containing a certain keyword.

The example code then places the results in the notebook.

To try this example, evaluate all the initialization cells. (You can do this using Evaluation »

Evaluate Initialization Cells.) Then go to the examples here.

m Code

<< WebServices"
InstallService["http://api.google.com/GoogleSearch.wsdl"];

Options[GoogleSearch] = {
MaxHits - 10,
Filter - True,
IncludeURL - True

}i

$backgrounds = {RGBColor[0.960784, 0.878431, 0.666667],
RGBColor[0.964706, 0.929412, 0.839216]};

GoogleSearch::err = "Search Error.";

26 | Web Services User Guide

GoogleSearch: :nomatch = "No page containing ~1° found.";

GoogleSearch[str_String, opts] :=
Module[{1lis, results, matches, filterQ, urlQ},
{matches, filterQ, urlQ} =
{MaxHits, Filter, IncludeURL} /. Flatten[{opts, Options @ GoogleSearch}];

results = GoogleSearchService GoogleSearchPort doGoogleSearch [
"3HB82PdQFHITKPmbmm5G/9aTfVHx/m95", str,
0, matches, filterQ, "", True, "", "", ""1;
If[results === $Failed,
Message [GoogleSearch::err],
lis = results["resultElements"];

1

If[lis === Null,
Message [GoogleSearch: :nomatch, str],
$bg = 0;

Scan[CellPrint, searchResultCells[lis, urlQ]]]
1

searchResultCells[lis_, urlQ] :=
cellTemplate[formatSingleResult[#, urlQ]] & /@ lis

cellTemplate[lis_] :=
Cell[TextData @ Flatten @ {lis}, "Print",
FontFamily -» "Times",
CellMargins -» {{Inherited, Inherited}, {0, 0}},
CellDingbat » ToString[++$bg],
Background - Part[$backgrounds, Mod[$bg, 2, 1]]
1

formatSingleResult[result_, urlQ] :=
Block[{u, t},

non
webLink [
StyleBox [formatTitle @result["title"], FontWeight » "Bold"], result["URL"]],

If[urlQ, {"\n", webLink[StyleBox[result["URL"], "SmallText",
FontColor -» GrayLevel[0.4]], result["URL"]]}, {}]
}

]

webLink[content_, url_] :=
ButtonBox [content,
ButtonData :» {URL[url], None},
BaseStyle » "Hyperlink"
]

formatTitle[str_String] := translateAllEntities[str]

decodeString[str_] := StringReplace[str, {
"<" - "<,
"sgt;" > ">",
"&" - "&",
""" » "\"",
"\\" > "\\[Backslash]"
}]

translateAllEntities[str_] := StringReplace[str, Reverse /@
System” Convert MLStringDataDump” $UnicodeToHTML4Entities] // decodeString

Web Services User Guide | 27

Find the top 10 wolfram.com web pages containing all the given strings.

GoogleSearch["Mathematica"]

1 Wolfram.com - Mathematica
http://www.wolfram.com/

2 Mathematica: The Way the World Calculates
http://www.wolfram.com/products/mathematica/index.html

3 Mathematica Policy Research, Inc.: Home
http://www .mathematica-mpr.com/

4 Mathematica - Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/Mathematica

5 Mathematica Information Center
http://library .wolfram.com/

6 The Integrator--Integrals from Mathematica
http://integrals.wolfram.com/

7 Wolfram Research Documentation Center: A Collection of Online ...
http://documents.wolfram.com/

8 Wolfram Mathematica Documentation
http://documents.wolfram.com/mathematica/

9 Mathematica Graphics Gallery
http://gallery.wolfram.com/

10 Technical Support: Mathematica: Questions About Mathematica
http://support.wolfram.com/mathematica/

Search for pages containing all the given strings, and return only the top two results.
GoogleSearch["Hermite polynomial"”, MaxHits - 2]

1 Hermite Polynomial -- from Wolfram MathWorld
http://mathworld.wolfram.com/HermitePolynomial .html

2 Hermite polynomials - Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/Hermite_polynomials

28 | Web Services User Guide

Display less verbose results and do not filter near-duplicate content and host crowding.

GoogleSearch["Chebyshev", IncludeURL - False, Filter - False]

1

Chebyshev summary

Chebyshev Polynomial of the First Kind -- from Wolfram MathWorld
Pafnuty Chebyshev - Wikipedia, the free encyclopedia
Chebyshev polynomials - Wikipedia, the free encyclopedia
Chebyshev's inequality - Wikipedia, the free encyclopedia
Chebyshev filter - Wikipedia, the free encyclopedia

Chebyshev Polynomial

One tailed version of Chebyshev's inequality - by Henry Bottomley
Chebyshev biography

Chebyshev Polynomials

XMethods Web Services Example

XMethods.com is a website that lists publicly available web services. It is a great place for
finding web services and advertising web services that you provide. This example queries the
XMethods database and builds a notebook listing of each web service listed on XMethods. Each
web service is listed with the title, description, and an InstallService function that can be

used to install and use a service.

This example demonstrates using the XMethods Query Service to discover and use many of the
web services available. This example searches the XMethods database for the web services
registered. Once the query is finished, a user can conveniently browse through the services and
install the services that may be interesting. If GetServiceSummaries is called again, the code

will match service IDs with cell tags. If an ID exists as a cell tag, no new cells will be added. If

an ID does not exist, the appropriate cells are added for the service.

Web Services User Guide | 29

To try this example, evaluate all the initialization cells. (You can do this using Evaluation »

Evaluate Initialization Cells.) Then go to the examples here.

m Code

BeginPackage["WebServices Examples XMethods™ ", {"WebServices™", "JLink™"}];
GetServiceSummaries;

Begin[" Private™"];

InstallService["http://www.xmethods.net/wsdl/query.wsdl"];

GetServiceSummaries[] := Module[{result}, result = getAllServiceSummaries[];
If[result === $Failed, Return[$Failed]];
notebook = EvaluationNotebook|[];
If [NotebookFind[notebook, "Results"”, All, {CellTags}] === $Failed,

SelectionMove [notebook, After, EvaluationCell];

NotebookWrite [notebook, Cell["Results"”, "Section", CellTags » {"Results"}]1];];
printResult /@result;
NotebookFind [notebook, "Results", All, {CellTags}];]

printResult[result_] :=
Module[{name, id, shortDescription, wsdlURL, publisherID},

name = result["name"];

id = result["id"];

shortDescription = result["shortDescription"];

wsdlURL = result["wsdlURL"];

publisherID = result["publisherID"];

notebook = EvaluationNotebook|[];

If [NotebookFind[notebook, id, All, {CellTags}, AutoScroll -» False] === $Failed,
NotebookFind [notebook, "Results"”, All, {CellTags}, AutoScroll - False];
SelectionMove [notebook, After, Cell, AutoScroll - False];

NotebookWrite [notebook, Cell[CellGroupData|
{Cell[BoxData[RowBox [{name, StyleBox[" from ", FontWeight -» "Plain"],
StyleBox[publisherID, FontWeight » "Plain", FontSlant -» "Italic"],
ButtonBox[" (wsdl) ", ButtonData -» {URL[wsdlURL], None},
ButtonStyle -» "Hyperlink"]}]], "Subsection",
ShowGroupOpenCloseIcon -» True, CellDingbat -» None, CellTags - {id}],
Cell[shortDescription, "Text", ShowCellBracket - False,
CellMargins » {{55, Inherited}, {Inherited, Inherited}},
CellFrame -» True, Background -» GrayLevel[0.850004]],
Cell [BoxData[RowBox|[{"InstallService[\"" <>wsdlURL<> "\"]"}11,
"Input", ShowCellBracket -» False, CellFrame - True,
CellMargins -» {{55, Inherited}, {Inherited, Inherited}},
Background -» GrayLevel[0.850004]]}, Open]]]l;]1;]

End[];
EndPackage|[];

GetServiceSummaries|[]

30 | Web Services User Guide

TerraService Web Services Example

Terraservice.net is a website that provides access to aerial imagery and topographical maps of
the United States. A web service has been provided that allows developers to access this data.
Developers can use this data to provide maps and aerial imagery in their applications. This
allows users of Mathematica to use this data in Mathematica. This example demonstrates an

interface to TerraService using GUIKit and Mathematica.

Microsoft TerraServer Web Service is a programmable interface to the popular Microsoft
TerraServer online database of high-resolution United States Geological Survey (USGS) aerial
imagery (DOQs) and scanned USGS topographical maps (DRGs). The user can specify the place
to display by using the Place Search field. The place is expected to be a single string contain-
ing the city or well-known place name, state name, and country name separated by comma
characters, such as “San Francisco, CA, USA”. Any of the three values may be missing. The
navigation panel can be used to move in a particular direction. The Latitude and Longitude
fields can be used to specify a place at a particular latitude and longitude. The user can zoom in
and zoom out using the Scale drop-down menu. The user can switch between aerial pho-
tographs and topological maps using the Theme drop-down menu.

More information about TerraService may be found at http://terraservice.net/.

To try this example, you must have GUIKit installed. Then go to the examples here and evalu-
ate the cell.

Needs ["GUIKit™"];
GUIRun["TerraService"]

