DATABASELINK USER GUIDE

For use with Wolfram Mathematica® 7.0 and later.

For the latest updates and corrections to this manual:
visit reference.wolfram.com

For information on additional copies of this documentation:
visit the Customer Service website at www.wolfram.com/services/customerservice
or email Customer Service at info@wolfram.com

Comments on this manual are welcomed at:
comments@wolfram.com

Printed in the United States of America.
1514 1312111098765432

©2008 Wolfram Research, Inc.

All rights reserved. No part of this document may be reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright
holder.

Wolfram Research is the holder of the copyright to the Wolfram Mathematica software system ("Software") described
in this document, including without limitation such aspects of the system as its code, structure, sequence,
organization, “look and feel,” programming language, and compilation of command names. Use of the Software
unless pursuant to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an
infringement of the copyright.

Wolfram Research, Inc. and Wolfram Media, Inc. ("Wolfram") make no representations, express,
statutory, or implied, with respect to the Software (or any aspect thereof), including, without limitation,
any implied warranties of merchantability, interoperability, or fitness for a particular purpose, all of which
are expressly disclaimed. Wolfram does not warrant that the functions of the Software will meet your
requirements or that the operation of the Software will be uninterrupted or error free. As such, Wolfram
does not recommend the use of the software described in this document for applications in which errors
or omissions could threaten life, injury or significant loss.

Mathematica, MathLink, and MathSource are registered trademarks of Wolfram Research, Inc. J/Link, MathLM,
.NET/Link, and webMathematica are trademarks of Wolfram Research, Inc. Windows is a registered trademark of
Microsoft Corporation in the United States and other countries. Macintosh is a registered trademark of Apple
Computer, Inc. All other trademarks used herein are the property of their respective owners. Mathematica is not
associated with Mathematica Policy Research, Inc.

Contents

Introduction to DatabaselLink 1
BackgroUund e e 1
Mathematica Database Applications 1
Features of DatabaseLink 2
DatabaseLink Technology i e e e 3

Getting Started 3
About This Tutorial 3
The Command-Line Interface 4

Database Connections 11
Setting UpaDatabase 12
Establishinga Connection 12
Connection Information 14
Database RESOUICES 26
Security and Authentication 31

Descriptive Commands e 33
Table Structure 33
Column Structure 37
Data TYPeSo 44
Schema and Catalogs e e 45

Data Commands 47
Comparing Mathematica and SQL Queries i, 47
Mathematica-Style QUEKIES e e e e e e e e 47
SQL-Style QUK ES 47

The Database Explorer 77
The Connection Tool 78
Querying the Database e 78
SaVING QUGS e 80
Exporting to Mathematica 81

New Connection Wizard e 81

Advanced TOPICS 83

Data Type MappPing e e e 83
ResSUIt Sets 88
P OrMaANCE e 97
Connection PoOIS e 100
Transactions e 104
Secure Socket Layer (SSL) ... i e e 107
EXaMPIES e 109
Command Cache e 109
Graph Database e 111
APPENdiX 114
Database Reference i e e 114

Using the Example Databases i 117

Introduction to DatabaselLink

Background

Data storage, indexing, and retrieval have long been crucial tasks of many large organizations
such as governments, banks, hospitals, and libraries. As human societies have grown increas-
ingly complex, data management requirements have also increased. Some of the new chal-
lenges include the complexity of what the data represents, how the data is used, as well as the
sheer volume of data. Since the development of modern electronic computers in the latter half
of the twentieth century, tools such as relational database management systems (RDBMS) and
the Structured Query Language (SQL) have become standards that are widely used for data

handling in many different types of organizations.

In a typical organization, many different users need to access the data management system,
and hence many database applications are server based. They can be combined with other
server-based technologies, often called enterprise technologies, such as web servers, web

services, as well as remote computing heterogeneous architectures.

At the current time, there are many different database systems. These range from large-scale,
expensive commercial applications that are suitable for high-end uses to freely available open-
source tools running on personal computers with operating systems such as Microsoft Windows

or Linux.

DatabaselLink is a Mathematica application that provides a set of tools allowing convenient

integration of Mathematica with database management systems.

Mathematica Database Applications

There are a number of important benefits that can be gained from integrating Mathematica into

a database system.

Mathematica contains a large collection of functions for numerical and symbolic computation

that can be applied to data taken from a database. After the computations have been com-

2 | DatabaselLink User Guide

pleted, the results can be stored in a database application, allowing Mathematica to work on the
results at a later time. Mathematica might be used for statistical processing, modeling, or
computing some optimal configuration. All of these computations typically require and produce

data that can conveniently be stored in a database application.

Database applications can be integrated with many other application types, providing an impor-
tant form of interoperability. Data derived from one application can be stored in the database.
Then, elements of this data can be retrieved by Mathematica, used for computation, and the
results stored in the database. Finally, another application can extract these results and use
them for some further purpose. The central database application is the hub of this computa-

tional network; its interaction with Mathematica is made possible by DatabaseLink.

Features of DatabaselLink

m Connectivity-works with most standard SQL database applications and with databases that
are local and network based (including different types of computers).

m The HSQL Database Engine (HSQLDB)-a lightweight database useful for database applica-
tions if you don't have an existing database.

m Supplied drivers-built-in support for many important databases, including MySQL, Open
Database Connectivity (ODBC), and HSQLDB.

m SQL command interface-you can exploit your knowledge of SQL without learning a new
system.

m Mathematica command interface-useful if you are familiar with Mathematica programming.

m GUI interfaces-the Database Explorer and the Connection Tool provide convenient tools for
opening connections and querying the database.

m Access to data and metadata-you can inspect the names of tables and columns, as well as
the data in each entry.

m Configurable-common tasks can be simplified and Mathematica applications can add their
own database information.

m Batch support-provides efficiency when making repeated changes to a database.

m Data type support-works with standard SQL data types, including numbers, strings, binary
data, date and time, as well as Mathematica expressions.

m Support for advanced features-such as multiple connections and transactions (including
rollbacks and savepoints).

m Secure Socket Layer (SSL) support-security for communications with the database.

DatabaselLink User Guide | 3

DatabaselLink Technology

DatabaselLink is based on the commonly used Java database connectivity (JDBC) technology,
java.sun.com/products/jdbc/. The package makes extensive use of the Mathematica Jlava
toolkit J/Link www.wolfram.com/solutions/mathlink/jlink/, though no Java programming is
required. The Database Explorer uses the Mathematica graphical user interface toolkit GUIKit,

www.wolfram.com/solutions/guikit.

DatabaseLink comes with a selection of drivers for a number of databases. If it does not include
a driver for your database, you can install your own driver, as described in Database Connec-

tions: JDBC Connections.

Getting Started

Using This Tutorial

This tutorial contains simple examples of DatabaseLink that give an overview of its functionality
and some ideas of how to get started. It uses a lightweight database, HSQLDB, that is installed
as part of DatabaseLink. This allows you to try examples in the documentation without having
to install your own database. The other DatabaselLink tutorials give detailed reference
information.

DatabaseLink provides two styles of interface for working with a database. A command-line
interface, which is more flexible and is useful for using database commands inside programs,

and a graphical interface, which is simpler to use. Both interfaces are discussed here.

When you have finished trying these examples, you may wish to restore the example database,

by using the DatabaseExamples™ package, as described in "Using the Example Databases".

4 | DatabaselLink User Guide

The Command-Line Interface

Introduction

The command-line interface is a powerful and flexible interface that is particularly appropriate if
you want to write programs that use database functionality. This section discusses a nhumber of

different operations that use a demonstration database.

If you find that the examples in this section do not work as shown, you may need to
install or restore the example database with the DatabaseExamples™ package, as

described in "Using the Example Databases".

Loading the Package

Databaselink is a Mathematica add-on application. Before any functions from the package can
be used, it must be loaded as follows.

Needs ["DatabaseLink™ "]

Connecting to the Database

The details of connecting to a database are described in "Database Connections". The command-
line method uses the function OopensQLConnection, which returns a handle that can be used to
work with a database. The following opens a connection to an included sample database.

If you find that the examples in this section do not work as shown, you may need to
install or restore the example database with the DatabaseExamples™ package, as

described in "Using the Example Databases".
conn = OpenSQLConnection["demo"]

SQLConnection|[demo, 7, Open, TransactionIsolationLevel - ReadCommitted]

There is also a GUI method to connect to the database that is invoked by executing
OpensQLConnection with no arguments. When this is done, the Connection Tool appears; at

this point a connection must be opened or the tool canceled before operations can continue.

connl = OpenSQLConnection[];

DatabaselLink User Guide | 5

You can use the Connection Tool to connect to the example database. Further information on

how to open a connection to a database is provided in "Database Connections".

Fetching Data

A relational database consists of a set of tables; each table contains data in various categories
(typically called columns). Each row of a table contains data values for the different categories.
The database application provides functions for managing this data by supporting features such
as querying, inserting, updating, or dropping data.

Tables are fundamental to relational databases, and it is important to have a convenient way to
list them. You can do this with the sQLTables command as follows.

SQLTables [conn]

{SQLTable [SAMPLETABLE1, TableType — TABLE] }

You can see information on the specific columns in a table with the sQL.Columns command. An
example that provides information on the columns in the SAMPLETABLE1 table follows.

SQLColumns [conn, "SAMPLETABLE1l"]

{SQLColumn [{ SAMPLETABLEl, ENTRY}, DataTypeName » INTEGER, Nullable » 1, DataLength - Null],
SQLColumn [{SAMPLETABLE1l, VALUE}, DataTypeName -» DOUBLE, Nullable » 1, DataLength » Null],
SQLColumn [{SAMPLETABLE1l, NAME}, DataTypeName - VARCHAR, Nullable » 1, DataLength —»2147483647]}

You can retrieve the data in the SAMPLETABLE1 table by executing an sQLSelect command as
follows.

data = SQLSelect[conn, "SAMPLETABLEl"]

({1, 5.6, payl}, {2, 5.9, Day2}, {3, 7.2, Day3}, {4, 6.2, Day4}, {5, 6., Day5}}

The result of the database query is a Mathematica list, which can be used in any Mathematica

command. In the following example the last element of each row is plotted.

ListLinePlot[data[[All, 2]]]

70t /
6.5L /
L L L \\\q

I// 3 ' i

6 | DatabaselLink User Guide

The following example retrieves data from the SALES table, but adds column headings and
outputs the result in a tabular form.

SQLSelect[conn, "SAMPLETABLEl", "ShowColumnHeadings" - True] // TableForm

ENTRY VALUE NAME

1 5.6 Dayl
2 5.9 Day2
3 7.2 Day3
4 6.2 Day4
5 6. Day5

DatabaselLink also allows you to enter raw SQL commands; this might be useful if you are
already familiar with SQL and do not want to learn a new language. Here is an example that
shows how to obtain all the data in the SALES table.

SQLExecute[conn, "SELECT * FROM SAMPLETABLE1l"]

({1, 5.6, Dayl}, {2, 5.9, Day2}, {3, 7.2, Day3}, {4, 6.2, Day4}, {5, 6., Day5}}

More information on fetching data is available in "Selecting Data".

Inserting Data
You can use the sgLInsert command to insert data in the table. For example, this adds a new
row to the SAMPLETABLE1 table.

SQLInsert[conn, "SAMPLETABLE1", {"ENTRY", "VALUE", "NAME"}, {6, 8.2, "Day6"}]
1

You can see the extra row that has been added.

SQLSelect[conn, "SAMPLETABLEl", "ShowColumnHeadings" - True] // TableForm

ENTRY VALUE NAME

1 5.6 Dayl
2 5.9 Day2
3 7.2 Day3
4 6.2 Day4
5 6. Day5
6 8.2 Day6

DatabaselLink User Guide | 7

It is also possible to use a raw SQL command to insert more data. Note how the string being
inserted, Day7, uses single-quote characters ('). It is also possible to use double-quote charac-
ters ("), though these need to be preceded with a Mathematica string escape backslash charac-

ter (\).

SQLExecute|[conn,
"INSERT INTO SAMPLETABLEl (ENTRY, VALUE, NAME) VALUES (7, 6.9, 'Day7')"]

1

Another version of raw SQL commands involves using placeholders to represent where the
arguments will go and then giving sQLExecute a list argument that contains the actual argu-
ments. This is particularly useful since it avoids the need to concatenate strings to form the raw

command.

SQLExecute|[conn,
"INSERT INTO SAMPLETABLE1l (ENTRY, VALUE, NAME) VALUES ("1°, 2%, “3%)",
{8, 10.5, "Day8"}]

1

This shows the data that is currently in the table.
SQLExecute[conn, "SELECT * FROM SAMPLETABLE1l"]

({1, 5.6, Dayl}, {2, 5.9, Day2}, {3, 7.2, Day3}, {4, 6.2, Day4},
{5, 6., Day5}, {6, 8.2, Day6}, {7, 6.9, Day7}, {8, 10.5, Day8}}

More information on inserting data is available in "Inserting Data".

Updating Data

You can use the sQLUpdate command to update data in the table. Often this is combined with a
condition, so that only some of the data is modified. For example, this sets all entries of the
VALUE column that are greater than 8 to 7.

SQLUpdate[conn, "SAMPLETABLEl", {"VALUE"}, {7}, SQLColumn["VALUE"] > 8]
2

8 | DatabaselLink User Guide

You can see the changes that have been made.

SQLSelect[conn, "SAMPLETABLEl", "ShowColumnHeadings" - True] // TableForm

ENTRY VALUE NAME

1 5.6 Dayl
2 5.9 Day2
3 7.2 Day3
4 6.2 Day4
5 6 Day5
7 6.9 Day7
6 7 Day6
8 7 Day8

It is also possible to use a raw SQL command to update data. This sets all rows for which the
VALUE entry is greater than or equal to 6 to 7.

SQLExecute|[conn,
"UPDATE SAMPLETABLEl SET VALUE = ~1° WHERE VALUE >= ~2°", {7, 6}]

6

SQLExecute[conn, "SELECT » FROM SAMPLETABLEl"]

{{1, 5.6, pDayl}, {2, 5.9, Day2}, {3, 7., Day3},
{4, 7., pay4}, {5, 7., Day5}, {7, 7., Day7}, {6, 7., Day6}, {8, 7., Day8}}

More information on updating data is available in "Updating Data".

Deleting Data

You can use the sQLDelete command to delete data in the table. Often this is combined with a
condition, so that only some of the data is modified. For example, this deletes all rows for which
the VALUE entry is 7 or greater.

SQLDelete[conn, "SAMPLETABLEl", SQLColumn["VALUE"] 2 7]
6

You can see the changes that have been made.

SQLSelect[conn, "SAMPLETABLEl", "ShowColumnHeadings" - True] // TableForm

ENTRY VALUE NAME
1 5.6 Dayl
2 5.9 Day2

DatabaselLink User Guide | 9

It is also possible to use a raw SQL command to delete data. This deletes all entries for which
the VALUE entry is greater than 5.7.

SQLExecute[conn, "DELETE FROM SAMPLETABLEl WHERE VALUE > 5.7"]
1

There is only one row left in the database now.

SQLExecute[conn, "SELECT * FROM SAMPLETABLE1l"]

{{1, 5.6, Dayl}}

More information on deleting data is available in "Deleting Data".

Batch Commands

If you want to repeat the same command many times, you can do this by providing repeated
arguments in a list. Carrying out the same command like this is much faster than doing each
command separately.
The following command inserts two rows.

SQLInsert|[conn, "SAMPLETABLEl",

{"ENTRY", "VALUE", "NAME"}, {{2, 5.9, "Day2"}, {3, 7.2, "Day3"}}]

{1, 13

This uses a raw SQL command to insert two more rows.

SQLExecute|[conn,
"INSERT INTO SAMPLETABLEl (ENTRY, VALUE, NAME) VALUES ("1°, 2%, “3%)",
{{4, 6.2, "Day4"}, {5, 6., "Day5"}}]

{1, 13
The result of the insert commands can be seen as follows.

SQLExecute[conn, "SELECT % FROM SAMPLETABLE1"]
{{1, 5.6, Dayl}, {2, 5.9, Day2}, {3, 7.2, Day3}, {4, 6.2, Day4}, {5, 6., Day5}}

10 | DatabaselLink User Guide

Closing the Connection

When you have finished with the connection, you can close it.

CloseSQLConnection[conn]

More information on working with connections is provided in "Database Connections". If you
have modified the database and want to restore it, you can use the DatabaseExamples™ pack-
age, as described in "Using the Example Databases".

The Database Explorer

The Database Explorer is a graphical interface to database functionality. It can be launched by

loading DatabaseLink and executing the command DatabaseExplorer [].

Needs ["DatabaseLink™"];
DatabaseExplorer|]

- GUIObject -

When the Database Explorer opens, you can connect to the different databases that are config-
ured for your system. You can also create new connections. After you connect to a database,

you can view the tables and columns, as seen in the following example.

31 tems.

[i Database Explorer \ZJ @.‘
File VWiew Help
[R
Queries: ¥ Conhection
Unititled-1* publizher v
Tables Columns
AUTHORS ROYSCHED, TITLE_ID
EDITORS ROYSCHED, LORANGE
PUBLISHERS ROYSCHED, HIRANGE
ROYSCHED ROYSCHED, ROYALTY
SALES
SALESDETAILS
TITLEAUTHORS
TITLEDITORS
TITLES
Show Advanced Options | | Select Al
Query | Result

DatabaseLink User Guide | 11

You can then see the data in the database by clicking the Result tab. Here is an example view.

[|# Database Explarer =] i=)
File View Help
REEBRT2F
4

Guueries: W | TITLE_ID LORAMNGE HIRANGE ROYALTY

Urtitled-1* BES1011] S000 0.1
BS1011 001 50000 012
CPS015] 2000 0.1
CPS018 2001 4000 012
CP3015 4001 S0000 016
ES1001 a] 1000 041
BS1001 1001 S000 012
BS1001 5001 7000 0.16
BS1001 7001 S0000 018
PS9999 a] 50000 0.1
Py2002 u] 1000 0.1
PYy2002 1001 5000 012
P'2002 5001 50000 014
PY2003 0 2000 0.1
PY2003 2001 5000 012
PY2003 001 0000 014
LK3004] 1000 0.1
Lk3004 1001 2000 012]%
QuUEry | Result

51 tems.

The Database Explorer supports many more features, such as forming more complicated
queries, saving queries, and creating reports with the result of a query (saved as a Mathemat-

ica notebook). These are described in "The Database Explorer".

Database Connections

The first step in using a database is making a connection. This part of the tutorial discusses how
to do this.

If you are just starting to use DatabaselLink, you might want to look at some of the basic exam-
ples in this tutorial. Then, to learn if DatabaselLink comes with a driver for your database, you
might want to study JDBC Connections, which contains further information about adding new
drivers. Finally, if you want to give your connection a name, you might want to study Named
Connections.

12 | DatabaselLink User Guide

Setting Up a Database

Many users of DatabaselLink will have an existing database they wish to connect to and use. If
you have one, you should be able to read this documentation and modify it to connect to your
own database. If you do not already have a database, you can use HSQLDB (included in
DatabaselLink). If you want to set up a different type of database, you will need to refer to the
specific information for that database. Once you have set up your database, you can continue

to use this tutorial to learn how to connect to it.

Establishing a Connection

If you find that the examples in this section do not work as shown, you may need to
install or restore the example database with the DatabaseExamples~ package, as

described in "Using the Example Databases".

OpenSQLConnection [name] connect to a named SQL data source
OpenSQLConnection [connect to the data source URL using JDBC

JDBC [driver ,url]]
OpenSQLConnection [args, opts] set options for the connection
OpenSQLConnection] use the Connection Tool to open a connection
CloseSQLConnection [conn] close a connection
SQLConnections [] list SQL connections
SQLConnectionInformation [conn] verbose information about an SQL connection

Functions for working with database connections.
This loads DatabaselLink.
Needs ["DatabaseLink™ "]
Now you can connect to a named database, called demo, that is provided by DatabaseLink for

documentation. Database Resources: Connection Configuration shows how to set up new

named connections. You can learn about existing named connections in Named Connections.

DatabaseLink User Guide | 13

OpenSQLConnection returns a Mathematica expression that refers to the connection. It can be
used to make queries on the database.

conn = OpenSQLConnection["demo"]

SQLConnection|[demo, 1, Open, TransactionIsolationLevel - ReadCommitted]

SQLConnections returns a list of all the open connections.

SQLConnections|[]

{SQLConnection[demo, 1, Open, TransactionIsolationLevel - ReadCommitted]}

In the following example, the tables that are found in the database are returned.

SQLTables [conn]

{SQLTable [SAMPLETABLE1, TableType - TABLE] }

When you have finished with a connection, you can close it with CloseSQLConnection.
CloseSQLConnection[conn]

conn

SQLConnection|[demo, 1, Closed, <>]

There are a number of options that can be given to OpensQLConnection.

option name default value

"Description” " textual description of the connection
"Name" " name of the connection

"Username" " username to use for connecting
"Password" " password to use for connecting

"Catalog" Automatic location of the database catalog
"ReadOnly" Automatic set the connection to be read only
"TransactionIsolationLevel" Automatic set transaction isolation for the connection

OpenSQLConnection options.

14 | DatabaselLink User Guide

These options can be used when opening a connection. For instance, the following allows you to

use a different username and password for the connection.

conn = OpenSQLConnection["demo", "Username" -> "sa", "Password" -> ""]

SQLConnection[demo, 2, Open, TransactionIsolationLevel - ReadCommitted]

CloseSQLConnection[conn]

If you enter "$Prompt" as a password, a dialog box opens that will prompt you for the pass-
word. This helps keep the password more secure.

conn = OpenSQLConnection["demo", "Username" -> "sa", "Password" -> "$Prompt"]

SQLConnection[demo, 3, Open, TransactionIsolationLevel - ReadCommitted]

Once a connection has been created, certain options can be changed using SetOptions.

"Catalog"” location of the database catalog
"ReadOnly" whether to open read only
"TransactionIsolationLevel" whether to add transaction isolation

Connection options that can be changed after the connection is created.
This changes the connection to only allow read access to the database.

SetOptions[conn, "ReadOnly" - True]

SQLConnection[demo, 3, Open, ReadOnly - True, TransactionIsolationLevel - ReadCommitted]

CloseSQLConnection[conn]

More information on the TransactionIsolationLevel option is found in Transaction Isolation.

Connection Information

Detailed information about a connection can be obtained from sQLConnectionInformation.
This can be demonstrated in the following sequence.

Needs ["DatabaseLink™ "]

This opens a connection to one of the sample databases.

conn = OpenSQLConnection["demo"]

SQLConnection|[demo, 4, Open, TransactionIsolationLevel - ReadCommitted]

DatabaseLink User Guide | 15

Here, information on the connection is created.

data = SQLConnectionInformation[conn];

This prints a tidier form of information on the connection.

TableForm[Transpose[data]]

AllProceduresAreCallable True
AllTablesAreSelectable True
CatalogSeparator

CatalogTerm

DatabaseMajorVersion 1
DatabaseMinorVersion 8
DatabaseProductName HSQL Database Engine
DatabaseProductVersion 1.8.0
DataDefinitionCausesTransactionCommit True
DataDefinitionIgnoredInTransactions False
DefaultTransactionIsolationLevel ReadUncommitted
DeletesAreDetectedForForwardOnly False
DeletesAreDetectedForScrollInsensitive False
DeletesAreDetectedForScrollSensitive False
DoesMaxRowSizeIncludeBlobs True
DriverMajorVersion 1

DriverMinorVersion 8

DriverName HSQL Database Engine Driver
DriverVersion 1.8.0

ExtraNameCharacters
IdentifierQuoteString
InsertsAreDetectedForForwardOnly False
InsertsAreDetectedForScrollInsensitive False
InsertsAreDetectedForScrollSensitive False
IsCatalogAtStartOfTableName False
JDBCMajorVersion 3
JDBCMinorVersion 0
LocatorsUpdateCopy False
MaxBinaryLiteralLength
MaxCatalogNameLength
MaxCharLiteralLength
MaxColumnNameLength
MaxColumnsInGroupBy
MaxColumnsInIndex
MaxColumnsInOrderBy
MaxColumnsInSelect
MaxColumnsInTable
MaxConnections
MaxCursorNameLength
MaxIndexLength
MaxProcedureNameLength
MaxRowSize
MaxSchemaNameLength
MaxStatementLength
MaxStatements

MaxTableNameLength

©O ©O ©O O ©O ©O O ©O O O © O O O © © © O o

MaxTablesInSelect

16 | DatabaselLink User Guide

MaxUserNameLength 0
NullPlusNonNullIsNull True
NullsAreSortedAtEnd False
NullsAreSortedAtStart False
NullsAreSortedHight False
NullsAreSortedLow True
NumericFunctions ABS,ACOS,ASIN,ATAN,ATAN2,CEILING,COS,COT, DEGREES
OthersDeletesAreVisibleForForwardOnly False
OthersDeletesAreVisibleForScrollInsensitive False
OthersDeletesAreVisibleForScrollSensitive False
OthersInsertsAreVisibleForForwardOnly False
OthersInsertsAreVisibleForScrollInsensitive False
OthersInsertsAreVisibleForScrollSensitive False
OthersUpdatesAreVisibleForForwardOnly False
OthersUpdatesAreVisibleForScrollInsensitive False
OthersUpdatesAreVisibleForScrollSensitive False
OwnDeletesAreVisibleForForwardOnly False
OwnDeletesAreVisibleForScrollInsensitive False
OwnDeletesAreVisibleForScrollSensitive False
OownInsertsAreVisibleForForwardOnly False
ownInsertsAreVisibleForScrollInsensitive False
OwnInsertsAreVisibleForScrollSensitive False
OownUpdatesAreVisibleForForwardOnly False
ownUpdatesAreVisibleForScrollInsensitive False
ownUpdatesAreVisibleForScrollSensitive False
ProcedureTerm

ReadOnly False
SchemaTerm SCHEMA
SearchStringEscape \
SQLKeywords BEFORE, BIGINT, BINARY,CACHED, DATETIME, LIMIT
SQLStateType XOpen
StoresLowerCaseIdentifiers False
StoresLowerCaseQuotedIdentifiers False
StoresMixedCaseIdentifiers False
StoresMixedCaseQuotedIdentifiers False
StoresUpperCaseIdentifiers True
StoresUpperCaseQuotedIdentifiers False
StringFunctions ASCII,BIT_LENGTH,CHAR,CHAR_LENGTH,CHARACTER_ LENGTH
SupportsAlterTableWithAddColumn True
SupportsAlterTableWithDropColumn True
SupportsANSI92EntryLevelSQL False
SupportsANSI92FullSQL False
SupportsANSI92IntermediateSQL False
SupportsBatchUpdates True
SupportsCatalogsInDataManipulation False
SupportsCatalogsInIndexDefinitions False
SupportsCatalogsInPrivilegeDefinitions False
SupportsCatalogsInProcedureCalls False
SupportsCatalogsInTableDefinitions False
SupportsColumnAliasing True
SupportsConvert True
SupportsCoreSQLGrammar True
SupportsCorrelatedSubqueries True
SupportsDataDefinitionAndDataManipulationTransactions False

SupportsDataManipulationTransactionsOnly True

fferentTableCorrelationNames
pressionsInOrderBy

tendedSQLGrammar
rwardOnlyResultSetReadOnlyConcurrency
rwardOnlyResultSetType
rwardOnlyResultSetUpdatableConcurrency
1llOuterJoins

tGeneratedKeys

oupBy

oupByBeyondSelect

oupByUnrelated
tegrityEnhancementFacility
keEscapeClause

mitedOuterJoins

nimumSQLGrammar

xedCaseIdentifiers
xedCaseQuotedIdentifiers
ltipleOpenResults

ltipleResultSets

ltipleTransactions

medParameters

nNullableColumns
enCursorsAcrossCommit
enCursorsAcrossRollback
enStatementsAcrossCommit
enStatementsAcrossRollback
derByUnrelated

terJoins

sitionedDelete

sitionedUpdate
sultSetHoldCursorsOverCommitHoldability
sultSetCloseCursorsAtCommitHoldability
vepoints

hemasInDataManipulation
hemasInIndexDefinitions
hemasInPrivilegeDefinitions
hemasInProcedureCalls

hemasInTableDefinitions

rollInsensitiveResultSetReadOnlyConcurrency

rollInsensitiveResultSetType

rollInsensitiveResultSetUpdatableConcurrency

rollSensitiveResultSetReadOnlyConcurrency

rollSensitiveResultSetType

rollSensitiveResultSetUpdatableConcurrency

lectForUpdate

atementPooling

oredProcedures

bqueriesInComparisons
bqueriesInExists

bqueriesInIns

bqueriesInQuantifieds
bleCorrelationNames
adCommitedTransactionIsolationLevel
adUncommitedTransactionIsolationLevel

peatableReadTransactionIsolationLevel

True
True
False
True
True
False
False
False
True
True
True
True
True
True
False
False
True
False
False
True
True
True
False
False
True
True
True
True
False
False
True
False
True
False
True
True
False
True
True
True
False
False
False
False
False
False
True
True
True
True
True
True
True
True

True

DatabaseLink User Guide | 17

18 | DatabaselLink User Guide

SupportsSerializableTransactionIsolationLevel True

SupportsTransactions True

SupportsUnion True

SupportsUnionAll True

SystemFunctions DATABASE ,USER, IDENTITY

TimeDateFunctions CURDATE, CURTIME, DATEDIFF,DAYNAME , DAY, DAYOFMONTH
UpdatesAreDetectedForForwardOnly False
UpdatesAreDetectedForScrollInsensitive False

UpdatesAreDetectedForScrollSensitive False

URL jdbc:hsgldb:file:C:\Documents and Settings
UserName SA

UsesLocalFilePerTable False

UsesLocalFiles False

JDBC Connections

If you do not have a named database connection, you can still connect to the database by using
a JDBC setting.

If you find that the examples in this section do not work as shown, you may need to
install or restore the example database with the DatabaseExamples™ package, as
described in "Using the Example Databases".

JDBC [name , url] a JDBC setting

JDBC [classname , url] a JDBC setting that gives the explicit class name for the
driver

JDBCDriverNames [] a list of the names of possible JDBC drivers

JDBCDrivers [] the details of all IDBC drivers

JDBCDrivers [name] the details of the JDBC driver labeled name

This loads the package.

Needs ["DatabaseLink™ "]

The following opens a connection to HSQLDB using the file
$UserBaseDirectory/DatabaseResources/Examples/demo. This works because the package
knows what JDBC driver to use for connecting to HSQLDB.

conn = OpenSQLConnection[JDBC["hsqldb",
ToFileName [{$UserBaseDirectory, "DatabaseResources", "Examples"}, "demo"]],
"Name" -> "manualA", "Username" -> "sa"]

SQLConnection[manualA, 5, Open, TransactionIsolationLevel - ReadCommitted]

CloseSQLConnection[conn]

DatabaseLink User Guide | 19

The JDBCDriverNames command returns the list of built-in drivers. hsqldb appears in this list
and therefore you can use the setting hsqldb as an argument to JDBC.

JDBCDriverNames []

{Microsoft Access (ODBC), hsgldb, HSQL (Memory), HSQL (Server), HSQL (Server+TLS),

HSQL (Standalone) , HSQL (Webserver), HSQL (Webserver+TLS), jtds_sqlserver, jtds_sybase, mysql,
MySQL (Connector/J), ODBC (DSN), odbc, Oracle(thin), Microsoft SQL Server (jTDS), Sybase (jTDS)}

You can get more complete information on all of the built-in drivers by using JDBCDrivers

without a parameter.

If you want to get information on just one driver, you can do this by giving its name to
JDBCDrivers. Finding the protocol set for a driver can help to use OpensSQLConnection.
JDBCDrivers ["ODBC (DSN) "]
JDBCDriver[Name4>ODBC(DSN), Driver - sun. jdbc.odbc.JdbcOdbcDriver,
Protocol - jdbc:odbc:, Version —» 2., Description -
JDBC-ODBC Bridge distributed with the Sun JVM. This driver only works on Windows.,

Location — C:\Program Files\Wolfram
Research\Mathematica\7.0\SystemFiles\Links\DatabaseLink\DatabaseResources\odbcdsn.m}

The details of how the built-in drivers are configured is described in "Database Resources".

If DatabaseLink does not already contain a driver for your database, you can add your own. The
driver is a collection of Java classes, and they must be added to Mathematica using the stan-
dard that J/Link provides for adding Java classes. Typically, this is done by adding the class file
or a jar file to a Java subdirectory in a Mathematica application. One possible location is inside
DatabaselLink itself. A disadvantage is that if you update Mathematica, you may have to copy
the new material. Another location would be in an application inside $UserBaseDirectory or

$BaseDirectory; this would not need to be changed if you updated your software.

As an example, you could create an application for connecting to the Oracle database. This
could be done by creating an application called Oracle inside
$UserBaseDirectory/Applications or $BaseDirectory/Applications. You might have to
create some of the directories manually, but you would not need to change anything if you
update your software. Another advantage is that you can use the same location to hold a
DatabaseResources directory, this could hold other configuration information as discussed in

"Database Resources".

The following table shows some possible locations that you could use to install drivers for con-

necting to Oracle.

20 | DatabaselLink User Guide

$UserBaseDirectory/Applications/Oracle/Java location for database driver class files
$BaseDirectory/Applications/Oracle/Java location for database driver class files

Possible locations for database driver class files.

When you have installed the driver classes, you can make a connection. It should be noted that
the URL argument you use depends on the server you are using. In the following example,
which is not actually configured, a connection is made to an Oracle database using a driver
installed in one of the locations previously suggested. The documentation for the JDBC driver

will tell you what class and URL to use.

OpenSQLConnection[JDBC["oracle.jdbc.driver.OracleDriver",
"jdbc:oracle:thin:@server.business.com:1999"],
"Name" - "manualOracle", "Username" - "serverl"]

This is the most verbose form of OpensQLConnection. Typically, you would want to use informa-

tion that had been stored previously. This is discussed in "Database Resources".

ODBC Connections

Open Database Connectivity (ODBC) is a general way to connect to SQL databases that is
supported in a number of operating systems, particularly Microsoft Windows. DatabaseLink
comes configured with a driver for ODBC connections. This example, which works only on
Windows, shows how to connect to a sample database using ODBC.

Setting Up the Connection

This example uses a sample database file, publisher.mdb, which is located inside the
DatabaseLink package structure. You can find the location by evaluating the following line on

your computer.

Needs ["DatabaseLink™"];
ToFileName[{$DatabaseLinkDirectory}, "Examples"]

C:\Program Files\Wolfram Research\Mathematica\l7.0\SystemFiles\Links\DatabaseLink\Examples

Typically, it is not a good idea to modify files that are inside of DatabaselLink, so you might
want to copy it into some other location. One possible location would be inside the DatabaseRe-
sources/Examples directory inside $UserBaseDirectory (it may be necessary to create these

directories). You can find the location by evaluating the following on your computer.

DatabaseLink User Guide | 21

ToFileName|[{$UserBaseDirectory, "DatabaseResources"}, "Examples"]

C:\Documents and Settings\WRI\Application Data\Mathematica\DatabaseResources\Examples

The publisher.mdb file is found inside the Examples subdirectory.

Now, you need to use the ODBC control panel to register the data source. This is typically found
in the Administrative Tools folder of the Windows Control Panel. When it is opened it looks

something like the following.

3l ODEC Data Source Administrator 2

User DSN I Spstem DSN | File DSN | Drivers | Tracing | Connection Pooling | About |

User Data Sources:

MName I Driver | Add...
[[Fe

dBASE Files Microsoft dBase Driver [*.dbf]

DeluxeCD Microsoft Access Driver [*.mdb) Remove
Excel Files Microgoft Excel Driver [*.xlz)

MS Access Database Microsoft Access Driver [*.mdb) Configure...
Visual FoxPro Database Microsoft Visual FoxPro Driver

Visual FoxPro Tables Microsoft Visual FoxPro Driver

An ODBC User data source stores information about how to connect to
the indicated data provider. A User data source is only visible to you,
and cah only be used on the current machine.

0K | Cancel | Help |

Click the Add button, this will bring up the Create New Data Source window.

Create Mew Data Source

Select a driver for which you want to set up a data source.

Mame I Wi
Microsoft Access Driver [*.mdb]
Microsoft Access-Treiber [*.mdb)
Microsoft dB ase Driver (*.dbf]
Microsoft dB ase VFP Driver [*.dbf)
Microsoft dB ase-Treiber [*.dbf)
Microsoft Excel Driver [*xls)
Microsoft Excel-Treiber [*.xlz)
Microsoft FoxPro YFP Driver (*.dbf]
Microsoft ODBC for Oracle

bdimrmomft Do mdmis Pivivime 1% AR 1

<

vhmmhbbmhhh

| Finish | Cancel |

Select Microsoft Access Driver and then click Finish. This will bring up an ODBC Microsoft

Access Setup window.

22 | DatabaselLink User Guide

ODBC Microsoft Access Setup
Data Source Name: |publisher (1] |
Description: |pub|isher example database
Cancel
Database
Database: Help
Select... | Create... | Repair... Compact... |
Advanced...

System Database

+ Mone

" Database:

4' Optionss >

I

You should fill in the Data Source Name text field, using the name "publisher" (this is the
name that ODBC will use). Then, click the Select button, which allows you to find and select
the publisher.mdb file.

-

Select Database
Database Name Directories:
Ipublisher.mdb c:h.\databasze\eramples

: - Cancel
publishermdb i [Mathematica |»
=51 4‘
(= AddOns Help
[= Applications ™ Read Ol
[=r Database — Y

E= Examples " [Exclusive

Lizt Files of Type: Drives:

|Access Databazes [“.m LI I c: IBM_PRELOAD ﬂ Metwark. ..

Click OK in each successive window until the control panel has been closed. Note that publisher
and its driver now appear in the list of available files in the ODBC Data Source Administrator

window.

DatabaseLink User Guide | 23

Using the Connection

You should now be able to connect to the ODBC data source that was configured. The following
loads DatabaselLink and connects to the ODBC data source publisher. This will use the ODBC
driver that is configured by the package.

<< DatabaseLink";
conn = OpenSQLConnection[JDBC["odbc", "publisher"]];

You can use the connection to query the database.
SQLTableNames [conn]

{authors, editors, publishers, roysched, sales, salesdetails, titleauthors, titleditors, titles}

SQLSelect[conn, "publishers", "ShowColumnHeadings" - True] // TableForm

pub_id pub_name address city state
0736 Second Galaxy Books 100 1st St. Boston MA
0877 Boskone & Helmuth 201 2nd Ave. Washington DC

1389 NanoSoft Book Publishers 302 3rd Dr. Berkeley CA

This closes the connection.

CloseSQLConnection[conn]

Named Connections

If your work requires that you frequently connect to the same database, it might be beneficial
to give this connection a name and use the name in OpensSQLConnection. The details of how to
set up a named connection are given in "Database Resources". This section describes how to

learn what named connections are available.

DataSourceNames [] list of the names of all connections
DataSources [] details of all named connections
DataSources [name] details of the connection called name

Functions for working with named connections.

This loads the package.

Needs ["DatabaseLink™ "]

24 | DatabaselLink User Guide

The following lists all the named connections. If you have installed more connections, you may

see a larger list.

DataSourceNames []

{demo, graphs, publisher}

You can get more complete information on all the connections by using DataSources.

DataSources|[]

{soLconnection|JDBC [hsqldb, C:\Documents and
Settings\twj.WRI\Application Data\Mathematica\DatabaseResources\Examples\demo},
Name - demo, Description - Connection to hsgl db for documention., Username - sa,
Password » , Version— 1.1,
Location - C:\Documents and Settings\All Users\Application
Data\Mathematica\Applications\DatabaseLink\DatabaseResources\demo.m},
SQLConnection[JDBC[hsqldb, C:\Documents and Settings\twj.WRI\Application
Data\Mathematica\DatabaseResources\Examples\graphs},
Name - graphs, Description - Connection to the graph database., Username - sa,
Password » , Version— 1.1,
Location - C:\Documents and Settings\All Users\Application
Data\Mathematica\Applications\DatabaseLink\DatabaseResources\graphs.m},
SQLConnection[JDBC[hsqldb, C:\Documents and Settings\twj.WRI\Application
Data\Mathematica\DatabaseResources\Examples\publisher},
Name - publisher, Description - Connection to hsgqgl db for demos.,
Username - sa,
Password - , Version- 1.1,
Location - C:\Documents and Settings\All Users\Application
Data\Mathematica\Applications\DatabaseLink\DatabaseResources\publisher.m}}

You can get information on just one named connection by giving a name argument to
DataSources.

DataSources ["demo"]
SQLConnection[JDBC[HSQL(Standalone), C:\Documents and
Settings\brianv\Application Data\Mathematica\DatabaseResources\Examples\demo},
Name - demo, Description — Connection to HSQL database for documention.,
Username - sa, Password » , Version - 2.,

Location - C:\Program Files\Wolfram
Research\Mathematica\7.0\SystemFiles\Links\DatabaseLink\DatabaseResources\demo.m}

Database Timeouts

Database operations typically involve connecting to a server and the possibility of problems
accessing the server must be taken into account. Consequently, there is a timeout for database

operations such as connecting or executing queries. This timeout is controlled by the global

variable $sQLTimeout.

DatabaseLink User Guide | 25

option name default value

$SQLTimeout Automatic timeout for making a connection and
executing queries

Specification of the timeout for working with the database.

The default value, Automatic, means that the default value given by the driver will be used.

Example Connections

This section shows some sample connection commands and explains how they work.

In this example, you connect to a MySQL database called conn_test running on the computer
named databases on port 1234 using the built-in driver with the username test.
OpenSQLConnection[JDBC["mysql",
"databases:1234/conn_test"], "Username" -> "test"]
In this example, you connect to the same MySQL database as in the previous example, but this
time using the driver com.mysql. jdbc.Driver.
OpenSQLConnection[JDBC["com.mysgl.jdbc.Driver",
"databases:1234/conn_test"], "Username" -> "test"]
The first example requires that a JDBC connection mysql has been configured, as described in
Database Resources: JDBC Configuration. The second does not require any DatabaseRe-
sources configuration. It does require that the JDBC driver, com.mysql.jdbc.Driver, is

made available. More information on drivers is found in JDBC Connections.

The Connection Tool

The Connection Tool is a graphical interface tool that simplifies opening a connection to a
database. It is launched by executing the command OpenSQLConnection][]. It is described in

The Database Explorer: The Connection Tool.

26 | DatabaselLink User Guide

Database Resources

DatabaselLink allows other Mathematica applications to hold resource information for database

connections in DatabaseResources directories. There are a number of possible locations of

DatabaseResources directories inside $InstallationDirectory, $BaseDirectory, and

$UserBaseDirectory.

DatabaseResourcesPath []

DatabaseResources directories
to search for resources

$InstallationDirectory/AddOns/ExtraPackages/*

$InstallationDirectory/AddOns/StandardPackages/ *
$InstallationDirectory/AddOns/Autoload/ *
$InstallationDirectory/AddOns/Applications/*
$BaseDirectory/Autoload/ *
$BaseDirectory/Applications/*
SUserBaseDirectory/Autoload/ *

$UserBaseDirectory/Applications/

possible locations for DatabaseRe-
sources directories

The command DatabaseResourcesPath shows the current locations of DatabaseResources

directories.
Needs ["DatabaseLink™"];

DatabaseResourcesPath|[]

{C:\Documents and Settings\All Users\Application Data\Mathematica\DatabaseResources),
C:\Documents and Settings\WRI\Application Data\Mathematica\DatabaseResources),

C:\Documents and Settings\WRI\Application

Data\Mathematica\Applications\DatabaseLink\DatabaseResources\}

DatabaseResources directories can hold two sorts of files: those that contain JDBC settings

and those that contain connection settings.

DatabaseLink User Guide | 27

JDBC Configuration

Any file that is in a DatabaseResources directory with an extension of .m will be inspected to
see if it contains possible JDBC configuration information. Here is the format of a JDBC configura-
tion file.

JDBCDriver|
"Name" -> "name",
"Driver" -> "driverclass",
"Protocol" -> "protocol",
"Version" -> 1

]
In this format name is the name of the connection (as might be used in OpensQLConnection),

driverclass is the class file of the JDBC driver, and protocol is the JDBC protocol. The

version of the configuration file is specified by the version setting.
Here is an example file (configured for HSQLDB).

JDBCDriver|[
"Name" -> "hsqldb",
"Driver" -> "org.hsqldb.jdbcDriver",
"Protocol" -> "jdbc:hsqgldb:",
"Version" -> 1

]

This file specifies the driver and protocol to use when OpenSQLConnection is invoked for an
hsqgldb connection, such as the following command.

OpenSQLConnection[JDBC["hsqldb",ToFileName[{"DatabaseLink", "Examples"}, "ex-
ample"]]

Here is another example file (configured for Oracle).

JDBCDriver|[
"Name" -> "oracle",
"Driver" -> "oracle.jdbc.driver.OracleDriver",
"Protocol" -> "jdbc:oracle:thin:@",
"Version" -> 1

28 | DatabaselLink User Guide

This specifies the driver and protocol to use when OpensSQLConnection is invoked for an oracle
connection, such as the following command.
OpenSQLConnection[JDBC["oracle", "server.business.com:1999"],
"Username" -> "serverl"]
Note that if you added an application to hold JDBC driver classes (as shown in Database Connec-
tions: JDBC Connections), you could create a DatabaseResources directory in the same applica-
tion to hold JDBC configuration information. The following table shows the layout of an applica-

tion, named oOracle, that could be used for connecting to the Oracle database.

$UserBaseDirectory/Applications/Oracle/Java location for database driver
class files

$UserBaseDirectory/Applications/Oracle/ location for JDBC configura-
DatabaseResources tion files

When you have installed a new JDBC driver, you might want to confirm that your new driver is

accessible to the system. This is described in Database Connections: JDBC Connections.

Connection Configuration

Any file that is in a DatabaseResources directory with an extension of .m will be inspected to
see if it contains possible connection configuration information. Here is the format of a connec-

tion configuration file.

SQLConnection|
connectdata,
"Name" -> "name",
"Description" -> "text",

"Username" -> "user",
"Password" -> "pass",
"RelativePath" -> True|False,
"Version" -> 1

DatabaseLink User Guide | 29

Here connectdata holds connection data (typically a JDBC setting), name is the name of the
connection (as might be used in OpenSQLConnection), text is a textual description of the
connection, and user and pass are the username and password to use when connecting to the
database. A password of $Prompt causes a GUI to appear to enter the password. If the connec-
tion data involves a relative path, this is specified with the RelativePath setting. The version
of the configuration file is specified by the version setting.

Here is an example file (configured for HSQLDB).

SQLConnection|
JDBC["hsgldb", "../Examples/example"],
"Name" -> "example",
"Description" -> "Connection to hsgl db for documention.",

"Username" -> "sa",
"Password" -> "",
"RelativePath" -> True,

"Version" -> 1]
This file specifies that HSQLDB should be used to connect to the file Examples/example, which
is found relative to the location of the configuration file. The username sa and a blank password

are also given. This connection information is given the name "example". This configuration file
supports the following OpenSQLConnection command.

OpenSQLConnection["example"]
Here is another example file (configured for Oracle).

SQLConnection]|
JDBC["oracle", "server.business.com:1999"],
"Name" -> "businessDB",
"Description" -> "Connection to Oracle db.",
"Username" -> "serverl",
"Version" -> 1]

30 | DatabaselLink User Guide

This specifies connection information to use when OpensQLConnection is invoked with busi-

nessDB, such as the following command.
OpenSQLConnection|["businessDB"]

Note that if you added an application to hold JDBC driver classes (as shown in Database Connec-
tions: JDBC Connections), and JDBC configuration information (as shown previously), you could
use the same location for holding the Oracle connection information. The following table shows
the layout of an application that could be used for connecting to Oracle.

$UserBaseDirectory/Applications/Oracle/Java location for database driver
class files
$UserBaseDirectory/Applications/Oracle/ location for JDBC configura -
DatabaseResources tion files
SUserBaseDirectory/Applications/Oracle/ location for connection
DatabaseResources configuration files

To help you to write the connection configuration file, you can use the command
WriteDataSource.

Needs ["DatabaseLink™"];

This creates a data source named testSource, it will use the HsQL database.

WriteDataSource["testSource"]

SQLConnection [JDBC [HSQL (Standalone), testSource], Name - testSource,
Description » , Username - None, Password — None, Properties - {},
RelativePath » True, UseConnectionPool - Automatic, Catalog - Automatic,
ReadOnly - Automatic, TransactionIsolationLevel - Automatic, Version - 2.]

The new data source shows up in the listing from DataSourceNames.

DataSourceNames []

{demo, graphs, publisher, testSource}

You can connect to the data source and start to work with it. One benefit of the HSQL database

is that it will create the database if it does not exist.

conn = OpenSQLConnection["testSource"]

SQLConnection[testSource, 2, Open, TransactionIsolationLevel - ReadCommitted]

DatabaseLink User Guide | 31

It is typically a good practice to close the connection.

CloseSQLConnection[conn]

If you want to connect to a database other than HSQL you can give a second argument to
WriteDataSource. For example, the following will write a data source file that uses a MysQL
database.

WriteDataSource["test", "MySQL (Connector/J)", URL - "main/test",
Username - "user", Password - "password", Location - "User"]

SQLConnection [JDBC [MySQL (Connector/J), main/test], Name - test, Description » , Username - user,
Password - password, Properties - {}, RelativePath - False, UseConnectionPool - Automatic,
Catalog —» Automatic, ReadOnly - Automatic, TransactionIsolationLevel —» Automatic, Version - 2.]
Note that this does not communicate with the MySQL server to create the database, main/
test. It is assumed that the database already exists. However, thisis still a convenient way to
create a named connection. Note how the parameters such as Username, Password, and Loca-

tion are set. The choices for Location are "User" and "System".

If you did not wish to write the connection configuration file yourself, you could use the New
Connection Wizard, described in The Database Explorer: New Connection Wizard.

When you have made a new named connection, you might want to confirm that the new connec-

tion is accessible to the system. This is described in Database Connections: Named Connections.

Security and Authentication

Many SQL databases can be configured to require a username and password when a connection
is made. This is useful for preventing unwanted access and restricting the range of operations
that certain users can execute. This attention to security is important since databases are

typically server based.

There are a number of issues for DatabaseLink that need to be considered when working with
passwords. These depend on the level of security you want and how this should be balanced
with convenience. Another issue is whether you are running Mathematica in a stand-alone

mode or inside a server (as in webMathematica).

32 | DatabaselLink User Guide

The most convenient way to work with a password is to place it in a connection configuration
file, as described in Database Resources: Connection Configuration. However, the password will
be stored in plain text, and an intruder could inspect the configuration file and learn the pass-
word. Since this is a security risk, the New Connection Wizard, described in The Database
Explorer: New Connection Wizard, does not save a password. However, you can edit the configu-
ration file and add a password. You could provide further protection by ensuring that the permis-

sion on the configuration file is restricted to those who are intended to run Mathematica.

A higher level of security is obtained if you use a GUI to enter the password, which has the
advantage that the password is never stored. The GUI for the password is opened whenever

you use a password setting of "$Prompt".

conn = OpenSQLConnection["demo", "Username" -» "sa", "Password" -» "$Prompt"]

Here is the dialog box for the password.

l_‘ Enter Paszward =&

Pazsword

You could also enter the password in the OpensQLConnection command, and then make sure

that you deleted your Mathematica input as soon as you made the connection.

Using a GUI is useful for an interactive session of Mathematica, but is not very useful if you run
Mathematica inside a web server (as in webMathematica). In this case, you have a number of
options. You could place the password in a configuration file and use file permissions to restrict
access to those who are running the Mathematica process in the web server. An alternative
would be to store the password in an authenticated mechanism provided by the web server. For
example, the Tomcat server provides a mechanism based on JDBC Realms. The database
password could be retrieved from the web server and passed to Mathematica, which could use
it in an OopensQLConnection command. Any hostile inspection of the Mathematica code would

not find the database password without breaking the web server authentication mechanism.

For greater security, use SSL to protect the transactions between Mathematica and the
database. This is described in "Secure Socket Layer (SSL)".

DatabaseLink User Guide | 33

Descriptive Commands

Table Structure

Table Description
This section discusses commands that get information about database tables.
If you find that the examples in this section do not work as shown, you may need to

install or restore the example database with the DatabaseExamples™ package, as

described in "Using the Example Databases".

SQLTableNames [conn] list all table names within a data source

SQLTableNames [conn,name , opts] list all table names that match name within a data source

SQLTables [conn] list all tables within a data source

SQLTables [conn, name , opts] list all tables that match name within a data source

SQLTableInformation [conn] list all table information within a data source

SQLTableInformation [list all table information for tables that match name within
conn ,name , opts | a data source

SQLTableTypeNames [conn] list the types of table supported in this data source

Functions for retrieving information about tables.
This loads DatabaseLink and connects to the publisher database.

Needs ["DatabaseLink™"];
conn = OpenSQLConnection["publisher"];

SQLTableNames returns a list of the names of the tables within the connection.

SQLTableNames [conn]

{AUTHORS, EDITORS, PUBLISHERS, ROYSCHED, SALES, SALESDETAILS, TITLEAUTHORS, TITLEDITORS, TITLES}

34 | DatabaselLink User Guide

SQLTables returns a list of sQLTable expressions. These hold information about the tables in a
database.

SQLTables [conn]

{SQLTable [AUTHORS, TableType - TABLE],
SQLTable [EDITORS, TableType —» TABLE], SQLTable [PUBLISHERS, TableType - TABLE],
SQLTable [ROYSCHED, TableType -» TABLE], SQLTable[SALES, TableType - TABLE],
SQLTable [SALESDETAILS, TableType » TABLE], SQLTable[TITLEAUTHORS, TableType —» TABLE],
SQLTable [TITLEDITORS, TableType - TABLE], SQLTable [TITLES, TableType - TABLE]}

SQLTableInformation returns more complete information about tables.

SQLTableInformation[conn] // TableForm

Null PUBLIC AUTHORS TABLE Null Null Null Null Null Null MEMORY False
Null PUBLIC EDITORS TABLE Null Null Null Null Null Null MEMORY False
Null PUBLIC PUBLISHERS TABLE Null Null Null Null Null Null MEMORY False
Null PUBLIC ROYSCHED TABLE Null Null Null Null Null Null MEMORY False
Null PUBLIC SALES TABLE Null Null Null Null Null Null MEMORY False

Null PUBLIC SALESDETAILS TABLE Null Null Null Null Null Null MEMORY False
Null PUBLIC TITLEAUTHORS TABLE Null Null Null Null Null Null MEMORY False
Null PUBLIC TITLEDITORS TABLE Null Null Null Null Null Null MEMORY False
Null PUBLIC TITLES TABLE Null Null Null Null Null Null MEMORY False

With each function, you can filter the names of the tables by providing a string to match as the
second parameter. An important point is that this filtering is done on the database server,
which leads to significant speed enhancements. The following example searches for a table
named AUTHORS. If no such table existed, the result would be an empty list.

SQLTables [conn, "AUTHORS"]

{SQLTable [AUTHORS, TableType — TABLE] }

It is also possible to give metacharacters to match more than one table. The metacharacters
are '%' which matches zero or more characters, and '_' which matches a single character. The
following command returns the names of all tables that start with TITLE.

SQLTableNames [conn, "TITLE%"]

{TITLEAUTHORS, TITLEDITORS, TITLES}

DatabaseLink User Guide | 35

SQLTables, SQLTableNames, and SQLTableInformation take a number of options.

option name default value

"TableType" "TABLE" type of table to be returned

"Catalog" None database catalog to use

"Schema" None database schema to use
"ShowColumnHeadings" False whether to return headings with the results

(SQLTableInformation option only)

The option "TableType" selects which type of table is returned. Typically, it is the tables of
type TABLE that are of interest and by default DatabaseLink table functions only return informa-
tion on these. You can use sQLTableTypeNames to find all the different types of tables in your
data source.

SQLTableTypeNames [conn]

{GLOBAL TEMPORARY, SYSTEM TABLE, TABLE, VIEW}

If you want to see all the tables in the data source, you can use the result of
SQLTableTypeNames With the option "TableType". This is demonstrated in the following.

SQLTables [conn, "TableType" -» SQLTableTypeNames [conn]]

{SQLTable
SQLTable

SYSTEM ALIASES, TableType - SYSTEM TABLE],

SYSTEM ALLTYPEINFO, TableType - SYSTEM TABLE],

SQLTable [SYSTEM AUTHORIZATIONS, TableType —» SYSTEM TABLE],

SQLTable [SYSTEM BESTROWIDENTIFIER, TableType — SYSTEM TABLE],

SQLTable [SYSTEM CACHEINFO, TableType - SYSTEM TABLE],

SQLTable [SYSTEM CATALOGS, TableType — SYSTEM TABLE],

SQLTable [SYSTEM CHECK COLUMN USAGE, TableType - SYSTEM TABLE],

SQLTable [SYSTEM CHECK_CONSTRAINTS, TableType —» SYSTEM TABLE],

SQLTable [SYSTEM CHECK ROUTINE USAGE, TableType - SYSTEM TABLE],

SQLTable [SYSTEM CHECK TABLE USAGE, TableType » SYSTEM TABLE],

SQLTable [SYSTEM CLASSPRIVILEGES, TableType » SYSTEM TABLE],

SQLTable [SYSTEM COLLATIONS, TableType —» SYSTEM TABLE],

SQLTable [SYSTEM COLUMNPRIVILEGES, TableType - SYSTEM TABLE],

SQLTable [SYSTEM COLUMNS, TableType —» SYSTEM TABLE],

SQLTable [SYSTEM CROSSREFERENCE, TableType —» SYSTEM TABLE],

SQLTable [SYSTEM INDEXINFO, TableType —» SYSTEM TABLE],

SQLTable [SYSTEM PRIMARYKEYS, TableType » SYSTEM TABLE],

SQLTable [SYSTEM PROCEDURECOLUMNS, TableType — SYSTEM TABLE],

SQLTable [SYSTEM PROCEDURES, TableType - SYSTEM TABLE],

SQLTable [SYSTEM PROPERTIES, TableType —» SYSTEM TABLE],

SQLTable [SYSTEM ROLE AUTHORIZATION DESCRIPTORS, TableType -» SYSTEM TABLE],

SQLTable [SYSTEM SCHEMAS, TableType - SYSTEM TABLE],
[
(
[
(
[
(
[
(
[
[

SQLTable [SYSTEM SCHEMATA, TableType - SYSTEM TABLE],

SQLTable [SYSTEM SEQUENCES, TableType - SYSTEM TABLE],
SQLTable [SYSTEM SESSIONINFO, TableType - SYSTEM TABLE],
SQLTable [SYSTEM SESSIONS, TableType — SYSTEM TABLE],

SQLTable [SYSTEM SUPERTABLES, TableType - SYSTEM TABLE],
SQLTable [SYSTEM SUPERTYPES, TableType » SYSTEM TABLE],
SQLTable [SYSTEM TABLEPRIVILEGES, TableType - SYSTEM TABLE],
SQLTable [SYSTEM TABLES, TableType - SYSTEM TABLE],

SQLTable [SYSTEM TABLETYPES, TableType —» SYSTEM TABLE],
SQLTable [SYSTEM TABLE CONSTRAINTS, TableType —» SYSTEM TABLE],

36 | DatabaselLink User Guide

SQLTable [SYSTEM TEXTTABLES, TableType — SYSTEM TABLE],
SQLTable [SYSTEM TRIGGERCOLUMNS, TableType — SYSTEM TABLE],

SQLTable [SYSTEM TRIGGERS, TableType - SYSTEM TABLE],

SQLTable [SYSTEM TYPEINFO, TableType -» SYSTEM TABLE],
SQLTable [SYSTEM UDTATTRIBUTES, TableType —» SYSTEM TABLE],

SQLTable [SYSTEM UDTS, TableType - SYSTEM TABLE],

SQLTable [SYSTEM USAGE_PRIVILEGES, TableType —» SYSTEM TABLE],

SQLTable [SYSTEM USERS, TableType - SYSTEM TABLE],
SQLTable [SYSTEM VERSIONCOLUMNS, TableType — SYSTEM TABLE],

SQLTable [SYSTEM VIEWS, TableType - SYSTEM TABLE],

SQLTable [SYSTEM VIEW COLUMN USAGE, TableType - SYSTEM TABLE],

SQLTable [SYSTEM VIEW ROUTINE USAGE, TableType - SYSTEM TABLE],

SQLTable [SYSTEM VIEW TABLE USAGE, TableType — SYSTEM TABLE],

SQLTable [AUTHORS, TableType - TABLE], SQLTable [EDITORS, TableType - TABLE],
SQLTable [PUBLISHERS, TableType — TABLE], SQLTable [ROYSCHED, TableType - TABLE],
SQLTable [SALES, TableType - TABLE], SQLTable [SALESDETAILS, TableType - TABLE],
SQLTable [TITLEAUTHORS, TableType - TABLE],

SQLTable [TITLEDITORS, TableType - TABLE], SQLTable [TITLES, TableType - TABLE])}

The option "ShowColumnHeadings" can be used with sSQLTableInformation to return the

column headings.

SQLTableInformation[conn, "ShowColumnHeadings" - True] // TableForm

TABLE_CAT TABLE SCHEM TABLE_ NAME TABLE_TYPE REMARKS TYPE CAT TYPE SCHEM TYPE NAME SELF_REFERENCING

Null PUBLIC AUTHORS TABLE Null Null Null Null Null
Null PUBLIC EDITORS TABLE Null Null Null Null Null
Null PUBLIC PUBLISHERS TABLE Null Null Null Null Null
Null PUBLIC ROYSCHED TABLE Null Null Null Null Null
Null PUBLIC SALES TABLE Null Null Null Null Null
Null PUBLIC SALESDETAILS TABLE Null Null Null Null Null
Null PUBLIC TITLEAUTHORS TABLE Null Null Null Null Null
Null PUBLIC TITLEDITORS TABLE Null Null Null Null Null
Null PUBLIC TITLES TABLE Null Null Null Null Null

This closes the connection.

CloseSQLConnection[conn]

If the database was designed with particular schema and catalogs, you can also select tables by

using the "catalog" and "Schema" options.

Table Representation

SQLTable expressions hold information about the tables in a database.

If you find that the examples in this section do not work as shown, you may need to
install or restore the example database with the DatabaseExamples~ package, as

described in "Using the Example Databases".

SQLTable [table, opts] expression that represents an SQL table

DatabaseLink User Guide | 37

An example demonstrating sQLTable expressions follows. This loads DatabaselLink and con-
nects to the demo database.

Needs ["DatabaseLink™ "] ;
conn = OpenSQLConnection|["demo"];

The "TableType" option is used to select the type of the table in the database.

option name default value

"TableType" "TABLE" type of the table

Now SQLTables is used to return a list of the tables in the database; they are returned as
SQLTable expressions. In this example, a pattern is given to match the names of the tables,
and the "TableType" option is set to return tables of all types.

SQLTables [conn, "%SA%", "TableType" - SQLTableTypeNames [conn]]

{SQLTable [SYSTEM CHECK COLUMN_USAGE, TableType - SYSTEM TABLE],
SQLTable [SYSTEM CHECK ROUTINE USAGE, TableType - SYSTEM TABLE],
SQLTable [SYSTEM CHECK_TABLE_USAGE, TableType - SYSTEM TABLE],
SQLTable [SYSTEM USAGE_PRIVILEGES, TableType - SYSTEM TABLE],
SQLTable [SYSTEM VIEW COLUMN_USAGE, TableType - SYSTEM TABLE],
SQLTable [SYSTEM VIEW ROUTINE USAGE, TableType - SYSTEM TABLE],
SQLTable [SYSTEM VIEW TABLE_USAGE, TableType - SYSTEM TABLE],
SQLTable [SAMPLETABLE1, TableType - TABLE] }

This closes the connection.

CloseSQLConnection[conn]

SQLTable expressions can also be used in commands as shown in "Selecting Data".

Column Structure

Column Description
This section discusses commands that get information about database columns.
If you find that the examples in this section do not work as shown, you may need to

install or restore the example database with the DatabaseExamples™ package, as
described in "Using the Example Databases".

38 | DatabaselLink User Guide

SQLColumnNames [conn] list all column names within a data source

SQLColumnNames [conn, name , opts | list all column names that match name within a data source

SQLColumns [conn] list all columns within a data source

SQLColumns [conn, name, opts] list all columns that match name within a data source

SQLColumnInformation [conn] list all column information for tables within a data source

SQLColumnInformation | list all column information for columns that match name
conn ,name , opts | within a data source

Functions for retrieving information about columns.

This loads DatabaseLink and connects to the demo database.

Needs ["DatabaseLink™"];
conn = OpenSQLConnection|["demo"];

SQLColumnNames returns a list of the column names within a database as a list of pairs of table

and column names. For HSQLDB it returns information from many of the SYSTEM tables.

SQLColumnNames [conn]

{{SYSTEM_ALIASES, OBJECT TYPE}, {SYSTEM ALIASES, OBJECT_CAT}, {SYSTEM_ALIASES, OBJECT_ SCHEM},
{SYSTEM_ALIASES, OBJECT NAME}, {SYSTEM ALIASES, ALIAS_ CAT}, {SYSTEM ALIASES, ALIAS_ SCHEM},
{SYSTEM_ALIASES, ALIAS}, {SYSTEM ALLTYPEINFO, TYPE NAME}, {SYSTEM ALLTYPEINFO, DATA TYPE},
{SYSTEM_ALLTYPEINFO, PRECISION}, {SYSTEM ALLTYPEINFO, LITERAL_PREFIX},

{SYSTEM_ALLTYPEINFO, LITERAL_SUFFIX}, {SYSTEM ALLTYPEINFO, CREATE_PARAMS},
{SYSTEM_ALLTYPEINFO, NULLABLE}, {SYSTEM ALLTYPEINFO, CASE_SENSITIVE},

{SYSTEM_ALLTYPEINFO, SEARCHABLE}, {SYSTEM_ ALLTYPEINFO, UNSIGNED_ ATTRIBUTE},
{SYSTEM_ALLTYPEINFO, FIXED PREC_SCALE}, {SYSTEM ALLTYPEINFO, AUTO_ INCREMENT},
{SYSTEM_ALLTYPEINFO, LOCAL_TYPE_NAME}, {SYSTEM_ALLTYPEINFO, MINIMUM SCALE},
{SYSTEM_ALLTYPEINFO, MAXIMUM SCALE}, {SYSTEM_ALLTYPEINFO, SQL DATA TYPE},
{SYSTEM_ALLTYPEINFO, SQL DATETIME_SUB}, {SYSTEM_ ALLTYPEINFO, NUM_PREC_RADIX},
{SYSTEM_ALLTYPEINFO, INTERVAL PRECISION}, {SYSTEM ALLTYPEINFO, AS_TAB _COL},
{SYSTEM_ALLTYPEINFO, AS_PROC_COL}, {SYSTEM ALLTYPEINFO, MAX PREC ACT},

{SYSTEM_ALLTYPEINFO, MIN SCALE_ACT}, {SYSTEM ALLTYPEINFO, MAX SCALE_ACT},
{SYSTEM_ALLTYPEINFO, COL_ST_CLS_NAME}, {SYSTEM_ALLTYPEINFO, COL ST _IS_SUP},
{SYSTEM_ALLTYPEINFO, STD MAP CLS_NAME}, {SYSTEM_ALLTYPEINFO, STD MAP IS_SUP},
{SYSTEM_ALLTYPEINFO, CST_MAP_CLS_NAME}, {SYSTEM ALLTYPEINFO, CST_MAP_IS_SUP},
{SYSTEM_ALLTYPEINFO, MCOL JDBC}, {SYSTEM_ALLTYPEINFO, MCOL_ACT},

{SYSTEM_ALLTYPEINFO, DEF_OR_FIXED_ SCALE}, {SYSTEM_ALLTYPEINFO, REMARKS},

{SYSTEM_ALLTYPEINFO, TYPE SUB), {SYSTEM_AUTHORIZATIONS, AUTHORIZATION NAME},
{SYSTEM_AUTHORIZATIONS, AUTHORIZATION_TYPE}, {SYSTEM BESTROWIDENTIFIER, SCOPE},
{SYSTEM_BESTROWIDENTIFIER, COLUMN_NAME}, {SYSTEM BESTROWIDENTIFIER, DATA TYPE},
{SYSTEM_BESTROWIDENTIFIER, TYPE_NAME}, {SYSTEM BESTROWIDENTIFIER, COLUMN_SIZE},
{SYSTEM_BESTROWIDENTIFIER, BUFFER_LENGTH}, {SYSTEM BESTROWIDENTIFIER, DECIMAL DIGITS},
{SYSTEM_BESTROWIDENTIFIER, PSEUDO_COLUMN}, {SYSTEM BESTROWIDENTIFIER, TABLE_CAT},
{SYSTEM_BESTROWIDENTIFIER, TABLE SCHEM}, {SYSTEM BESTROWIDENTIFIER, TABLE NAME},
{SYSTEM_BESTROWIDENTIFIER, NULLABLE}, {SYSTEM BESTROWIDENTIFIER, IN_KEY},

{SYSTEM_CACHEINFO, CACHE_FILE}, {SYSTEM CACHEINFO, MAX CACHE_COUNT},

{SYSTEM_CACHEINFO, MAX CACHE_BYTES}, {SYSTEM CACHEINFO, CACHE_SIZE},

{SYSTEM_CACHEINFO, CACHE _BYTES}, {SYSTEM_CACHEINFO, FILE FREE_BYTES},

{SYSTEM_CACHEINFO, FILE_FREE_COUNT}, {SYSTEM_CACHEINFO, FILE _FREE_POS},

{SYSTEM_CATALOGS, TABLE CAT}, {SYSTEM_CHECK_COLUMN_USAGE, CONSTRAINT ' CATALOG},
{SYSTEM_CHECK_COLUMN_USAGE, CONSTRAINT SCHEMA}, {SYSTEM CHECK_COLUMN_USAGE, CONSTRAINT_NAME},
{SYSTEM_ CHECK COLUMN USAGE, TABLE_CATALOG}, {SYSTEM CHECK COLUMN USAGE TABLE_SCHEMA},
{SYSTEM_CHECK_COLUMN_USAGE, TABLE_NAME}, {SYSTEM_CHECK_COLUMN_USAGE COLUMN_NAME},
{SYSTEMﬁCHECK7CONSTRAINTS CONSTRAINT CATALOG}, {SYSTEM_ CHECK_CONSTRAINTS, CONSTRAINT SCHEMA},
{SYSTEM_CHECK_CONSTRAINTS, CONSTRAINT NAME}, {SYSTEM_CHECK_CONSTRAINTS, CHECK_CLAUSE},
{SYSTEM_CHECK_ROUTINE_USAGE, CONSTRAINT CATALOG},

{SYSTEM_CHECK_ROUTINE_USAGE, CONSTRAINT_ SCHEMA}, {SYSTEM CHECK_ROUTINE_USAGE, CONSTRAINT_NAME},
{SYSTEM CHECK ROUTINE USAGE, SPECIFIC CATALOG}, {SYSTEM CHECK ROUTINE USAGE, SPECIFIC SCHEMA},

DatabaseLink User Guide | 39

{SYSTEM CHECK_ ROUTINE USAGE, SPECIFIC NAME}, {SYSTEM CHECK TABLE USAGE, CONSTRAINT CATALOG},
{SYSTEM_CHECK_TABLE_USAGE, CONSTRAINT SCHEMA}, {SYSTEM CHECK TABLE USAGE, CONSTRAINT NAME},
{SYSTEM CHECK TABLE USAGE, TABLE CATALOG}, {SYSTEM CHECK TABLE USAGE, TABLE SCHEMA},
{SYSTEM_CHECK TABLE_USAGE, TABLE NAME}, {SYSTEM CLASSPRIVILEGES, CLASS CAT},

{SYSTEM CLASSPRIVILEGES, CLASS_SCHEM}, {SYSTEM CLASSPRIVILEGES, CLASS NAME},
{SYSTEM_CLASSPRIVILEGES, GRANTOR}, {SYSTEM CLASSPRIVILEGES, GRANTEE},

{SYSTEM CLASSPRIVILEGES, PRIVILEGE}, {SYSTEM CLASSPRIVILEGES, IS _GRANTABLE},
{SYSTEM_COLLATIONS, COLLATION CATALOG}, {SYSTEM COLLATIONS, COLLATION SCHEMA},
{SYSTEM_COLLATIONS, COLLATION NAME}, {SYSTEM COLLATIONS, PAD ATTRIBUTE},
{SYSTEM_COLLATIONS, COLLATION TYPE}, {SYSTEM COLLATIONS, COLLATION DEFINITION},
{SYSTEM_COLLATIONS, COLLATION DICTIONARY}, {SYSTEM (COLLATIONS CHARACTER REPERTOIRE NAME},
{SYSTEM_COLUMNPRIVILEGES, TABLE CAT}, {SYSTEM COLUMNPRIVILEGES, TABLE SCHEM},
{SYSTEM_COLUMNPRIVILEGES, TABLE NAME}, {SYSTEM COLUMNPRIVILEGES COLUMN_ NAME},
{SYSTEM_COLUMNPRIVILEGES, GRANTOR}, {SYSTEM COLUMNPRIVILEGES, GRANTEE},
{SYSTEM_COLUMNPRIVILEGES, PRIVILEGE}, {SYSTEMﬁCOLUMNPRIVILEGES, IS_GRANTABLE},
{SYSTEM_COLUMNS, TABLE CAT}, {SYSTEM COLUMNS, TABLE SCHEM}, {SYSTEM COLUMNS, TABLE NAME},
{SYSTEM_COLUMNS, COLUMN NAME}, {SYSTEM COLUMNS DATA TYPE}, {SYSTEM COLUMNS, TYPE NAME},
{SYSTEM_COLUMNS, COLUMN SIZE}, {SYSTEM COLUMNS, BUFFER LENGTH},

{SYSTEM_COLUMNS, DECIMAL DIGITS}, {SYSTEM COLUMNS NUM_PREC_RADIX},

{SYSTEM_COLUMNS, NULLABLE}, {SYSTEM COLUMNS, REMARKS}, {SYSTEM COLUMNS, COLUMN DEF},
{SYSTEM_COLUMNS, SQL DATA TYPE}, {SYSTEMﬁCOLUMNS SQL_DATETIME_ SUB},

{SYSTEM_COLUMNS, CHAR OCTET LENGTH}, {SYSTEM COLUMNS, ORDINAL POSITION},

{SYSTEM_COLUMNS, IS NULLABLE}, {SYSTEM COLUMNS, SCOPE _CATLOG}, {SYSTEM COLUMNS, SCOPE_SCHEMA},
{SYSTEM_COLUMNS, SCOPE TABLE}, {SYSTEM COLUMNS, SOURCE DATA TYPE}, {SYSTEM COLUMNS, TYPE SUB},
{SYSTEM_CROSSREFERENCE, PKTABLE CAT}, {SYSTEM (CROSSREFERENCE PKTABLE SCHEM},
{SYSTEM_CROSSREFERENCE, PKTABLE NAME}, {SYSTEM CROSSREFERENCE, PKCOLUMN NAME},
{SYSTEM_CROSSREFERENCE, FKTABLE CAT}, {SYSTEM CROSSREFERENCE, FKTABLE SCHEM},
{SYSTEM_CROSSREFERENCE, FKTABLE NAME}, {SYSTEM CROSSREFERENCE, FKCOLUMN NAME},

{SYSTEM CROSSREFERENCE, KEY SEQ}, {SYSTEM CROSSREFERENCE, UPDATEiRULE},
{SYSTEM_CROSSREFERENCE, DELETE RULE}, {SYSTEM CROSSREFERENCE, FK NAME},
{SYSTEM_CROSSREFERENCE, PK_NAME}, {SYSTEM CROSSREFERENCE, DEFERRABILITY},
{SYSTEM_INDEXINFO, TABLE CAT}, {SYSTEM INDEXINFO, TABLE SCHEM},

{SYSTEM INDEXINFO, TABLE NAME}, {SYSTEM INDEXINFO, NON UNIQUE},

{SYSTEM_INDEXINFO, INDEX QUALIFIER}, {SYSTEM INDEXINFO, INDEX NAME}, {SYSTEM INDEXINFO, TYPE},
{SYSTEM_INDEXINFO, ORDINAL POSITION}, {SYSTEM INDEXINFO, COLUMN NAME},

{SYSTEM_INDEXINFO, ASC_OR DESC}, {SYSTEM INDEXINFO, CARDINALITY}, {SYSTEM INDEXINFO, PAGES},
{SYSTEM_INDEXINFO, FILTER CONDITION}, {SYSTEM PRIMARYKEYS, TABLE_CAT},

{SYSTEM_PRIMARYKEYS, TABLE SCHEM}, {SYSTEM PRIMARYKEYS, TABLE NAME},

{SYSTEM_PRIMARYKEYS, COLUMN NAME}, {SYSTEM PRIMARYKEYS, KEY SEQ},

{SYSTEM_PRIMARYKEYS, PK_NAME}, {SYSTEM PROCEDURECOLUMNS, PROCEDURE_CAT},
{SYSTEM_PROCEDURECOLUMNS, PROCEDURE_SCHEM}, {SYSTEM PROCEDURECOLUMNS, PROCEDURE NAME},
{SYSTEM_PROCEDURECOLUMNS, COLUMN NAME}, {SYSTEM PROCEDURECOLUMNS, COLUMN TYPE},
{SYSTEM_PROCEDURECOLUMNS, DATA TYPE}, {SYSTEM PROCEDURECOLUMNS, TYPE NAME},
{SYSTEM_PROCEDURECOLUMNS, PRECISION}, {SYSTEM PROCEDURECOLUMNS, LENGTH},
{SYSTEM_PROCEDURECOLUMNS, SCALE}, {SYSTEM PROCEDURECOLUMNS, RADIX},
{SYSTEM_PROCEDURECOLUMNS, NULLABLE}, {SYSTEM PROCEDURECOLUMNS, REMARKS},
{SYSTEM_PROCEDURECOLUMNS, SPECIFIC_NAME}, {SYSTEM PROCEDURECOLUMNS, SEQ},
{SYSTEM_PROCEDURES, PROCEDURE_ CAT}, {SYSTEM PROCEDURES, PROCEDURE_SCHEM},
{SYSTEM_PROCEDURES, PROCEDURE_NAME}, {SYSTEM PROCEDURES, NUM INPUT PARAMS},
{SYSTEM_PROCEDURES, NUM OUTPUT PARAMS}, {SYSTEM PROCEDURES, NUM RESULT SETS},
{SYSTEM_PROCEDURES, REMARKS}, {SYSTEM PROCEDURES, PROCEDURE_TYPE},

{SYSTEM_PROCEDURES, ORIGIN}, {SYSTEM PROCEDURES, SPECIFIC NAME},

{SYSTEM PROPERTIES, PROPERTY SCOPE}, {SYSTEM PROPERTIES, PROPERTY NAMESPACE},

{SYSTEM PROPERTIES, PROPERTY NAME}, {SYSTEM PROPERTIES, PROPERTY VALUE},

{SYSTEM PROPERTIES, PROPERTY CLASS}, {SYSTEM ROLE_ AUTHORIZATION DESCRIPTORS, ROLE_NAME},
{SYSTEM ROLE_AUTHORIZATION DESCRIPTORS, GRANTEE},

{SYSTEM ROLE_AUTHORIZATION DESCRIPTORS, GRANTOR},

{SYSTEM ROLE_AUTHORIZATION DESCRIPTORS, IS GRANTABLE}, {SYSTEM SCHEMAS, TABLE SCHEM},
{SYSTEM_SCHEMAS, TABLE CATALOG}, {SYSTEM SCHEMAS, IS _DEFAULT},

{SYSTEM_SCHEMATA, CATALOG NAME}, {SYSTEM SCHEMATA, SCHEMA NAME},

{SYSTEM SCHEMATA, SCHEMA OWNER}, {SYSTEM SCHEMATA, DEFAULT CHARACTER SET CATALOG},
{SYSTEM_SCHEMATA, DEFAULT CHARACTER SET SCHEMA}, {SYSTEM SCHEMATA, DEFAULT CHARACTER SET NAME},
{SYSTEM SCHEMATA, SQL_PATH}, {SYSTEM SEQUENCES, SEQUENCE CATALOG},

{SYSTEM_SEQUENCES, SEQUENCE_SCHEMA}, {SYSTEM SEQUENCES, SEQUENCE NAME},

{SYSTEM_ SEQUENCES, DTD_ IDENTIFIER}, {SYSTEM SEQUENCES, MAXIMUM VALUE},

{SYSTEM_SEQUENCES, MINIMUM VALUE}, {SYSTEM SEQUENCES, INCREMENT},

{SYSTEM_SEQUENCES, CYCLE_OPTION}, {SYSTEM SEQUENCES, START WITH},

{SYSTEM_SESSIONINFO, KEY}, {SYSTEM SESSIONINFO, VALUE}, {SYSTEM SESSIONS, SESSION ID},
{SYSTEM_SESSIONS, CONNECTED}, {SYSTEM SESSIONS, USER NAME}, {SYSTEM . SESSIONS, IS_ADMIN},
{SYSTEM_SESSIONS, AUTOCOMMIT}, {SYSTEM SESSIONS, READONLY}, {SYSTEM SESSIONS, MAXROWS},
{SYSTEM_SESSIONS, LAST IDENTITY}, {SYSTEMﬁSESSIONS TRANSACTION SIZE},

{SYSTEM SESSIONS, SCHEMA}, {SYSTEM SUPERTABLES, TABLE CAT}, {SYSTEM SUPERTABLES, TABLE SCHEM},

40 | DatabaselLink User Guide

{SYSTEM SUPERTABLES, TABLE_NAME}, {SYSTEM SUPERTABLES, SUPERTABLE NAME},
{SYSTEM_SUPERTYPES, TYPE CAT}, {SYSTEM SUPERTYPES, TYPE SCHEM}, {SYSTEM SUPERTYPES, TYPE NAME},
{SYSTEM_SUPERTYPES, SUPERTYPE CAT}, {SYSTEM SUPERTYPES, SUPERTYPE SCHEM},
{SYSTEM_SUPERTYPES, SUPERTYPE NAME}, {SYSTEM TABLEPRIVILEGES, TABLE CAT},
{SYSTEM_TABLEPRIVILEGES, TABLE SCHEM}, {SYSTEM TABLEPRIVILEGES, TABLE NAME},
{SYSTEM_TABLEPRIVILEGES, GRANTOR}, {SYSTEM TABLEPRIVILEGES, GRANTEE},
{SYSTEM_TABLEPRIVILEGES, PRIVILEGE}, {SYSTEM TABLEPRIVILEGES, IS GRANTABLE},

{SYSTEM_TABLES, TABLE_ CAT}, {SYSTEM TABLES, TABLE SCHEM},

{SYSTEM_TABLES, TABLE NAME}, {SYSTEM TABLES, TABLE TYPE}, {SYSTEM TABLES, REMARKS},
{SYSTEM_TABLES, TYPE CAT}, {SYSTEM TABLES, TYPE SCHEM}, {SYSTEM TABLES, TYPE NAME},
{SYSTEM_TABLES, SELF_REFERENCING COL_NAME}, {SYSTEM TABLES, REFiGENERATION},

{SYSTEM_TABLES, HSQLDB TYPE}, {SYSTEM TABLES, READ ONLY}, {SYSTEM TABLETYPES, TABLE TYPE},
{SYSTEM_TABLE_CONSTRAINTS, CONSTRAINT CATALOG}, {SYSTEM TABLE CONSTRAINTS, CONSTRAINT SCHEMA},
{SYSTEM_TABLE CONSTRAINTS, CONSTRAINT NAME}, {SYSTEM TABLE CONSTRAINTS, CONSTRAINT TYPE},
{SYSTEM_TABLE_CONSTRAINTS, TABLE CATALOG}, {SYSTEM TABLE CONSTRAINTS, TABLE SCHEMA},
{SYSTEM_TABLE CONSTRAINTS, TABLE NAME}, {SYSTEM TABLE_ CONSTRAINTS, IS DEFERRABLE},
{SYSTEM_TABLE_ CONSTRAINTS, INITIALLY DEFERRED}, {SYSTEM TEXTTABLES, TABLE CAT},
{SYSTEM_TEXTTABLES, TABLE SCHEM}, {SYSTEM TEXTTABLES, TABLE NAME},

{SYSTEM_TEXTTABLES, DATA SOURCE_DEFINTION}, {SYSTEM TEXTTABLES, FILE PATH},
{SYSTEM_TEXTTABLES, FILE ENCODING}, {SYSTEM TEXTTABLES, FIELD SEPARATOR},
{SYSTEM_TEXTTABLES, VARCHAR SEPARATOR}, {SYSTEM TEXTTABLES, LONGVARCHAR SEPARATOR},
{SYSTEM_TEXTTABLES, IS _IGNORE FIRST}, {SYSTEM TEXTTABLES, IS ALL QUOTED},
{SYSTEM_TEXTTABLES, IS QUOTED}, {SYSTEM TEXTTABLES, IS_DESC},

{SYSTEM_TRIGGERCOLUMNS, TRIGGER CAT}, {SYSTEM TRIGGERCOLUMNS, TRIGGER SCHEM},
{SYSTEM_TRIGGERCOLUMNS, TRIGGER NAME}, {SYSTEM TRIGGERCOLUMNS, TABLE CAT},
{SYSTEM_TRIGGERCOLUMNS, TABLE SCHEM}, {SYSTEM TRIGGERCOLUMNS, TABLE NAME},
{SYSTEM_TRIGGERCOLUMNS, COLUMN NAME}, {SYSTEM TRIGGERCOLUMNS, COLUMN LIST},
{SYSTEM_TRIGGERCOLUMNS, COLUMN USAGE}, {SYSTEM TRIGGERS, TRIGGER CAT},

{SYSTEM_TRIGGERS, TRIGGER_ SCHEM}, {SYSTEM TRIGGERS, TRIGGER _NAME},

{SYSTEM_TRIGGERS, TRIGGER TYPE}, {SYSTEM TRIGGERS, TRIGGERING EVENT},

{SYSTEM_TRIGGERS, TABLE CAT}, {SYSTEM TRIGGERS, TABLE_ SCHEM},

{SYSTEM_TRIGGERS, BASE OBJECT TYPE}, {SYSTEM TRIGGERS, TABLE NAME},

{SYSTEM_TRIGGERS, COLUMN NAME}, {SYSTEM TRIGGERS, REFERENCING NAMES},

{SYSTEM_TRIGGERS, WHEN CLAUSE}, {SYSTEM TRIGGERS, STATUS}, {SYSTEM TRIGGERS, DESCRIPTION},
{SYSTEM_TRIGGERS, ACTION TYPE}, {SYSTEM TRIGGERS, TRIGGER BODY}, {SYSTEM TYPEINFO, TYPE NAME},
{SYSTEM_TYPEINFO, DATA TYPE}, {SYSTEM TYPEINFO, PRECISION}, {SYSTEM TYPEINFO, LITERAL PREFIX},
{SYSTEM_TYPEINFO, LITERAL SUFFIX}, {SYSTEM TYPEINFO, CREATE PARAMS},

{SYSTEM_TYPEINFO, NULLABLE}, {SYSTEM TYPEINFO, CASE SENSITIVE}, {SYSTEM TYPEINFO, SEARCHABLE},
{SYSTEM_TYPEINFO, UNSIGNED ATTRIBUTE}, {SYSTEM TYPEINFO, FIXED PREC_SCALE},
{SYSTEM_TYPEINFO, AUTO INCREMENT}, {SYSTEM TYPEINFO, LOCAL_TYPE NAME},

{SYSTEM_TYPEINFO, MINIMUM SCALE}, {SYSTEM TYPEINFO, MAXIMUM SCALE},

{SYSTEM_TYPEINFO, SQL DATA TYPE}, {SYSTEM TYPEINFO, SQL DATETIME SUB},

{SYSTEM_TYPEINFO, NUM_PREC_RADIX}, {SYSTEM TYPEINFO, TYPE SUB},

{SYSTEM_UDTATTRIBUTES, TYPE CAT}, {SYSTEM UDTATTRIBUTES, TYPE SCHEM},
{SYSTEM_UDTATTRIBUTES, TYPE NAME}, {SYSTEM UDTATTRIBUTES, ATTR NAME},
{SYSTEM_UDTATTRIBUTES, DATA TYPE}, {SYSTEM UDTATTRIBUTES, ATTR TYPE NAME},
{SYSTEM_UDTATTRIBUTES, ATTR SIZE}, {SYSTEM UDTATTRIBUTES, DECIMAL DIGITS},
{SYSTEM_UDTATTRIBUTES, NUM_PREC_RADIX}, {SYSTEM UDTATTRIBUTES, NULLABLE},
{SYSTEM_UDTATTRIBUTES, REMARKS}, {SYSTEM UDTATTRIBUTES, ATTR_DEF},

{SYSTEM_UDTATTRIBUTES, SQL DATA TYPE}, {SYSTEM UDTATTRIBUTES, SQL DATETIME SUB},

{SYSTEM UDTATTRIBUTES, CHAR OCTET LENGTH}, {SYSTEM UDTATTRIBUTES, ORDINAL POSITION},
{SYSTEM_UDTATTRIBUTES, IS NULLABLE}, {SYSTEM UDTATTRIBUTES, SCOPE_CATALOG},

{SYSTEM UDTATTRIBUTES, SCOPE_SCHEMA}, {SYSTEM UDTATTRIBUTES, SCOPE_TABLE},
{SYSTEM_UDTATTRIBUTES, SOURCE DATA TYPE}, {SYSTEM UDTS, TYPE CAT}, {SYSTEM UDTS, TYPE SCHEM},
{SYSTEM_UDTS, TYPE NAME}, {SYSTEM UDTS, CLASS NAME}, {SYSTEMﬁUDTS DATA TYPE},

{SYSTEM_UDTS, REMARKS}, {SYSTEM UDTS, BASE TYPE}, {SYSTEM USAGE PRIVILEGES, GRANTOR},
{SYSTEM_USAGE_PRIVILEGES, GRANTEE}, {SYSTEM USAGE_ PRIVILEGES, OBJECT CATALOG},
{SYSTEM_USAGE PRIVILEGES, OBJECT SCHEMA}, {SYSTEM USAGE PRIVILEGES, OBJECT NAME},
{SYSTEM_USAGE PRIVILEGES, OBJECT TYPE}, {SYSTEM USAGE PRIVILEGES, IS _GRANTABLE},

{SYSTEM USERS, USER}, {SYSTEM USERS, ADMIN}, {SYSTEM VERSIONCOLUMNS, SCOPE},
{SYSTEM_VERSIONCOLUMNS, COLUMN NAME}, {SYSTEM VERSIONCOLUMNS, DATA TYPE},
{SYSTEM_VERSIONCOLUMNS, TYPE NAME}, {SYSTEM VERSIONCOLUMNS, COLUMN SIZE},

{SYSTEM VERSIONCOLUMNS, BUFFER LENGTH}, {SYSTEM VERSIONCOLUMNS, DECIMAL DIGITS},
{SYSTEM_VERSIONCOLUMNS, PSEUDO_COLUMN}, {SYSTEM VERSIONCOLUMNS, TABLE CAT},

{SYSTEM VERSIONCOLUMNS, TABLE_ SCHEM}, {SYSTEM VERSIONCOLUMNS, TABLE NAME},

{SYSTEM VIEWS, TABLE CATALOG}, {SYSTEM VIEWS, TABLE SCHEMA}, {SYSTEM VIEWS, TABLE NAME},
{SYSTEM VIEWS, VIEW DEFINITION}, {SYSTEM VIEWS, CHECK OPTION}, {SYSTEM ' VIEWS IS_UPDATABLE},
{SYSTEM VIEWS, VALID}, {SYSTEM VIEW COLUMN USAGE, VIEW CATALOG},

{SYSTEM_VIEW COLUMN USAGE, VIEW SCHEMA}, {SYSTEMﬁVIEWﬁCOLUMNiUSAGE, VIEW _NAME},
{SYSTEM_VIEW COLUMN USAGE, TABLE CATALOG}, {SYSTEM VIEW COLUMN USAGE, TABLE SCHEMA},
{SYSTEM_VIEW COLUMN_USAGE, TABLE NAME}, {SYSTEM VIEW COLUMN USAGE, COLUMN NAME},

{SYSTEM VIEW ROUTINE USAGE, TABLE CATALOG}, {SYSTEM VIEW ROUTINE USAGE, TABLE SCHEMA},

DatabaseLink User Guide | 41

{SYSTEM_VIEW ROUTINE USAGE, TABLE NAME}, {SYSTEM VIEW ROUTINE USAGE, SPECIFIC_CATALOG},
{SYSTEM_VIEW ROUTINE USAGE, SPECIFIC_SCHEMA}, {SYSTEM VIEW ROUTINE USAGE, SPECIFIC_NAME},
{SYSTEM _VIEW TABLE USAGE, VIEW CATALOG}, {SYSTEM VIEW TABLE USAGE, VIEW SCHEMA},

{SYSTEM VIEW TABLE USAGE, VIEW NAME}, {SYSTEM VIEW TABLE USAGE, TABLE CATALOG},
{SYSTEM_VIEW TABLE USAGE, TABLE_SCHEMA}, {SYSTEM VIEW TABLE_ USAGE, TABLE NAME},
{SAMPLETABLE1, ENTRY}, {SAMPLETABLEl, VALUE}, {SAMPLETABLEl, NAME}}

It is possible to use metacharacters that will match names. The metacharacters are '%' for zero
or more characters and '_' for a single character. The following command matches columns in
tables that have names starting with "SA".

SQLColumnNames [conn, "SA%"]

{ {SAMPLETABLEl, ENTRY}, {SAMPLETABLEl, VALUE}, {SAMPLETABLEl, NAME} }

SQLColumns returns a list of SQLColumn expressions. SQLColumn €xpressions are sometimes
useful for structural arguments in database commands, as described in Argument Sequences in
SQL-Style Queries, because they contain information on the table name, column name, data
type, whether an entry can be set to Null, and the data length.

SQLColumns [conn, "SA%"]
{SQLColumn [{SAMPLETABLEl, ENTRY}, DataTypeName —» INTEGER, Nullable -» 1, DataLength - Null],

SQLColumn [{SAMPLETABLEl, VALUE}, DataTypeName -» DOUBLE, Nullable » 1, DataLength » Null],
SQLColumn [{SAMPLETABLE1l, NAME}, DataTypeName —» VARCHAR, Nullable » 1, DataLength —»2147483647]}

SOLColumnInformation returns more information about the columns.

SQoLColumnInformation[conn, "SA%"] // TableForm

Null PUBLIC SAMPLETABLEl ENTRY 4 INTEGER Null 4 Null 10 1 Null Null 4 Null Null
Null PUBLIC SAMPLETABLEl VALUE 8 DOUBLE Null 8 Null 10 1 Null Null 8 Null Null
Null PUBLIC SAMPLETABLEl NAME 12 VARCHAR 2147483647 Null Null Null 1 Null Null 12 Null Null

You can filter the names of the columns by providing a list of metacharacters to match the table
and column names. The following command searches in all tables to return all columns that
start with V.

SQLColumnNames [conn, {"%", "V%"}]

{ {SYSTEM VIEWS, VALID}, {SYSTEM SESSIONINFO, VALUE}, {SAMPLETABLEl, VALUE},
{SYSTEM TEXTTABLES, VARCHAR SEPARATOR}, {SYSTEM VIEW COLUMN USAGE, VIEW CATALOG},
(SYSTEM VIEW TABLE USAGE, VIEW CATALOG}, {SYSTEM VIEWS, VIEW DEFINITION},

{SYSTEM_VIEW_(COLUMN USAGE VIEW _NAME}, {SYSTEM VIEW TABLE_USAGE, VIEW NAME},
{SYSTEM_VIEW_COLUMN_USAGE, VIEW_SCHEMA}, {SYSTEM VIEW_TABLE_USAGE, VIEW_SCHEMA}}

You can find all the columns in a single table by specifying the table name.

SQLColumnNames [conn, {"SAMPLETABLEl", "%"}]

{ {SAMPLETABLE1, ENTRY}, {SAMPLETABLEl, VALUE}, {SAMPLETABLEl, NAME}}

42 | DatabaselLink User Guide

You can also give a sQLTable argument.

SQLColumnNames [conn, SQLTable["SAMPLETABLE1"]]

{ {SAMPLETABLEl, ENTRY}, {SAMPLETABLEl, VALUE}, {SAMPLETABLEl, NAME}}

SQLColumnNames returns a list where each entry is a list of the table name and the column
names. If you want a list of just the column names, you can use Mathematica part notation,
entered with [[All, 2]], to extract just the second elements.

SQLColumnNames [conn, SQLTable["SAMPLETABLE1"]][[All, 2]]

{ENTRY, VALUE, NAME}

In addition, you can give an SQLColumn argument.

SQLColumnNames [conn, SQLColumn|["V%"]]

{{SYSTEM_VIEWS, VALID}, {SYSTEM SESSIONINFO, VALUE}, {SAMPLETABLEl, VALUE},
{SYSTEM_TEXTTABLES, VARCHAR SEPARATOR}, {SYSTEM_ VIEW_COLUMN_USAGE, VIEW_CATALOG},
{SYSTEM_VIEW_TABLE_USAGE, VIEW_CATALOG}, {SYSTEM VIEWS, VIEW DEFINITION},
{SYSTEM_VIEW COLUMN _USAGE, VIEW_NAME}, {SYSTEM VIEW_ TABLE_USAGE, VIEW_NAME},
{SYSTEM_VIEW_COLUMN_USAGE, VIEW_SCHEMA}, {SYSTEM ' VIEW TABLE_USAGE, VIEW_SCHEMA}}

SQLColumns, SQLColumnNames, and SQLColumnInformation take a number of options.

option name default value

"Catalog" None database catalog to use

"Schema" None database schema to use
"ShowColumnHeadings" False whether to return headings with the results

(sQLColumnInformation option only)
SQLColumns, SQLColumnNames, and SQLColumnInformation options.

The option "ShowColumnHeadings" can be used with sQLColumnInformation to return the
column headings.

SQLColumnInformation[conn, "SA%", "ShowColumnHeadings" - True] // TableForm

TABLE_CAT TABLE_ SCHEM TABLE NAME COLUMN_NAME DATA TYPE TYPE NAME COLUMN_SIZE BUFFER_LENGTH DECIMAL DIGITS

Null PUBLIC SAMPLETABLE1l ENTRY 4 INTEGER Null 4 Null
Null PUBLIC SAMPLETABLE1l VALUE 8 DOUBLE Null 8 Null
Null PUBLIC SAMPLETABLE1l NAME 12 VARCHAR 2147483647 Null Null

This closes the connection.

CloseSQLConnection[conn]

If the database was designed with particular schema and catalogs, you can also select columns
by using the "catalog" and "Schema" options.

DatabaseLink User Guide | 43

Column Representation

SQLColumn expressions hold information about the columns in a database.
If you find that the examples in this section do not work as shown, you may need to

install or restore the example database with the DatabaseExamples™ package, as

described in "Using the Example Databases".

SQLColumn [{table, col} ,opts] expression that represents a column in an SQL table
Object for representing a column.

SQLColumn accepts a number of options.

option name default value

"DataTypeName" None type of the entry

"Nullable" None whether the entry can be null
"DataLength" None maximum length for variable length data

SQLColumn options.
Here is an example demonstrating SoLColumn expressions. This loads DatabaselLink and con-
nects to the demo database.

Needs ["DatabaseLink™"];
conn = OpenSQLConnection|["demo"];

SQLColumns returns a list of the columns in the database as sQLColumn expressions. In this
example a pattern is given to pick out just the SAMPLETABLE]1 table.

SQLColumns [conn, "SAMPLETABLEl"]

{SQLColumn [{ SAMPLETABLEl, ENTRY}, DataTypeName - INTEGER, Nullable » 1, DataLength - Null],
SQLColumn [{SAMPLETABLE1l, VALUE}, DataTypeName —» DOUBLE, Nullable » 1, DataLength » Null],
SQLColumn [{SAMPLETABLEl, NAME}, DataTypeName - VARCHAR, Nullable » 1, DataLength -» 2147483647]}

This closes the connection.

CloseSQLConnection[conn]

SQLColumn expressions can also be used in commands as discussed in "Selecting Data" and
"Creating Tables". "Creating Tables" discusses one particularly important use.

44 | DatabaselLink User Guide

Data Types

This tutorial discusses how to retrieve information about data types. When you create a table,

you will need to refer to these data types.

If you find that the examples in this tutorial do not work as shown, you may need to
install or restore the example database with the DatabaseExamples~ package, as

described in "Using the Example Databases".

SQLDataTypeNames [conn] list all data type names within a data source

SQLDataTypeInformation [conn] list all data type information within a data source
Functions for retrieving information about data types.

This loads Databaselink and connects to the demo database.

Needs ["DatabaseLink™"];
conn = OpenSQLConnection["demo"];

SQLDataTypeNames returns a list of the data type names within a database.

SQLDataTypeNames [conn]

{TINYINT, BIGINT, LONGVARBINARY, VARBINARY, BINARY, LONGVARCHAR,
CHAR, NUMERIC, DECIMAL, INTEGER, SMALLINT, FLOAT, REAL, DOUBLE,
VARCHAR, VARCHAR_ IGNORECASE, BOOLEAN, DATE, TIME, TIMESTAMP, OTHER}

SQLDataTypeInformation returns more complete information about the data types.

SgoLDataTypeInformation[conn] // TableForm

TINYINT -6 3 Null Null Null 1 False 3 False False False TINYINT
BIGINT -5 19 Null Null Null 1 False 3 False False True BIGINT
LONGVARBINARY -4 2147483647 ' ' Null 1 False 3 Null Null Null LONGVARBINARY
VARBINARY -3 2147483647 ' ' Null 1 False 3 Null Null Null VARBINARY
BINARY -2 2147483647 ' ' Null 1 False 3 Null ©Null Null BINARY
LONGVARCHAR -1 2147483647 ' ' Null 1 True 3 Null Null Null LONGVARCHAR
CHAR 1 2147483647 ! ! LENGTH 1 True 3 Null Null Null CHAR

NUMERIC 2 646456993 Null Null PRECISION,SCALE 1 False 3 False False False NUMERIC
DECIMAL 3 646456993 Null Null PRECISION,SCALE 1 False 3 False False False DECIMAL
INTEGER 4 10 Null Null Null 1 False 3 False False True INTEGER
SMALLINT 5 5 Null Null Null 1 False 3 False False False SMALLINT
FLOAT 6 17 Null Null PRECISION 1 False 3 False False False FLOAT

REAL 7 17 Null Null Null 1 False 3 False False False REAL

DOUBLE 8 17 Null Null Null 1 False 3 False False False DOUBLE
VARCHAR 12 2147483647 ! ! LENGTH 1 False 3 Null Null Null VARCHAR
VARCHAR_IGNORECASE 12 2147483647 ! ! LENGTH 1 False 3 Null ©Null Null VARCHAR IGNORECASE
BOOLEAN 16 1 Null Null Null 1 False 3 Null ©Null Null BOOLEAN

DATE 91 10 ' ' Null 1 False 3 Null Null Null DATE

TIME 92 8
TIMESTAMP 93 29
OTHER 1111 2147483647

SQLDataTypeInformation takes a single option:

column headings.

Null

PRECISION

Null

1 False 3 Null

1 True

"ShowColumnHeadings".

1 False 3 Null

0 Null

DatabaseLink User Guide | 45

Null Null TIME

Null Null TIMESTAMP

Null Null OTHER

SgoLDataTypeInformation[conn, "ShowColumnHeadings" - True] // TableForm

TYPE_NAME DATA TYPE PRECISION
TINYINT -6 3

BIGINT -5 19
LONGVARBINARY -4 2147483647
VARBINARY -3 2147483647
BINARY -2 2147483647
LONGVARCHAR -1 2147483647
CHAR 1 2147483647
NUMERIC 2 646456993
DECIMAL 3 646456993
INTEGER 4 10

SMALLINT 5 5

FLOAT 6 17

REAL 7 17

DOUBLE 8 17

VARCHAR 12 2147483647
VARCHAR_IGNORECASE 12 2147483647
BOOLEAN 16 1

DATE 91 10

TIME 92 8

TIMESTAMP 93 29

OTHER 1111 2147483647

This closes the connection.

CloseSQLConnection[conn]

LITERAL_PREFIX LITERAL_SUFFIX CREATE_PARAMS

Null
Null

Null
Null

Null

Null

Null

Null

Null

Null
LENGTH
PRECISION, SCALE
PRECISION, SCALE
Null

Null
PRECISION
Null

Null
LENGTH
LENGTH
Null

Null

Null
PRECISION
Null

More information on working with data types is provided in "Data Type Mapping".

Schema and Catalogs

This returns the

NULLABLE

[I R R S T e e T = T = T T = T S S e

Database schema and catalogs can be used to hold collections of database components and

objects suitable for particular users. They can be particularly useful when working with large

databases. The functions sQLSchemaNames and SQLCatalogNames can be used to learn the

names of the schema and catalogs in the database. These can be used with the "Schema" and

"Catalog" options to sSQLTableNames, SQLTableInformation, SQLTables, SQLColumnNames,

SQLColumnInformation, and SQLColumns to focus attention on particular parts of the database.

46 | DatabaselLink User Guide

SQLCatalogNames [conn] list all the catalogs used in a data source
SQLSchemaNames [conn] list all the schema used in a data source
SQLSchemaInformation [conn] returns information about the schema used in a data source

Listing catalogs and schema.

If you find that the examples in this tutorial do not work as shown, you may need to
install or restore the example database with the DatabaseExamples™ package, as
described in "Using the Example Databases".
First, the DatabaselLink package is loaded and a connection is made to the publisher example
database.

Needs ["DatabaseLink™"];
conn = OpenSQLConnection["publisher"];

This returns the schema names for the connection.

SQLSchemaNames [conn]

{INFORMATION_SCHEMA, PUBLIC}

SQLSchemaInformation returns more information about the database schema.

SQoLSchemaInformation[conn]

{ {INFORMATION SCHEMA, Null, False}, {PUBLIC, Null, True}}

This returns the catalog names; for this database there are not catalogs.

SQLCatalogNames [conn]
{}

CloseSQLConnection[conn]

DatabaseLink User Guide | 47

Data Commands

Comparing Mathematica and SQL Queries

DatabaselLink provides two styles of commands for working with data: one for those who are
familiar with Mathematica and the other for those who are familiar with SQL. Mathematica style
requires less knowledge of SQL. However, the Mathematica commands do not give complete
coverage; thus, for more advanced queries, SQL-style commands may be preferred. The latter

may also be desirable if you already have a knowledge of SQL.

Mathematica-Style Queries

DatabaselLink offers a number of functions for Mathematica-style queries.

m SQLSelect
m SQLUpdate
m SQLInsert
m SQLDelete
m SQLCreateTable
m SQLDropTable
® SQLMemberQ
m SQLStringMatchQ
The first six functions interact with the database. sQL.MemberQ and SQLStringMatchQ are used

for testing data in queries with conditions.

SQL-Style Queries

DatabaseLink can work with databases with raw SQL statements. This is useful if you already
have a knowledge of SQL. Statements can be used to select data, create tables, insert data,
update data, remove data, and drop tables. Typically these statements are passed to a com-

mand, SQLExecute. The statement used by sQLExecute is a string that can contain all argu-

48 | DatabaselLink User Guide

ments. However, it is also possible to give the arguments separately, which makes the state-
ment a prepared statement. SQLExecute can also be used to execute a batch of prepared

statements with different arguments, as described in Performance: Batch Operation.

Selecting Data

SQLSelect selects and returns data from a database. An alternative, using raw SQL, is
described in "Selecting Data with Raw SQL".

If you find that the examples in this tutorial do not work as shown, you may need to
install or restore the example database with the DatabaseExamples™ package, as
described in "Using the Example Databases".

SQLSelect [conn, table, opts] select all data from the table
SQLSelect [conn, {tables} , {columns}] select data in certain columns from the table
SQLSelect [conn, {tables} , {columns} , condition , opts]

select data in certain columns from the table meeting the
condition

Retrieving data from a database.

This loads DatabaseLink and connects to the publisher database.

Needs ["DatabaseLink™"];
conn = OpenSQLConnection["publisher"];

This retrieves all data within the table ROYSCHED.

SQLSelect[conn, "ROYSCHED"]

{{BS1011, 0, 5000, 0.1}, {BS1011, 5001, 50000, 0.12}, {CP5018, 0, 2000, 0.1},
{CP5018, 2001, 4000, 0.12}, {CP5018, 4001, 50000, 0.16}, {BS1001, 0, 1000, 0.1},
{BS1001, 1001, 5000, 0.12}, {BS1001, 5001, 7000, 0.16}, {BS1001, 7001, 50000, 0.18},
{PS9999, 0, 50000, 0.1}, {PY2002, 0, 1000, 0.1}, {PY2002, 1001, 5000, 0.12},
{PY2002, 5001, 50000, 0.14}, {PY2003, 0, 2000, 0.1}, {PY2003, 2001, 5000, 0.12},
{PY2003, 5001, 50000, 0.14}, {UK3004, 0, 1000, 0.1}, {UK3004, 1001, 2000, 0.12},
{UK3004, 2001, 6000, 0.14}, {UK3004, 6001, 8000, 0.18}, {UK3004, 8001, 50000, 0.2},
{CK4005, 0, 2000, 0.1}, {CK4005, 2001, 6000, 0.12}, {CK4005, 6001, 8000, 0.16},
{CK4005, 8001, 50000, 0.16}, {CP5010, 0, 5000, 0.1}, {CP5010, 5001, 50000, 0.12},
{PY2012, 0, 5000, 0.1}, {PY2012, 5001, 50000, 0.12}, {PY2013, 0, 5000, 0.1},
{PY2013, 5001, 50000, 0.12}, {UK3006, 0, 1000, 0.1}, {UK3006, 1001, 2000, 0.12},
{UK3006, 2001, 6000, 0.14}, {UK3006, 6001, 8000, 0.18}, {UK3006, 8001, 50000, 0.2},
(BS1014, 0, 4000, 0.1}, {BS1014, 4001, 8000, 0.12}, {BS1014, 8001, 50000, 0.14},
{UK3015, 0, 2000, 0.1}, {UK3015, 2001, 4000, 0.12}, {UK3015, 4001, 8000, 0.14},
{UK3015, 8001, 12000, 0.16}, {CK4016, 0, 5000, 0.1}, {CK4016, 5001, 15000, 0.12},
{CK4017, 0, 2000, 0.1}, {CK4017, 2001, 8000, 0.12}, {CK4017, 8001, 16000, 0.14},
{BS1007, 0, 5000, 0.1}, {BS1007, 5001, 50000, 0.12}, {PY2008, 0, 50000, 0.1}}

DatabaseLink User Guide | 49

The third parameter of sgLSelect can be used to select only certain columns. In this example,
only the TITLE ID and ROYALTY columns are selected.

data = SQLSelect[conn, "ROYSCHED", {"TITLE_ID", "ROYALTY"}]

{{BS1011, 0.1}, {BS1011, 0.12}, {CP5018, 0.1}, {CP5018, 0.12}, {CP5018, 0.16}, {BS1001, 0.1},

(BS1001, 0.12}, {BS1001, 0.16}, {BS1001, 0.18}, {PS9999, 0.1}, {PY2002, 0.1},

{PY2002, 0.12}, {PY2002, 0.14}, {PY2003, 0.1}, {PY2003, 0.12}, {PY2003, 0.14},

{UK3004, 0.1}, {UK3004, 0.12}, {UK3004, 0.14}, {UK3004, 0.18}, {UK3004, 0.2}, {CK4005, 0.1},
{CK4005, 0.12}, {CK4005, 0.16}, {CK4005, 0.16}, {CP5010, 0.1}, {CP5010, 0.12}, {PY2012, 0.1},
{PY2012, 0.12}, {PY2013, 0.1}, {PY2013, 0.12}, {UK3006, 0.1}, {UK3006, 0.12}, {UK3006, 0.14},
{UK3006, 0.18}, {UK3006, 0.2}, {BS1014, 0.1}, {BS1014, 0.12}, {BS1014, 0.14}, {UK3015, 0.1},
{UK3015, 0.12}, {UK3015, 0.14}, {UK3015, 0.16}, {CK4016, 0.1}, {CK4016, 0.12},

{CK4017, 0.1}, {CK4017, 0.12}, {CK4017, 0.14}, {BS1007, 0.1}, {BS1007, 0.12}, {PY2008, 0.1}}

The results of the database operation can immediately be used in Mathematica.

ListLinePlot[Last /@ data]

0.20 -

There are a number of options that can be given to sgLselect.

option name default value

"SortingColumns" None how to sort the data

"Distinct" False whether to return only distinct results
"GetAsStrings" False whether to return the results as strings
"MaxRows " Automatic set the maximum number of rows returned
"ShowColumnHeadings" False whether to return headings with the results
"Timeout" Automatic set the timeout for a query

Options of SQLSelect.

It is possible to select data from multiple columns in multiple tables. You can select multiple
tables by giving a second argument that is a list of the table names. A list of column names
should be used as the third parameter as shown previously. You can also associate a specific

table with a column by pairing a column name with a table name in a list in the third argument.

50 | DatabaselLink User Guide

This is important if the same column name is used in more than one table. The following exam-
ple of a data join generates an outer product of the data in the two tables and it uses the option
"MaxRows" to show only the first five results.

SQLSelect[conn, {"TITLES", "ROYSCHED"}, {{"TITLES", "TITLE"},
{"TITLES", "TITLE_ID"}, {"ROYSCHED", "TITLE ID"}, {"ROYSCHED", "ROYALTY"}},
"MaxRows" - 5, "ShowColumnHeadings" - True] // TableForm
TITLE TITLE_ID TITLE_ID ROYALTY
Designer Class Action Suits BS1001 BS1011 0.1

Designer Class Action Suits BS1001 BS1011 0.12
Designer Class Action Suits BS1001 CP5018 0.1
Designer Class Action Suits BS1001 CP5018 0.12
Designer Class Action Suits BS1001 CP5018 0.16

The following example repeats the previous query, adding a condition that the TITLE ID in the
two tables must be equal. Using a condition is often a useful way to narrow the search results.

sQLSelect[conn, {"TITLES", "ROYSCHED"}, {{"TITLES", "TITLE"},
{"TITLES", "TITLE ID"}, {"ROYSCHED", "TITLE_ID"}, {"ROYSCHED", "ROYALTY"}},
SQLColumn[{"TITLES", "TITLE_ID"}] == SQLColumn[{"ROYSCHED", "TITLE ID"}],
"MaxRows" -» 5, "ShowColumnHeadings" - True] // TableForm

TITLE TITLE_ID TITLE_ID ROYALTY
Designer Class Action Suits BS1001 BS1001 0.1
Designer Class Action Suits BS1001 BS1001 0.12
Designer Class Action Suits BS1001 BS1001 0.16
Designer Class Action Suits BS1001 BS1001 0.18
Self Hypnosis: A Beginner's Guide PY2002 PY2002 0.1

You may specify that a column value must be between certain values.

SQLSelect[conn, "ROYSCHED",
{"TITLE_ID", "ROYALTY"}, .10 < SQLColumn["ROYALTY"] < .15]
{{Bs1011, 0.12}, {CP5018, 0.12}, {BS1001, 0.12}, {PY2002, 0.12}, {PY2002, 0.14}, {PY2003, 0.12},
{PY2003, 0.14}, {UK3004, 0.12}, {UK3004, 0.14}, {CK4005, 0.12}, {CP5010, 0.12}, {PY2012, 0.12},
0
0

(PY2013, 0.12}, {UK3006, 0.12}, {UK3006, 0.14}, {BS1014, 0.12}, {BS1014, 0.14}, {UK3015, 0.12},
{UK3015, 0.14}, {CK4016, 0.12}, {CK4017, 0.12}, {CK4017, 0.14}, {BS1007, 0.12}}

SQLSelect[conn, "ROYSCHED",
{"TITLE_ID", "ROYALTY"}, .13 > SQLColumn["ROYALTY"] > .10]

{{BS1011, 0.12}, {CP5018, 0.12}, {BS1001, 0.12}, {PY2002, 0.12}, {PY2003, 0.12}, {UK3004, 0.12},
{CK4005, 0.12}, {CP5010, 0.12}, {PY2012, 0.12}, {PY2013, 0.12}, {UK3006, 0.12},
{BS1014, 0.12}, {UK3015, 0.12}, {CK4016, 0.12}, {CK4017, 0.12}, {BS1007, 0.12}}

You may specify that a column value must be equal to a certain value.

SQLSelect [conn, "ROYSCHED", {"TITLE_ID", "ROYALTY"}, SQLColumn["ROYALTY"] == .12]
{{BS1011, 0.12}, {CP5018, 0.12}, {BS1001, 0.12}, {PY2002, 0.12}, {PY2003, 0.12}, {UK3004, 0.12},
{CK4005, 0.12}, {CP5010, 0.12}, {PY2012, 0.12}, {PY2013, 0.12}, {UK3006, 0.12},
{BS1014, 0.12}, {UK3015, 0.12}, {CK4016, 0.12}, {CK4017, 0.12}, {BS1007, 0.12}}

DatabaseLink User Guide | 51

You may specify that a column value must not be equal to a certain value.

SQLSelect [conn, "ROYSCHED", {"TITLE_ID", "ROYALTY"}, SQLColumn["ROYALTY"] != .12]
{{BS1011, 0.1}, {CP5018, 0.1}, {CP5018, 0.16}, {BS1001, 0.1}, {BS1001, 0.16}, {BS1001, 0.18},
{PS9999, 0.1}, {PY2002, 0.1}, {PY2002, 0.14}, {PY2003, 0.1}, {PY2003, 0.14}, {UK3004, 0.1},
{UK3004, 0.14}, {UK3004, 0.18}, {UK3004, 0.2}, {CK4005, 0.1}, {CK4005, 0.16},
{CK4005, 0.16}, {CP5010, 0.1}, {PY2012, 0.1}, {PY2013, 0.1}, {UK3006, 0.1}, {UK3006, 0.14},
{UK3006, 0.18}, {UK3006, 0.2}, {BS1014, 0.1}, {BS1014, 0.14}, {UK3015, 0.1}, {UK3015, 0.14},
0

{UK3015, 0.16}, {CK4016, 0.1}, {CK4017, 0.1}, {CK4017, 0.14}, {BS1007, 0.1}, {PY2008, 0.1}}

You may specify that a column value must be greater than a certain value.

SQLSelect[conn, "ROYSCHED", {"TITLE_ID", "ROYALTY"}, SQLColumn["ROYALTY"] > .12]
{{cp5018, 0.16}, {Bs1001, 0.16}, {BS1001, 0.18}, {PY2002, 0.14}, {PY2003, 0.14}, {UK3004, 0.14},

{UK3004, 0.18}, {UK3004, 0.2}, {CK4005, 0.16}, {CK4005, 0.16}, {UK3006, 0.14}, {UK3006, 0.18},
{UK3006, 0.2}, {BS1014, 0.14}, {UK3015, 0.14}, {UK3015, 0.16}, {CK4017, 0.14}}

You may specify that a column value must be less than a certain value.
SQLSelect[conn, "ROYSCHED", {"TITLE_ID", "ROYALTY"}, SQLColumn["ROYALTY"] < .12]
{{BS1011, 0.1}, {CP5018, 0.1}, {BS1001, 0.1}, {PS9999, 0.1}, {PY2002, 0.1}, {PY2003, 0.1},

{UK3004, 0.1}, {CK4005, 0.1}, {CP5010, 0.1}, {PY2012, 0.1}, {PY2013, 0.1}, {UK3006, 0.1},
(BS1014, 0.1}, {UK3015, 0.1}, {CK4016, 0.1}, {CK4017, 0.1}, {BS1007, 0.1}, {PY2008, 0.1}}

You may specify that a column value must be greater than or equal to a certain value.

SQLSelect[conn, "ROYSCHED", {"TITLE_ID", "ROYALTY"}, SQLColumn["ROYALTY"] >= .12]

{{BS1011, 0.12}, {CP5018, 0.12}, {CP5018, 0.16}, {BS1001, 0.12}, {BS1001, 0.16}, {BS1001, 0.18},
{PY2002, 0.12}, {PY2002, 0.14}, {PY2003, 0.12}, {PY2003, 0.14}, {UK3004, 0.12},
{UK3004, 0.14}, {UK3004, 0.18}, {UK3004, 0.2}, {CK4005, 0.12}, {CK4005, 0.16}, {CK4005, 0.16},
{CP5010, 0.12}, {PY2012, 0.12}, {PY2013, 0.12}, {UK3006, 0.12}, {UK3006, 0.14},
{UK3006, 0.18}, {UK3006, 0.2}, {BS1014, 0.12}, {BS1014, 0.14}, {UK3015, 0.12}, {UK3015, 0.14},
0 0

{UK3015, 0.16}, {CK4016, 0.12}, {CK4017, 0.12}, {CK4017, 0.14}, {BS1007, 0.12}}

You may specify that a column value must match a certain pattern using the metacharacters '¢'
for matching zero or more characters and ' ' for matching a single character.

SQLSelect[conn, "ROYSCHED", {"TITLE_ID", "ROYALTY"},
SQLStringMatchQ[SQLColumn["TITLE_ID"], "C%"]]

{{cP5018, 0.1}, {CP5018, 0.12}, {CP5018, 0.16}, {CK4005, 0.1},
{CK4005, 0.12}, {CK4005, 0.16}, {CK4005, 0.16}, {CP5010, 0.1}, {CP5010, 0.12},
{CK4016, 0.1}, {CK4016, 0.12}, {CK4017, 0.1}, {CK4017, 0.12}, {CK4017, 0.14}}

SQLSelect[conn, "ROYSCHED", {"TITLE_ID", "ROYALTY"},
SQLStringMatchQ[SQLColumn["TITLE_ID"], "_S%"]]

{{BS1011, 0.1}, {BS1011, 0.12}, {BS1001, 0.1}, {BS1001, 0.12}, {BS1001, 0.16}, {BS1001, 0.18},
(PS9999, 0.1}, {BS1014, 0.1}, {BS1014, 0.12}, {BS1014, 0.14}, {BS1007, 0.1}, {BS1007, 0.12}}

You may specify that a column value must be contained as a member of a list.

SQLSelect[conn, "ROYSCHED", {"TITLE_ID", "ROYALTY"},
SQLMemberQ[{.14, .16}, SQLColumn["ROYALTY"]]]

{{CP5018, 0.16}, {BS1001, 0.16}, {PY2002, 0.14}, {PY2003, 0.14}, {UK3004, 0.14}, {CK4005, 0.16},
{CK4005, 0.16}, {UK3006, 0.14}, {BS1014, 0.14}, {UK3015, 0.14}, {UK3015, 0.16}, {CK4017, 0.14}}

52 | DatabaselLink User Guide

You may specify that a column value must be less than or equal to a certain value.

SQLSelect[conn, "ROYSCHED", {"TITLE_ID", "ROYALTY"}, SQLColumn["ROYALTY"] <= .12]

{{BS1011, 0.1}, {BS1011, 0.12}, {CP5018, 0.1}, {CP5018, 0.12}, {BS1001, 0.1}, {BS1001, 0.12},
{PS9999, 0.1}, {PY2002, 0.1}, {PY2002, 0.12}, {PY2003, 0.1}, {PY2003, 0.12}, {UK3004, 0.1},
{UK3004, 0.12}, {CK4005, 0.1}, {CK4005, 0.12}, {CP5010, 0.1}, {CP5010, 0.12}, {PY2012, 0.1},
(PY2012, 0.12}, {PY2013, 0.1}, {PY2013, 0.12}, {UK3006, 0.1}, {UK3006, 0.12}, {BS1014, 0.1},
(BS1014, 0.12}, {UK3015, 0.1}, {UK3015, 0.12}, {CK4016, 0.1}, {CK4016, 0.12},

0

{CK4017, 0.1}, {CK4017, 0.12}, {BS1007, 0.1}, {BS1007, 0.12}, {PY2008, 0.1}}

You may also combine any conditions using And or Or.

SgLSelect[conn, "ROYSCHED", {"TITLE ID", "LORANGE", "ROYALTY"},
SQLColumn ["ROYALTY"] == .12 && SQLColumn["LORANGE"] > 1000]

{{BS1011, 5001, 0.12}, {CP5018, 2001, 0.12}, {BS1001, 1001, 0.12}, {PY2002, 1001, 0.12},
{PY2003, 2001, 0.12}, {UK3004, 1001, 0.12}, {CK4005, 2001, 0.12}, {CP5010, 5001, 0.12},
(PY2012, 5001, 0.12}, {PY2013, 5001, 0.12}, {UK3006, 1001, 0.12}, {BS1014, 4001, 0.12},
{UK3015, 2001, 0.12}, {CK4016, 5001, 0.12}, {CK4017, 2001, 0.12}, {BS1007, 5001, 0.12}}

sQLSelect[conn, "ROYSCHED", {"TITLE ID", "ROYALTY"},
SOLColumn["ROYALTY"] == .12 || SQOLColumn["ROYALTY"] == .14]

{{BS1011, 0.12}, {CP5018, 0.12}, {BS1001, 0.12}, {PY2002, 0.12}, {PY2002, 0.14}, {PY2003, 0.12},
{PY2003, 0.14}, {UK3004, 0.12}, {UK3004, 0.14}, {CK4005, 0.12}, {CP5010, 0.12}, {PY2012, 0.12},
{PY2013, 0.12}, {UK3006, 0.12}, {UK3006, 0.14}, {BS1014, 0.12}, {BS1014, 0.14}, {UK3015, 0.12},
{UK3015, 0.14}, {CK4016, 0.12}, {CK4017, 0.12}, {CK4017, 0.14}, {BS1007, 0.12}}

The option "GetAsStrings" can retrieve data without converting it to a Mathematica type. This
repeats the previous query without converting the data.

SQLSelect[conn, "ROYSCHED", {"TITLE_ID", "ROYALTY"},
SQLColumn["ROYALTY"] == .12 || SQLColumn["ROYALTY"] == .14,
"GetAsStrings" - True] // InputForm

{{"BS1011", "0.12"}, {"CP5018", "0.12"},
{"BS1001", "0.12"}, {"PY2002", "0.12"},
{"PY2002", "0.14"}, {"PY2003", "0.12"},
{"PY2003", "0.14"}, {"UK3004", "0.12"},
{"UK3004", "0.14"}, {"CK4005", "0.12"},
{"CP5010", "0.12"}, {"PY2012", "0.12"},
{"PY2013", "0.12"}, {"UK3006", "0.12"},
{"UK3006", "0.14"}, {"BS1014", "0.12"},
{"BS1014", "0.14"}, {"UK3015", "0.12"},
{"UK3015", "0.14"}, {"CK4016", "0.12"},
{"CK4017", "0.12"}, {"CK4017", "0.14"},
{"BS1007", "0.12"}}

You may also use the option "sortingColumns" to specify how to sort the data. This option
takes a list of rules. The left side of the rule specifies the column and the right side specifies

whether to sort that data in ascending or descending order. The first item in the list takes
precedence over the supplemental items.

DatabaseLink User Guide | 53

data = SQLSelect[conn, "ROYSCHED", {"TITLE_ID", "ROYALTY"}, "SortingColumns" -
{SQLColumn["ROYALTY"] -> "Ascending"”, SQLColumn["TITLE_ID"] -> "Ascending"}]

{{BS1001, 0.1}, {BS1007, 0.1}, {BS1011l, 0.1}, {BS1014, 0.1}, {CK4005, 0.1}, {CK4016, 0.1},
{CK4017, 0.1}, {CP5010, 0.1}, {CP5018, 0.1}, {PS9999, 0.1}, {PY2002, 0.1}, {PY2003, 0.1},
{PY2008, 0.1}, {PY2012, 0.1}, {PY2013, 0.1}, {UK3004, 0.1}, {UK3006, 0.1}, {UK3015, 0.1},
{BS1001, 0.12}, {BS1007, 0.12}, {BS1011, 0.12}, {BS1014, 0.12}, {CK4005, 0.12}, {CK401l6, 0.12},
{CK4017, 0.12}, {CP5010, 0.12}, {CP5018, 0.12}, {PY2002, 0.12}, {PY2003, 0.12}, {PY2012, 0.12},
{PY2013, 0.12}, {UK3004, 0.12}, {UK3006, 0.12}, {UK3015, 0.12}, {BS1014, 0.14},

{CK4017, 0.14}, {PY2002, 0.14}, {PY2003, 0.14}, {UK3004, 0.14}, {UK3006, 0.14},
{UK3015, 0.14}, {BS1001, 0.16}, {CK4005, 0.16}, {CK4005, 0.16}, {CP5018, 0.16},
{UK3015, 0.16}, {BS1001, 0.18}, {UK3004, 0.18}, {UK3006, 0.18}, {UK3004, 0.2}, {UK3006, 0.2}}

The following plot shows that the data is now sorted.

ListLinePlot[Last /@ data]

020 F -
0.18 |]
0.16 - —

0.14 [—

0121

|

T T T S O R S S N

10 20 30 40 50

The option "Timeout" can be used to cancel a query if it takes too long to execute.

This closes the connection.

CloseSQLConnection[conn]

The details of how Mathematica expressions are mapped to types stored in the database is
discussed in "Data Type Mapping".

Creating Tables

SQLCreateTable Creates a new table in a database. An alternative, using raw SQL, is described
in "Creating Tables with Raw SQL".

If you find that the examples in this tutorial do not work as shown, you may need to
install or restore the example database with the DatabaseExamples™ package, as
described in "Using the Example Databases".
When creating a table, the result of sQLCreateTable is an integer specifying the number of
rows affected by the query. If the table is created correctly, this integer will always be zero as
no rows are affected when creating a new table.

54 | DatabaselLink User Guide

SQLCreateTable | create an SQL table
conn ,table, { columns} , opts]

Creating a table in a database.
Here is an example that creates a table.

This loads DatabaseLink and connects to the demo database.

Needs ["DatabaseLink™"];
conn = OpenSQLConnection|["demo"];

SQLCreateTable creates a table. The columns are given as a list of sQLColumn expressions. In

the following example, a new table, DATATYPESTABLE, is created that has one column for each

of the data types returned from sQLDataTypeNames. The column, TINYINTCOL, is configured so

that it cannot be set to Null. However, each binary column can be set to Null. The database

default for "Nullable" is used for every other column that does not specify the "Nullable"

option. The character-based columns are limited to a specific data length; other columns use

the default data length for their type.

SQLDataTypeNames [conn]
{TINYINT, BIGINT, LONGVARBINARY, VARBINARY, BINARY, LONGVARCHAR,

CHAR, NUMERIC, DECIMAL, INTEGER, SMALLINT, FLOAT, REAL, DOUBLE,
VARCHAR, VARCHAR_IGNORECASE, BOOLEAN, DATE, TIME, TIMESTAMP, OTHER}

SQLCreateTable[conn, "DATATYPESTABLE",

SQLColumn ["TINYINTCOL", "DataTypeName" -> "TINYINT", "Nullable" - False],

SQLColumn ["SMALLINTCOL", "DataTypeName" -> "SMALLINT"],
SQLColumn ["INTEGERCOL", "DataTypeName" -> "INTEGER"],
SQLColumn ["BIGINTCOL", "DataTypeName" -> "BIGINT"],
SQLColumn ["NUMERICCOL", "DataTypeName" -> "NUMERIC"],
SQLColumn ["DECIMALCOL", "DataTypeName" -> "DECIMAL"],
SQLColumn ["FLOATCOL", "DataTypeName" -> "FLOAT"],
SQLColumn ["REALCOL", "DataTypeName" -> "REAL"],
SQLColumn ["DOUBLECOL", "DataTypeName" -> "DOUBLE"],
SQLColumn["BITCOL", "DataTypeName" -> "BIT"],
SQLColumn ["LONGVARBINARYCOL",

"DataTypeName" -> "LONGVARBINARY", "Nullable" - True],

SQLColumn ["VARBINARYCOL", "DataTypeName" -> "VARBINARY", "Nullable" - True],
SQLColumn ["BINARYCOL", "DataTypeName" -> "BINARY", "Nullable" - True],

SQLColumn ["LONGVARCHARCOL", "DataTypeName" -> "LONGVARCHAR"],
SQLColumn ["VARCHARCOL",

"DataTypeName" -> "VARCHAR", "Nullable" - True, "DatalLength" - 5],

SQLColumn["CHARCOL", "DataTypeName" -> "CHAR",

"Nullable" -» True, "DataLength" - 3],
SQLColumn ["DATECOL", "DataTypeName" -> "DATE"],
SQLColumn["TIMECOL", "DataTypeName" -> "TIME"],
SQLColumn ["TIMESTAMPCOL", "DataTypeName" -> "TIMESTAMP"],

SQLColumn ["OBJECTCOL", "DataTypeName" -> "OBJECT", "Nullable" - True]

}

DatabaseLink User Guide | 55

SQLTableNames verifies that the table exists in the database.

SQLTableNames [conn, "DATATYPESTABLE"]

{DATATYPESTABLE}

SQLColumnNames verifies the columns in the table.

SQLColumnNames [conn, "DATATYPESTABLE"]

{ {DATATYPESTABLE, TINYINTCOL}, {DATATYPESTABLE, SMALLINTCOL},
{DATATYPESTABLE, INTEGERCOL}, {DATATYPESTABLE, BIGINTCOL}, {DATATYPESTABLE, NUMERICCOL},
{DATATYPESTABLE, DECIMALCOL}, {DATATYPESTABLE, FLOATCOL}, {DATATYPESTABLE, REALCOL},
{DATATYPESTABLE, DOUBLECOL}, {DATATYPESTABLE, BITCOL}, {DATATYPESTABLE, LONGVARBINARYCOL},
{DATATYPESTABLE, VARBINARYCOL}, {DATATYPESTABLE, BINARYCOL}, {DATATYPESTABLE, LONGVARCHARCOL},
{DATATYPESTABLE, VARCHARCOL}, {DATATYPESTABLE, CHARCOL}, {DATATYPESTABLE, DATECOL},
{DATATYPESTABLE, TIMECOL}, {DATATYPESTABLE, TIMESTAMPCOL}, {DATATYPESTABLE, OBJECTCOL}}

SQLCreateTable accepts one option.

option name default value

"Timeout" Automatic set the timeout for a query

Option of SQLCreateTable.

"Timeout" can be used to cancel a query if it takes too long to execute.

This drops the table and closes the connection.

SQLDropTable[conn, "DATATYPESTABLE"];
CloseSQLConnection[conn]

Certain databases support further options for columns, such as whether a column is a key or
whether it auto-increments. If these options are desired, then a raw SQL statement should be

used to create the table. "Creating Tables with Raw SQL" has some ideas and examples.

Inserting Data

SsQLInsert inserts data into a database. An alternative, using raw SQL, is described in
"Inserting Data with Raw SQL".

If you find that the examples in this tutorial do not work as shown, you may need to
install or restore the example database with the DatabaseExamples™ package, as
described in "Using the Example Databases".
The result of sQLInsert is an integer specifying the number of rows affected by the query. For
a single insert this will be one, since you can only insert one row at a time. sQLInsert also

supports a batch insert, as demonstrated in "Performance: Batch Operation".

56 | DatabaselLink User Guide

SQLInsert [conn,table, insert data into a database
{columns?} , {values} ,opts]

SQLInsert [conn,table, batch insert data into a database
{columns} , { {values}} ,opts]

Inserting data into a database.

Here is an example that inserts data. This loads DatabaselLink and connects to the demo
database.

Needs ["DatabaseLink™"];
conn = OpenSQLConnection|["demo"];

A new table, TEST, is created. The details of this command are described in "Creating Tables".

SQLCreateTable[conn, "TEST",

SQLColumn["COL1", "DataTypeName" -> "INTEGER"],
SQLColumn["COL2", "DataTypeName" -> "DOUBLE"]

}
0

SQLInsert inserts data into this table.

SQLInsert[conn, "TEST", {"coLl", "coL2"}, {10, 10.5}]
1

soLSelect verifies the data stored in the database.

SQLSelect[conn, "TEST"]
{{10, 10.5}}

Finally, a batch insert is carried out. The result is a list of the number of lines that are modified.

SoLInsert[conn, "TEST", {"COL1", "COL2"}, {{10, 10.5}, {20, 55.1}}]

{1, 1}

sQLSelect shows that there are now three rows in this table.

SQLSelect[conn, "TEST"]
({10, 10.5}, {10, 10.5}, {20, 55.1}}

DatabaseLink User Guide | 57

SQLInsert accepts one option.

option name default value

"Timeout" Automatic set the timeout for a query
Option of SQLInsert.

The option "Timeout" can be used to cancel a query if it takes too long to execute.

This drops the table and closes the connection.

SQLDropTable[conn, "TEST"];
CloseSQLConnection[conn]

The details of how Mathematica expressions are mapped to types stored in the database is

discussed in "Data Type Mapping".

Updating Data

SQLUpdate modifies data in a database. An alternative, using raw SQL, is described in
"Updating Data with Raw SQL".

If you find that the examples in this tutorial do not work as shown, you may need to
install or restore the example database with the DatabaseExamples™ package, as
described in "Using the Example Databases".

The result of sQLUpdate is an integer specifying the number of rows affected by the query.

SQLUpdate [conn, table, update data in a database
{columns} , {values} ,opts]

SQLUpdate [conn, table, {columns} , update data in a database using a condition
{values} , condition , opts|

Updating data in a database.

Here is an example that updates data. This loads DatabaseLink and connects to the demo
database.

Needs ["DatabaseLink™"];
conn = OpenSQLConnection|["demo"];

58 | DatabaselLink User Guide

A new table, TEST, is created and data is inserted.

SQLCreateTable[conn, "TEST",

SQLColumn["COL1", "DataTypeName" -> "INTEGER"],
SQLColumn["COL2", "DataTypeName" -> "DOUBLE"]

11:
SQLInsert[conn, "TEST", {"coLl", "coL2"}, {10, 10.5}];

sQLSelect shows the values in the table.

SQLSelect[conn, "TEST"]
({10, 10.5})

SQLUpdate updates the elements in the database and sgLselect shows the result.

SQLUpdate[conn, "TEST", {"COLl1l", "coL2"}, {12, 12.5}];
SQLSelect[conn, "TEST"]

({12, 12.5}}

Typically, it is useful to set a condition for an update, with the condition specifying which rows
should be updated. (For more information on conditions, see "Selecting Data".) In the following

example, another row is inserted into the database.
SQLInsert[conn, "TEST", {"coLl1", "coL2"}, {20, 20.5}];

SQoLSelect[conn, "TEST"]
({12, 12.5}, {20, 20.5}}

Here an update is given for rows for which the entry in the first column is less than 15.
SQLUpdate[conn, "TEST", {"coLl1l", "coL2"}, {4, 1.1}, SQLColumn["COL1"] < 15];

SQLSelect[conn, "TEST"]
({20, 20.5}, {4, 1.1}}

SQLUpdate accepts one option.

option name default value

"Timeout" Automatic set the timeout for a query
Option of SQLUpdate.
The option "Timeout" can be used to cancel a query if it takes too long to execute.

This drops the table and closes the connection.

SQLDropTable[conn, "TEST"];
CloseSQLConnection[conn]

DatabaseLink User Guide | 59

Deleting Data

SQLDelete deletes data from a database. An alternative, using raw SQL, is described in
"Deleting Data with Raw SQL".

If you find that the examples in this tutorial do not work as shown, you may need to
install or restore the example database with the DatabaseExamples™ package, as
described in "Using the Example Databases".
The result of sQLDelete is an integer specifying the number of rows affected by the query.
Thus, if three rows are removed, the result is three, and if no rows are removed, the result is

zero.
SQLDelete [table] delete data from a database
SQLDelete [table, condition] delete data from a database using a condition

Deleting data from a database.
Here is an example that deletes data. This loads DatabaselLink and connects to the demo
database.

Needs ["DatabaseLink™ "] ;
conn = OpenSQLConnection|["demo"];

A new table, TEST, is created and data is inserted.
SQLCreateTable[conn, "TEST",
SQLColumn["COL1", "DataTypeName" -> "INTEGER"],
SQLColumn["COL2", "DataTypeName" -> "DOUBLE"]
3

SQLInsert[conn, "TEST", {"coLl", "coL2"}, {{10, 10.5}, {20, 17.5}}1;
SQLSelect[conn, "TEST"]

({10, 10.5}, {20, 17.5}}

The following deletes all the data from the table. Two rows were deleted, and the result is two.

SQLDelete[conn, "TEST"]
2

soLSelect verifies that all the data has been removed from the table.

SQLSelect[conn, "TEST"]
{}

60 | DatabaselLink User Guide

This restores the data in the database.
SQoLInsert[conn, "TEST", {"coLl", "corL2"}, {{10, 10.5}, {20, 17.5}}]1;

SQLSelect[conn, "TEST"]
{{10, 10.5}, {20, 17.5}}

Here, a condition is used in the sQLDelete command, so that only rows for which the entry in
the first column is greater than 15 are deleted. This deletes one row, and hence the result is
one.

stmt = SQLDelete[conn, "TEST", SQLColumn["COL1"] > 15]

1

sQLSelect verifies that one row was removed from the table.

SQLSelect[conn, "TEST"]
{{10, 10.5}}

SQLDelete accepts one option.

option name default value

"Timeout" Automatic set the timeout for a query
Option of SQLDelete.
The option "Timeout" can be used to cancel a query if it takes too long to execute.

This drops the table and closes the connection.

SQLDropTable[conn, "TEST"];
CloseSQLConnection[conn]

Dropping Tables

SQLDropTable drops tables from a database. An alternative, using raw SQL, is demonstrated in
"Dropping Tables with Raw SQL".

If you find that the examples in this tutorial do not work as shown, you may need to
install or restore the example database with the DatabaseExamples~ package, as

described in "Using the Example Databases".

DatabaseLink User Guide | 61

The result of sQLDropTable is an integer specifying the number of rows affected by the query.

SQLDropTable [table] drop a table from a database
Dropping a table from a database.
Here is an example that drops a table. This loads DatabaselLink and connects to the demo

database.

Needs ["DatabaseLink™"];
conn = OpenSQLConnection|["demo"];

A new table, TEST, is created and data is inserted.

SQLCreateTable[conn, "TEST",

SQLColumn["COL1", "DataTypeName" -> "INTEGER"],
SQLColumn["COL2", "DataTypeName" -> "DOUBLE"]

i
SQLInsert[conn, "TEST", {"coLl1", "coL2"}, {10, 10.5}];
This drops the table.

SQLDropTable[conn, "TEST"]
0

SQLTableNames verifies that the table is removed from the database.

SQLTableNames [conn, "TEST"]
{}

SQLDropTable accepts one option.

option name default value

"Timeout" Automatic set the timeout for a query
Option of SQLDropTable.

The option "Timeout" can be used to cancel a query if it takes too long to execute.

This closes the connection.

CloseSQLConnection[conn]

62 | DatabaselLink User Guide

SQLExecute

SQLExecute allows SQL statements to be executed. Statements can be used to select data,
create tables, insert data, update data, remove data, and drop tables. The statement used by
SQLExecute is a string that can contain all arguments. However, it is also possible to give the
arguments separately, which makes the statement a prepared statement. sQLExecute can also
be used to execute a batch of prepared statements with different arguments, as described in
"Batch Input".

SQLExecute [conn, statement , opts...] execute an SQL statement

SQLExecute [conn, execute a prepared statement with arguments
statement , {args...} ,opts...]

SQLExecute [conn, execute a batch of prepared statement with different
statement , { {args...} ..} ,opts...] arguments

Executing SQL statements.

The following sections show how to use SQL statements to carry out different types of
manipulations.

There are a number of options that can be given to sQLExecute.

option name default value

"GetAsStrings" False return the results as strings

"MaxRows" Automatic set the maximum number of rows returned
"ShowColumnHeadings" False whether to return headings with the results
"Timeout" Automatic set the timeout for a query

Options of SQLExecute.

Here is an example of these options. This loads DatabaselLink and connects to the demo
database. If you find that the examples in this tutorial do not work as shown, you may need to
install or restore the example database with the DatabaseExamples™ package, as described in

"Using the Example Databases".

Needs ["DatabaseLink™ "] ;
conn = OpenSQLConnection|["demo"];

DatabaseLink User Guide | 63

The option "GetAsStrings" can retrieve data without converting it to a Mathematica type.

SQLExecute[conn, "SELECT * FROM SAMPLETABLEl", "GetAsStrings" - True] // InputForm
({"1", "5.6", "Dayl"}, {"2", "5.9", "Day2"},

{"3", "7.2", "Day3"}, {"4", "6.2", "Day4"},
{"5", "6.0", "Day5"}}

The option "MaxRows" can limit the number of rows returned.

SQLExecute[conn, "SELECT * FROM SAMPLETABLEl", "MaxRows" - 2]

{{1, 5.6, Dayl}, {2, 5.9, Day2}}

The option "ShowColumnHeadings" can retrieve the column headings with the results.

SQLExecute[conn, "SELECT » FROM SAMPLETABLEl",
"ShowColumnHeadings" - True] // TableForm

ENTRY VALUE NAME

1 5.6 Dayl
2 5.9 Day2
3 7.2 Day3
4 6.2 Day4
5 6. Day5

The option "Timeout" can be used to cancel a query if it takes too long to execute.

This closes the connection.

CloseSQLConnection[conn]

Argument Sequences in SQL-Style Queries

If you want to use one argument in an SQL statement that holds a sequence of several values,
you can use SQLArgument. This is particularly useful for selects and inserts in tables that have
many columns. With selects, you can dynamically specify multiple tables and columns, and with
inserts you can dynamically specify multiple columns and values.

SQLArgument a sequence of arguments to a command
Argument sequences.

To demonstrate this, load DatabaseLink and connect to the publisher database.

Needs ["DatabaseLink™"];
conn = OpenSQLConnection|["publisher"];

64 | DatabaselLink User Guide

Now, you can execute a select query using sQLArgument. Notice how the statement refers to
two arguments as ~1° arguments. This makes the statement simpler since it saves having to
number the arguments individually.

SQLExecute[conn, "SELECT “1° FROM ~“2°",
{ SQLArgument [SQLColumn["TITLE_ID"], SQLColumn["ROYALTY"]],
SQLTable ["ROYSCHED"]}]

{{BS1011, 0.1}, {BS1011, 0.12}, {CP5018, 0.1}, {CP5018, 0.12}, {CP5018, 0.16}, {BS1001, 0.1},
(BS1001, 0.12}, {BS1001, 0.16}, {BS1001, 0.18}, {PS9999, 0.1}, {PY2002, 0.1},

0
(PY2002, 0.12}, {PY2002, 0.14}, {PY2003, 0.1}, {PY2003, 0.12}, {PY2003, 0.14},
{UK3004, 0.1}, {UK3004, 0.12}, {UK3004, 0.14}, {UK3004, 0.18}, {UK3004, 0.2}, {CK4005, 0.1},
{CK4005, 0.12}, {CK4005, 0.16}, {CK4005, 0.16}, {CP5010, 0.1}, {CP5010, 0.12}, {PY2012, 0.1},
(PY2012, 0.12}, {PY2013, 0.1}, {PY2013, 0.12}, {UK3006, 0.1}, {UK3006, 0.12}, {UK3006, 0.14},
{UK3006, 0.18}, {UK3006, 0.2}, {BS1014, 0.1}, {BS1014, 0.12}, {BS1014, 0.14}, {UK3015, 0.1},
{UK3015, 0.12}, {UK3015, 0.14}, {UK3015, 0.16}, {CK4016, 0.1}, {CK4016, 0.12},

0

{CK4017, 0.1}, {CK4017, 0.12}, {CK4017, 0.14}, {BS1007, 0.1}, {BS1007, 0.12}, {PY2008, 0.1}}

This closes the connection.

CloseSQLConnection[conn]

It should be noted that sQLArgument is not supported in Mathematica-based queries.

Selecting Data with Raw SQL

The raw SQL command SELECT selects and returns data from a database. An alternative is to

use the Mathematica command sQLselect, described in "Selecting Data".

If you find that the examples in this tutorial do not work as shown, you may need to
install or restore the example database with the DatabaseExamples~ package, as
described in "Using the Example Databases".

This loads DatabaseLink and connects to the publisher database.

Needs ["DatabaseLink™"];
conn = OpenSQLConnection|["publisher"];

This retrieves data within the table, ROYSCHED, for which the data in the ROYALTY column is
between 0.11 and 0.12.

SQLExecute[conn,

"SELECT * FROM ROYSCHED WHERE ROYALTY >= .11 AND ROYALTY <= .12"]
{{BS1011, 5001, 50000, 0.12}, {CP5018, 2001, 4000, 0.12},

{BS1001, 1001, 5000, 0.12}, {PY2002, 1001, 5000, 0.12}, {PY2003, 2001, 5000, 0.12},
{UK3004, 1001, 2000, 0.12}, {CK4005, 2001, 6000, 0.12}, {CP5010, 5001, 50000, 0.12},
{PY2012, 5001, 50000, 0.12}, {PY2013, 5001, 50000, 0.12},

{UK3006, 1001, 2000, 0.12}, {BS1014, 4001, 8000, 0.12}, {UK3015, 2001, 4000, 0.12},
{CK4016, 5001, 15000, 0.12}, {CK4017, 2001, 8000, 0.12}, {BS1007, 5001, 50000, 0.12}}

This carries out the same SELECT statement but uses a prepared statement. The arguments to
the statement are given as the third element of the sQLExecute command. The first argument
is placed in the location of the "1 and the second in the location of the "2°.

DatabaseLink User Guide | 65

SQLExecute[conn,
"SELECT * FROM ROYSCHED WHERE ROYALTY >= ~1° AND ROYALTY <= ~2°", {0.11, 0.12}]

{{BS1011, 5001, 50000, 0.12}, {CP5018, 2001, 4000, 0.12},
{BS1001, 1001, 5000, 0.12}, {PY2002, 1001, 5000, 0.12}, {PY2003, 2001, 5000, 0.12},
{UK3004, 1001, 2000, 0.12}, {CK4005, 2001, 6000, 0.12}, {CP5010, 5001, 50000, 0.12},
{PY2012, 5001, 50000, 0.12}, {PY2013, 5001, 50000, 0.12},
{UK3006, 1001, 2000, 0.12}, {BS1014, 4001, 8000, 0.12}, {UK3015, 2001, 4000, 0.12},
{CK4016, 5001, 15000, 0.12}, {CK4017, 2001, 8000, 0.12}, {BS1007, 5001, 50000, 0.12}}

Column and table names must be wrapped in SQLColumn and SQLTable, respectively. This will
ensure they are not quoted as strings. The following selects elements of the ROYALTY column in
the ROYSCHED table for which the TITLE_ID column value is BS1011.

SQLExecute[conn, "SELECT 1 FROM ROYSCHED WHERE TITLE ID = “2°",
{SQLColumn ["ROYALTY"], "BS1011"}]

{{0.1}, {0.12}}

If you want to give a sequence of arguments to a prepared statement, you can use
SQLArgument. This is described in Argument Sequences in SQL-Style Queries.

SQLExecute[conn, "SELECT 1 FROM ROYSCHED WHERE TITLE ID = “2°",
{SQLArgument [SQLColumn ["LORANGE"],
SQLColumn ["HIRANGE"], SQLColumn["ROYALTY"]], "BS1011"}]

{{0, 5000, 0.1}, {5001, 50000, 0.12}}

Many databases offer functions that apply to the results of a select operation. Typical examples
are COUNT, MIN, MAX, SUM, and AVG. The documentation for your database will describe the

details of the functions that are available. The following examples demonstrate some of these
functions.

SQLExecute[conn, "SELECT COUNT (ROYALTY) FROM ROYSCHED"]
{{51}}

SQLExecute[conn, "SELECT MIN (ROYALTY) FROM ROYSCHED"]
{{0.1}}

Many databases allow you to apply mathematical functions such as +, -, *, or / to the results.

SQLExecute[conn, "SELECT ROYALTY % 2 FROM ROYSCHED"]

{{0.2}, {0.24}, {0.2}, {0.24}, {0.32}, {0.2}, {0.24}, {0.32}, {0.36}, {0.2}, {0.2}, {0.24}, {0.28},
{0.2}, {0.24}, {0.28}, {0.2}, {0.24}, {0.28}, {0.36}, {0.4}, {0.2}, {0.24}, {0.32}, {0.32},
{0.2}, {0.24}, {0.2}, {0.24}, {0.2}, {0.24}, {0.2}, {0.24}, {0.28}, {0.36}, {0.4}, {0.2}, {0.24},
{0.28}, {0.2}, {0.24}, {0.28}, {0.32}, {0.2}, {0.24}, {0.2}, {0.24}, {0.28}, {0.2}, {0.24}, {0.2}}

66 | DatabaselLink User Guide

SQLExecute[conn, "SELECT ROYALTY / 10 FROM ROYSCHED"]

{{0.01}, {0.012}, {0.01}, {0.012}, {0.016}, {0.01}, {0.012}, {0.016}, {0.018}, {0.01}, {0.01},
{0.012}, {0.014}, {0.01}, {0.012}, {0.014}, {0.01}, {0.012}, {0.014}, {0.018}, {0.02},
{0.01}, {0.012}, {0.016}, {0.016}, {0.01}, {0.012}, {0.01}, {0.012}, {0.01}, {0.012},

{0.01}, {0.012}, {0.014}, {0.018}, {0.02}, {0.01}, {0.012}, {0.014}, {0.01}, {0.012},
{0.014}, {0.016}, {0.01}, {0.012}, {0.01}, {0.012}, {0.014}, {0.01}, {0.012}, {0.01}}

SQLExecute[conn, "SELECT - ROYALTY FROM ROYSCHED"]

{{-0.1}, {-0.12}, {-0.1}, {-0.12}, {-0.16}, {-0.1}, {-0.12}, {-0.16}, {-0.18}, {-0.1}, {-0.1},
{-0.12}, {-0.14}, {-0.1}, {-0.12}, {-0.14}, {-0.1}, {-0.12}, {-0.14}, {-0.18}, {-0.2},
{-0.1}, {-0.12}, {-0.16}, {-0.16}, {-0.1}, {-0.12}, {-0.1}, {-0.12}, {-0.1}, {-0.12},

{-0.1}, {-0.12}, {-0.14}, {-0.18}, {-0.2}, {-0.1}, {-0.12}, {-0.14}, {-0.1}, {-0.12},
{-0.14}, {-0.16}, {-0.1}, {-0.12}, {-0.1}, {-0.12}, {-0.14}, {-0.1}, {-0.12}, {-0.1}}

You can also select only distinct values.

SOLExecute [conn, "SELECT DISTINCT ROYALTY FROM ROYSCHED"]
{{0.1}, {0.12}, {0.14}, {0.16}, {0.18}, {0.2}}

You can also group values.

SQLExecute [conn, "SELECT TITLE_ID,
MIN (ROYALTY) FROM ROYSCHED GROUP BY TITLE_ID",
"ShowColumnHeadings" - True] // TableForm

TITLE_ID

BS1011 0.1
CP5018 0.1
BS1001 0.1
PS9999 0.1
PY2002 0.1
PY2003 0.1
UK3004 0.1
CK4005 0.1
CP5010 0.1
PY2012 0.1
PY2013 0.1
UK3006 0.1
BS1014 0.1
UK3015 0.1
CK4016 0.1
CK4017 0.1
BS1007 0.1
PY2008 0.1

Many databases also support retrieving a range of results.

SQLExecute[conn, "SELECT TOP 5 x* FROM ROYSCHED"]

{{Bs1011, 0, 5000, 0.1}, {BS1011, 5001, 50000, 0.12},
{ce5018, 0, 2000, 0.1}, {CP5018, 2001, 4000, 0.12}, {CP5018, 4001, 50000, 0.16}}

SQLExecute[conn, "SELECT LIMIT 5 10 * FROM ROYSCHED"]

{{BS1001, 0, 1000, 0.1}, {BS1001, 1001, 5000, 0.12},
{BS1001, 5001, 7000, 0.16}, {BS1001, 7001, 50000, 0.18},
{PS9999, 0, 50000, 0.1}, {PY2002, 0, 1000, 0.1}, {PY2002, 1001, 5000, 0.12},
{PY2002, 5001, 50000, 0.14}, {PY2003, 0, 2000, 0.1}, {PY2003, 2001, 5000, 0.12}}

DatabaseLink User Guide | 67

More complex SELECT statements using INNER JOIN and OUTER JOIN can be used in a FROM
clause to combine records from two tables.

SQLExecute[conn,
"SELECT DISTINCT TITLES.TITLE FROM TITLES INNER JOIN ROYSCHED ON
TITLES.TITLE_ID=ROYSCHED.TITLE_ID WHERE
TITLES.PUB_ID='0877' AND ROYSCHED.ROYALTY > .1"]

{{Hamburger Again!}, {How to Burn a Compact Disk}, {Let Them Eat Cake!},
{Made to Wonder: Cooking the Macabre}, {Too Many Cooks}, {Treasures of the Sierra Madre}}

SQLExecute[conn,

"SELECT T.TITLE, T.TITLE_ID, MIN(R.ROYALTY) FROM ROYSCHED R, TITLES T LEFT
OUTER JOIN ROYSCHED ON T.TITLE_ID = R.TITLE_ID GROUP BY T.TITLE, T.TITLE_ID
ORDER BY R.ROYALTY, T.TITLE DESC", "ShowColumnHeadings" - True] // TableForm

$Failed

This closes the connection.

CloseSQLConnection[conn]

Creating Tables with Raw SQL

The raw SQL command CREATE TABLE creates tables in a database. An alternative is to use the
Mathematica command SQLCreateTable, described in "Creating Tables".

If you find that the examples in this tutorial do not work as shown, you may need to
install or restore the example database with the DatabaseExamples™ package, as
described in "Using the Example Databases".
When creating a table, the result of sQLExecute is an integer specifying the number of rows
affected by the query. If the table is created correctly, this integer will always be zero as no
rows are affected when creating a new table.

Here is an example that creates a table. This loads DatabaselLink and connects to the demo
database.

Needs ["DatabaseLink™"];
conn = OpenSQLConnection|["demo"];

When a table is created, options can be given to restrict how data is stored within the database.
In the following, a table is created with four columns. The USERNAME is a string-based column
that cannot be Null and is the primary key. (A primary key is important to a table as it
uniquely identifies a row within the table.) The other three columns (ADDRESS, CITY, and

ZIPCODE) are regular string-based columns. However, they must be unique among all rows.

68 | DatabaselLink User Guide

SQLExecute[conn,
"CREATE TABLE ADDRESSES (
USERNAME VARCHAR NOT NULL PRIMARY KEY,
ADDRESS VARCHAR,
CITY VARCHAR,
ZIPCODE VARCHAR,
UNIQUE (ADDRESS, CITY, ZIPCODE))"]

In this example, a table with three columns is created. The first column is an integer that is an
identity. This means that it is the primary key for the table and its value will be automatically
incremented in each row. In other words, the value is not required when data is inserted;
instead, the value will be the next available increment. The USERNAME is a string-based column
that is the foreign key to the ADDRESSES table. The third column is a bit that has a default of 1

(i.e. if a value is not supplied when data is inserted it will be set to 1).

SQLExecute[conn, "CREATE TABLE MAILER (
MAILERID INT IDENTITY,
USERNAME VARCHAR NOT NULL,
SENDMAILER BIT DEFAULT 'l' NOT NULL,
FOREIGN KEY (USERNAME) REFERENCES ADDRESSES (USERNAME))"]

SQLTableNames verifies the tables exist in the database.

SQLTableNames [conn, "ADDRESSES"]

{ADDRESSES }

SQLTableNames [conn, "MAILER"]

{MAILER}

SQLColumnNames verifies the columns were created in the database.

SQLColumnNames [conn, "ADDRESSES"]

{ {(ADDRESSES, USERNAME}, {ADDRESSES, ADDRESS}, {ADDRESSES, CITY}, {ADDRESSES, ZIPCODE} }

SQLColumnNames [conn, "MAILER"]

{{MAILER, MAILERID}, {MAILER, USERNAME}, {MAILER, SENDMAILER}}

This deletes the tables and closes the connection.

SQLExecute[conn, "DROP TABLE MAILER"];
SQLExecute[conn, "DROP TABLE ADDRESSES"];
CloseSQLConnection[conn]

Other options may be available to you when creating tables depending on the database being
used. See your database documentation for information on what options are specifically

available.

DatabaseLink User Guide | 69

Inserting Data with Raw SQL

The SQL command INSERT inserts data into a database. An alternative is to use the Mathemat-
ica command sQLInsert, as described in "Inserting Data".

If you find that the examples in this tutorial do not work as shown, you may need to
install or restore the example database with the DatabaseExamples™ package, as
described in "Using the Example Databases".
When inserting data, the result of SQLExecute is an integer specifying the number of rows
affected by the query.

Here is an example that inserts data. This loads DatabaselLink and connects to the demo
database.

Needs ["DatabaseLink™"];
conn = OpenSQLConnection|["demo"];

As discussed in "Creating Tables with Raw SQL", the ADDRESSES and MAILER tables should be
Created.

SQLExecute[conn,
"CREATE TABLE ADDRESSES (
USERNAME VARCHAR NOT NULL PRIMARY KEY,
ADDRESS VARCHAR,
CITY VARCHAR,
ZIPCODE VARCHAR,
UNIQUE (ADDRESS, CITY, ZIPCODE))"];
SQLExecute[conn, "CREATE TABLE MAILER (
MAILERID INT IDENTITY,
USERNAME VARCHAR NOT NULL,
SENDMAILER BIT DEFAULT 'l' NOT NULL,
FOREIGN KEY (USERNAME) REFERENCES ADDRESSES (USERNAME))"];

This demonstrates an SQL statement that inserts a row into the ADDRESSES table.
SQLExecute[conn,

"INSERT INTO ADDRESSES (USERNAME, ADDRESS, CITY, ZIPCODE) VALUES
('userl', '100 Trade Center',6 'Champaign, IL', '61820')"]

A SELECT statement verifies that the data has been added to the table.

SQLExecute[conn, "SELECT * FROM ADDRESSES"]

{{userl, 100 Trade Center, Champaign, IL, 61820}}

70 | DatabaselLink User Guide

The USERNAME column is made to be a primary key, which means that it must be unique. If
you try to insert the same data again, there is an error and the result is $Failed.

SQLExecute[conn,
"INSERT INTO ADDRESSES (USERNAME, ADDRESS, CITY, ZIPCODE) VALUES
('userl', '100 Trade Center', 'Champaign, IL', '61820')"]

$Failed

With this command, the USERNAME parameter is unique, but ADDRESS, CITY, and ZIPCODE
are not. These must also be unique and again there is an error.

SQLExecute[conn,
"INSERT INTO ADDRESSES (USERNAME, ADDRESS, CITY, ZIPCODE) VALUES
('user2', '100 Trade Center', 'Champaign, IL', '61820')"]

$Failed

This inserts unique values of ADDRESS, CITY, and ZIPCODE.

SQLExecute[conn,
"INSERT INTO ADDRESSES (USERNAME, ADDRESS, CITY, ZIPCODE) VALUES
('user2', '200 Trade Center', 'Champaign, IL', '61820')"]

A SELECT statement verifies that the data has been added to the table.

SQLExecute[conn, "SELECT * FROM ADDRESSES"]

{{userl, 100 Trade Center, Champaign, IL, 61820},

{user2, 200 Trade Center, Champaign, IL, 61820}}
A prepared statement may be more useful for working with data to insert. In addition,
SQLArgument may be useful to reduce the number of argument fields in the prepared state-

ment. SQLArgument is described in Argument Sequences in SQL-Style Queries.

SQLExecute[conn,
"INSERT INTO ADDRESSES (USERNAME, ADDRESS, CITY, ZIPCODE) VALUES
(1),
{SQLArgument ["user3", "300 Trade Center", "Champaign, IL", "61820"]}]

DatabaseLink User Guide | 71

A SELECT statement verifies that the data has been added to the table.

SQLExecute[conn, "SELECT * FROM ADDRESSES"]

{{userl, 100 Trade Center, Champaign, IL, 61820},

{user2, 200 Trade Center, Champaign, IL, 61820},

{user3, 300 Trade Center, Champaign, IL, 61820}}
Identity columns are very useful as they automatically increment their values and do not
require a value. They are also the primary key for the table, which means they uniquely identify
a row. Identity values should be set to Null in a SQL statement.

SQLColumnNames [conn, "MAILER"]

{{MAILER, MAILERID}, {MAILER, USERNAME}, {MAILER, SENDMAILER}}

SQLExecute[conn, "INSERT INTO MAILER
(MAILERID, USERNAME, SENDMAILER) VALUES (NULL, 'userl’', 0)"]

1

A SELECT statement verifies that the data has been added to the table.

SQLExecute[conn, "SELECT * FROM MAILER"]

{{0, userl, False}}

Since USERNAME is a foreign key, its value must be present in ADDRESSES. The following fails
because user4 is not present in ADDRESSES.

SQLExecute[conn, "INSERT INTO MAILER
(MAILERID, USERNAME, SENDMAILER) VALUES (NULL, 'user4’', 0)"]

$Failed

The SENDMAILER column has a default value and is therefore not required when data is
inserted.

SQLExecute[conn,
"INSERT INTO MAILER (MAILERID, USERNAME) VALUES (NULL, 'user2')"]

1

A SELECT statement verifies that the data exists in the database and ties the values together.

SQLExecute[conn,
"SELECT USERNAME, ADDRESS, CITY, ZIPCODE, SENDMAILER FROM ADDRESSES,
MAILER WHERE ADDRESSES.USERNAME = MAILER.USERNAME",
"ShowColumnHeadings" » True] // TableForm
USERNAME ADDRESS CITY ZIPCODE SENDMAILER
userl 100 Trade Center Champaign, IL 61820 False
user?2 200 Trade Center Champaign, IL 61820 False

72 | DatabaselLink User Guide

This deletes the tables and closes the connection.

SQLExecute[conn, "DROP TABLE MAILER"];
SQLExecute[conn, "DROP TABLE ADDRESSES"];
CloseSQLConnection[conn]

Updating Data with Raw SQL

The raw SQL command UPDATE updates data in a database. An alternative is to use the Mathe-

matica command sQLUpdate, described in "Updating Data".

If you find that the examples in this tutorial do not work as shown, you may need to
install or restore the example database with the DatabaseExamples~ package, as
described in "Using the Example Databases".
When updating data, the result of sQLExecute is an integer specifying the number of rows
affected by the query.

Here is an example that updates data. This loads DatabaselLink and connects to the demo
database.

Needs ["DatabaseLink™ "] ;
conn = OpenSQLConnection|["demo"];

As discussed in "Creating Tables with Raw SQL", the ADDRESSES and MAILER tables should be
created.

SQLExecute[conn,
"CREATE TABLE ADDRESSES (
USERNAME VARCHAR NOT NULL PRIMARY KEY,
ADDRESS VARCHAR,
CITY VARCHAR,
ZIPCODE VARCHAR,
UNIQUE (ADDRESS, CITY, ZIPCODE))"];
SQLExecute[conn, "CREATE TABLE MAILER (
MAILERID INT IDENTITY,
USERNAME VARCHAR NOT NULL,
SENDMAILER BIT DEFAULT 'l' NOT NULL,
FOREIGN KEY (USERNAME) REFERENCES ADDRESSES (USERNAME))"];
SQLExecute[conn,
"INSERT INTO ADDRESSES (USERNAME, ADDRESS, CITY, ZIPCODE) VALUES ("1%)",
{{SQLArgument ["userl”, "100 Trade Center", "Champaign, IL", "61820"]},
{SQLArgument ["user2", "200 Trade Center", "Champaign, IL", "61820"]},
{SQLArgument ["user3", "300 Trade Center", "Champaign, IL", "61820"]}}
17
SQLExecute[conn,
"INSERT INTO MAILER (MAILERID, USERNAME, SENDMAILER) VALUES ("1°)",
{{SQLArgument [Null, "userl", False]},
{sQLArgument [Null, "user2", False]}}
1;

DatabaseLink User Guide | 73

This executes an SQL statement that updates a row in the MAILER table. This query updates
the SENDMAILER column based on the value of USERNAME. Many update statements may be

created using conditions that work with values in columns.

SQLExecute[conn,
"UPDATE MAILER SET SENDMAILER = 1 WHERE USERNAME = 'userl'"]

1

A SELECT statement verifies that the data has been changed in the table.

SQLExecute[conn, "SELECT * FROM MAILER"]

{{0, userl, True}, {1, user2, False}}

Using prepared statements, you can dynamically create SQL statements that update data within
the database. You can combine this with a simple Mathematica function. This example updates

the address for a particular user.

SetAddress [username_String, address_String] :=
SQLExecute[conn,
"UPDATE ADDRESSES SET ADDRESS = ~2° WHERE USERNAME = "1°",
{username, address}]

SetAddress["userl”, "100 Trade Center Office 123"]
1

A SELECT statement verifies that the data has been changed in the table.

SQLExecute[conn, "SELECT * FROM ADDRESSES"]

{{userl, 100 Trade Center Office 123, Champaign, IL, 61820},
{user2, 200 Trade Center, Champaign, IL, 61820},
{user3, 300 Trade Center, Champaign, IL, 61820}}

The same restrictions that apply to inserts also apply to updates. Thus, if you try to update an
ADDRESS value to equal the ADDRESS value of another row, an error will be returned; this
table requires them to be unique.

SetAddress["userl”, "200 Trade Center"]

$Failed

This deletes the tables and closes the connection.

SQLExecute [conn, "DROP TABLE MAILER"];
SQLExecute [conn, "DROP TABLE ADDRESSES"];
CloseSQLConnection[conn]

74 | DatabaselLink User Guide

Deleting Data with Raw SQL

The raw SQL command DELETE deletes data from a database. An alternative is to use the

Mathematica command sQLDelete, described in "Deleting Data".

If you find that the examples in this tutorial do not work as shown, you may need to
install or restore the example database with the DatabaseExamples™ package, as
described in "Using the Example Databases".
When deleting data, the result of SQLExecute is an integer specifying the number of rows
affected by the query.

Here is an example that removes data. This loads DatabaselLink and connects to the demo
database.

Needs ["DatabaseLink™"];
conn = OpenSQLConnection|["demo"];

As discussed in "Creating Tables with Raw SQL", the ADDRESSES and MAILER tables should be
Created.

SQLExecute[conn,
"CREATE TABLE ADDRESSES (
USERNAME VARCHAR NOT NULL PRIMARY KEY,
ADDRESS VARCHAR,
CITY VARCHAR,
ZIPCODE VARCHAR,
UNIQUE (ADDRESS, CITY, ZIPCODE))"];
SQLExecute[conn, "CREATE TABLE MAILER (
MAILERID INT IDENTITY,
USERNAME VARCHAR NOT NULL,
SENDMAILER BIT DEFAULT 'l' NOT NULL,
FOREIGN KEY (USERNAME) REFERENCES ADDRESSES (USERNAME))"];
SQLExecute[conn,
"INSERT INTO ADDRESSES (USERNAME, ADDRESS, CITY, ZIPCODE) VALUES ("1%)",
{{SQLArgument ["userl”, "100 Trade Center", "Champaign, IL", "61820"]},
{SQLArgument ["user2", "200 Trade Center", "Champaign, IL", "61820"]},
{SQLArgument ["user3", "300 Trade Center", "Champaign, IL", "61820"]}}
1;
SQLExecute[conn,
"INSERT INTO MAILER (MAILERID, USERNAME, SENDMAILER) VALUES ("1°)",
{{SQLArgument [Null, "userl", False]},
{SQLArgument [Null, "user2", True]}}
1;

Here are the contents of the ADDRESSES table.

SQLExecute[conn, "SELECT * FROM ADDRESSES"]

{{userl, 100 Trade Center, Champaign, IL, 61820},
{user2, 200 Trade Center, Champaign, IL, 61820},
{user3, 300 Trade Center, Champaign, IL, 61820}}

DatabaseLink User Guide | 75

Here are the contents of the MAILER table.

SQLExecute[conn, "SELECT * FROM MAILER"]

{{0, userl, False}, {1, user2, True}}

This executes an SQL statement that deletes a row in the MAILER table. It

deletes any rows for

which the value in the SENDMAILER column is O (or False). Delete statements can be created

using conditions that depend on the values in columns. Since one row has been deleted, the

result is 1.
SQLExecute[conn,

"DELETE FROM MAILER WHERE SENDMAILER = 0"]
1

A SELECT statement verifies that the data has been changed in the table.

SQLExecute[conn, "SELECT » FROM MAILER"]

{{1, user2, True}}

Using prepared statements, you can dynamically create SQL statements that delete data within

the database. You can combine this with a simple Mathematica function. This example deletes

an address for a particular user.
DeleteAddress [username_String] :=

SQLExecute[conn,
"DELETE FROM ADDRESSES WHERE USERNAME = “1 ", {username}]

DeleteAddress["user3"]

1

A SELECT statement verifies that the data has been changed in the table.

SQLExecute[conn, "SELECT * FROM ADDRESSES"]

{{userl, 100 Trade Center, Champaign, IL, 61820},
{user2, 200 Trade Center, Champaign, IL, 61820}}

Any restrictions on the values in tables also apply when data is deleted
delete an ADDRESS value that is referenced by an item in the MAILER table

DeleteAddress["user2"]

$Failed

. Thus, if you try to

, @n error occurs.

76 | DatabaselLink User Guide

This deletes the tables and closes the connection.

SQLExecute[conn, "DROP TABLE MAILER"];
SQLExecute[conn, "DROP TABLE ADDRESSES"];
CloseSQLConnection[conn]

Dropping Tables with Raw SQL

The raw SQL command DROP TABLE drops tables from a database. An alternative is to use the
Mathematica command sQLDropTable, described in "Dropping Tables".

If you find that the examples in this tutorial do not work as shown, you may need to
install or restore the example database with the DatabaseExamples~ package, as
described in "Using the Example Databases".

When dropping a table, the result of sQLExecute will be $Failed if there is an error.

Here is an example that drops a table. This loads DatabaseLink and connects to the demo

database.

Needs ["DatabaseLink™ "] ;
conn = OpenSQLConnection|["demo"];

A simple table is created and two rows are inserted.

SQLExecute[conn,

"CREATE TABLE TEST (COL1l INTEGER, COL2 INTEGER)"];
SQLExecute[conn, "INSERT INTO TEST (COLl1l, COL2) VALUES ("17)",
{{sQLArgument[5, 6]}, {SQLArgument[7, 9]}}

1;

SQLExecute[conn, "SELECT * FROM TEST"]
{{5, 6}, {7, 9}}

An SQL statement that drops the TEST table is executed.

SQLExecute[conn, "DROP TABLE TEST"]
0

This confirms that the TEST table is no longer in the database.

SQLTableNames [conn, "TEST"]
{3

This closes the connection.

CloseSQLConnection[conn]

It should be noted that it is not permitted to drop a table that is referenced by another.

DatabaseLink User Guide | 77

The Database Explorer

The Database Explorer is a graphical interface to DatabaseLink. It provides a number of useful
functions, such as managing connections and working with the data in a database. It can be
launched by loading DatabaseLink and executing the command DatabaseExplorer.

If you find that the examples in this section do not work as shown, you may need to
install or restore the example database with the DatabaseExamples™ package, as

described in "Using the Example Databases".

Needs ["DatabaseLink™"];
DatabaseExplorer|]

- GUIObject -

On Windows it appears as follows.

ti Database Explarer E.‘ @.‘
File Yiew Help
GoLEB O 2K
Gueties: : Connection
Untitled-1* v
Tahles Columns
Show Advanced Options] [Select All
Query | Result
Connection not found. Please open a connection.

At this point you can connect to a database and make queries from its tables. When you have
selected the data, it can be used to create a report as a Mathematica notebook. This will allow

you to work with the results in Mathematica.

This version of the Database Explorer can only select and read data from a database.

78 | DatabaselLink User Guide

The Connection Tool

From the main Database Explorer window, you can open the Connection Tool by using the
Connect to a data source button. It can also be launched by executing the command
OpenSQLConnection, described in Database Connections: Establishing a Connection.

[_ Connection Tool =&
Connections

demao \ Mewy...

graphs
| Edt..

publisher
| Delete..

I Connect H Cancel ‘

If you do not see the sample databases shown in the picture, you may need to install or restore
the example database with the DatabaseExamples™ package, as described in "Using the Exam-

ple Databases".

The Connection Tool shows all of the database connections that appear in configuration files
in DatabaseResources directories. The details of named connections and their configuration
files are described in "Database Resources". From the Connection Tool you can select a connec-
tion and edit or delete it. You can also create a new connection, as described in "New Connec-
tion Wizard".

You can use the Connect button to open a connection to the database that was selected and

update the main Database Explorer window. You can now make queries from the database.

Querying the Database

When you have connected to a database, as described previously, the Database Explorer
shows the actual database in the Connection list and the tables in a scroll list. The following
picture shows the result of connecting to the publisher database. This contains a number of
tables. If you select one of the tables, its columns will be shown, and you can select any of

them. A button for selecting all the columns is also provided.

DatabaseLink User Guide | 79

. f& Database Explorer Q @ @ |

File View Help
BDOBO @D
4
Gueries: ¥ ~Connection
Untitled-1# publisher [v]

Tahles Columns

AUTHORS ROYSCHED, TITLE_ID
EDITORS ROYSCHED, LORANGE
PUBLISHERS ROYSCHED, HIRANGE
ROYSCHED ROYSCHED, ROYALTY
SALES
SALESDETAILS
TITLEAUTHORS
TITLEDITCRS
TITLES

| show sdvanced Options | | select Al

‘ Query ,Resun ‘

51 items.

Clicking the Result tab selects the data from the table and selected columns. Here is an

example.

|4 Database Explarer &=

File Wiew Help

BOOBOST

4
Glueries: W | TITLE_ID LORANGE HIRAMNGE ROYALTY |
Urtitled-1* BS1011 u} 5000 0.1 |.A
ES1011 =001 50000 R
CPa015 o] 2000 0.1
CPS015 2001 4000 012) =
CPa015 4001 50000 046
B=1001 o] 1000 0.1
BS1001 1001 5000 012~
ES1001 001 7000 016
BS1001 7001 50000 0185
P59999 Ju] 50000 0.1
Py2002 o] 1000 0.1
P 2002 1001 5000 012
P2002 001 50000 014
P2003 o] 2000 0.1
P 2003 2001 5000 012
P2003 001 50000 014
LIK3004 o] 1000 01]
Lk3004 1001 2000 012 |il
Query | Result |
31 items. ‘

80 | DatabaselLink User Guide

The Query page also has an Advanced Options button. When you click this button, more
options for forming the query are provided. For example, you can put various conditions on

columns. Here is an example where data in the TITLE_ID column must be greater than 5000.

\ I_’. Database Explorer E} [i
File View Help

GOORT 2K

4

Queries: » Connection
Untitled-1* publisher v
Tahles Columns
AUTHORS 4. ROYSCHED, TITLE_ID =
A v
[Hide Advanced Options | | setectan |

Match Condition (&Il | % | of the following conditions.

ROYSCHED, TITLE_ID | ¥ lis greater than w SDDD|
[sort
Limitta 100 Timeout after | 30 seconds.

D Select distinct rows Show colurmh headings D Get data as strings

Query | Result

51 items.

Clicking the Result tab will run the query and display the results.

Saving Queries

When you have set up a query, it can be saved with the Save the Query button. When you
click this button a Save File dialog box appears that includes a number of locations in
DatabaseResources directories. (DatabaseResources directories are described in "Database

Resources".) When you launch the Database Explorer, all the queries that have been saved
are made available and can be run.

DatabaseLink User Guide | 81

Exporting to Mathematica

When you have set up a query, the data can be extracted into a report in a Mathematica note-

book document. This can be used for printing or for further work in Mathematica.

To generate a report, click the Create a notebook button. Here is a sample notebook.

% Query-1.nb \;Hﬁ]‘
|C:'\Documents and Settings:yt‘wl"

Untitled-1]

1

SQLExecute [SQLSelect[" publisher" , {"RO¥SCHED" },
{SQLColumn[" ROYSCHED . TITLE ID"],

SQLColumn [" ROYSCHED . LORAHGE"],

SQLColumn [" ROYSCHED . HIRAHGE"],

SQLColumn[" ROYSCHED . ROYALTY" 1},
SQLColumn["ROYSCHED . TITLE ID"] = "5000",
SortingColumns — Hone, Distinct - False,

MaxRows — 100, Timeout — 30,
ShowColumnHeadings — True, GetAsStrings — False]] 7/
TableForm

{{TITLE_ID, LORANGE, HIRANGE, ROYALTY},
{B$1001, 0, 1000, 0.1}, {BS1001, 1001, 5000, 0.12},
{BS1001, 5001, 7000, 0.16},

{BS1001, 7001, 50000, 0.18},

{BS1007, 0, 5000, 0.1}, {B31007, 5001, 50000, 0.12},

{BS1011, 0, 5000, 0.1}, {BS1011, 5001, 50000, 0.12},

{B$1014, 0, 4000, 0.1}, {B31014, 4001, 8000, 0.12},

{B$1014, 8001, 50000, 0.14}, {CK4005, 0, 2000, 0.1},

{CKA4005, 2001, 6000, 0.12}, {CK4005, 6001, 8000, 0.16}, v
100%

When the data is in Mathematica, you can process it further with all the tools that Mathematica
provides.

New Connection Wizard

The New Connection Wizard is available from the Connection Tool, which can be launched
either from the Database Explorer (described previously) or by executing the command
OpenSQLConnection[] (described in "Database Connections: Establishing a Connection"). It will
create a new named connection that will be available for future uses. The information about the

connection will be written in a configuration file as described in "Database Resources".

82 | DatabaselLink User Guide

The wizard takes you through the following steps for creating a new connection.

Overview.

. Specify name and description.

. Select type of database.

Specify URL.

. Specify username and password.

o A WNRH

. Choose save location.

7. Review.
A view of the third step is shown in the following picture. In this step, the type of the database
is selected from a list. There is also a button for entering a new type of database. The list
includes types that have been installed in the system as described in Database Resources:
JDBC Configuration.

SQLConnection Wizard
Steps Type of Database
1. Overview Select the type of database.
2. Specify Name and hsgldk N
Description New @J
3. Select Type of Database After choosing the type of database, choose 'MNext' to specify a URL.
4. Specify URL

5. Specify Username and
Password

6. Choose Save Location

7. Review

(e] (s]

Each screen of the wizard has a full description. When it has finished, a new named connection
has been created. This can be used by OpensQLConnection and will show up in the Connection
Tool.

DatabaseLink User Guide | 83

Advanced Topics

Data Type Mapping

One of the most important issues for using a database is the conversion of data as it is stored
and retrieved from a database. This tutorial will discuss how Mathematica expressions interact
with data stored in a database.

The following table shows the mappings between data types and Mathematica expressions. For
example, a Mathematica Integer expression can be stored in SQL integral types such as INTE-
GER and TINYINT. In addition, if data from a column that is of type VARCHAR is selected, this

will result in a Mathematica string expression.

Mathematica expression data type

String used mostly with SQL types such as CHAR, VARCHAR, and
LONGVARCHAR

Integer used mostly with SQL types such as INTEGER, TINYINT,
SMALLINT, and BIGINT

Real used mostly with SQL types such as DOUBLE, FLOAT, and
REAL

True used mostly with the SQL type BIT

False used mostly with the SQL type BIT

Null used mostly with the SQL type NULL

SQLBinary used mostly with SQL types such as BINARY, VARBINARY,
and LONGVARBINARY

SQLDateTime used mostly with SQL types such as DATE, TIME, and
TIMESTAMP

SQLEXpr a special type of binary data that is used to store Mathemat-

ica expressions
The mapping between Mathematica expressions and data types stored in a database.

Atomic Mathematica expressions such as String, Integer, Real, True, False, and Null, and
compound expressions formed from SQLBinary, SQLDateTime, and SQLExpr are converted to

and from Java objects. These Java objects are then processed with JDBC operations taking

84 | DatabaselLink User Guide

advantage of any encoding or escaping functionality that is provided by the JDBC driver. It is
typical that they contain code specific to a database for encoding a value passed into or
received from a query. Since these drivers are often implemented by the makers of the

database, it is very advantageous to use their functionality as much as possible.

Certain data types require Mathematica expressions that use a special wrapper. For example,
the data type BINARY requires a Mathematica expression that uses the wrapper sQLBinary.

These wrappers are necessary to prevent ambiguities in the command structure.

SQLBinary

SQLBinary can be used to work with binary data in a database. This allows you to store data

such as images or compiled code.

If you find that the examples in this section do not work as shown, you may need to
install or restore the example database with the DatabaseExamples™ package, as
described in "Using the Example Databases".

This loads DatabaselLink and connects to the demo database.

Needs ["DatabaseLink™ "] ;
conn = OpenSQLConnection|["demo"];

This generates a string that contains a GIF image.

gif = ExportString[Plot[Sin[x], {x, 0, 2Pi}], "GIF"]

(((000888@@@HHHPPPXXX hhhpppxxxu s> >>>> - _$Ilmmm§S§§ ™7 - . . ¢EECCCIIIxxxBBBGEEIiL+=+ =¥y, hOlya
'.dieha®lé¥}p, ItmBx®i | iyA pH,!E-£rEl :mwpP
Y>VEP-VEARGOIGU =Te4=-k=2aBs \EFJ§69éoh! ! «! !z xhucn=$! 1l 1111 I I mgR bg !!
>> .!
b1 exye, P31 01T 2ap El9 1] 1G06pi!!
E;
Iljge +pfl ! lallaegei 11! E T8 EmMB!! “15- A-mls 104 &= Fi" _0—
\l==1A> Iz &§>+p” =
I (ouFe- i=A limel ..°ai!l +0"0E! I
,XJ8I10"!! —0uaxtaWs>>dUuAs«U!lan, }S6-0li k--! 160»8a50uN!mx IEs&eA lmD
d
~iB~!
\!.In¢ &E)!apP ego! lda 11" x>> —¥8 {&%X3.A,. 0Iop
tii. 06 .1 ksyaiow
\«Isy8: "3 /=7w|09"&.1i0V !:6»- > IN7iiiYi+ Ova¥4%Yd) <!po®eiadoh gy >p"y Te «@aw! ! 1$>> 1§i & o=$
“Iplleen A (Ax!I- 1G!jPA-0004I 11>>R-$@70! =xx—. .4c He—Xaelép . ;& |TNINE6dx@ "G>I1
AR 3 E|
.. ®RaUFVIH/ ! ~=ce¢yY «Hide—=C!! ec—sp” ! figle l1t|ag I"aax!! (ol —f6—Amx Ic-moh 10 & "=78"X
NOQlo . «<£§mp) "= :>> £flz0 1] aam7Xoc @30iA" €I« k !. l0YhJpe &
(A=El-¥ I°Bo 1706& Iy
I.vauLiP-sirKé
\p~§©,\- -«s8¢0m

DatabaseLink User Guide | 85

\a~CAkelv

\ , ix¥stAenlio IESUZ - ®A§e°50! /At<.Brld

f%-ot!Al1aGA ! ~01 +p8bAnAABAS"«>2%,iK %/labk

»Grisli2<«< 160A 51! 2py©Afi, A!% . AlAMCON xPINGRYu7 (1181 [-1Ital10 'p<o! o =0xe=J10.,—9:50]7
fudeszi@l0-z ot +0>>W.14@T¥xfx IA ~4:cEB80--gb.42>89%a:=«U+&v1kiV¥IKii ,s; 14060] 2AugN!Ekc =61«1-B8A- 6
A== \UlT 1I5|Y!R (60WB ;A;miid0[!" +Bu>1EU0-§ol:= leoe -lptom /2a50°
SiT7s:=fiémppdl” spe>«-l0 pC y=CApao:lda! 98 pUOP I !7EA lz60

\iGHA <& (Li

WEA R™ ~P:=D%00! “ilap AJ -«IR@<«<l—=orx (1=a.W !S- (8&23R%0i104D+!"_E |x¢&h!¥AE p-¥ v oyAli=-{0¢

N>>14 11, — £b-%k. N! a)0as8elEp!y {@!ixG | -.rll!légklé ====-Y¥"
m@lac==—1a!? C4F==!8) 9%4Xylxc—to !1éulic . NGi¥D°®!$) ¢MhIt0 &X3a.J ;H¥{1i NE i» -Q.y¥3.yI>6QY0:9
30\ e==—ca.eoE°Y2F0440 11! mIJskE2R8AI6Z ~>>«—¢;100—=TH1 @0—g6l | ul1stg [§1GB2%—Sg|6!6S6T1 ——&EL "«
l—3n In>HASE IcEGhy

\..0O¢hp!IARS ; &Apald lrNgr

o

\G"99h:>> % olFi¢NsNIWy—=! ="R.ii-ML!} :Aw! "i0s>>%
\NO~xoWe¥§aD] Gl d@] I>> —eégusk! *
utxeIoZV6 'BOjr)U! G4%3PA=—t0) M°E! " 0+:poUl¥¢WqUu:EE +Ma«s! 1aa h- [¢" :BFv | "GBEGlyU 11V) G-dg+[$_526]
=x900"lg) [0]kE VgAt !m \hiBN3l—Ta¥H—%40 I 9-
JgK°0. -VIES-«DVAFwlyC- i{¥!"h
12UwG™! |AixalAaI T6 | I-LY «<U0eU\ }wlITC } . U 6TWWi%Az8Ax0! luECr |a92§lacA ~-1 6WA
.:zpNti—=d !) }!m lag!! .0i>MP*DD! xMi }& :===rwh"ee¢ >>
\! QlEg Lo<<
:=¢A6010 - °2=HDE ' P2k—IcR
— R>CE.yd (1AKv!!!A8 . (9E;1!LEl23:="I ["Peqqge_.y°P Iu-oOlw m{A!!!eGO1c !P-.yp 9 nfilp [!

\ "B#-.6
Dh"@AsvEisald6 12..4 1 _alpe«<ujvre!lE C¢5:1glA00.EI°g 1A E (t0xIv-« 115!
$~lpsa 01g~AGe-!vp$ 0I43lcotAlm! !l 2. I"q&pIT8DPY

ailleN = b AA->>IBpal I5A 'Ni=o! ;

ToCharacterCode is used to create a list of bytes that represent the image. This list will also be
wrapped in SQLBinary.

byteData = SQLBinary[ToCharacterCode[gif]];
This creates a table for demonstration purposes.

SQLCreateTable[conn, "BINTABLE",
{SQLColumn["BINCOL", "DataTypeName" -> "BINARY"]}]

This inserts the data into the table.

SQLInsert[conn, "BINTABLE", {"BINCOL"}, {byteData}]

1

The data is now retrieved using sQLSelect. Since it is binary data, it is returned as an
SQLBinary expression.

data = SQLSelect[conn, "BINTABLE"];

Then, the data is converted back into a string using FromCharacterCode.

gifData = FromCharacterCode[data[[1l, 1, 1]1] 1;

86 | DatabaselLink User Guide

Finally, you can import the data and display it.

Show [ImportString[gifData, "GIF"]]

10} .

/
05k } / \‘

0.0

-0k \,

This drops the table and closes the connection.

SQLDropTable[conn, "BINTABLE"];
CloseSQLConnection[conn];

SQLDateTime

SQLDateTime allows you to store and retrieve date and time information. It also allows you to

execute queries that depend on specific dates or times.

If you find that the examples in this section do not work as shown, you may need to
install or restore the example database with the DatabaseExamples™ package, as
described in "Using the Example Databases".

This loads DatabaseLink and connects to the demo database.

Needs ["DatabaseLink™ "] ;
conn = OpenSQLConnection|["demo"];

You can create a table for demonstration purposes. This table contains DATE, TIME, DATETIME,
and TIMESTAMP columns.

SQLCreateTable[conn, "DATETIMETABLE",
{SQLColumn["DATECOL", "DataTypeName" -> "DATE"],
SQLColumn["TIMECOL", "DataTypeName" -> "TIME"],
SQLColumn ["DATETIMECOL", "DataTypeName" -> "DATETIME"],
SQLColumn ["TIMESTAMPCOL", "DataTypeName" -> "TIMESTAMP"]}]

Now, you can insert data into the table. You can use the output of the Mathematica DateList []
function for all data types except for the data type TIME; for this you must specify a list of
three integers that specify hours, minutes and seconds. Note that DATE will only use the date
information from DateList [] and not the time information. DATETIME and TIMESTAMP will use

both and also nanoseconds.

DatabaseLink User Guide | 87

SQLInsert[conn, "DATETIMETABLE",
{"DATECOL", "TIMECOL", "DATETIMECOL", "TIMESTAMPCOL"},
{SQLDateTime [DateList[]], SQLDateTime[{3, 4, 5}],
SQLDateTime [DateList[]], SQLDateTime[DateList[]]}]

SQLSelect can be used to retrieve the data from the database. The data will be returned as
SQLDateTime expressions.

SQLSelect[conn, "DATETIMETABLE"]

{{sQLDateTime[{2006, 2, 7}], SQLDateTime[{3, 4, 5}],
SQLDateTime[{2006, 2, 7, 14, 34, 58.3855}], SQLDateTime[{2006, 2, 7, 14, 34, 58.3855}]}}

This drops the table and closes the connection.

SQLDropTable[conn, "DATETIMETABLE"];
CloseSQLConnection[conn] ;

SQLExpr

SQLExpr can be used to store Mathematica expressions in a database. When they are retrieved,

they are converted back into Mathematica expressions.

If you find that the examples in this section do not work as shown, you may need to
install or restore the example database with the DatabaseExamples™ package, as
described in "Using the Example Databases".

This loads DatabaseLink and connects to the demo database.

Needs ["DatabaseLink™ "] ;
conn = OpenSQLConnection|["demo"];

In order to store a Mathematica expression, you need to create a column that can be used to
store a string such as VARCHAR.

SQLCreateTable[conn, "EXPRTABLE",
{SQLColumn ["EXPRCOL", "DataTypeName" -> "VARCHAR"]}]

0

This inserts a Mathematica expression into the database.

SQLInsert[conn, "EXPRTABLE", {"EXPRCOL"}, {SQLExpr[Sin[x"2]]}]
1

88 | DatabaselLink User Guide

SQLselect retrieves the data from the database. The data is returned as an SQLExpr

expression.
data = SQLSelect[conn, "EXPRTABLE"]

{{SQLExpr [Sin[xz]] }}

This drops the table and closes the connection.

SQLDropTable[conn, "EXPRTABLE"];
CloseSQLConnection[conn];

Result Sets

When many rows of data are returned from a database query, a significant amount of memory

may be required to hold the result. If all of the data does not need to be available at the same

time it might be preferable to get the result row by row or a few rows at a time. Rows can then

be processed individually or in small groups. This functionality is provided by the SQL result set

functions of DatabaselLink.

Basic Result Set Operations

Result set operations involve creating a result set, reading from it, and then closing it. This

section discusses the basic ways to work with result sets.

If you find that the examples in this section do not work as shown, you may need to

install or restore the example database with the DatabaseExamples™ package, as

described in "Using the Example Databases".

SQLResultSetOpen [query] create an SQL result set based on guery
SQLResultSetOpen [query, opts] create an SQL result set using options opts
SQLResultSetRead [rs] read a row from result set rs
SQLResultSetRead [rs, num] read num rows from result set rs
SQLResultSetClose[rs] close result set rs

Basic result set functions.

The query argument to SQLResultSetOpen is a function that selects data using

SQLSelect or SQLExecute. Here is an example.

either

DatabaseLink User Guide | 89

First, the DatabaselLink package is loaded and a connection is made to the publisher example
database.

<< DatabaseLink";
conn = OpenSQLConnection["publisher”];

You can use this connection to read eight rows from the ROYSCHED table.

SQLExecute[conn, "SELECT * FROM roysched", "MaxRows" - 8] // TableForm

BS1011 0 5000 0.1
BS1011 5001 50000 0.12
CP5018 0 2000 0.1
CP5018 2001 4000 0.12
CP5018 4001 50000 0.16
BS1001 0 1000 0.1
BS1001 1001 5000 0.12
BS1001 5001 7000 0.16

You can also obtain a result set from the same query.

rs = SQLResultSetOpen[SQLExecute[conn, "SELECT * FROM roysched", "MaxRows" - 8]]

SQLResultSet [0, <>, Scrollable]

SQLResultSetRead reads from the result set and returns the rows that were read. After reading
from a result set, the next read will read the next row. The following example reads a single
row. Since the result set was just created, it reads the first row.

SQLResultSetRead[rs]

{Bsio011, 0, 5000, 0.1}

The following reads the second and third rows.

SQOLResultSetRead[rs, 2]

{{BS1011, 5001, 50000, 0.12}, {CP5018, 0, 2000, 0.1}}

By default sQLResultSetRead maps data types into various Mathematica expressions. How-
ever, setting the option "GetAsStrings" to True gets results as string expressions.

SQLResultSetRead[rs, "GetAsStrings" - True] // InputForm

{"Cp5018", "2001", "4000", "0.12"}

If you want to process each row individually, you can use a construct like the following. It reads
the remaining rows and sums the last element of each row. Since there were eight rows in the
result set and four had already been read, this operation will read four rows. When
SQLResultSetRead returns something that is not a list you have reached the end of the result

set.

90 | DatabaselLink User Guide

res = 0; While[ListQ[data = SQLResultSetRead[rs]], res += Last[data]];
res

0.54

If you call sQLResultSetRead again it will return Null because the end of the result set has
been reached.

SQLResultSetRead[rs]

This closes the result set and the SQL connection.

SQOLResultSetClose([rs];
CloseSQLConnection[conn];

SQLResultSet Options

SQLResultSetOpen takes an option, "Mode", that controls movement in the result set and

whether the result is sensitive to changes in the database.

First, the DatabaselLink package is loaded and a connection is made to the publisher example

database.

<< DatabaseLink™;
conn = OpenSQLConnection["publisher"];

This opens a result set, but you can only move forwards in this result set.
rs = SQLResultSetOpen [

SQLExecute[conn, "SELECT * FROM roysched", "MaxRows" - 8], Mode - "ForwardOnly"]
SQLResultSet[0, <>, ForwardOnly]

setting description
"ForwardOnly" only moving forwards is possible
"ScrollInsensitive" forward and backward moving is possible and result set

does not pick up changes to the database

"ScrollSensitive" forward and backward moving is possible and result set
picks up changes to the database

Settings of the Mode option of SQLResultSetOpen.

The "Forwardonly" setting of the "Mode" option means that you can only move forwards in the
result set and the result set is insensitive to any changes to the database after the result set
has been created.

DatabaseLink User Guide | 91

The "ScrollInsensitive" setting of the "Mode" option means that you can move forwards and
backwards in the result set and the result set is insensitive to any changes to the database
after the result set has been created.

The "ScrollSensitive" setting of the "Mode" option means that you can move forwards and
backwards in the result set and the result set is sensitive to any changes to the database after
the result set has been created.

You should note that not all databases support moving backwards in the result set or can detect
changes in the data.

In addition you use setOptions to change options of a result set after it has been created. The
following sets the direction in which it is expected that result will be retrieved from the result

set. This helps the driver to optimize retrieval of data.

SetOptions[rs, FetchDirection -» "Forward"]

setting description
"FetchDirection" gives a hint as the direction in which rows will be processed
"FetchSize" gives a hint as to the number of rows that should be

fetched from the database

SQLResultSet options.

Result Set Positions

If you find that the examples in this section do not work as shown, you may need to
install or restore the example database with the DatabaseExamples™ package, as

described in "Using the Example Databases".

SQLResultSetShift [rs,num] shift current position by num in result set rs
SQLResultSetGoto [rs,num] move current position to num in result set rs
SQLResultSetPosition[rs] return current position in result set rs
SQLResultSetCurrent [rs] read the row at the current position in result set rs

Result set position functions.

A result set is created from a database query, and it can be seen as an array of the rows that
match the query. The array actually has two extra positions, one before the first row and one
after the last row. When the result set is created, its current position is before the first row.

92 | DatabaselLink User Guide

This loads DatabaseLink and creates a result set from a query to the publisher database.

<< DatabaseLink";
conn = OpenSQLConnection["publisher"];
rs = SQLResultSetOpen [SQLExecute[conn, "SELECT * FROM roysched", "MaxRows" - 8]]

SQLResultSet[0, <>, Scrollable]

The position is 0, which means that the current position is before the first row.

SQLResultSetPosition[rs]
0

If a read is done at the current position, the result is Null because there is nothing to read
before the first row.

SQLResultSetCurrent|[rs]

The following shifts the result set by two. The result is True, which means that there is some-
thing to read at the new position.

SQLResultSetShift[rs, 2]

True

The result set is nhow positioned at the second row.

SQLResultSetPosition[rs]
2

The following reads the row at the current position.

SQOLResultSetCurrent|[rs]
{Bs1011, 5001, 50000, 0.12}

By default sQLResultSetCurrent maps data types into various Mathematica expressions.

However, setting the option "GetAsStrings" to True gets results as string expressions.

SQLResultSetCurrent[rs, "GetAsStrings" - True] // InputForm

{"BS1011", "5001", "50000", "0.12"}

Now an absolute move is carried out to the eighth row. The result is True, which tells you there
is something to be read.

SQLResultSetGoto[rs, 8]

True

DatabaseLink User Guide | 93

This reads the last row in the result set.

SQOLResultSetCurrent[rs]
{BS1001, 5001, 7000, 0.16}

Now a shift of one is done and the result is False. This means that there is nothing to be read
from this position.

SQLResultSetshift[rs, 1]

False

The current position is nine, which means that the current position is after the last row.

SQLResultSetPosition[rs]
9

If a read is done the result is Null; there is nothing to read after the last row.
SQOLResultSetCurrent|[rs]
SQLResultSetsShift can take a negative shift. If the result set allows moving backwards, this

will shift backwards. sQLResultSetGoto also can take negative settings, these are interpreted

as counting from the end of the result set. The following table summarizes how various argu-

ments work.
SQLResultSetShift [rs, —num] shift num positions to the left in the result set rs
SQLResultSetGoto [rs,0] move to before the first row in the result set rs
SQLResultSetGoto [rs, 3] move to the third row in the result set rs
SQLResultSetGoto [rs,-2] move to the second row from the end in the result set rs
SQLResultSetGoto [rs,-1] move to last row in the result set rs
SQLResultSetGoto [rs, Infinity | move to after the last row in the result set rs

Examples of result set position functions.
This closes the result set and the SQL connection.

SQLResultSetClose[rs];
CloseSQLConnection[conn];

SQLResultSetRead [rs] can be seen as equivalent to
SQLResultSetShift[rs, 1]; SQLResultSetCurrent [rs].

94 | DatabaselLink User Guide

Advanced Result Set Operations

This section discusses advanced result set operations.

If you find that the examples in this section do not work as shown, you may need to

install or restore the example database with the DatabaseExamples™ package, as

described in "Using the Example Databases".

SQLResultSetTake [rs, spec]

SQLResultSetRead [rs, -num]
SQLResultSetColumnNames [rs]

Advanced result set functions.

use specification spec to read from the result set rs

shift current position by num in the result set rs

return the names of the columns in the result set rs

This loads DatabaseLink and creates a result set from a query to the publisher database.

<< DatabaseLink"”;
conn = OpenSQLConnection["publisher"];
rs = SQLResultSetOpen[SQLExecute[conn, "SELECT * FROM roysched",

SQLResultSet [0, <>, Scrollable]

This shows the rows that are in the result set.

SQLExecute[conn,

BS1011
BS1011
CP5018
CP5018
CP5018
BS1001
BS1001
BS1001

0
5001
0
2001
4001
0
1001
5001

5000
50000
2000
4000
50000
1000
5000
7000

0.1
0.12
0.1
0.12
0.16
0.1
0.12
0.16

The following gets rows two through four.

SQLResultSetTake]| rs,

{2, 4}]

"MaxRows" - 8]]

"SELECT * FROM roysched", "MaxRows" - 8] // TableForm

{{Bs1011, 5001, 50000, 0.12}, {CP5018, O, 2000, 0.1}, {CP5018, 2001, 4000, 0.12}}

After the read, the position is at the fourth row.

SQLResultSetPosition[rs]

4

DatabaseLink User Guide | 95

SQLResultSetTake can take from the end of the result set. The following reads the last three
rows of the result set.

SQLResultSetTake[rs, {-3, -1}]

{{BS1001, 0, 1000, 0.1}, {BS1001, 1001, 5000, 0.12}, {BS1001, 5001, 7000, 0.16}}

SQLResultSetPosition[rs]
8

SQLResultSetRead can also take a negative number. This means that it shifts one position to
the left and reads. This is repeated till the requested number has been read. The following goes

to the end of the result set and then reads the previous four rows.

SQLResultSetGoto[rs, Infinity];
SOLResultSetRead[rs, -4]

{{BS1001, 5001, 7000, 0.16}, {BS1001, 1001, 5000, 0.12},
{BS1001, 0, 1000, 0.1}, {CP5018, 4001, 50000, 0.16}}

After the read, the current position is the last thing that was read.

SQLResultSetPosition[rs]
5

By default sQLResultSetTake maps data types into various Mathematica expressions. How-

ever, setting the option "GetAsstrings" to True gets results as string expressions.

SQLResultSetTake[rs, {2, 3}, "GetAsStrings" - True] // InputForm
{{"BS1011", "5001", "50000", "0.12"}, {"CP5018", "0", "2000", "0.1"}}

Finally, you can get the names of the columns in a result set by using

SQLResultSetColumnNames.

SOLResultSetColumnNames [rs]

{ {ROYSCHED, TITLE_ID}, {ROYSCHED, LORANGE}, {ROYSCHED, HIRANGE}, {ROYSCHED, ROYALTY}}

This closes the result set and the SQL connection.

SQOLResultSetClose([rs];
CloseSQLConnection[conn];

96 | DatabaselLink User Guide

Result Set Examples

This section discusses common examples of result set operations.

If you find that the examples in this section do not work as shown, you may need to
install or restore the example database with the DatabaseExamples™ package, as

described in "Using the Example Databases".

<< DatabaseLink”;
conn = OpenSQLConnection["publisher"];
rs = SQLResultSetOpen[SQLExecute[conn, "SELECT * FROM roysched", "MaxRows" - 8]]

SQLResultSet[0, <>, Scrollable]

This shows the rows that are in the result set.

SQLExecute[conn, "SELECT * FROM roysched", "MaxRows" - 8] // TableForm

BS1011 0 5000 0.1
BS1011 5001 50000 0.12
CP5018 0 2000 0.1
CP5018 2001 4000 0.12
CP5018 4001 50000 0.16
BS1001 0 1000 0.1
BS1001 1001 5000 0.12
BS1001 5001 7000 0.16

One common operation is to iterate over all the rows, operating on each of the rows one at a

time. The following example sums the last element of each row.
res = 0; While[ListQ[data = SQLResultSetRead[rs]], res += data[[-1]]];

res
0.98

The following resets the result set to the beginning.

SQOLResultSetGoto[rs, 0]

False

This example extracts every second row of the result set. It does this by shifting and reading

the current row. The result is formed by using Reap and Sow.

Last[Reap[While[SQLResultSetShift[rs, 2], Sow[SQLResultSetCurrent[rs]]]]]

{{{BS1011, 5001, 50000, 0.12}, {CP5018, 2001, 4000, 0.12},
{BS1001, 0, 1000, 0.1}, {BS1001, 5001, 7000, 0.16}}}

This closes the result set and the SQL connection.

SQOLResultSetClose([rs];
CloseSQLConnection[conn];

DatabaseLink User Guide | 97

Performance

Batch Operation

When large amounts of data are being transferred between Mathematica and a database, you
may find that the operations are slow. In this case it may be advantageous to use a batch
operation mode. If many small operations are being repeated, this will be likely to improve the
performance. This section will demonstrate how to use batch statements.

If you find that the examples in this section do not work as shown, you may need to
install or restore the example database with the DatabaseExamples~ package, as
described in "Using the Example Databases".

This loads DatabaseLink and connects to the demo database.

Needs ["DatabaseLink™ "] ;
conn = OpenSQLConnection|["demo"];

This creates a simple table. The table name is BATCH with columns X and Y. The data types for
X and Y are integers.

table = SQLTable["BATCH"];

cols = {SQLColumn["X", "DataTypeName" -> "Integer"],

SQLColumn["Y", "DataTypeName" -> "Integer"]};
SQLCreateTable[conn, table, cols];

This generates data to insert into the table. X will range from 1 to 10,000 and Y will range from
1 to 10, 0002. The data consists of 10,000 rows.

datal = {table, SQLArgument @@ cols, SQLArgument[#, #"2]} & /@ Range[10000];

This uses Map to execute the SQL insert 10,000 times.
AbsoluteTiming[

SQLExecute[conn, "INSERT INTO ~1° (°2°) VALUES ("37)", #] & /@ datal ;]
{25.6562133 Second, Null}

This demonstrates that 10,000 elements have been inserted.

Length[SQLSelect[conn, "BATCH"]]

10000

98 | DatabaselLink User Guide

This uses a batch mode to insert the data. This is done by passing a list of arguments to
SQLExecute. Each element of the list contains an sQLTable expression, an SQLArgument expres-
sion with the sequence of column names, and an SQLArgument expression with the pairs of
values.

AbsoluteTiming[SQLExecute[conn, "INSERT INTO "1 (°2°) VALUES ("37)", datal];]

{7.0755258 Second, Null}

Length[SQLSelect[conn, "BATCH"]]
20000

The batch operation has reduced the time by more than a factor of three. This is because it has

done the insert operation in one call rather than 10,000 smaller calls.

The new table is dropped and the connection closed.

SQLDropTable[conn, "BATCH"];
CloseSQLConnection[conn] ;

Simplifying Substitution Patterns

Simplifying substitution patterns is another technique for increasing performance. This will be
demonstrated using a table identical to the previous example.

If you find that the examples in this section do not work as shown, you may need to
install or restore the example database with the DatabaseExamples™ package, as
described in "Using the Example Databases".

This loads DatabaselLink and connects to the demo database.

Needs ["DatabaseLink™"];
conn = OpenSQLConnection|["demo"];

This creates a simple table. The table name is BATCH with column X and Y. The data types for X
and Y are integers.

table = SQLTable["BATCH"];

cols = {SQLColumn["X", "DataTypeName" -> "Integer"],
SQLColumn["Y", "DataTypeName" -> "Integer"]};

SQLCreateTable[conn, table, cols];

Since the table and columns are always the same for this call, it is faster to place them directly
into a prepared statement rather than substitute values for them each time. It is also faster to

DatabaseLink User Guide | 99

use a list for the values rather than an sQLArgument expression. This creates the data to be
used for the test.

data2 = {#, #"2} & /@ Range[10000];

Now the insert operation is carried out. This has reduced the time for the operation by a factor
of more than 14.

AbsoluteTiming|[
SQLExecute[conn, "INSERT INTO BATCH (X,Y) VALUES ("1°,°2%)", data2];]

{1.7381556 Second, Null}

This confirms that 10,000 inserts have been carried out.

Length[SQLSelect[conn, "BATCH"]]
10000

A final performance improvement can be done by using JDBC syntax for substitutions. This
limits dynamic values of the types of data that may be substituted to only Real, Integer,

String, True, False, Null, SQLBinary, and SQLDateTime. It also uses '?' instead of the "1

notation (the first parameter in the list will replace the first question mark and so on).
Now the operation runs nearly 50 times faster than the original simple operation of repeated
inserts.

AbsoluteTiming [SQLExecute[conn, "INSERT INTO BATCH (X,Y) VALUES (?,?)", data2];]

{0.5451894 Second, Null}

Length[SQLSelect[conn, "BATCH"]]
20000

The Mathematica command SQLInsert uses this last technique. When you pass a table of

values as a parameter to sQLInsert, it uses the fastest way to insert the data.

AbsoluteTiming[SQLInsert[conn, "BATCH", {"X", "Y"}, data2];]

{0.5754777 Second, Null}

Length[SQLSelect[conn, "BATCH"]]
30000

This drops the table and closes the connection.

SQLDropTable[conn, "BATCH"];
CloseSQLConnection[conn];

100 | DatabaselLink User Guide

Result Sets

When many rows of data are returned from a database query, they may require a significant
amount of memory to hold. For your purposes, you may not need to hold all of the data. You
may need to use each row individually as part of a computation or you may only need to sam-
ple the rows. In cases such as these, you may find the result set functionality beneficial. This is

described in "Result Sets".

Descriptive Commands

If the database is very large, then certain descriptive commands, such as querying the number
of tables with sgLTables, can be slow. In this case, if some of the tables in the database have
been placed into catalogs, performance can be improved by using the "catalog" or "Schema"
options. These are described in "Table Structure: Table Description "and" Column Structure:

Column Description".

Connection Pools

Database connection pools are a common way to improve the performance of database opera-
tions. They can be useful because creating a new connection can easily take several seconds to
establish; this is a problem when the database operation is one that only needs a few millisec-
onds. Databaselink provides a connection pool mechanism built on top of the Apache Commons
DBCP, http://jakarta.apache.org/commons/dbcp/index.html.

Working with Connection Pools

If you find that the examples in this tutorial do not work as shown, you may need to
install or restore the example database with the DatabaseExamples™ package, as
described in "Using the Example Databases".

To create a connection from a pool you can set the UseConnectionPool option of

OpenSQLConnection. Here is an example.

DatabaselLink User Guide | 101

First, the DatabaseLink package is loaded. Then a connection using a pool is made to the

publisher example database.

Needs ["DatabaseLink™ "] ;
conn = OpenSQLConnection["publisher", UseConnectionPool - True]

SQLConnection[publisher, 2, Open]

Instead of using the UseConnectionPool option, you could set the default

$SQLUseConnectionPool to True. When Databaselink loads it is False.

$SQLUseConnectionPool

False

value

OpenSQLConnection [src ,UseConnectionPool->True]

connect to a data source using a connection pool

$SQLUseConnectionPool whether to always use connection pools
SQLConnectionPools [] information on all active connection pools
SQLConnectionPools [conn] information on pool for connection conn
SetSQLConnectionPoolOptions [set options for connection pool pool

pool]
SQLConnectionPoolClose [pool] close the connection pool pool

Commands for working with connection pools.

This shows all the connection pools that have been created; there is only one.

SQLConnectionPools|[]

{SQLConnectionPool[«JavaObject[org.apache.commons.dbcp.BasicDataSource]>”

JDBC[HSQL(Standalone), C:\Documents and Settings\twj.WRI\Application
Data\Mathematica\DatabaseResources\Examples\publisher}, 1,

Catalog —» Automatic, Description —» Connection to HSQL publisher database for demos.,

Location - C:\Program Files\Wolfram
Research\Mathematica\6.0_Thin\SystemFiles\Links\DatabaseLink\DatabaseResources\
publisher.m, Name - publisher, Password - None, Properties - {},

ReadOnly - Automatic, RelativePath —» False, TransactionIsolationLevel - Automatic,

UseConnectionPool - True, Username - None, Version-%Z.}}

102 | DatabaselLink User Guide

This shows the connection pool used to connect to the publisher database. You can see some of
the options that the connection pool is using.

pool = SQLConnectionPools [conn]

SQLConnectionPool[«JavaObject[org.apache.commons.dbcp.BasicDataSource]>”
JDBC[HSQL(Standalone), C:\Documents and Settings\twj.WRI\Application

Data\Mathematica\DatabaseResources\Examples\publisher} , 1,

Catalog —» Automatic, Description - Connection to HSQL publisher database for demos.,

Location - C:\Program Files\Wolfram
Research\Mathematica\6.0 Thin\SystemFiles\Links\DatabaseLink\DatabaseResources\publisher
.m, Name - publisher, Password - None, Properties - {}, ReadOnly - Automatic,

RelativePath » False, TransactionIsolationLevel - Automatic,

UseConnectionPool - True, Username - None, VersionAsZ.]

This closes the connection pool, and it also closes any connections that the pool is using.

SQLConnectionPoolClose[pool]

Connection Pool Options

There are a number of options that control how the connection pool operates. This example

shows how to work with them.

First, the DatabaseLink package is loaded. Then a connection using a pool is made to the

publisher example database.

Needs ["DatabaseLink™"];
conn = OpenSQLConnection|["publisher", UseConnectionPool - True]

SQLConnection[publisher, 1, Open]

This shows all the connection pools that have been created; there is only one.

SQLConnectionPools|[]

{SQLConnectionPool[«Javaobject[org.apache.commons.dbcp.BasicDataSource]>”

JDBC[HSQL(Standalone), C:\Documents and Settings\User\Application
Data\Mathematica\DatabaseResources\Examples\publisher}, 1,

Catalog —» Automatic, Description —» Connection to HSQL publisher database for demos.,

Location - C:\Program Files\Wolfram
Research\Mathematica\6.0\SystemFiles\Links\DatabaseLink\DatabaseResources\publisher.m,

Name - publisher, Password - None, Properties - {}, ReadOnly - Automatic,

RelativePath - False,

TransactionIsolationLevel - Automatic,

UseConnectionPool - True, Username - None, Version4>2.}}

DatabaselLink User Guide | 103

This shows the connection pool used to connect to the publisher database. You can see some of
the options that the connection pool is using.

SQLConnectionPools [conn]

SQLConnectionPool[«JavaObject[org.apache.commons.dbcp.BasicDataSource]>”

JDBC[HSQL(Standalone), C:\Documents and Settings\User\Application
Data\Mathematica\DatabaseResources\Examples\publisher} , 1,

Catalog —» Automatic, Description - Connection to HSQL publisher database for demos.,

Location - C:\Program Files\Wolfram
Research\Mathematica\6.0\SystemFiles\Links\DatabaseLink\DatabaseResources\publisher.m,

Name - publisher, Password - None, Properties —» {}, ReadOnly - Automatic,

RelativePath - False,

TransactionIsolationLevel - Automatic,

UseConnectionPool —» True, Username - None, Version—»Z.]

This sets the MaxActiveConnections option of this connection pool.

SetSQLConnectionPoolOptions [SQLConnectionPools[conn], MaxActiveConnections - 8]

SQLConnectionPool[«JavaObject[org.apache.commons.dbcp.BasicDataSource]>”
JDBC[HSQL(Standalone), C:\Documents and Settings\User\Application
Data\Mathematica\DatabaseResourceS\Examples\publisher}, 1,
Catalog —» Automatic, Description - Connection to HSQL publisher database for demos.,
Location - C:\Program Files\Wolfram
Research\Mathematica\6.0\SystemFiles\Links\DatabaseLink\DatabaseResources\publisher.m,
Name - publisher, Password - None, Properties - {}, ReadOnly - Automatic,

RelativePath - False,
TransactionIsolationLevel - Automatic,

UseConnectionPool » True, Username - None, Version—»Z.]

CloseSQLConnection[conn]

SQLConnectionPools [] information on all active connection pools
SQLConnectionPools [conn] information on pool for connection conn
SetSQLConnectionPoolOptions [set options for connection pool pool

pool]
CloseConnectionPool [pool] close the connection pool pool

Functions for working with connection pool options.

option name

"MaxActiveConnections" maximum number of connections to keep in the pool
"MinIdleConnections" minimum number of idle connections to keep in the pool
"MaxIdleConnections" maximum number of idle connections to keep in the pool
"Catalog" location of the database catalog

"ReadOnly" set the connection to be read only
"TransactionIsolationLevel" set transaction isolation for the connection

Connection pool options.

104 | DatabaselLink User Guide

Transactions

Some database operations involve carrying out a sequence of database commands. For exam-
ple, information in two different tables may need to be updated. In these cases it may be very
important that if one update is carried out, the other is also. If only one is done, it may leave
the data inconsistent. You can use database transactions to ensure that all the operations are
carried out. In addition, you can use transactions as a way of backing out of the middle of a

sequence of operations. This tutorial will demonstrate how to use transactions.

If you find that the examples in this tutorial do not work as shown, you may need to
install or restore the example database with the DatabaseExamples™ package, as
described in "Using the Example Databases".

SQLBeginTransaction [conn] begin an SQL transaction
SQLCommitTransaction [conn] permanently commit an SQL transaction to the database
SQLRollbackTransaction [conn] terminate an SQL transaction (do not change the database)

Functions for executing SQL transactions.
This loads DatabaseLink and connects to the demo database.

Needs ["DatabaseLink™"];
conn = OpenSQLConnection|["demo"];

This creates a table to use for testing.

table = SQLTable["TEST"];

cols = {SQLColumn["X", "DataTypeName" -> "Integer"],
SQLColumn["Y", "DataTypeName" -> "Integer"]};

SQLCreateTable[conn, table, cols];

SQLInsert[conn, "TEST", {"X", "Y"}, {5, 6}];

This uses sQLselect to view data in the TEST table. There is one row.

SQLSelect[conn, "TEST", "ShowColumnHeadings" - True] // TableForm

SQLBeginTransaction is used to start a transaction.

SQLBeginTransaction[conn]

DatabaselLink User Guide | 105

Next, two different insert operations are carried out.

}, {61, 80}];
"}, {72, 5}1;

SQLInsert[conn, "TEST", {"X",
{"x",

¥
SQLInsert[conn, "TEST", b'e

This shows that two rows have been inserted.

SQLSelect[conn, "TEST"] // TableForm

5 6
61 80
72 5

If SQLRollbackTransaction is used, the database is returned to the point before the transac-

tion began. The two rows are no longer present.

SQLRollbackTransaction[conn];
SQLSelect[conn, "TEST"] // TableForm

5 6

A transaction is closed when it is rolled back. If any more transactions are required, a new

transaction must be started. Here, a new transaction is started and the two rows are reinserted.

SQLBeginTransaction[conn] ;
SQLInsert[conn, "TEST", {

", "Y'}, {111, 141}];
SQLInsert[conn, "TEST", {

R
x", "¥"}, {190, 1}1;
This uses sQLCommitTransaction to commit the data permanently.

SQLCommitTransaction[conn];
SQLSelect[conn, "TEST"] // TableForm

5 6
111 141
190 1

A transaction is closed when it is committed. If any more transactions are required, a new
transaction must be started. In addition, once a transaction has been committed, it cannot be
rolled back. Transactions may be split up using an sQLSavepoint; a rollback can be made to a

specific savepoint.

The following begins a transaction and inserts some data.

SQLBeginTransaction[conn];
SQLInsert[conn, "TEST", {"X", "Y"}, {22, 11}];

A savepoint is created.

savepoint = SQLSetSavepoint[conn, "savepointl"]

SQLSavepoint [«JavaObject [org.hsgldb. jdbc.jdbcSavepoint] »]

106 | DatabaselLink User Guide

Here some more data is inserted into the database.

SQLInsert[conn, "TEST", {"X", "Y"}, {17, 22}];
SQLSelect[conn, "TEST"] // TableForm

5 6
111 141
190 1
22 11
17 22

The transaction is rolled back to the savepoint using SQLRollbackTransaction.

SQLRollbackTransaction[conn, savepoint]

This shows that the last insert has not taken place.

SQLSelect[conn, "TEST"] // TableForm

5 6
111 141
190 1
22 11

This drops the TEST table and closes the connection.

SQLDropTable[conn, "TEST"];
CloseSQLConnection[conn];

Transaction Isolation

When working with database transactions with more than one concurrent user various problems
with reading data can occur. These problems are can be termed as 'dirty reads', 'non-repeat-
able reads', and 'phantom reads'. There are two types of solution to these problems, one
involves setting options for the database connection to isolate transactions, and the other
involves other checks on data or instance by checking timestamps. Each of these strategies
have advantages and disadvantages, for example, setting database options can degrade the

performance of the database for concurrent usage.

The actual details of these strategies are really outside the scope of this documentation. How-
ever, DatabaselLink has a number of ways to set options of the connection to help isolate transac
tions. This is done with the TransactionIsolationLevel option of OpenSQLConnection. This

option can also be set for an existing connection with setOptions.

DatabaselLink User Guide | 107

setting description

ReadUncommitted no isolation

ReadCommitted prevent dirty reads

RepeatableRead prevent dirty reads and non repeatable reads

Serializable prevent dirty reads, non repeatable reads, and phantom
reads

Settings of the TransactionIsolationLevel option.

Secure Socket Layer (SSL)

Secure Socket Layer (SSL) is a protocol for providing secure transactions between servers and
clients. It uses a certificate to identify one or both ends of the transaction. It can be useful for
database communications to protect any authentication information, such as usernames and

passwords, as well as the actual data itself.

Some databases support SSL and some do not. To know if your database supports SSL, you
need to study the documentation for your database and work with the administrator of the
database. If your database can be configured to use SSL with JDBC, it should be possible to
configure DatabaseLink to communicate with the database using SSL.

One database that does support SSL is MySQL, and it is possible for DatabaseLink to communi-
cate with a MySQL database using SSL. You will need to configure the database to provide SSL
communications and generate a certificate. To do this you will need to work with the administra-

tor of your database.
There are typically four stages to setting up SSL to work with a MySQL database.
1. Get a certificate of authority.
2. Generate a truststore file.
3. Configure Java to use the truststore.
4, Configure the connection to use SSL.

The administrator of the server should be able to provide the certificate of authority, suppose

this is called ca.cer.

108 | DatabaselLink User Guide

You need to generate the truststore file. This can be done with the keytool executable that is
part of a Java Runtime Environment (JRE). You can use the version included in the JRE that
ships with Mathematica. To generate the truststore file, you would need to execute the follow-

ing in some type of shell (e.g. a command prompt on Windows).
keytool -import -file CA.cer -keystore truststore

This will generate the file truststore.

The next stage is to modify your Java command line for J/Link to refer to the truststore file.
This can be done by adding the following settings, in which you need to give the full pathname
to the truststore file that was generated.
-Djavax.net.ssl.trustStore=c:\java-examples\truststore
-Djavax.net.ssl.trustStorePassword=keystore
If you are running Mathematica inside a web server, such as webMathematica, you will need to
add these settings to the server that launches Java by following your server documentation. If
you are running Mathematica in a stand-alone fashion, you can add the settings to the options
of Java by executing the following before you load DatabaseLink.
Needs["JLink™"7];
SetOptions[InstallJava, JVMArguments ->"-Djavax.net.ssl.trustStore=c:\java-
examples\truststore -Djavax.net.ssl.trustStorePassword=keystore"]
Finally, you need to modify the URL that connects to the database. This can be done by placing
an extra parameter with a '?', as shown in the following.
OpenSQLConnection[JDBC["com.mysqgl.jdbc.Driver",
"databases:1234/conn test?useSSL=true"], "Username" -> "test"]
It should be noted that not all databases support SSL and that databases other than MySQL
that do support SSL may need to be configured in a different way to work with DatabaseLink.

DatabaselLink User Guide | 109

Examples

Command Cache

This example shows how to use a private database to store Mathematica commands and query

the data from Java and Mathematica.

If you find that the examples in this section do not work as shown, you may need to
install or restore the example database with the DatabaseExamples™ package, as
described in "Using the Example Databases".

The example code is loaded from the Examples subdirectory of DatabaseLink.

<< DatabaseLink Examples CommandCache"

The command cache allows you to store Mathematica expressions as typeset box expressions
data in a database. storeCommand is used to store the boxes in the database.

StoreCommand [MakeBoxes[2 + 2]]

RowBox [{2, +, 2}]

The data can then be retrieved from the database using CommandCache[].

CommandCache[]
{{0, SQLExpr [RowBox[{2, +, 2}]], Plus[2, 2],
sQLBinary({71, 73, 70, 56, 57, 97, 31, 0, 17, O, 240, 0, O, O, O, O, 255, 255, 255, 33, 249, 4,
i, 0,0,1, 0, 44, 0, 0, 0, 0, 31, 0, 17, 0, O, 2, 46, 140, 143, 169, 203, 237, 15, 163,
156, 180, 42, 128, 41, 6, 140, 27, 15, 129, 96, 103, 141, 215, 98, 38, 41, 178, 6, 173,
235, 172, 91, 166, 198, 71, 42, 223, 232, 124, 94, 188, 5, 12, 10, 135, 68, 68, 1, 0, 59}],
SQLDateTime[2004, 8, 4, 16, 57, 56.7309]}}
Several attributes of each command are stored in the database. Each command is given an ID,
generated when it is stored. The expression is stored as a string formatted with FullForm; this
allows it to be reused in Mathematica. In addition, an image of the expression is saved as well
as the time at which the data was stored. GetCommandAttributes can be used to get the
attribute names. These can be used to filter the data returned.
GetCommandAttributes|]

{ID, EXPR, FULLFORM, IMAGE, USED, }

CommandCache[{"ID", "FULLFORM"}]

{{0, Plus[2, 2]}}

110 | DatabaselLink User Guide

The following example finds all results that contain Power.

StoreCommand [MakeBoxes[2 " 2]]

SuperscriptBox[2, 2]

CommandCache[{"ID", "FULLFORM"}]

{{0, Plus[2, 211}

2]}, {1, Power(2,

CommandCache["Power",

2113

{"ID", "FULLFORM"}]

{{1, Power|[2,

A command can also be retrieved using its ID.

CommandCache[1]

{{1, SQLExpr [SuperscriptBox[2, 2]], Power[2, 2],
sQLBinary({71, 73, 70, 56, 57, 97, 17, 0, 17, 0, 240, 0, O, O, O, O, 255, 255, 255, 33,
249, 4,1, 0, 0, 1, O, 44, 0, 0, O, O, 17, O, 17, O, O, 2, 30, 140, 143, 169, 11, 235,
221, 156, 138, 50, 209, 9, 232, 181, 39, 230, 61, 85, 156, 216, 145, 165, 25, 104,
228, 151, 161, 238, 11, 187, 5, 0, 59}], SQLDateTime[2004, 8, 4, 16, 58, 8.51198]}}

Another feature of this package is a Java GUI you can use to browse the data. It provides
functionality for managing the data and pasting the data into a notebook.

£ LoE
Fitter:
~
o+ &
72y
: 8 zap
a” + +
(e+)t s it
s 8 3aft 3a'p
o+ — o
(e)2 (u+)Y u+ i
A st 4a g’ 6atgt 4a’p
+ + + +
(e+)Y (u+)P (u+ AT e+ i
5 8° 5apt loa® g 1oa®g? Satp
+ + + +
(ee+)% (u+)% (u+A)* (u+)P e+t
5 ¢ 6ap’
0+ ——t ——— 4
(+ M)E (u+i)°
150 6* 200'@ 15atp! 6o’
+ +
()t (e) (e) us b
7 3 i o§
. P . Ta,e_+21a,6_+ .

CommandBrowser |]

- GUIObject -

DatabaselLink User Guide | 111

The GUI is automatically updated when new commands are added to the database.

)"i]]] , (i, 0, 10}]

Likewise, the GUI is automatically updated when commands are removed. ClearCommandCache

B
(A +u)

Do [StoreCommand [ToBoxes [Expand [[a +

can be used to remove all the data in the command cache.

ClearCommandCache]

0

Graph Database

This example shows a database that stores material generated by Mathematica. Here the mate-
rial involves graphs and a number of properties of these graphs. Even though the number of
graphs is not extremely large, generating the properties of these graphs can take a significant
amount of time. This demonstrates the value of a database for persistent storage of the results

of computations.

Using the Graph Database

To use the graph database you need to load the package.

<< DatabaseLink Examples Graphs™

The first time the package is used you will need to run the RestoreGraphDatabase command. If
you find that the examples in this section do not work as shown, you should also run this com-

mand. This command can take a long time to run, but is only necessary once.

RestoreGraphDatabase[]

The properties of the graphs stored in the database are given by the GraphpProperties function.

GraphProperties|[]

{*, GRAPH, ORDER, EDGES, VERTEXCONNECTIVITY, EDGECONNECTIVITY, DIAMETER, GIRTH,
NUMBEROFSPANNINGTREES, SPECTRUMLENGTH, SIMPLEQ, CONNECTEDQ, BIPARTITEQ, PLANARQ, REGULARQ,
EULERIANQ, HAMILTONIANQ, TREEQ, BICONNECTEDQ, COMPLETEQ, PERFECTQ, SELFCOMPLEMENTARYQ}

112 | DatabaselLink User Guide

Now, you can make a query from the database. This is done with the GraphQuery command.
The following returns all complete graphs.

GraphQuery [{ "COMPLETEQ" - True}]

{{-Graph:<10, 5, Undirected>-}, {-Graph:<15, 6, Undirected>-}, {-Graph:<21, 7, Undirected>-}}

The format used for the graphs is that provided by the Combinatorica package. This draws a
picture of the graph and also returns a symbolic object that could be used for further computa-

tion by Mathematica.

The following returns the first three regular graphs.

GraphQuery [{ "REGULARQ" -» True}, "MaxHits" - 3]

L DA

{{-Graph:<5, 5, Undirected>-}, {-Graph:<10, 5, Undirected>-}, {-Graph:<6, 6, Undirected>-}}

DatabaselLink User Guide | 113

The following finds Hamiltonian graphs, returning their diameter, girth, and edge information.
As before, a picture of the graph is also drawn.

GraphQuery [{ "HAMILTONIANQ" -» True}, {"diameter", "girth", "edges"}]

- XPXp XD
> EPEHED

{{2I 5’ 5}’ {2, 3I 6}’ {2I 3’ 7}l {2, 3’ 8}’ {2I 3’ 7}l {2l 3’ 8}’ {2I 3’ 9}l {ll 3’ lo}l {3l 6’ 6}}

One important aspect of this example package is that it shows commands that are specific to
the issue of finding graphs rather than general database commands. The details of the

database interactions are all placed in the implementation.

The Graph Database Package

The graph database package provides three functions.

GraphProperties|] list all graph properties within the database
GraphQuery [{ props}] search the database for graphs that match props
RestoreGraphDatabase]|] restore the data in the database (can be slow)

Graph database package functions.

The RestoreGraphDatabase function recomputes all the data in the database and can take
some time to complete. Generally you do not want to run this, unless you have corrupted the

database in some way.

114 | DatabaselLink User Guide

Appendix

Database Reference

HSQLDB

HSQLDB is a relational database engine written in Java that is bundled with DatabaselLink,
which also contains a JDBC driver and necessary configuration. It offers a small (about 100k),
fast database engine, which can run in a variety of ways, including server, in-process, and in-
memory modes. DatabaseLink is configured to use an in-process stand-alone mode. This makes
it very simple to run and use (no special configuration is required). However, it means that
nothing else can connect to the database and only one connection to a particular database can

be made at any one time (even by multiple copies of Mathematica).

To create a new database with HSQLDB, you just need to make a connection to a database that
does not already exist, and HSQLDB will create it for you. You could use the Connection Tool,
which will deploy a wizard and write a named connection. This is described in "The Database
Explorer: The Connection Tool". You could also write a connection file and place this in a
DatabaseResources directory, as described in "Database Resources: Connection Configuration".
Finally, you can use OpenSQLConnection as follows. All of these issues are described in
"Database Connections".

The following is a sample command that will create a new database called example.

conn = OpenSQLConnection[JDBC["HSQL (Standalone) ",
ToFileName [{$UserAddOnsDirectory, "Applications”, "DatabaseLink", "Examples"},
"example"]], "Name" -» "manualA", "Username" - "sa"]

The details of the HSQLDB driver in DatabaselLink can be seen as follows.

Needs ["DatabaseLink™ "] ;
JDBCDrivers ["HSQL (Standalone) "]

JDBCDriver[Name4>HSQL(Standalone),
Driver - org.hsqldb. jdbcDriver, Protocol - jdbc:hsgldb:file:, Version- 1.1,
Description » HSQL Database Engine (In-Process Mode) - Version 1.8.0.0 - This mode
runs the database engine as part of your application program in the
same Java Virtual Machine. The main drawback is that it is not possible
by default to connect to the database from outside your application.,
Location — C:\Documents and Settings\All Users\Application
Data\Mathematica\Applications\DatabaseLink\DatabaseResources\hsqldbstandalone.m]

DatabaselLink User Guide | 115

To connect to an HSQLDB database you would typically give the filename, username, and
password as in the following example.

OpenSQLConnection[JDBC["HSQL (Standalone) ", "file"], "Username" -> "user",
"Password" -> "password"]

For more information, see hsqldb.sourceforge.net/.

MySQL

The MySQL database server is an extremely popular open source database. It is used in many

different types of applications. DatabaseLink comes configured with a driver for MySQL.

If you want to create a new database for MySQL, you should contact the server administrator.

The details of the MySQL driver in DatabaseLink can be seen as follows.

Needs ["DatabaseLink™ "] ;
JDBCDrivers ["MySQL (Connector/J) "]

JDBCDriver [Name - MySQL (Connector/J), Driver - com.mysql.jdbc.Driver,
Protocol - jdbc:mysqgl://, Version - 1.1, Description -
MySQL using Connector/J - Version 3.1.10 - This supports all known MySQL server versions.,

Location - C:\Documents and Settings\All Users\Application
Data\Mathematica\Applications\DatabaseLink\DatabaseResources\mysql.m}

To connect to a MySQL database you would typically set the server, database, username, and

password as in the following example.
OpenSQLConnection [

JDBC ["MySQL (Connector/J) ", "server/database"], "Username" -> "user",
"Password" -> "password"]

For more information, see www.mysqgl.com/.

OoDBC

Open Database Connectivity (ODBC) is a general way to connect to SQL databases that is
supported in a number of operating systems, particularly Microsoft Windows. DatabaseLink

comes configured with a driver for ODBC connections.

Under Windows, there is an ODBC Data Source Administrator that can be used to connect to a
variety of different databases. Database Connections: ODBC Connections shows how to connect
to a database using ODBC.

116 | DatabaselLink User Guide

The details of the ODBC driver in DatabaselLink can be seen as follows.

Needs ["DatabaseLink™"];
JDBCDrivers ["ODBC (DSN) "]

JDBCDriver [Name - ODBC (DSN) , Driver - sun. jdbc.odbc.JdbcOdbcDriver,
Protocol - jdbc:odbc:, Version > 1.1, Description -
JDBC-ODBC Bridge distributed with the Sun JVM. This driver only works on Windows.,
Location - C:\Documents and Settings\All Users\Application
Data\Mathematica\Applications\DatabaseLink\DatabaseResources\odbcdsn.m}

To connect to an ODBC database you would typically use a data source name as in the following
example.

OpenSQLConnection[JDBC["ODBC (DSN) ", "datasource"]]

SQL Server
Support for Microsoft SQL Server is provided by the jTDS driver.

The details of the SQL Server driver in DatabaseLink can be seen as follows.

Needs ["DatabaseLink™"];
JDBCDrivers|["Microsoft SQL Server (jTDS)"]

To connect to a Microsoft SQL Server database you would typically set the server, database,

username, and password as in the following example.

OpenSQLConnection[JDBC["Microsoft SQL Server (jTDS)", "server/database"],
"Username" -> "user", "Password" -> "password"]

For more information, see: jtds.sourceforge.net/ an open source driver for Microsoft SQL Server
and Sybase.

Sybase
Support for Sybase is provided by the jTDS driver.

The details of the Sybase driver in DatabaselLink can be seen as follows.

Needs ["DatabaseLink™"];
JDBCDrivers|["Sybase (jTDS)"]

DatabaselLink User Guide | 117

To connect to a Microsoft SQL Server database you would typically set the server, database,

username, and password as in the following example.

OpenSQLConnection[JDBC["Sybase (jTDS)", "server/database"],
"Username"” -> "user", "Password" -> "password"]

For more information, see: jtds.sourceforge.net/ an open source driver for Microsoft SQL Server
and Sybase.

Other Databases

DatabaselLink can connect to any other type of database with a JDBC driver. You can install the
driver by following the instructions in Database Connections: JDBC Connections and Database

Resources: JDBC Configuration.

Information on how to obtain and install drivers as well as configuring connection information
for a number of databases is available at www.wolfram.com/solutions/connections/database/

vendors.html.

JDBC

The Java Database Connectivity API: java.sun.com/products/jdbc/.

Using the Example Databases

DatabaselLink contains a number of example databases (many use HSQLDB). These allow you
to try examples in the documentation and learn the details of working with databases in Mathe-
matica. The examples are configured to run in $UserBaseDirectory/DatabaseResources/EX-
amples (they cannot reside inside the main Mathematica installation directory). To run these
examples you will need to install them. You can do this by copying the files or by running the
command DatabaseExamplesBuild from the DatabaseLink DatabaseExamples™ package.

This function will install the examples (if necessary) or restore them to their original state.

The following shows the location of the database examples on this computer.

ToFileName[{$UserBaseDirectory, "DatabaseResources"}, "Examples"]

C:\Documents and Settings\twj.WRI\Application Data\Mathematica\DatabaseResources\Examples

118 | DatabaselLink User Guide

DatabaseLink DatabaseExamples~ load the DatabaseExamples™ package
DatabaseExamplesBuild[" "] install and restore the database examples

Using the DatabaseExamples™ package.

You must run DatabaseExamplesBuild the first time you want to use the documentation, and
after you have been working with the example databases and want to restore them to their
original state.

First, the package is loaded.

<< DatabaseLink DatabaseExamples";

Then the examples are installed, if necessary, or restored to their original state.
DatabaseExamplesBuild]]
If you want to install the examples by hand, copy the Examples directory from inside the

DatabaselLink installation directory (typically this is $InstallationDirectory/System-

Files/Links/DatabaseLink) to $UserBaseDirectory/DatabaseResources.

