
Wolfram Mathematica ® Tutorial Collection

.NET/LINK™ USER GUIDE

For use with Wolfram Mathematica® 7.0 and later.

For the latest updates and corrections to this manual:
visit reference.wolfram.com

For information on additional copies of this documentation:
visit the Customer Service website at www.wolfram.com/services/customerservice
or email Customer Service at info@wolfram.com

Comments on this manual are welcomed at:
comments@wolfram.com

Content authored by:
Todd Gayley

Printed in the United States of America.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

©2008 Wolfram Research, Inc.

All rights reserved. No part of this document may be reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright
holder.

Wolfram Research is the holder of the copyright to the Wolfram Mathematica software system ("Software") described
in this document, including without limitation such aspects of the system as its code, structure, sequence,
organization, “look and feel,” programming language, and compilation of command names. Use of the Software unless
pursuant to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an infringement
of the copyright.

Wolfram Research, Inc. and Wolfram Media, Inc. ("Wolfram") make no representations, express,

statutory, or implied, with respect to the Software (or any aspect thereof), including, without limitation,

any implied warranties of merchantability, interoperability, or fitness for a particular purpose, all of

which are expressly disclaimed. Wolfram does not warrant that the functions of the Software will meet

your requirements or that the operation of the Software will be uninterrupted or error free. As such,

Wolfram does not recommend the use of the software described in this document for applications in

which errors or omissions could threaten life, injury or significant loss.

Mathematica, MathLink, and MathSource are registered trademarks of Wolfram Research, Inc. J/Link, MathLM,
.NET/Link, and webMathematica are trademarks of Wolfram Research, Inc. Windows is a registered trademark of
Microsoft Corporation in the United States and other countries. Macintosh is a registered trademark of Apple
Computer, Inc. All other trademarks used herein are the property of their respective owners. Mathematica is not
associated with Mathematica Policy Research, Inc.

Contents

Introduction . 1

.NET/Link . 1

What Is .NET? . 2

What Is MathLink? . 3

How Does .NET/Link Compare to J/Link? . 3

Calling .NET from Mathematica . 4

Introduction . 4

Loading the NETLink` Package . 5

Launching the .NET Runtime . 6

Loading .NET Assemblies and Types . 6

Conversion of Types between .NET and Mathematica . 13

Creating Objects . 14

Calling Methods, Properties, and Fields . 15

Getting Information about Types and Objects . 18

Reference Counts and Memory Management . 21

Enums . 27

“Out” and “Ref” Parameters . 29

Returning Objects “By Value” and “By Reference” . 31

Overloaded Operators . 34

Casting . 36

Indexers . 43

Exceptions . 45

Nested Types . 47

MakeNETObject . 49

Complex Numbers . 51

The .NET Console Window . 53

Distributing Applications That Use .NET/Link . 54

Version Information . 56

Creating User Interfaces . 57

Writing Your Own .NET Types to Use from Mathematica . 71

Calling COM from Mathematica . 95

Calling Mathematica from .NET . 115
Introduction . 115
What Is MathLink? . 116
Overview of the Main .NET/Link Interfaces and Classes . 116
Sample Program . 119
Building and Deploying Programs . 119

Introduction

.NET/Link

Welcome to .NET/Link, a product that integrates Mathematica and Microsoft's .NET platform.

.NET/Link lets you call .NET from Mathematica in a completely transparent way, and allows you

to use and control the Mathematica kernel from a .NET program. For Mathematica users,

.NET/Link makes the entire .NET world an automatic extension to the Mathematica environ-

ment. For .NET programmers, .NET/Link turns Mathematica into a scripting shell that lets you

experiment with, build, and test .NET classes a line at a time. It also makes .NET an ideal

environment for writing programs that use the computational services of Mathematica.

.NET/Link’s most unique feature is that it lets you load arbitrary .NET types into Mathematica

and then create .NET objects, call methods, properties, and so on, directly from the Mathemat-

ica language. Thus, you can use Mathematica to “script” the functionality of an arbitrary .NET

program~in effect, write a .NET program in Mathematica. Essentially anything you can do from

.NET, you can now do from Mathematica perhaps even more easily because you are working in

a true interpreted environment.

.NET/Link also lets you do some very useful things that do not appear to directly involve the

.NET runtime. These include calling C-style DLL functions directly from Mathematica, and creat-

ing and scripting COM objects, much like Visual Basic can do.

.NET/Link is designed for end-users and developers alike. The same features that let Mathemat-

ica users transparently call any .NET method also let developers create sophisticated commer-

cial add-ons to Mathematica. Programmers who want to write custom front ends for Mathemat-

ica or use Mathematica as a computational engine for another program will find using .NET with

.NET/Link is easier than using the traditional MathLink interface from C or C++.

Finally, .NET/Link comes with full source code. You can examine the code to supplement the

documentation, get tips for your own programs, better understand how to use advanced fea-

tures, or just see how it works.

Some familiarity with both the .NET Framework and Mathematica is assumed in this manual. In

Part 2, which covers writing .NET programs that call Mathematica, major examples are gener-

ally provided in both C# and Visual Basic .NET versions, although overall the documentation is

perhaps slightly more C#-centric. Naturally, when writing .NET programs that use .NET/Link,

you can use any .NET-aware language, not just C# and Visual Basic .NET.

Some familiarity with both the .NET Framework and Mathematica is assumed in this manual. In

Part 2, which covers writing .NET programs that call Mathematica, major examples are gener-

ally provided in both C# and Visual Basic .NET versions, although overall the documentation is

perhaps slightly more C#-centric. Naturally, when writing .NET programs that use .NET/Link,

you can use any .NET-aware language, not just C# and Visual Basic .NET.

"Calling .NET from Mathematica" shows how you use .NET/Link to call .NET from Mathematica

and "Calling Mathematica from .NET" shows how to call Mathematica from .NET.

What Is .NET?

.NET is a new development platform for Windows programming. It replaces essentially every-

thing that came before it, including an entire alphabet soup of programming technologies such

as MFC, COM, ActiveX, ATL, ASP, ADO, and many others. Although Microsoft emphasizes XML

Web Services in conjunction with .NET, XML Web Services are only a small part of the .NET

platform, and the success of .NET is not dependent on the widespread adoption of XML Web

Services.

.NET represents the future of Windows programming, and Microsoft is rapidly shifting more and

more of its technology and products to a .NET foundation.

At the core of .NET is a runtime engine, similar to that used by Java, that loads and executes

programs compiled into special bytecodes that the runtime understands. This runtime is called

the Common Language Runtime (CLR), but we will often refer to it as the .NET runtime. A key

feature of this system is that many languages can be compiled into CLR bytecodes and exe-

cuted by the runtime. This means that .NET is language-neutral, supporting any programming

language for which a .NET compiler is available. Microsoft provides compilers for C#, Visual

Basic .NET, JScript, Visual J# .NET, and C++ With Managed Extensions. Many other compilers

exist, including ones for Fortran, Perl, Python, Eiffel, COBOL. You can even create a class in one

.NET language, say Visual Basic .NET, and subclass it in another language.

Although .NET is language-neutral, probably the two most important .NET languages are Visual

Basic .NET, a modification of the Visual Basic language, and C#, a new language that is similar

in many ways to Java.

2 .NET/Link User Guide

What Is MathLink?

MathLink is Wolfram Research’s protocol for sending data and commands back and forth

between Mathematica and other programs. MathLink is the underlying glue that lets .NET and

Mathematica talk to each other. When calling .NET from Mathematica, .NET/Link completely

hides the low-level details of the MathLink communication, allowing Mathematica programmers

to load and use .NET classes as if they were part of the Mathematica environment itself. When

writing .NET programs that call Mathematica, .NET/Link provides a higher-level layer of function-

ality than the traditional C MathLink programming interface.

How Does .NET/Link Compare to J/Link?

J/Link is an existing Wolfram Research product that integrates Java and Mathematica in almost

exactly the same way that .NET/Link integrates .NET and Mathematica. You can use J/Link to

do many of the same things you can do with .NET/Link and vice versa. Because it is based on

Java, J/Link has the advantage of being cross-platform. If you want to write programs that run

on every Mathematica platform, you should use J/Link. On the other hand, .NET integrates

more tightly with the Windows operating system than Java does, so if you want to do Windows-

specific things, or you want a very native Windows look and feel, you should use .NET/Link. On

Windows, .NET/Link also does some things that J/Link cannot, such as allowing you to call C-

style DLL functions directly from Mathematica or controlling COM objects.

.NET/Link and J/Link provide a very similar programming model. Familiarity with one will be

very helpful when working with the other.

.NET/Link User Guide 3

Calling .NET from Mathematica

Introduction

.NET/Link provides Mathematica users with the ability to interact with arbitrary .NET types

directly from Mathematica. You can create objects and call methods and properties directly in

the Mathematica language. You do not need to write any .NET code, or prepare in any way the

.NET types you want to use. You also do not need to know anything about MathLink. In effect,

all of .NET becomes a transparent extension to Mathematica, almost as if every existing and

future .NET type were written in the Mathematica language itself.

We call this facility “installable .NET” because it generalizes the ability that Mathematica has

always had to plug in extensions written in other languages through the Install function.

Compared to other languages like C or C++, however, .NET/Link makes the intermediate steps

go away completely, which is why we say that .NET becomes a transparent extension to

Mathematica.

Although .NET is sometimes referred to as an interpreted environment, this is really a mis-

nomer. To use .NET you must write a complete program in a language like C#, compile it, and

then execute it. Mathematica users have the luxury of working in a true interpreted, interactive

environment that lets them experiment with functions and build and test programs a line at a

time. .NET/Link brings this same productive environment to .NET programmers. You could say

that Mathematica becomes a scripting language for .NET.

To Mathematica users, then, the “installable .NET” feature of .NET/Link opens up the universe

of .NET types as an extension to Mathematica; for .NET users, it allows the extraordinarily

powerful and versatile Mathematica environment to be used as a shell for interactively develop-

ing, experimenting with, and testing .NET programs.

This guide discusses calling from Mathematica into the .NET runtime. You will see how to load

.NET assemblies and types into Mathematica, create objects of these types, call methods and

properties, and so on. You will also learn how to use .NET/Link to call COM objects as well as

standard C-style DLL functions.

4 .NET/Link User Guide

Simple Examples:

ProcessPriority.nb

GUI Examples:

Circumcircle.nb

PackageHelper.nb

SimpleAnimationWindow.nb

RealTimeAlgebra.nb

AsteroidsGame.nb

Calling DLLs:

BZip2Compression.nb

EnumWindows.nb

WindowsAPI.nb

Calling COM Objects:

ExcelPieChart.nb

Loading the NETLink` Package

You must load the .NET/Link package before you can use .NET/Link.

Needs@“NETLink`“D

.NET/Link User Guide 5

Launching the .NET Runtime

The InstallNET function is used to launch the .NET runtime.

InstallNET@D;

If you are actively developing .NET classes and other types to use in Mathematica, you will

need to restart the .NET runtime before you can reload a modified version of a class. Use the

ReinstallNET function to quit and restart the .NET runtime. Most users will have no need to

ever quit or restart .NET and should avoid calling ReinstallNET or UninstallNET. Remember

that the .NET runtime is shared by potentially many programs in your Mathematica session.

Shutting down or restarting the .NET runtime could have unexpected consequences for those

programs.

InstallNET@D launch the .NET runtime and prepare it for use from
Mathematica

ReinstallNET@D quit and restart the .NET runtime

NETLink@D give the LinkObject that is being used to communicate
with the .NET runtime

Launching the .NET runtime.

Loading .NET Assemblies and Types

.NET Assemblies

Programs and libraries for .NET are packaged into units called assemblies. An assembly can be

defined as a versioned, self-describing binary (DLL or EXE) containing a collection of types

(classes, interfaces, structs, and so on) and optional resources. An assembly can span multiple

files (a multi-file assembly), or a single file can contain more than one assembly, but in the

typical case an assembly consists of a single DLL or EXE file. Although .NET assemblies can

have the DLL extension, internally they are quite different from old C-style DLLs. Conceptually,

though, a .NET DLL is similar to a C-style DLL in that they are both libraries of code intended to

be loaded and called by other programs. An EXE assembly is an executable program that can

be launched directly, but it also can export types like a DLL for use by other programs.

Assemblies can be located anywhere on your system. The .NET Framework maintains a special

location on your system where assemblies can be stored so that they can easily be found by all

.NET programs on the system. This location is called the Global Assembly Cache (GAC), and is

found in the assembly subdirectory of your root Windows directory. The assemblies that are

part of the .NET Framework itself are located in the GAC, and many .NET programs that you

install will put assemblies there. There is no requirement that an assembly be placed into the

GAC, and .NET/Link can use assemblies located anywhere on your system.

6 .NET/Link User Guide

Assemblies can be located anywhere on your system. The .NET Framework maintains a special

location on your system where assemblies can be stored so that they can easily be found by all

.NET programs on the system. This location is called the Global Assembly Cache (GAC), and is

found in the assembly subdirectory of your root Windows directory. The assemblies that are

part of the .NET Framework itself are located in the GAC, and many .NET programs that you

install will put assemblies there. There is no requirement that an assembly be placed into the

GAC, and .NET/Link can use assemblies located anywhere on your system.

Because all .NET types are packaged into assemblies, to load a type into Mathematica you first

need to load its assembly. You use the LoadNETAssembly function to load an assembly into

.NET/Link. Assemblies can be loaded by specifying various types of information about the

assembly, such as a full path to the assembly file, or by a full or partial name of the assembly.

Assembly names will be discussed in more detail later, but for now it suffices to say that assem-

bly names are assigned by their creators, and may bear no resemblance to the name of the

actual assembly file. An example of a simple assembly name is System.XML, which is the

assembly in the .NET Framework that handles XML-related functionality. Assemblies are often

named after the most important namespace they define. The actual file name of the SysÖ

tem.XML assembly is System.XML.dll, and it is located somewhere nested deep down inside

the GAC.

.NET/Link does not need to be explicitly instructed to load all assemblies. It will automatically

load any of the .NET Framework assemblies, meaning all of the assemblies containing types

whose names start with System. (e.g., System.Windows.Forms.Form, System.Drawing.RectÖ

angle, System.Data.DataSet, and so on). Most of the types that you will use in .NET/Link

programming are found in the system assemblies. You will have to manually load other assem-

blies. The LoadNETAssembly function, described later in this tutorial, is the Mathematica func-

tion you use to load assemblies into .NET/Link and prepare them to be used from Mathematica.

.NET Types

A type is the fundamental unit of .NET programming. Every type falls into one of the following

categories: classes, interfaces, structs ("value types"), enumerations, and delegates. Every

object in .NET is an instance of some type. Although the set of types is broader than just

classes, you might find it easier to think of types as being classes.

Types are defined in assemblies. To load and use a type in .NET/Link, you must first load the

assembly in which it resides and then load the type itself. Often these steps can be combined

into a single operation. LoadNETType, described later , is the Mathematica function that you use

to load types into .NET/Link so they can be used from Mathematica.

.NET/Link User Guide 7

Types are defined in assemblies. To load and use a type in .NET/Link, you must first load the

assembly in which it resides and then load the type itself. Often these steps can be combined

into a single operation. LoadNETType, described later , is the Mathematica function that you use

to load types into .NET/Link so they can be used from Mathematica.

LoadNETAssembly

LoadNETAssembly is the function you use to load assemblies into .NET/Link so that the types

they contain can be used from Mathematica. LoadNETAssembly has a number of different argu-

ment sequences. Although all these different possible arguments might seem confusing, the

basic principle is to allow virtually any way of specifying enough information about the assem-

bly so that .NET/Link can locate it.

LoadNETAssembly@assemblyNameD load the specified assembly based on its name, such as
"System.Web"

LoadNETAssembly@pathD load the assembly based on its full file path

LoadNETAssembly@urlD load the assembly pointed to by this URL

LoadNETAssembly@assemblyName,dirD load the assembly based on its name and the directory in
which it resides

LoadNETAssembly@
assemblyName,context`D

load the assembly based on its name and the application
context in which it resides

LoadNETAssembly@dirD load all the assemblies in this directory

LoadNETAssembly@context`D load all the assemblies in this application context

Loading assemblies.

Here is an example of using LoadNETAssembly to load an assembly that is part of the .NET

Framework.

In[3]:= LoadNETAssembly@“System.Web“D

Out[3]= NETAssembly@System.Web, 1D

The return value of LoadNETAssembly is a NETAssembly expression. This is not a .NET object

itself, just a special expression that can be used in .NET/Link to refer to a loaded assembly in

various functions that take an assembly specification as an argument.

The name used in the previous example is the simple name of the assembly. The actual full

name, or display name, of the assembly is longer and contains version information, among

other things. You can use the full name if you want to force a certain version to be loaded (note

that if you execute this on your machine, it will fail unless you have exactly the same version of

the .NET Framework installed).

8 .NET/Link User Guide

The name used in the previous example is the simple name of the assembly. The actual full

name, or display name, of the assembly is longer and contains version information, among

other things. You can use the full name if you want to force a certain version to be loaded (note

that if you execute this on your machine, it will fail unless you have exactly the same version of

the .NET Framework installed).

In[4]:= LoadNETAssembly@“System.Web, Version=1.0.5000.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a“D

Out[4]= NETAssembly@System.Web, 1D

We were able to load this assembly based on only its name, without any location information,

because it is located in the GAC.

As another example of LoadNETAssembly, say you have obtained an assembly or created one of

your own in some .NET language and want to load it into .NET/Link to use from Mathematica.

The assembly is in the file c:\MyProgram\Bin\Debug\MyAssembly.dll. Here is how you

would load it.

LoadNETAssembly@“c:\\MyProgram\\Bin\\Debug\\MyAssembly.dll“D

Loading an assembly by specifying its path is useful for assemblies that you have created

yourself.

LoadNETAssembly can also load assemblies from an assembly subdirectory in a Mathematica

application directory. This is intended for developers who are creating applications that use

.NET/Link. If you have a Mathematica application directory called MyApp, and it is installed into

one of the standard locations for Mathematica applications (e.g., <Mathematica dir>\AddOnÖ

s\Applications), you can give the MyApp directory a subdirectory named assembly and place

all the extra assemblies that your application needs into the assembly directory. Your applica-

tion’s Mathematica code can then load one of these application assemblies by supplying the

assembly name and the context that corresponds to your application.

LoadNETAssembly@“My.Special.Assembly“, “MyApp`“D

In this way, application developers can bundle private assemblies in their application layout and

not require that their users perform any special installation steps such as copying assemblies

into the GAC.

.NET/Link User Guide 9

LoadNETType

LoadNETType is the Mathematica function that loads .NET types so that they can be used from

Mathematica. It is often not necessary to explicitly call LoadNETType. Whenever a .NET object is

returned to Mathematica, its type is loaded. This means that if you want to create a new object

of a certain type, you can just call NETNew and the type will be loaded when the object is

returned to Mathematica. The most common reason for calling LoadNETType directly is if you

want to use a static method or property from a type. In that case, you are not creating an

object with NETNew, so you must manually load the type.

LoadNETType@typeNameD load the specified type

LoadNETType@typeName,assemblyNameD load the type from the specified assembly

LoadNETType@typeName,NETAssemblyD load the type from the assembly identified by a
NETAssembly expression

LoadNETType@typeName,assemblyName,context`D load the type from the specified assembly
residing in the specified application context

Loading types.

Here is a simple example of LoadNETType.

In[5]:= LoadNETType@“System.Windows.Forms.Form“D

Out[5]= NETType@System.Windows.Forms.Form, 1D

The return value of LoadNETType is a NETType expression. This is not a .NET object itself, just a

special expression that can be used in .NET/Link to refer to a .NET type in various functions

that take a type specification as an argument.

Note that you must supply the full type name, including the namespace prefix

(System.Windows.Forms in this example). For the load to succeed, the assembly in which the

type resides must be already loaded using LoadNETAssembly. As mentioned earlier, assemblies

for all System types are automatically loaded as needed by .NET/Link, so there was no need to

load the System.Windows.Forms assembly manually in the previous example.

10 .NET/Link User Guide

Viewing Loaded Assemblies and Types

You can use the utility functions LoadedNETAssemblies. and LoadedNETTypes to see what

assemblies and types have been loaded into the current Mathematica session. These are

intended mainly for debugging purposes.

LoadedNETAssemblies@D return a list of all assemblies loaded into
Mathematica

LoadedNETTypes@D return a list of all types loaded into Mathematica

Viewing loaded assemblies and types.

Contexts and Visibility of Static Type Members

LoadNETType has two options that let you control the naming and visibility of static methods

and fields. To understand these options, you need to understand the problems they help to

solve. We have to get a bit ahead of ourselves to explain the issues, since we have not yet

discussed how to call .NET methods. When a type is loaded, definitions are created in Mathemat-

ica that allow you to call methods, properties, and fields of objects of that class. Static mem-

bers are treated quite differently from nonstatic ones. Say you have a class named MyClass in

the namespace MyCompany.Utilities, and this class contains a static method named Foo.

When you load this class, a definition must be set up for Foo so that it can be called by name,

something like Foo[args]. The question becomes: In what context do you want the symbol

Foo defined, and do you want this context to be visible (i.e., on $ContextPath)?

.NET/Link always creates a definition for Foo in a context that mirrors its fully qualified class-

name: MyCompany`Utilities`MyClass`Foo. This is done to avoid conflicting with symbols

named Foo that might be present in other contexts. However, you might find it clumsy to have

to call Foo by typing the full context name every time, as in MyCompany`Utilities`MyClass`Ö

Foo[args]. The option AllowShortContext -> True (this is the default setting) causes

.NET/Link to also make definitions for Foo accessible in a shortened context, one that consists

of just the class name without the hierarchical namespace prefix. In our example, this means

that you could call Foo as simply MyClass`Foo[args]. If you need to avoid use of the short

context because there is already a context of the same name in your Mathematica session, you

can use AllowShortContext -> False. This forces all names to be put only in the “deep” con-

text. Note that even with AllowShortContext -> True, names for statics are also put into the

deep context, so you can always use the deep context to refer to a symbol if you desire.

.NET/Link User Guide 11

.NET/Link always creates a definition for Foo in a context that mirrors its fully qualified class-

name: MyCompany`Utilities`MyClass`Foo. This is done to avoid conflicting with symbols

named Foo that might be present in other contexts. However, you might find it clumsy to have

to call Foo by typing the full context name every time, as in MyCompany`Utilities`MyClass`Ö

Foo[args]. The option AllowShortContext -> True (this is the default setting) causes

.NET/Link to also make definitions for Foo accessible in a shortened context, one that consists

of just the class name without the hierarchical namespace prefix. In our example, this means

that you could call Foo as simply MyClass`Foo[args]. If you need to avoid use of the short

context because there is already a context of the same name in your Mathematica session, you

can use AllowShortContext -> False. This forces all names to be put only in the “deep” con-

text. Note that even with AllowShortContext -> True, names for statics are also put into the

deep context, so you can always use the deep context to refer to a symbol if you desire.

AllowShortContext, then, lets you control the context where the symbol names are defined.

The other option, StaticsVisible, controls whether this context is made visible (put on

$ContextPath) or not. The default is StaticsVisible -> False, so you have to use a context

name when referring to a symbol, as in MyClass`Foo[args]. With StaticsVisible -> True,

MyClass` will be put on $ContextPath, so you could just write Foo[args]. Having the default

be True would be a bit dangerous~every time you load a class a potentially large number of

names would suddenly be created and made visible in your Mathematica session, opening up

the possibility for all sorts of “shadowing” problems if symbols of the same names were already

present (see Contexts for a discussion of contexts and shadowing problems).

For these reasons StaticsVisible -> True is recommended only for classes that you have

written, or ones whose contents you are familiar with. In such cases, it can save you some

typing, make your code more readable, and prevent the all-too-easy bug of forgetting to type

the classname prefix. A classic example would be implementing the venerable “addtwo” Math-

Link example program. In C#, it might look like this.

public class AddTwo {
public static int AddTwo(int i, int j) {return i + j;}

}

With the default StaticsVisible -> False, you would have to call addtwo as

AddTwo`AddTwo@3, 4D. Setting StaticsVisible -> True lets you write the more obvious

AddTwo@3, 4D.

Be reminded that these options are only for static methods and fields. As discussed later, non-

statics are handled in a way that makes context and visibility issues go away completely.

StaticsVisibleØTrue make static methods and fields accessible by just their
names, not in a special context

AllowShortContextØFalse make static methods and fields accessible only in the
context that mirrors the full hierarchical namespace name

Options for LoadNETType .

12 .NET/Link User Guide

Conversion of Types between .NET and Mathematica

Before we encounter the operations of creating .NET objects and calling methods, we should

examine the mapping of types between Mathematica and .NET. When a .NET method returns a

result to Mathematica, the result is automatically converted into a Mathematica expression. For

example, .NET integer types (e.g., Int32, Byte, and so on), are converted into Mathematica

integers, and .NET real number types (Single, Double) are converted into Mathematica reals.

The table below shows the complete set of conversions. These conversions work both ways~for

example, when a Mathematica integer is sent to a .NET method that requires a Byte value, the

integer is automatically converted to a .NET Byte.

Note that this table gives type names as they are used in the .NET Framework. Different lan-

guages often have their own keywords that map to these underlying types. In C#, for example,

the keyword int is an alias to the Int32 type, and in Visual Basic .NET the Int32 type is called

Integer.

.NET type Mathematica type

Byte, SByte, Char,
Int16, UInt16, Int32,
UInt32, Int64, UInt64

Integer

Decimal Integer or Real

Single, Double Real

Boolean True or False

String String

Array List

controlled by user Complex

Object NETObject

Expr any expression

null Null

Corresponding types in .NET and Mathematica.

.NET arrays are mapped to Mathematica lists of the appropriate depth. Thus, when you call a

method that takes a double@D (in C# notation), you might pass it 81.0, 2.0, N@PiD, 1.23<.

Similarly, a method that returns a two-deep array of integers (int@, D in C# notation) might

return to Mathematica the expression 881, 2, 3<, 85, 3, 1<<.

Creating Objects

.NET/Link User Guide 13

Creating Objects

To construct .NET objects, use the NETNew function. The first argument to NETNew is the object’s

type, specified either as a NETType expression returned from LoadNETType or as a string giving

the fully qualified type name (i.e., including the namespace prefix). If you wish to supply any

arguments to the object’s constructor, they follow as a sequence after the type.

NETNew@typeName,arg1,...D construct a new object of the specified class and return it
to Mathematica

NETNew@NETType,arg1,...D construct a new object of the specified class and return it
to Mathematica

Constructing .NET objects.

For example, this will create a new Form.

In[6]:= form = NETNew@“System.Windows.Forms.Form“D

Out[6]= «NETObject@System.Windows.Forms.FormD »

The return value from NETNew is a strange expression that looks like it has the head NETObÖ

ject, except that it is enclosed in angle brackets. The angle brackets are used to indicate that

the form in which the expression is displayed is quite different from its internal representation.

These expressions will be referred to as NETObject expressions. NETObject expressions are

displayed in a way that shows their type name, but you should consider them opaque, meaning

that you cannot pick them apart or peer into their insides. You can only use them in .NET/Link

functions that take NETObject expressions.

NETNew invokes a .NET constructor appropriate for the types of the arguments being passed in,

and then returns to Mathematica what is, in effect, a reference to the object. That is how you

should think of NETObject expressions~as references to .NET objects very much like object

references in a .NET language like C# or Visual Basic .NET. What is returned to Mathematica is

not large no matter what type of object you are constructing. In particular, the object’s data

(that is, its fields) are not sent back to Mathematica. The actual object remains on the .NET

side, and Mathematica gets a reference to it.

14 .NET/Link User Guide

The previous examples specified the class by giving its name as a string. You can also use a

NETType expression, which is a special expression returned by LoadNETType that identifies a

class. When you specify the class name as a string, the class is loaded if it has not already been.

In[7]:= formType = LoadNETType@“System.Windows.Forms.Form“D;
form = NETNew@formTypeD;

NETNew is not the only way to get a reference to a .NET object in Mathematica. Many methods

and properties return objects, and when you call such a method or property, a NETObject

expression is created. Such objects can be used in the same way as ones you explicitly con-

struct with NETNew.

Calling Methods, Properties, and Fields

Syntax

The Mathematica syntax for calling .NET methods and accessing fields is very similar to the

syntax used in C# and Visual Basic .NET. The box below compares the Mathematica and C#

ways of calling constructors, methods, properties, fields, static methods, static properties, and

static fields. You can see that Mathematica programs that use .NET are written in almost

exactly the same way as C# (or VB .NET) programs, except Mathematica uses [] instead of ()

for arguments and @ instead of the . (dot) as the “member access” operator.

An exception is that for static methods, Mathematica uses the context mark ` in place of the

dot used by C# and VB. This parallels the usage in those languages also, as their use of the dot

in this circumstance is really as a scope resolution operator (like :: in C++). Although Mathemat-

ica does not use this terminology, its scope resolution operator is the context mark. .NET name-

space names map directly to Mathematica’s hierarchical contexts.

.NET/Link User Guide 15

Constructors

C Ò: MyClass obj = new MyClass(args);

Mathematica: obj = NETNew["MyClass", args];

Methods

C Ò: obj.MethodName(args);

Mathematica: obj@MethodName[args]

Properties and fields

C Ò: obj.PropertyOrFieldName = 1;
value = obj.PropertyOrFieldName;

Mathematica: obj@PropertyOrFieldName = 1;
value = obj@PropertyOrFieldName;

Static methods

C Ò: MyClass.StaticMethod(args);

Mathematica: MyClass`StaticMethod[args];

Static properties and fields

C Ò: MyClass.StaticPropertyOrField = 1;
value = MyClass.StaticPropertyOrField;

Mathematica: MyClass`StaticPropertyOrField = 1;
value = MyClass`StaticPropertyOrField;

C# and Mathematica syntax comparison.

You may already be familiar with ü as a Mathematica operator for applying a function to an

argument: f ü x is equivalent to the more commonly used f@xD. .NET/Link does not usurp ü for

some special operation~it is really just normal function application slightly disguised. This

means that you do not have to use ü at all. The following are equivalent ways of invoking a

method.

H* These are equivalent *L
objüMethod@argsD;
obj@Method@argsDD;

The first form preserves the natural mapping of the syntax of most .NET languages into Mathe-

matica and will be used exclusively in this manual.

When you call methods, properties, or fields and get results back, .NET/Link automatically

converts arguments and results to and from their Mathematica representations according to the

table presented earlier.

In object-oriented languages, method and field names are scoped by the object on which they

are called. In other words, when you write obj.Meth(), .NET languages know that you are

calling the method named Meth that resides in obj’s class, even though there may be other

methods named Meth in other classes. .NET/Link preserves this scoping for Mathematica sym-

bols so that there is never a conflict with existing symbols of the same name. When you write

obj@Meth[], there is no conflict with any other symbols named Meth in the system~the sym-

bol Meth used by Mathematica in the evaluation of this call is the one set up by .NET/Link for

this class. Here is an example using a field. First, we create a Point object.

16 .NET/Link User Guide

In object-oriented languages, method and field names are scoped by the object on which they

are called. In other words, when you write obj.Meth(), .NET languages know that you are

calling the method named Meth that resides in obj’s class, even though there may be other

methods named Meth in other classes. .NET/Link preserves this scoping for Mathematica sym-

bols so that there is never a conflict with existing symbols of the same name. When you write

obj@Meth[], there is no conflict with any other symbols named Meth in the system~the sym-

bol Meth used by Mathematica in the evaluation of this call is the one set up by .NET/Link for

this class. Here is an example using a field. First, we create a Point object.

In[9]:= pt = NETNew@“System.Drawing.Point“D

Out[9]= «NETObject@System.Drawing.PointD »

The Point class has fields named X and Y, which hold its coordinates. A user’s session might

also have symbols named X or Y in it, however. Let us set up a definition for X that will tell us

when it is evaluated.

In[10]:= X := Print@“gotcha“D

Now set a value for the field named X (this would be written as pt.X = 42 in C# or VB).

In[11]:= ptüX = 42;

You will notice that “gotcha” was not printed. There is no conflict between the symbol X in the

Global` context that has the Print definition and the symbol X that is used during the evalua-

tion of this line of code. .NET/Link protects the names of members on the right-hand side of @

so that they do not conflict with, or rely on, any definitions that might exist for these symbols in

visible contexts.

In summary, for nonstatic methods, properties, and fields, you never have to worry about

name conflicts and shadowing, no matter what context you are in or what the $ContextPath is

at the moment. This is not true for static members, however. Static methods and fields are

called by their full name, without an object reference, so there is no object out front to scope

the name. Here is a simple example of a static method call that invokes the .NET garbage

collector. We need to call LoadNETType before we call a static method to make sure the class

has been loaded.

In[12]:= LoadNETType@“System.GC“D;
GC`Collect@D;

The name scoping issue is not usually a problem with static members because they are defined

in their own contexts (GC` in this example). These contexts are usually not on $ContextPath,

so you do not have to worry that there is a symbol of the same name in the Global` context or

in a package that has been read. If there is already a context named GC` in your session, and it

has its own function Collect, you can always avoid a conflict by using the fully-hierarchical

context name that corresponds to the full type name for a static member.

.NET/Link User Guide 17

The name scoping issue is not usually a problem with static members because they are defined

in their own contexts (GC` in this example). These contexts are usually not on $ContextPath,

so you do not have to worry that there is a symbol of the same name in the Global` context or

in a package that has been read. If there is already a context named GC` in your session, and it

has its own function Collect, you can always avoid a conflict by using the fully-hierarchical

context name that corresponds to the full type name for a static member.

In[14]:= System`GC`Collect@D;

Underscores in .NET Names

.NET names can have characters in them that are not legal in Mathematica symbols. The only

common one is the underscore. .NET/Link maps underscores in type, method, property, and

field names to ‘U’. Note that this mapping is only used where it is necessary~when names are

used in symbolic form, not as strings. For example, assume you have a class named My_Class.

When you refer to this class name as a string, you use the underscore:

LoadNETType@“My_Class“D;
NETNew@“My_Class“D;

But when you call a static method in such a class, the hierarchical context name is symbolic, so

you must convert the underscore to U.

MyUClass`StaticMethod@D;

The same rule applies to method and field names. To refer to such names in code, use the U.

Here is how to call a property named Some_Property.

In[1]:= objüSomeUProperty

Getting Information about Types and Objects

NETTypeInfo

It is often convenient to be able to quickly display information about the methods, properties,

fields, and so on that exist in a given .NET type. .NET/Link provides the NETTypeInfo function

to obtain this information.

18 .NET/Link User Guide

NETTypeInfo@typeNameD print information about all the members in the given type

NETTypeInfo@typeName,membersD print information about just the desired types of members
in the given type

NETTypeInfo@
typeName,members,“pat“D

print information about the desired types of members
whose names match a string pattern

NETTypeInfo@objD print information about all the members in the object's type

NETTypeInfo@NETAssemblyD print information about all the types in the given assembly

Getting information about types and objects.

NETTypeInfo will load the type if it has not already been loaded.

This will display a lot of information about the Process class.

NETTypeInfo@“System.Diagnostics.Process“D

The second argument to NETTypeInfo is an optional list of the members you want to see dis-

played. The possible values are “Type“ (gives general info about the type itself),

“Constructors“, “Methods“, “Properties“, “Fields“, and “Events“. This will show just

the properties and methods.

NETTypeInfo@“System.Diagnostics.Process“, 8“Methods“, “Properties“<D

This will show just properties with names that begin with "Peak".

NETTypeInfo@“System.Diagnostics.Process“, “Properties“, “Peak*“D

The default behavior is to display the members in C# syntax. If you want to see them in Visual

Basic .NET syntax, use the LanguageSyntax option.

NETTypeInfo@“System.Diagnostics.Process“, LanguageSyntax Ø “VisualBasic“D

option name default value

LanguageSyntax “CSharp“ the language syntax in which output should
be formatted must be "CSharp" or
"VisualBasic"

Inherited True whether to include inherited members

IgnoreCase False whether to ignore case in matching names
to a string pattern

Options to NETTypeInfo .

NETTypeInfo is also useful for seeing what types are in an assembly. To investigate an assem-

bly, pass a NETAssembly expression as the first argument. The easiest way to get a

NETAssembly expression is to call LoadNETAssembly (even if the assembly is already loaded).

The following line will show a lot of types.

.NET/Link User Guide 19

NETTypeInfo is also useful for seeing what types are in an assembly. To investigate an assem-

bly, pass a NETAssembly expression as the first argument. The easiest way to get a

NETAssembly expression is to call LoadNETAssembly (even if the assembly is already loaded).

The following line will show a lot of types.

NETTypeInfo@LoadNETAssembly@“System.Data“DD

When acting on a NETAssembly, the second argument to NETTypeInfo is an optional list of the

types you want to see displayed. The possible values are “Classes“, “Interfaces“,

“Structures“, “Delegates“, and “Enums“. This will show just the classes and interfaces with

the word "Data" in their names.

NETTypeInfo@LoadNETAssembly@“System.Data“D, 8“Classes“, “Interfaces“<, “*Data*“D

Other Useful Functions

NETObjectQ@exprD return True if expr is a valid reference to a .NET object,
False otherwise

InstanceOf@obj,typeD return True if this object is an instance of type, False
otherwise

GetTypeObject@NETTypeD return the Type object corresponding to a NETType
expression

GetAssemblyObject@NETAssemblyD return the Assembly object corresponding to a NETAssem-
bly expression

Utility functions for objects and types.

NETObjectQ is convenient when you need to test whether an expression is a .NET object refer-

ence. It is often used as a pattern test in function definitions.

f[x_?NETObjectQ] := ...

.NET/Link uses special expressions with heads NETType (returned by LoadNETType) and

NETAssembly (returned by LoadNETAssembly) to represent .NET types and assemblies in

Mathematica. As noted earlier, you can pass these expressions to functions that take types or

assemblies as arguments (such as NETNew). There are times when you might want not a

NETType expression, but an actual .NET Type object reference for a given type, and likewise for

an assembly. You can use GetTypeObject to get the Type object corresponding to a NETType

expression, and GetAssemblyObject to get the .NET Assembly object.

20 .NET/Link User Guide

In[1]:= netType = LoadNETType@“System.Data.DataRow“D

Out[1]= NETType@System.Data.DataRow, 1D

In[2]:= typeObj = GetTypeObject@netTypeD

Out[2]= «NETObject@System.RuntimeTypeD »

Notice above that the NETType expression is much more informative about what type it

represents than the Type object. This is one reason why .NET/Link uses special NETType and

NETAssembly expressions instead of just Type and Assembly objects.

Once you have a Type object, you can use methods and properties of the Type class to learn

about it.

In[3]:= typeObjüFullName

Out[3]= System.Data.DataRow

In[4]:= typeObjüIsSerializable

Out[4]= True

Reference Counts and Memory Management

Object References in Mathematica

In our earlier treatment of NETObject expressions we avoided discussing deeper issues such as

reference counts and uniqueness. Every time a .NET object reference is returned to Mathemat-

ica, either as a result of a method or property or an explicit call to NETNew, .NET/Link looks to

see if a reference to this object has been sent previously in this session. If not, it creates a

NETObject expression in Mathematica and sets up a number of definitions for it. This is a

comparatively time-consuming process. If this object has already been sent to Mathematica, in

most cases .NET/Link simply creates a NETObject expression that is identical to the one cre-

ated previously, which is a much faster operation.

There are some exceptions to this last rule, meaning that sometimes when an object is

returned to Mathematica a new and different NETObject expression is created for it, even

though this same object has previously been sent to Mathematica. Specifically, any time an

object’s hash value (as determined by the object’s built-in GetHashCode() method) has

changed since the last time it was seen in Mathematica, the NETObject expression created will

be different. You do not really need to be concerned with the details of this, except to remem-

ber that Mathematica's SameQ function is not a valid way to compare NETObject expressions to

decide whether they refer to the same object. You must use the SameObjectQ function.

.NET/Link User Guide 21

There are some exceptions to this last rule, meaning that sometimes when an object is

returned to Mathematica a new and different NETObject expression is created for it, even

though this same object has previously been sent to Mathematica. Specifically, any time an

object’s hash value (as determined by the object’s built-in GetHashCode() method) has

changed since the last time it was seen in Mathematica, the NETObject expression created will

be different. You do not really need to be concerned with the details of this, except to remem-

ber that Mathematica's SameQ function is not a valid way to compare NETObject expressions to

decide whether they refer to the same object. You must use the SameObjectQ function.

SameObjectQ@obj1,obj2D return True if the NETObject expressions obj1 and obj2
refer to the same .NET object, return False otherwise

Comparing NETObject expressions.

Here is an example.

In[1]:= pt = NETNew@“System.Drawing.Point“, 1, 1D

Out[1]= «NETObject@System.Drawing.PointD »

The variable pt refers to a .NET Point object. Now put it into a container so you can get it

back out later.

In[2]:= vec = NETNew@“System.Collections.ArrayList“D;
vecüAdd@ptD;

Now change the value of one of its coordinates. For a Point object, this changes its hash value.

In[4]:= ptüX = 2;

Now compare the NETObject expression given by pt and the NETObject expression created

when you ask for the first element of the ArrayList to be returned to Mathematica. Even

though these are both references to the same .NET object, the NETObject expressions are

different. Recall that the ArrayList class defines an indexer (in C# terminology), so you can

use the @D notation to refer to an element by index.

In[5]:= pt === vec@0D

Out[5]= False

Because you cannot use SameQ (===) to decide whether two object references in Mathematica

refer to the same .NET object, .NET/Link provides the SameObjectQ function for this purpose.

In[6]:= SameObjectQ@pt, vec@0DD

Out[6]= True

You may be wondering why the SameObjectQ function is useful. Can’t you just call an object’s

Equals() method? It certainly gives the correct result for this example.

22 .NET/Link User Guide

In[7]:= ptüEquals@vec@0DD

Out[7]= True

The problem with this technique is that Equals() does not always compare object references.

Any class is free to override Equals() to provide any desired behavior for comparing two

objects of that class. Some classes make Equals() compare the “contents” of the objects, such

as the String class, which uses it for string comparison. The function that provides the correct

test is the static method ReferenceEquals().

In[8]:= Point`ReferenceEquals@pt, vec@0DD

Out[8]= True

You can think of SameObjectQ as a convenience function that does the same thing as explicitly

calling ReferenceEquals().

In an unusual case where you need to compare object references for equality a very large

number of times, the slowness of SameObjectQ compared to SameQ could become an issue. The

only thing that could cause two NETObject expressions that refer to the exact same .NET

object to not be SameQ is if the hash value of the object changed between the times that the

two NETObject expressions were created. If you know this has not happened, you can safely

use SameQ to test whether they refer to the same object.

ReleaseNETObject

The .NET runtime has a built-in facility called “garbage collection” for freeing up memory occu-

pied by objects that are no longer in use by a program. Objects become eligible for garbage

collection when no references to them exist anywhere, except perhaps in other objects that are

also unreferenced. When an object is returned to Mathematica, either as a result of a call to

NETNew or as the return value of a method or property, the .NET/Link code holds a special

reference to the object on the .NET side to ensure that it cannot be garbage-collected while it is

in use by Mathematica. If you know that you no longer need to use a given .NET object in your

Mathematica session, you can explicitly tell .NET/Link to release its reference. The function that

does this is ReleaseNETObject. In addition to releasing the Mathematica-specific reference in

.NET, ReleaseNETObject clears out internal definitions that were created in Mathematica for

the object. Any subsequent attempt to use this object in Mathematica will fail.

In[9]:= frm = NETNew@“System.Windows.Forms.Form“D

Out[9]= «NETObject@System.Windows.Forms.FormD »

Now tell .NET that you no longer need to use this object from Mathematica.

.NET/Link User Guide 23

Now tell .NET that you no longer need to use this object from Mathematica.

In[10]:= ReleaseNETObject@frmD

It is now an error to refer to frm because the object’s symbolic representation has been

removed from the Mathematica session. This is what you see if you try to use the released

object.

In[11]:= frmüText

Out[11]= Removed@NETObject$83886081D@TextD

ReleaseNETObject@objD let .NET know that you are done using obj in Mathematica

NETBlock@exprD all novel .NET objects returned to Mathematica during the
evaluation of expr will be released when expr finishes

BeginNETBlock@D all novel .NET objects returned to Mathematica between
now and the matching EndNETBlock[] will be released

EndNETBlock@D release all novel objects seen since the matching
BeginNETBlock[]

LoadedNETObjects@D return a list of all objects that are in use in Mathematica

Memory management functions.

Calling ReleaseNETObject will not necessarily cause the object to be garbage-collected. It is

quite possible that other references to it exist in .NET. ReleaseNETObject does not tell .NET to

throw the object away, only that it does not need to be kept around solely for Mathematica’s

sake.

An important fact about the references .NET/Link maintains for objects sent to Mathematica is

that only one reference is kept for each object, no matter how many times it is returned to

Mathematica. It is your responsibility to make sure that after you call ReleaseNETObject, you

never attempt to use that object through any reference that might exist to it in your Mathemat-

ica session.

In[3]:= frm1 = NETNew@“System.Windows.Forms.Form“D;
frm2 = frm1;

If you call ReleaseNETObject@ frm1D, it is not the Mathematica symbol frm1 that is affected but

the .NET object that frm1 refers to. Therefore, using frm2 is also an error (or any other way to

refer to this same Form object).

Calling ReleaseNETObject is often unnecessary in casual use. If you are not making heavy use

of .NET in your session, then you will not usually need to be concerned about keeping track of

what objects may or may not be needed anymore~you can just let them pile up. There are

times, though, when memory use in .NET will be important, and you may need the extra con-

trol that ReleaseNETObject provides.

24 .NET/Link User Guide

Calling ReleaseNETObject is often unnecessary in casual use. If you are not making heavy use

of .NET in your session, then you will not usually need to be concerned about keeping track of

what objects may or may not be needed anymore~you can just let them pile up. There are

times, though, when memory use in .NET will be important, and you may need the extra con-

trol that ReleaseNETObject provides.

NETBlock

ReleaseNETObject is provided mainly for developers who are writing code for others to use.

Because it is not possible to predict how code will be used, developers should always be sure

that their code cleans up any unnecessary references it creates. Probably the most useful

function for this is NETBlock.

NETBlock automates the process of releasing objects encountered during the evaluation of an

expression. Often, a Mathematica program will need to create some .NET objects with NETNew;

operate with them, perhaps causing other objects to be returned to Mathematica as the results

of method calls; and finally return some result such as a number or string. Every .NET object

encountered by Mathematica during this operation is needed only during the lifetime of the

program, much like the local variables provided in Mathematica by Block and Module, and in

C#, C++, Java, and many other languages by block scoping constructs (e.g., {}). NETBlock

allows you to mark a block of code as having the property that any new objects returned to

Mathematica during the evaluation are to be treated as temporary and released when NETBlock

finishes.

It is important to note that the preceding sentence said “new objects.” NETBlock will not cause

every object encountered during the evaluation to be released~only those that are being

encountered for the first time. Objects that have already been seen by Mathematica will not be

affected. This means that you do not have to worry that NETBlock will aggressively release an

object that is not truly temporary to that evaluation.

It is not enough simply to call ReleaseNETObject on every object you create with NETNew,

because many .NET methods and properties return objects. You might not be interested in

these return values. You might never assign them to a named variable because they may be

chained together with other calls (as in obj@ReturnsObject[]@Foo[]), but you still need to

release them. Using NETBlock is an easy way to be sure that all novel objects are released

when a block of code finishes.

NETBlock@exprD returns whatever expr returns.

.NET/Link User Guide 25

NETBlock@exprD returns whatever expr returns.

Many .NET/Link Mathematica programs will have the following structure.

MyFunc@args__D :=
NETBlock@

Module@8locals<,
...

D
D

It is very common to write a function that creates a number of NETObject expressions and then

returns one of them, the rest being temporary. To facilitate this, if the return value of a

NETBlock is a single NETObject, it will not be released.

MyOtherFunc@args__D :=
NETBlock@

Module@8obj<,
...
obj = NETNew@“System.Windows.Forms.Form“D;
...
Return@objD

H* OK: obj will not be released when NETBlock finishes. *L
D

D

If you want more control over which objects are allowed to escape from a NETBlock, you can

use the KeepNETObject function. Calling KeepNETObject on a single object or sequence of

objects means they will not be released when the first enclosing NETBlock ends. If there is an

outer enclosing NETBlock, the objects will be freed when it ends, however, so if you want the

objects to escape a nested set of NETBlocks, you must call KeepNETObject at each level. Alter-

natively, you can call KeepNETObject@obj, ManualD, where the Manual argument tells

.NET/Link that the object should not be released by any enclosing NETBlocks. The only way

such object will be released is if you manually call ReleaseNETObject on it.

KeepNETObject@obj1,obj2,...D do not release the given objects when the NETBlock ends

KeepNETObject@obj1,ManualD do not release the given object when any NETBlock ends

Keeping .NET objects after a NETBlock ends.

Here is an example that uses KeepNETObject to allow you to return a list of two objects without

releasing them.

26 .NET/Link User Guide

MyOtherFunc[args__] :=
Module[{obj1, obj2, obj3},

NETBlock[
obj1 = NETNew[“System.Windows.Forms.Form“;
obj2 = NETNew[“System.Windows.Forms.Button“];

 obj3 = NETNew[“SomeTemporaryObject“];
 ...
 KeepNETObject[obj1, obj2];
 {obj1, obj2}
]
]

BeginNETBlock and EndNETBlock can be used to provide the same functionality as NETBlock

across more than one evaluation. EndNETBlock releases all novel .NET objects returned to

Mathematica since the previous matching BeginNETBlock. These functions are mainly of use

during development, when you might want to set a mark in your session, do some work, and

then release all novel objects returned to Mathematica since that point. BeginNETBlock and

EndNETBlock can be nested. Every BeginNETBlock should have a matching EndNETBlock,

although it is not a serious error to forget to call EndNETBlock, even if you have nested levels

of them~you will only fail to release some objects.

LoadedNETObjects

LoadedNETObjects@D returns a list of all .NET objects that are currently referenced in Mathemat-

ica. This includes all objects explicitly created with NETNew and all those that were returned to

Mathematica as the result of a .NET method or property. It does not include objects that have

been released with ReleaseNETObject or through NETBlock. LoadedNETObjects is intended

mainly for debugging. It is very useful to call it before and after some function you are working

on. If the list grows, your function leaks references, and you need to examine its use of

NETBlock and/or ReleaseNETObject.

Enums

Enumerations in .NET are a special kind of class, with each member of the enumeration repre-

sented as a static constant field in the class. Although the values of enumeration constants are

integers, .NET/Link does not convert them into integers when they are returned to Mathemat-

ica. This is because enum values are probably only going to be passed back into some other

.NET method~it is not likely that you will want to operate on them as integers in Mathematica.

In this case, it is more meaningful to have them appear in Mathematica as objects of a class

instead of just cryptic integer values.

Suppose you have a Button object btn that you want to anchor in a form so that it stays in a

fixed position with respect to one or more edges as the form is resized. To do this, you set the

button’s Anchor property to a value from the AnchorStyles enum. First load the

AnchorStyles type, as is always necessary when you want to access a static member of the

type.

.NET/Link User Guide 27

Suppose you have a Button object btn that you want to anchor in a form so that it stays in a

fixed position with respect to one or more edges as the form is resized. To do this, you set the

button’s Anchor property to a value from the AnchorStyles enum. First load the

AnchorStyles type, as is always necessary when you want to access a static member of the

type.

In[16]:= LoadNETType@“System.Windows.Forms.AnchorStyles“D

Out[16]= NETType@System.Windows.Forms.AnchorStyles, 6D

You refer to a member of this enum just like any other static field.

In[17]:= AnchorStyles`Top

Out[17]= «NETObject@System.Windows.Forms.AnchorStylesD »

The enum is represented in Mathematica by a strongly typed object reference that is more

meaningful to a programmer than the raw integer value, which happens to be 1. We can use

the NETObjectToExpression function to convert the object reference to its integer value.

In[18]:= NETObjectToExpression@AnchorStyles`TopD

Out[18]= 1

Now apply it to the button.

In[19]:= btnüAnchor = AnchorStyles`Top;

For any argument that is typed as an enum, you can pass either an instance of the enum class

or a raw integer value. This means that the above line could also be written as the following,

although it is obviously much less readable.

In[21]:= btnüAnchor = 1;

Some enums have the [Flags] attribute, which indicates that its values can be combined by a

bitwise OR. The AnchorStyles enum has this attribute because you might want to anchor a

component to more than one edge of its parent container. Here is an example of what that

looks like in C#.

// C# code
btn.Anchor = AnchorStyles.Top | AnchorStyles.Left;

To do this in Mathematica, you need to get the integer values of the enum, so you use

NETObjectToExpression. (This is just about the only case where you would want to operate on

enum values as integers in Mathematica.)

28 .NET/Link User Guide

In[20]:= btnüAnchor = BitOr@NETObjectToExpression@AnchorStyles`TopD,
NETObjectToExpression@AnchorStyles`LeftDD;

“Out” and “Ref” Parameters

.NET allows parameters to be passed by reference, so that changes to their values can be

propagated back to the caller. Such “by-reference” parameters are very rarely used in the .NET

Framework classes, but are used more commonly in some third-party libraries. In C# notation,

such parameters are marked as out or ref, the difference being that a ref parameter needs

an initial value on entry to the method, whereas an out parameter does not. In Visual Basic

.NET, the keyword ByRef is used to indicate a parameter passed by reference. ByRef

parameters in Visual Basic are like ref parameters in C#; there is no notion of an out-only

parameter in Visual Basic. In IDL notation, ref parameters are written as [in, out] and out-

only parameters are written as [out].

Here is an example of a ref parameter in a method from the System.Uri class.

// C#
public static char HexUnescape(string pattern, ref int index);

// Visual Basic
Public Shared Function HexUnescape(ByVal pattern As String, ByRef index As
Integer) As Char

This method takes a string (the pattern parameter) and a starting index and reads the next

character in the string, decoding a %xx-format hexadecimal representation if necessary. It also

advances the index value to just past the end of the decoded character. Like most methods

that use ref or out parameters, this method needs to return more than one piece of informa-

tion~the decoded character and also the next position in the string. Because the index parame-

ter's starting value is used by the method, it must be a ref parameter and not merely an out

parameter.

You call methods with out or ref parameters from Mathematica in exactly the same way they

are called from most .NET languages, including C# and Visual Basic .NET. For a ref parameter,

you call the method with a symbol that has an initial value of the correct type (an integer in this

case). When the method returns, the symbol will have a new value assigned to it.

This decodes the %20 character (the familiar encoding for a space character [decimal 32] in a

URL).

.NET/Link User Guide 29

In[50]:= LoadNETType@“System.Uri“D;
pos = 3;
Uri`HexUnescape@“abc%20def“, posD

Out[52]= 32

Because pos was passed to a ref parameter slot, it has been assigned a new value, that of the

index of the first character after the %20.

In[53]:= pos

Out[53]= 6

A common mistake when calling ref parameters is to forget to assign an initial value. Here is

an example of this error.

In[54]:= Clear@posD;
Uri`HexUnescape@“abc%20def“, posD

NET::methodargs : Improper arguments supplied for method named HexUnescape.

Out[55]= $Failed

If a parameter is marked as out instead of ref, the initial value is ignored, so it doesn’t matter

what value, if any, the symbol had upon entering the method. As mentioned above, Visual

Basic .NET has no notion of an out-only parameter, so ByRef parameters in methods written in

Visual Basic will always need an initial value of the correct type, even if the method does not

use the incoming value.

Like Visual Basic .NET (but unlike C#), .NET/Link allows you to pass a literal value instead of a

symbol to an out or ref parameter. In such cases, any changes made to the parameter’s value

are lost. Here is an example.

In[56]:= Uri`HexUnescape@“abc%20def“, 3D

Out[56]= 32

30 .NET/Link User Guide

Returning Objects “By Value” and “By Reference”

References and Values

.NET/Link provides a mapping between certain Mathematica expressions and their .NET counter-

parts. What this means is that these Mathematica expressions are automatically converted to

and from their .NET counterparts as they are passed between Mathematica and .NET. For

example, .NET integer types (Int32, Int16, Byte, and so on) are converted to Mathematica

integers and .NET real types (Single and Double) are converted to Mathematica real numbers.

Another mapping is that .NET objects are converted to NETObject expressions in Mathematica.

These NETObject expressions are references to .NET objects~they have no meaning in Mathe-

matica except as they are manipulated by .NET/Link. However, some .NET objects are things

that have meaningful values in Mathematica, and these objects are by default converted to

values. Examples of such objects are strings and arrays.

You could say, then, that .NET objects are by default returned to Mathematica “by reference”,

except for a few special cases. These special cases are numbers, strings, arrays, and booleans.

You could say that these exceptional cases are returned “by value”. The table under

"Conversion of Types Between .NET and Mathematica" shows how these special .NET object

types are mapped into Mathematica values.

In summary, every .NET object that has a meaningful value representation in Mathematica is

converted into this value, simply because that is the most useful behavior. There are times,

however, when you might want to override this default behavior. Probably the most common

reason for doing this is to avoid unnecessary traffic of large expressions over MathLink.

ReturnAsNETObject@exprD a .NET object returned by expr will be in the form of a
reference

NETObjectToExpression@objD give the value of the .NET object as a Mathematica
expression

“By reference” and “by value” control.

.NET/Link User Guide 31

ReturnAsNETObject

Consider the case where you have a static method in class MyClass called arrayAbs() that

takes an array of doubles and returns a new array where each element is the absolute value of

the corresponding element in the argument array. The declaration of this method in C# syntax

thus looks like double[] ArrayAbs(double[] a). This is how you would call such a method

from Mathematica.

In[1]:= LoadJNETType@“MyClass“, StaticsVisible Ø TrueD;
ArrayAbs@81., -2., 3., 4.<D

Out[2]= 81., 2., 3., 4.<

The above example is how you probably want the method to work: you pass a Mathematica list

and get back a list. Now assume you have another method named ArraySqrt() that acts like

ArrayAbs() except that it performs the Sqrt() function instead of Abs().

In[3]:= ArraySqrt@ArrayAbs@81., -2., 3., 4.<DD

Out[3]= 81., 1.41421, 1.73205, 2.<

In this computation, the original list is sent over MathLink to .NET and a .NET array is created

with these values. That array is passed as an argument to ArrayAbs(), which itself creates and

returns another array. This array is then sent back to Mathematica via MathLink to create a list,

which is then promptly sent back to .NET as the argument for ArraySqrt(). You can see that it

was a waste of time to send the array data back to Mathematica~you had a perfectly good

array (the one returned by the ArrayAbs() method) living on the .NET side, ready to be

passed to ArraySqrt(), but instead you sent its contents back to Mathematica only to have it

immediately come back to .NET again as a new array with the same values! For this example,

the cost is negligible, but what if the array had 200,000 elements?

What is needed is a way to let the array data remain in .NET and return only a reference to the

array, not the actual data itself. This can be accomplished with the ReturnAsNETObject

function.

In[4]:= ReturnAsNETObject@ArrayAbs@81., -2., 3., 4.<DD

Out[4]= «NETObject@System.Double@DD »

32 .NET/Link User Guide

Here is how the computation looks using ReturnAsNETObject.

In[5]:= ArraySqrt@ReturnAsNETObject@ArrayAbs@81., -2., 3., 4.<DDD

Out[5]= 81., 1.41421, 1.73205, 2.<

Earlier you saw ArraySqrt() being called with an argument that was a Mathematica list of

reals. Here it is being called with a reference to a .NET object that is a one-dimensional array of

doubles. All arguments can be called from Mathematica with either a Mathematica value or a

reference to a .NET object of the appropriate type.

In summary, the ReturnAsNETObject function causes methods and properties that return

objects that would normally be converted into Mathematica values to return references instead.

It is often used as an optimization to avoid unnecessarily passing large amounts of data

between Mathematica and .NET, and as such it will be useful primarily for very large arrays and

strings. Objects of most .NET types have no meaningful “by value” representation in Mathemat-

ica, and they are always returned "by reference." ReturnAsNETObject is redundant these cases.

NETObjectToExpression

In the previous section, you saw how the ReturnAsNETObject function can be used to cause

objects normally returned to Mathematica by value to be returned by reference. It is necessary

to have a function that does the reverse~takes a reference and converts it to its value represen-

tation. That function is NETObjectToExpression.

Keep in mind that almost always when you are dealing with a .NET object that has a meaningful

“value” representation in Mathematica, the object will be automatically converted to this value

when it is sent to Mathematica. There are some exceptions to this rule, and these are where

NETObjectToExpression becomes useful. You saw earlier that the ReturnAsNETObject function

can be used to force an object to be returned as a reference. Another way to get a reference is

to call NETNew or MakeNETObject, as these functions always return an object reference. Here

we create a String object explicitly.

In[1]:= NETNew@“System.String“, 865, 66, 67<D

Out[1]= «NETObject@System.StringD »

This converts the string reference to a Mathematica string.

In[2]:= NETObjectToExpression@%D

Out[2]= ABC

The section on "Overloaded Operators" introduces the MakeNETObject function, which is easier

than using NETNew to construct .NET objects out of Mathematica strings, numbers, and arrays.

.NET/Link User Guide 33

The section on "Overloaded Operators" introduces the MakeNETObject function, which is easier

than using NETNew to construct .NET objects out of Mathematica strings, numbers, and arrays.

NETObjectToExpression also converts into their value representations some object types that

are normally returned by reference: enumerations and collections (objects that implement the

ICollection interface). Enumeration types are discussed in the "Enums" section. Collections

can be usefully operated on in Mathematica as lists, but unlike arrays, collections might be

expensive to iterate through, so .NET/Link leaves them as references and does not automati-

cally convert them to lists. If you want a list, use NETObjectToExpression.

This creates a collection object:

In[1]:= arrayList = NETNew@“System.Collections.ArrayList“D

Out[1]= «NETObject@System.Collections.ArrayListD »

Now populate it with values.

In[2]:= arrayList@Add@Ò1DD & êü Range@10D;

NETObjectToExpression converts the object reference to a list.

In[3]:= NETObjectToExpression@arrayListD

Out[3]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10<

Overloaded Operators

Some .NET languages allow you to define overloaded operators such as +, >, and so on for a

class. Support for overloading of operators is not required in a .NET language. C# and C++

allow it; Visual Basic .NET does not. An example of a class that defines a number of overloaded

operators is System.TimeSpan. For instance, it defines a + operator so that you can add two

TimeSpan objects just like they were numbers. Here is what it looks like in C# code.

// C# code
TimeSpan t1 = new TimeSpan(2, 45, 55); // 2 hrs, 45 mins, 55 secs.
TimeSpan t2 = new TimeSpan(3, 10, 25); // 3 hrs, 10 mins, 25 secs.
TimeSpan sum = t1 + t2;

Because .NET languages are not required to support overloaded operators, any class that

defines them should always provide some other means to accomplish the same operation,

generally via a method call. The TimeSpan class provides an Add() method that you can use in

languages like Visual Basic .NET that do not allow overloaded operators.

.NET/Link does not support overloaded operators in Mathematica syntax, so you should seek

out the method that performs the same operation. Here is the Add() method to add two TimeSÖ

pan objects.

34 .NET/Link User Guide

.NET/Link does not support overloaded operators in Mathematica syntax, so you should seek

out the method that performs the same operation. Here is the Add() method to add two TimeSÖ

pan objects.

In[63]:= t1 = NETNew@“System.TimeSpan“, 2, 4, 55D;
t2 = NETNew@“System.TimeSpan“, 3, 10, 25D;
sum = t1üAdd@t2D;
sumüToString@D

Out[66]= 05:15:20

Even if the class author ignored the .NET guidelines and failed to provide an alternative method

for accomplishing the same operation as an overloaded operator, you could still invoke the

operation from Mathematica. This is because overloaded operators in C# and C++ are achieved

internally through special static methods with names like op_XXX where XXX is the name of the

operation. The class author does not write these methods directly~they are created by the

compiler. Nonetheless, they can be called directly from Mathematica like any other method.

Here are all these cryptically-named methods in the TimeSpan class.

In[60]:= NETTypeInfo[“System.TimeSpan“, “Methods“, “op_*“]

Ê Methods Hmatching string pattern op_*L
static TimeSpan op_Addition HTimeSpan t1, TimeSpan t2L

static bool op_Equality HTimeSpan t1, TimeSpan t2L

static bool op_GreaterThan HTimeSpan t1, TimeSpan t2L

static bool op_GreaterThanOrEqual HTimeSpan t1, TimeSpan t2L

static bool op_Inequality HTimeSpan t1, TimeSpan t2L

static bool op_LessThan HTimeSpan t1, TimeSpan t2L

static bool op_LessThanOrEqual HTimeSpan t1, TimeSpan t2L

static TimeSpan op_Subtraction HTimeSpan t1, TimeSpan t2L

static TimeSpan op_UnaryNegation HTimeSpan tL

static TimeSpan op_UnaryPlus HTimeSpan tL

Even if there was no Add() method in the TimeSpan class, you could still add them together by

invoking the op_Addition() method. Note that as always when calling .NET names from

Mathematica, you map the underscore character to a U because underscore is not a legal charac-

ter in a Mathematica symbol.

In[62]:= TimeSpan`opUAddition@t1, t2DüToString@D

Out[62]= 05:15:20

.NET/Link User Guide 35

Casting

Introduction

.NET programs often include casts, where an object of one type is converted to another type. A

typical example is where a programmer has a variable of type Object, probably obtained as the

result of a method call typed to return Object, and wants to cast it to a derived type so that

methods from that type can be called on it. This often occurs when dealing with collection

classes, as they can hold objects of any type and thus their methods are typed to return noth-

ing more specific than Object. Here is the signature of the IList.Item property, which

extracts from a list the object at a given index.

‘ Visual Basic .NET
Default Property Item(index As Integer) As Object

// C#
object this[int index] {get; set;}

In C# the Item property is the indexer for the class, so it can be written with the above unusual

syntax or as a property named Item, like in Visual Basic. If you are putting, say, strings into an

IList and later extract one using the Item property, you would have to cast it to a string to be

able to assign it to a string variable.

// C#
ArrayList aList = new ArrayList;
aList.Add(“abc“);
...
string s = (string) aList[0];

‘ Visual Basic .NET
Dim aList As New ArrayList
aList.Add(“abc“)
...
Dim s as String
s = CType(aList(0), String)

In Visual Basic .NET, a cast is performed using the CType HL function, and it is only necessary if

Option Strict is set.

This type of cast is called a downcast because you are casting down the inheritance hierarchy

(from a parent type to a derived type). Such downcasting is probably the most common form of

casting (aside from the casting used to convert numbers of one type to another, such as int to

byte).

36 .NET/Link User Guide

This type of cast is called a downcast because you are casting down the inheritance hierarchy

(from a parent type to a derived type). Such downcasting is probably the most common form of

casting (aside from the casting used to convert numbers of one type to another, such as int to

byte).

Although you will see downcasting scattered throughout the C# and Visual Basic .NET programs

that you might be trying to duplicate in .NET/Link, downcasting is virtually never relevant in

.NET/Link. This is because casting between reference types is primarily a compile-time opera-

tion. In the above sample code, the programmer is telling the compiler that they know the

object they just extracted from the ArrayList is a string, and they want the compiler to allow

them to treat it as one. But in .NET/Link objects are always returned to Mathematica as their

true runtime types, so when you call the Item property, you get back an object of type String.

It is completely irrelevant that the Item property is typed to return Object. In effect, downcast-

ing is irrelevant and even impossible in .NET/Link because every object has its true runtime

type~there is no type further down the inheritance hierarchy to cast an object to!

The point of this preamble is to make it clear that the vast majority of casts you see in .NET

programs are irrelevant in .NET/Link. They are either conversions between numeric types

(which are easily done in Mathematica by other means if they are even necessary at all), or

downcasts from some general type, like Object, to a more specific type (which are pointless

because they are done for the sake of the compiler and there is no compilation stage in

.NET/Link).

There are some places in .NET/Link, however, where casting is necessary. One case is when

working with COM objects. This is discussed in the "COM" section and will not be dealt with

here. All the other cases where casting is necessary in .NET/Link are upcasts, where you are

casting an object to a parent class or interface. The three situations where upcasting is neces-

sary are as follows.

† to call a hidden parent-class implementation of a method

† to call methods written using so-called “explicit interface implementation”

† to call methods on a private class that implements a public interface

.NET/Link User Guide 37

Note that these are relatively rare circumstances, and many programmers will never encounter

them. Although these are nontrivial aspects of .NET programming, there is really no extra

complexity introduced by .NET/Link~these are precisely the cases where upcasting is required

in C#, Visual Basic .NET, and other .NET languages. These three cases will be discussed individu-

ally in the following sections.

The function that casts a .NET object reference is CastNETObject. You will see examples in the

following sections. CastNETObject does not create a new object reference, just an “alias” of an

existing object reference. This means that if you call ReleaseNETObject on an object, the

object and all casted references to it are freed. In other words, an object and its casted ver-

sions are really just different ways of viewing the same object, not separate references.

CastNETObject@obj,“type“D cast the object obj to the given type, specified as a string

CastNETObject@obj,NETTypeD cast the object obj to the given type, specified as a NET-
Type expression

Casting NETObject expressions.

The CastNETObject function was introduced in .NET/Link 1.1.

Calling Hidden Members from a Parent Class

A child class can hide members of its parent class by declaring members with the same name

using the new keyword (in C#) or Shadows keyword (in Visual Basic .NET). Consider the follow-

ing classes.

// C# code
public class Parent {

public string Foo() { return “from parent“; }
}

public class Child : Parent {
public new string Foo() { return “from child“; }

}

If you had an instance of the Child class, but wanted to call the Parent implementation of

Foo HL, you could do this by casting the Child instance to the Parent class.

// C# code
Child c = new Child();
string s1 = c.Foo(); // s1 gets the value “from child“
string s2 = ((Parent) c).Foo(); // s2 gets the value “from parent“

The behavior is the same whether the Foo HL method is declared virtual or not in the Parent

class. Note that the new keyword (Shadows in Visual Basic .NET) is not strictly required,

although the compiler will generate a warning if it is left out.

38 .NET/Link User Guide

The behavior is the same whether the Foo HL method is declared virtual or not in the Parent

class. Note that the new keyword (Shadows in Visual Basic .NET) is not strictly required,

although the compiler will generate a warning if it is left out.

To call the Parent class implementation of Foo HL using .NET/Link, use CastNETObject to cast

the object to the Parent class, exactly as was done in the C# code.

In[1]:= child = NETNew@“Child“D

Out[1]= «NETObject@ChildD »

In[2]:= parentCast = CastNETObject@child, “Parent“D

Out[2]= «NETObject@ParentD »

In[3]:= parentCastüFoo@D

Out[3]= from parent

Of course the two references refer to the same object.

In[4]:= SameObjectQ@parentCast, childD

Out[4]= True

Explicit Interface Implementation

If a class implements two interfaces that each have a method of the same name, it can choose

to give each interface member a separate implementation. This is called explicit interface

implementation. This technique is generally only used when the methods from the two

interfaces are so different conceptually that there is no way to provide a single implementation

that satisfies the contracts of both interfaces. Here is a simplified example from the .NET SDK

documentation. The Box class implements IEnglishDimensions and IMetricDimensions,

which both have a LengthHL method, and of course there is no single implementation of

LengthHL that can work for both interfaces.

.NET/Link User Guide 39

// C# code

interface IEnglishDimensions {
 double Length();
}

interface IMetricDimensions {
 double Length();
}

class Box : IEnglishDimensions, IMetricDimensions {

 double lengthInches;

 public Box(double length) {
 lengthInches = length;
 }

 // Explicitly implement for IEnglishDimensions:
 double IEnglishDimensions.Length() {
 return lengthInches;
 }

 // Explicitly implement for IMetricDimensions:
 double IMetricDimensions.Length() {
 return lengthInches * 2.54;
 }
}

Here is how you would call these methods. You must cast the Box object to either the

IMetricDimensions or IEnglishDimensions interface before you can call the LengthHL

method.

Box myBox = new Box(30.0);
double englishLength = ((IEnglishDimensions) myBox).Length();
double metricLength = ((IMetricDimensions) myBox).Length();

Here is how you would do the same thing in .NET/Link.

myBox = NETNew@“Box“D;
englishLength = CastNETObject@myBox, “IEnglishDimensions“DüLength@D;
metricLength = CastNETObject@myBox, “IMetricDimensions“DüLength@D;

Here is a real-world example. The Array class (which is the parent class for all arrays in .NET)

uses explicit interface implementation for methods from the IList interface. If a class uses

explicit interface implementation for some of its methods this should be mentioned clearly in

the documentation, and this is true for the Array class. One method from the IList interface is

Contains HL. You cannot call this directly on an array object, even though Array implements

IList.

40 .NET/Link User Guide

Here is a real-world example. The Array class (which is the parent class for all arrays in .NET)

uses explicit interface implementation for methods from the IList interface. If a class uses

explicit interface implementation for some of its methods this should be mentioned clearly in

the documentation, and this is true for the Array class. One method from the IList interface is

Contains HL. You cannot call this directly on an array object, even though Array implements

IList.

In[6]:= arr = MakeNETObject@82, 4, 6, 8<D

Out[6]= «NETObject@System.Int32@DD »

In[9]:= arrüContains@6D

NET::nomethod: No public instance method named Contains exists for the .NET type System.Int32@D.

Out[9]= $Failed

It works if you cast to IList.

In[10]:= CastNETObject@arr, “System.Collections.IList“DüContains@6D

Out[10]= True

Private Class, Public Interface

A final case where upcasting is necessary in .NET/Link can occur when you have a method that

is typed to return an interface, and the implementation of the method returns an object of a

non-public class that implements that interface. This is perfectly legal, but it can cause prob-

lems for .NET/Link. When you reflect on a non-public class to obtain all its public members

(.NET/Link calls all methods via reflection), you only see the methods that are implemented by

some public parent class. Just because a class implements a public interface does not mean

that you can call those methods on an instance of that class. If the class itself is not public,

even though its methods are public, you can call them only on an instance of the class that is

typed as a public parent class or interface.

.NET/Link User Guide 41

This may sound confusing, so consider the following example. Assume an interface called IFoo

and an internal class that implements IFoo (internal classes are visible only to other types

within the same assembly).

interface IFoo {
int Foo();

}

internal class InternalIFooImpl : IFoo {
public int Foo() { return 42; }

}

Now assume there is some other class that has a method type to return IFoo that returns an

instance of the InternalIFooImpl class.

public class FooFactory {
public static IFoo CreateIFoo() { return new InternalIFooImpl(); }

}

In[1]:= LoadNETType@“FooFactory“D;
foo = FooFactory`CreateIFoo@D

Out[2]= «NETObject@InternalIFooImplD »

It doesn’t work to call the Foo HL method on the foo object because it is typed as a non-public

class.

In[3]:= fooüFoo@D

NET::nomethod: No public instance method named Foo exists for the .NET type InternalIFooImpl.

Out[3]= $Failed

The error message isn’t very accurate above~there is a public method named Foo HL in the

InternalIFooImpl class, it just cannot be seen via reflection because the class itself is not

public. This sort of thing never shows up in C# or Visual Basic .NET because the variable that

holds the result of CreateIFoo HL will be typed as the public interface IFoo. The programmer

would never have any reason to see or even know about the InternalIFooImpl class. The code

looks like the following.

// C# code
IFoo foo = FooFactory`CreateIFoo();
int result = foo.Foo();

42 .NET/Link User Guide

In .NET/Link, however, objects are seen by default as their true runtime types, so we end up

with an instance of an object that is typed as a non-public class. The solution is to do what is

done in C# and Visual Basic .NET: upcast the object to the IFoo interface.

In[3]:= ifoo = CastNETObject@foo, “IFoo“D;
ifooüFoo@D

Out[4]= 42

The “factory” design pattern in the above example is relatively common. A special object-

creation method returns objects typed only as some interface. This allows the designer of the

library to document an interface only, and hide the implementation details in private classes.

Clients of the library write only to the interface and are kept completely isolated from details

like the actual names of the implementation classes. This suggests that the need for upcasting

a non-public class to an interface type would not be rare for .NET/Link programmers. In prac-

tice, however, it is often the case that the non-public class inherits implementations of at least

some of its methods from a public parent class. If this is the case, these methods will be found

and can be invoked on the non-public child class without casting.

Indexers

Some .NET classes define a special member that permits instances of the class to be accessed

in the same way as arrays. This special member is called an indexer in C# terminology, and a

default parameterized property in Visual Basic .NET terminology. Here are skeleton definitions

of example members in C# and Visual Basic .NET.

// C# indexer
public int this(int i) {

get { ... }
set { ... }

}

// VB default parameterized property
Default Public Property Item(ByVal i As Integer) As Integer
 Get
 ...
 End Get
 Set(ByVal Value As Integer)
 ...
 End Set
End Property

Indexers allow a class to act as if it were an array even though it is not. Most of the .NET

collection classes (classes that implement the ICollection interface) support an indexer so

that elements can be set and retrieved using a simple array-like syntax. If a class had a

definition like one of the above, you could access the “ith element” using code like the following.

.NET/Link User Guide 43

Indexers allow a class to act as if it were an array even though it is not. Most of the .NET

collection classes (classes that implement the ICollection interface) support an indexer so

that elements can be set and retrieved using a simple array-like syntax. If a class had a

definition like one of the above, you could access the “ith element” using code like the following.

// C#
int firstElement = obj[0];

‘ VB
firstElement = obj(0)

If a class defines an indexer, you can call the indexer in Mathematica using function brackets.

H* Call indexer *L
firstElement = obj@0D;

Note that there is no method or property name in the above code~just an “argument” to the

object itself, as if it were a function. It could be argued that Part-based syntax (i.e., using

obj[[0]]) would be more suitable for calling indexers in .NET/Link, as it is the Mathematica

equivalent of array access, but that syntax was rejected for various philosophical and technical

reasons.

Here is another example of calling an indexer using the BitArray class, which is a collection of

true/false values that is stored in a very compact way. This class defines an indexer so that it

can be treated like an array.

In[1]:= bitArray = NETNew@“System.Collections.BitArray“, 8True, False, True<D

Out[1]= «NETObject@System.Collections.BitArrayD »

This calls the indexer to get the second element (because it is a zero-based index).

In[2]:= bitArray@1D

Out[2]= False

44 .NET/Link User Guide

If you write a class in C# and give it an indexer, the compiler creates a public property named

Item for you. This is a parameterized property, meaning that it takes an argument like a

method call. The indexer syntax is just a shorthand for calling the Item property. If you are

writing in Visual Basic .NET, the convention is that your default parameterized property should

be named Item, but this is not a requirement. Whatever the default parameterized property is

named, you can skip the indexer-style syntax and call the property directly from Mathematica if

you wish.

In[3]:= bitArrayüItem@1D

Out[3]= False

Exceptions

How Exceptions Are Handled

.NET/Link handles .NET exceptions automatically. If an uncaught exception is thrown during

any call into .NET, you will get a message in Mathematica. Here is an example that tries to

format a real number as an integer.

In[26]:= LoadNETType@“System.Int32“D;
Int32`Parse@“1234.5“D

NET::netexcptn :
A .NET exception occurred: System.FormatException: Input string was not in a correct format.
at System.Number.ParseInt32HString s, NumberStyles style, NumberFormatInfo infoL
at System.Int32.ParseHString s, NumberStyles style, IFormatProvider providerL
at System.Int32.ParseHString sL.

Out[27]= $Failed

If an exception is thrown, the result of the call will be $Failed.

If the .NET code was compiled with debugging information included, the Mathematica message

you get as a result of an exception will show the full stack trace to the point where the excep-

tion occurred, with the exact line numbers in each file.

.NET/Link User Guide 45

GetNETException

You can use the function GetNETException to get the Exception object for the exception

thrown in the last call from Mathematica to .NET. It returns Null if no exception was thrown.

Most programmers will have no use for this function, but you could use it to implement a spe-

cial exception-handling feature in your programs. Below you see the exception thrown by the

previous call to Int32.Parse(). You can see that most exceptions that occur will come back

wrapped in a special CallNETException object that wraps the actual exception thrown using

the standard .NET design pattern for “inner exceptions”.

In[28]:= exc = GetNETException@D

Out[28]= «NETObject@Wolfram.NETLink.Internal.CallNETExceptionD »

To get the actual exception thrown, you must examine the InnerException property.

In[29]:= innerExc = excüInnerException

Out[29]= «NETObject@System.Reflection.TargetInvocationExceptionD »

In this example the .NET reflection system has wrapped the exception in another exception, so

you have to dig one level deeper to see the “real” one.

In[30]:= innerExcüInnerException

Out[30]= «NETObject@System.FormatExceptionD »

Custom Exception Handling

Very advanced programmers might want to implement their own system for exception handling

and/or reporting. For example, you might want to use Mathematica's Throw and Catch func-

tions to handle .NET exceptions in Mathematica code, using the same programming style that is

used in .NET languages. An even simpler example is the desire to silence exception messages

in a certain block of code.

To implement custom handling for .NET exceptions in Mathematica, use the symbol

$NETExceptionHandler. The value of $NETExceptionHandler is treated as a function that will

be passed three arguments: the symbol associated with the message (this will usually be the

symbol NET), the message tag (this will typically be the string “netexcptn”), and the descriptive

string of text associated with the message.

You will usually set $NETExceptionHandler within a Block so that its effect will be limited to a

precisely defined segment of code, as in the following example that silences messages.

46 .NET/Link User Guide

You will usually set $NETExceptionHandler within a Block so that its effect will be limited to a

precisely defined segment of code, as in the following example that silences messages.

Block@8$NETExceptionHandler = Null &<,
objüMethod@D

D

You can use GetNETException within your handler function to obtain the actual .NET exception

object that was thrown. Here is an example.

 exceptionThrower = Throw[GetNETException[]]&;

 Block[{$NETExceptionHandler = exceptionThrower},
 ... code that calls .NET ...
]

You should avoid setting $NETExceptionHandler outside of a Block, as you are almost sure to

inadvertently create situations where its value does not get cleared, leaving users scratching

their heads wondering why their exceptions are not being handled like they expect.

Nested Types

Some .NET types have declarations of other types nested within them. Here is an example in

C#.

namespace SomeNamespace {

public class Outer {

public int Foo() { return 42; }
public static int StaticFoo() { return 42; }

public class Inner {
public int InnerFoo() { return 42; }
public static int StaticInnerFoo() { return 42; }

}
}

}

In .NET, the + character is used in a type name to separate the name of an inner class from its

outer class. In the above example, the actual type name of the Inner class is SomeNamespaceÖ

.Outer+Inner. This is the name you must use in LoadNETType.

In[1]:= innerClass = LoadNETType@“SomeNamespace.Outer+Inner“D

Out[1]= NETType@SomeNamespace.Outer+Inner, 25D

You also use type names in NETNew. Here is how you construct an instance of the Inner class.

.NET/Link User Guide 47

You also use type names in NETNew. Here is how you construct an instance of the Inner class.

In[2]:= innerObj = NETNew@“SomeNamespace.Outer+Inner“D

Out[2]= «NETObject@SomeNamespace.Outer+InnerD »

The + character only appears in type names. When referring to a nested type in code, use the

standard scope resolution operator (the period in C# and Visual Basic .NET) to separate the

inner class from the outer class.

// C# code
Outer.Inner obj = new Outer.Inner();

Although most .NET languages allow the above syntax for nested types, keep in mind that the

actual type names use the + character to separate the inner type from the outer one. In

.NET/Link, whenever you enter a type name as a string, you must use the + notation.

You call instance methods on objects of nested types in the usual way.

In[3]:= innerObjüInnerFoo@D

Out[3]= 42

Here is how to call a static member. Notice that as in C# and Visual Basic .NET, the + character

disappears and is replaced by the scope resolution operator (` in Mathematica).

In[4]:= Outer`Inner`StaticInnerFoo@D

Out[4]= 42

Another point to note about the above line is that you cannot refer to a static member of a

nested class using simply the inner class name, as in Inner`StaticInnerFoo[]. This is to be

expected, since you cannot do this in other .NET languages either. You always need to prefix

the inner class name with the outer one.

Here is a real-world example. The System.Environment class has a nested enum called SpeÖ

cialFolder. This enum contains constants that designate special locations within the Windows

operating system (it has values that include ProgramFiles, Recent, System, StartMenu, and

so on). Here is how to determine the path to the user’s Favorites folder. You need to call static

members from the System.Environment class and the System.Environment.SpecialFolder

enum (members of an enum are static), so first you load these two types. Note the + in the

type name.

In[5]:= LoadNETType@“System.Environment“D;
LoadNETType@“System.Environment+SpecialFolder“D;

The GetFolderPath() method takes members of the SpecialFolder enumeration and gets

the appropriate path as a string. Note how we refer to the Favorites member of the SpecialÖ

Folder enum.

48 .NET/Link User Guide

The GetFolderPath() method takes members of the SpecialFolder enumeration and gets

the appropriate path as a string. Note how we refer to the Favorites member of the SpecialÖ

Folder enum.

In[7]:= Environment`GetFolderPath@Environment`SpecialFolder`FavoritesD

Out[7]= C:\Documents and Settings\tgayley\Favorites

In summary, the important point to remember about nested types is that when you need to

refer to the name of one in a string, you use the + character to separate the outer type from

the inner type. When you refer to a type in code, you go back to using the familiar ` to

separate the outer and inner names.

MakeNETObject

The most common way to create a .NET object is to call a constructor via NETNew. Sometimes,

however, you have a Mathematica expression that you want to convert into a .NET object but

the class does not have a convenient constructor. A common example is if you want to create

an array object out of a Mathematica list. You can call an array constructor via NETNew, but you

cannot initialize the array with values via the constructor. This example creates an array object

with NETNew and fills it manually.

In[1]:= intArray = NETNew@“System.Int32@D“, 3D

Out[1]= «NETObject@System.Int32@DD »

In[2]:= intArray@SetValue@42, 0DD;
intArray@SetValue@43, 1DD;
intArray@SetValue@44, 2DD;

You can do this much more easily using MakeNETObject.

In[5]:= intArray2 = MakeNETObject@842, 43, 44<D

Out[5]= «NETObject@System.Int32@DD »

MakeNETObject@valD construct an object of the appropriate type to represent
the Mathematica expression val (numbers, strings, list, and
so on).

MakeNETObject@val,typeD construct an object of the specified type

MakeNETObject.

Keep in mind that you rarely have to call MakeNETObject. When you call a method that takes

an array, for example, you can just pass a Mathematica list and .NET/Link will create the .NET

array for you. There are times, however, when you want to explicitly create a .NET object that

must be populated with data from Mathematica and there is no convenient constructor. An

example of a circumstance where MakeNETObject is useful is the following method, which

reverses a list passed in as an argument. Note that it does not return the reversed list, but

rather reverses it in place.

.NET/Link User Guide 49

Keep in mind that you rarely have to call MakeNETObject. When you call a method that takes

an array, for example, you can just pass a Mathematica list and .NET/Link will create the .NET

array for you. There are times, however, when you want to explicitly create a .NET object that

must be populated with data from Mathematica and there is no convenient constructor. An

example of a circumstance where MakeNETObject is useful is the following method, which

reverses a list passed in as an argument. Note that it does not return the reversed list, but

rather reverses it in place.

public static void ReverseArray(int[] a);

You could call this method with a Mathematica list, but there would be no way to get back the

reversed list. The way around this problem is to create an array object populated with the initial

list values, pass the object reference, let its internal data be reversed, and then convert the

object reference back to a Mathematica list.

In[7]:= MyClass`ReverseArray@intArray2D

In[8]:= NETObjectToExpression@intArray2D

Out[8]= 844, 43, 42<

Another case where is useful is if you need to give .NET/Link a little help in choosing the correct

signature of an overloaded method. Consider the following two overloads of a method.

public void Foo(byte b);
public void Foo(long l);

If you called Foo() from Mathematica with an integer, the overload with the long parameter

would be called. This is because .NET/Link generally tries to call the method with the widest

possible type at each slot (but there is no formal guarantee, especially in complicated cases). If

you want to call the byte version, you can do this by creating a .NET object of the Byte type,

because .NET/Link always gives preference to a method signature that is an exact match for

the incoming argument types.

objüFoo@MakeNETObject@42, “System.Byte“DD

Remember that MakeNETObject is a rarely used function. You do not need to explicitly con-

struct .NET objects from Mathematica strings, arrays, and so on, just to pass them to .NET

methods~.NET/Link does this automatically for you. There are a few special circumstances

outlined above where it is useful.

Complex Numbers

50 .NET/Link User Guide

Complex Numbers

.NET number types (e.g., byte, int, double) are returned to Mathematica as integers and

reals, and integers and reals are converted to the appropriate types when sent as arguments to

.NET. What about complex numbers? It would be nice to have a .NET type representing com-

plex numbers that mapped directly to Mathematica’s Complex type, so that automatic conver-

sions would occur as they were passed back and forth between Mathematica and .NET. .NET

does not have a standard type for complex numbers, so .NET/Link lets you name the type that

you want to participate in this mapping.

SetComplexType@“classname“D set the class to be mapped to complex numbers in
Mathematica

GetComplexType@D return the class currently used for complex numbers

Setting the type for complex numbers.

You can use any class or struct you like as long as it has the following properties:

1. A public constructor that takes two doubles or two floats (the real and imaginary parts, in
that order)

2. Public methods, properties, or fields for the real and imaginary parts, having one of the
following signatures:

One of:
 double Re()
 double Real()

float Re()
float Real()

And one of:
double Im()
double Imag()
double Imaginary()
float Im()
float Imag()
float Imaginary()

Or a property or field:
double Re
double Real
float Re
float Real

And one of:
double Im
double Imag
double Imaginary
float Im
float Imag
float Imaginary

.NET/Link User Guide 51

Here is a trivial complex number class in C#.

namespace MyCompany {

public struct Complex {

public double Re, Im;

public Complex(double re, double im) {
Re = re;
Im = im;

}

public Complex Add(Complex c) {
return this + c;

}

public static Complex operator+(Complex a, Complex b) {
return new Complex(a.Re + b.Re, a.Im + b.Im);

}
}

}

Assume that you compiled this class into the assembly MyCompany.Complex.dll. Here is an

example of using it.

In[1]:= LoadNETAssembly@“c:\\MyCompany.Complex.dll“D;
SetComplexType@“MyCompany.Complex“D;

In[3]:= c = NETNew@“MyCompany.Complex“, 2, 1D

Out[3]= «NETObject@MyCompany.ComplexD »

Once you have used SetComplexType, NETObjectToExpression will convert object references

of that type to complex numbers in Mathematica (objects of type Complex will normally be

converted to complex numbers when returned to Mathematica, but a call to a constructor

always returns a NETObject).

In[4]:= NETObjectToExpression@cD

Out[4]= 46. + 2. Â

52 .NET/Link User Guide

Here are three examples of calling the Add() method. This method takes one argument of type

Complex. Note that you can pass a Complex object, a Mathematica complex number, or a real

number for this argument. .NET/Link handles any necessary conversions.

In[5]:= cüAdd@cD

Out[5]= 4. + 2. Â

In[6]:= cüAdd@42 + 15 ÂD

Out[6]= 44. + 16. Â

In[7]:= cüAdd@42D

Out[7]= 44. + 1. Â

The Complex class has an overloaded + operator, and overloaded operators would be expected

in any real implementation of a complex number class. As discussed in the "Overloaded Opera-

tors" section, you can call these operators from .NET/Link by using the special static method

equivalents that always exist in the class. For the + operator, the special method is called

op_Addition(). Here is how to call it (note the required _ to U conversion).

In[8]:= Complex`opUAddition@c, cD

Out[8]= 4. + 2. Â

Because some .NET languages (such as Visual Basic .NET) do not support overloaded operators,

class designers usually provide a documented alternative method, such as the Add() method in

the Complex class.

The .NET Console Window

.NET/Link provides a convenient means to display the .NET “console” window. Any output

written to the standard Console.Out and Console.Error streams will be directed to this

window. If you are calling .NET code that writes diagnostic information to the console, then you

can see this output while your program runs. Like most .NET/Link features, the console window

can be used easily from either Mathematica or .NET programs (its use from .NET code is

described in Calling Mathematica from .NET). To use it from Mathematica, call the

ShowNETConsole function.

.NET/Link User Guide 53

ShowNETConsole@D display the .NET console window and begin capturing
output written to Console.Out and Console.Error

ShowNETConsole@“stream“D display the .NET console window and begin capturing
output written to the specified stream, which should be
"stdout" for Console.Out or "stderr" for Console.Error

ShowNETConsoleANoneE stop all capturing of output

Showing the console window.

In[1]:= ShowNETConsole@D

Out[1]= «NETObject@Wolfram.NETLink.UI.ConsoleWindowD »

Capturing of output only begins when you call ShowNETConsole. When the window first

appears, it will not have any content that might have been previously written to Console.Out

or Console.Error. Calling ShowNETConsole when the window is already open will cause it to

come to the foreground.

The next example writes some output from Mathematica. If you executed the

ShowNETConsole@D above, then you will see “Hello from .NET” printed in the window.

In[2]:= LoadNETType@“System.Console“D;
Console`OutüWriteLine@“Hello from .NET“D

Although it is convenient to demonstrate writing to the window using Mathematica code like

this, this is typically done instead from .NET code that writes diagnostic information to the

console.

Distributing Applications That Use .NET/Link

This tutorial discusses some issues relevant to .NET/Link developers who are creating add-ons

for Mathematica.

.NET/Link is designed to make it easy for application developers to distribute applications that

have parts of their implementation in .NET. If you structure your application directory properly,

your users will be able to install it simply by copying it into any standard location for Mathemat-

ica applications. In particular, .NET/Link will be able to find your .NET assemblies without users

having to perform any special operations or even restart the .NET runtime.

Mathematica applications are typically deployed as single directories (with subdirectories),

installed into one of several standard locations where Mathematica expects to find them. These

standard locations can be written as $InstallationDirectory\AddOns\Applications,

$BaseDirectory\Applications, and $UserBaseDirectory\Applications, where

$InstallationDirectory, $BaseDirectory, and $UserBaseDirectory refer to the locations

given by these built-in Mathematica symbols.

54 .NET/Link User Guide

Mathematica applications are typically deployed as single directories (with subdirectories),

installed into one of several standard locations where Mathematica expects to find them. These

standard locations can be written as $InstallationDirectory\AddOns\Applications,

$BaseDirectory\Applications, and $UserBaseDirectory\Applications, where

$InstallationDirectory, $BaseDirectory, and $UserBaseDirectory refer to the locations

given by these built-in Mathematica symbols.

.NET/Link applications might include .NET assemblies or legacy Windows DLLs (which can be

called from .NET as described in the "Calling DLLs from Mathematica" section. If your Mathemat-

ica application uses .NET/Link and includes its own .NET assemblies, you should create an

assembly subdirectory in your application directory. You can place any assemblies that your

application needs into this assembly subdirectory. Legacy Windows DLLs (so-called

“unmanaged” DLLs) should be placed into into a Libraries\Windows subdirectory of your

application directory.

Here is an example directory structure for an application that uses .NET/Link.

MyApp/
... other files and directories used by the application ...
assembly/

MyAssembly.dll
Libraries/

Windows/
MyLegacyDLL.dll

Remember that even if you use the above directory structure, your application code will still

have to load its assemblies explicitly. All assemblies, other than ones that make up the .NET

Framework itself, must be manually loaded before they can be used, as described in the

"Loading .NET Assemblies and Types" section. Having the assemblies in the proper location

merely means that they can be found by LoadNETAssembly when only a filename or assembly

name is supplied.

LoadNETAssembly@“MyAssembly.dll“D
H* or *L

LoadNETAssembly@“My.Assembly.Name“D

.NET/Link User Guide 55

Version Information

.NET/Link provides three symbols that supply version information. These symbols provide the

same type of information as their counterparts in Mathematica itself, except that they are in the

NETLink`Information` context, which is not on $ContextPath, so you must specify them by

their full names.

NETLink`Information`$Version a string giving full version information

NETLink`Information`$VersionÖ
Number

a real number giving the current version number

NETLink`Information`$ReleaseÖ
Number

an integer giving the release number (the last digit in a full
x.x.x version specification

ShowNETConsole@D the console window will show version information for the
.NET/Link assembly

.NET/Link version information.

In[1]:= NETLink`Information`$Version

Out[1]= NETêLink Version 1.2.0 HSeptember, 2004L

In[2]:= NETLink`Information`$VersionNumber

Out[2]= 1.2

In[3]:= NETLink`Information`$ReleaseNumber

Out[3]= 0

The ShowNETConsole@D function, described in "The .NET Console Window" section, will display

the version number of the .NET/Link assembly file. This version should match the version of the

.NET/Link Mathematica-language component.

56 .NET/Link User Guide

Creating User Interfaces

Introduction

One application of .NET/Link is to write user interfaces for Mathematica programs. Examples of

such interfaces would be a progress bar monitoring the completion of a computation, a window

that displays an image or animation, a dialog box that prompts users for input or helps them

compose a proper call of an unfamiliar function, or a mini-application that leads users through

the steps of an analysis. These types of user interfaces are distinct from what you might write

for a .NET program that uses Mathematica in the background in that they “pop up” when the

user invokes some Mathematica code. These user interfaces do not replace the notebook front

end; they just augment it. In this way, they are like an extension of the palettes and other

specialty notebook elements that you can create in the front end.

Mathematica with .NET/Link is an extremely powerful and productive environment for creating

user interfaces. The complexity of user interface code is ideally suited to the interactive line-at-

a-time nature of .NET/Link development. You can build, modify, and experiment with your user

interface while it is running.

You can use either .NET/Link or J/Link to build user interfaces for Mathematica programs. J/Link

has the advantage of being cross-platform, so your interface will run on all Mathematica sys-

tems. .NET/Link integrates more tightly with Windows than J/Link does, so if you only need

your users interfaces to work on Windows machines, then .NET/Link is probably the best choice.

If you have used J/Link to build user interfaces in Mathematica, please note that there are

significant differences between .NET/Link and J/Link in this area. .NET/Link is generally simpler

than J/Link, not because of any superiority of .NET over Java, but because .NET/Link is a sec-

ond-generation design. The design simplifications in .NET/Link will eventually be brought to

J/Link.

Anyone considering writing user interfaces for Mathematica programs should also look at the

GUIKit add-on, which is bundled with Mathematica 5.1 and later, and available for download for

users with earlier versions of Mathematica. GUIKit is built on top of J/Link, and provides an

extremely high-level means of creating interfaces.

Modal versus Modeless Operation

.NET/Link User Guide 57

Modal versus Modeless Operation

Writing Mathematica programs that display .NET user interface elements, such as windows or

buttons, requires some knowledge of special issues that are not present in typical Mathematica

sessions, where only the notebook front end is being used to communicate with the kernel. To

help understand these special issues, it is useful to examine some basic considerations about

the kernel’s “main loop” in which it acquires input, evaluates it, and sends off any output.

When the Mathematica kernel is being used from the front end, it spends most of its life waiting

for input to arrive on the MathLink that it uses to communicate with the front end. This

MathLink is given by $ParentLink, and it is therefore $ParentLink that has the kernel’s

attention. When input arrives on $ParentLink, it is evaluated, any results are sent back on the

link, and the kernel goes back to waiting for more input on $ParentLink. When .NET/Link is

being used, the kernel has another MathLink open~the one that connects to the .NET runtime.

When you execute some code that calls into .NET, the kernel sends something to .NET and then

blocks waiting for the return value from .NET. During this period when the kernel is waiting for

a return value from .NET, the .NET link has the kernel’s attention. It is only during this period of

time that the kernel is paying attention to the .NET link. A more general way of saying this is

that the kernel is only listening for input arriving from .NET when it has been specifically

instructed to do so. The rest of the time it is listening only to $ParentLink, which is typically

the notebook front end.

Consider what happens when the user clicks a button in your .NET window and that button tries

to execute some code that calls into Mathematica. The .NET side sends something to Mathemat-

ica and then waits for the result, but the kernel will never get the request because it is only

paying attention to the notebook front end link, not the .NET link. It is necessary to use some

means to tell the kernel to look for input arriving on the .NET link. .NET/Link provides two main

ways to manage the kernel’s attention to the .NET link and thereby control its readiness to

accept requests for evaluations initiated by the .NET side.

These two ways can be called “modal” and “modeless.” In modal interaction, characterized by

the use of the DoNETModal Mathematica function, the kernel is pointed at the .NET link until the

.NET side releases it. The kernel is a complete slave to the .NET side, and is unavailable for any

other computations. In modeless interaction, characterized by the use of the DoNETModeless

Mathematica function, the kernel is kept in a state where it is receptive to evaluation requests

arriving from either the notebook front end or .NET, evenly sharing its attention between these

two programs.

58 .NET/Link User Guide

These two ways can be called “modal” and “modeless.” In modal interaction, characterized by

the use of the DoNETModal Mathematica function, the kernel is pointed at the .NET link until the

.NET side releases it. The kernel is a complete slave to the .NET side, and is unavailable for any

other computations. In modeless interaction, characterized by the use of the DoNETModeless

Mathematica function, the kernel is kept in a state where it is receptive to evaluation requests

arriving from either the notebook front end or .NET, evenly sharing its attention between these

two programs.

A common type of user interface element is analogous to a modal dialog: once it is displayed,

the Mathematica program hangs waiting for the user to dismiss the window. Typically, this is

because the window returns a result to Mathematica, so it is not meaningful for Mathematica to

continue until the window is closed. An example of such a window is a simple input window that

asks the user for some value, which it returns to Mathematica when the OK button is clicked.

It is important to understand the slightly generalized use of the term “modal” to describe these

windows. They may not be modal in the traditional sense that they must be dismissed before

anything else can be done in the user interface. Rather, they are modal with respect to the

Mathematica kernel~the kernel cannot do anything else until they are closed. A .NET window

that you create might not be modal with respect to other .NET windows on the screen, but it

ties up the kernel’s attention until it is dismissed.

Another type of user interface element is analogous to a modeless dialog: after it is displayed,

the Mathematica program that created it will finish, leaving the window visible and usable while

the user continues working in the notebook front end. An example would be a window that lets

users load packages into Mathematica by selecting them from a scrolling list. You write a

.NET/Link program that creates this window, displays it, and returns. The window is left open

and usable until the user clicks its close box. In the meantime, the user is free to continue

working in the front end, going back to use this .NET window whenever it is convenient.

Such a window is almost like another type of notebook or palette window in the front end. You

can have any number of front end or .NET modeless windows open and active at once, meaning

that they can be used to initiate computations in Mathematica. They are each their own little

interface onto the same kernel. What is different about the .NET window is that it is much more

general than a notebook window, and, importantly, it exists in a different application layer than

the front end. This last fact makes the .NET window, in effect, a second front end, rather than

an extension of the notebook front end. To accommodate such a second front end, the kernel

must be kept in a special state that allows it to handle requests for evaluations arriving from

either the notebook front end or .NET.

Before presenting examples of how to implement modal and modeless windows, it is necessary

to jump ahead a little bit and explain the mechanism by which .NET user interface elements

communicate events to Mathematica.

Handling Events

.NET/Link User Guide 59

Handling Events

User interface elements typically have active components such as buttons, scrollbars, menus,

and text fields, that need to trigger certain actions when they are used. In the .NET event

model, components fire events in response to user actions, and other components indicate their

interest in these events by supplying a delegate that connects an event with its handler. The

concept of a delegate is covered in detail in the .NET Framework documentation, but .NET/Link

users can generally ignore the details of delegates because you use a very simple syntax for

assigning a Mathematica function to be called when an event fires.

It is useful to compare the .NET/Link technique for assigning event handler functions with the

C# and Visual Basic .NET techniques. The following shows C# and Visual Basic .NET syntax for

adding an event handler to the KeyPress event in a TextBox.

// C#
myTextBox.KeyPress += new KeyEventHandler(MyKeyPressHandlerMethod);

‘ Visual Basic .NET
AddHandler myTextBox.KeyPress, AddressOf MyKeyPressHandlerMethod

After executing either of the above lines, the MyKeyPressHandlerMethod() method will be

called whenever a key is pressed while the myTextBox component has the focus. The C# syn-

tax is a little cryptic, as the += operator is overloaded for adding a delegate to an event.

The preceding code does not show the definition of MyKeyPressHandlerMethod(). The signa-

ture of this method must be the same as the delegate that corresponds to the KeyPress event.

As you can see in the C# code, the delegate type is KeyEventHandler, and here is the

declaration.

public delegate void KeyEventHandler(object sender, KeyEventArgs
eventArgs);

Because MyKeyPressHandlerMethod() must have the same signature, it would look some-

thing like this.

void MyKeyPressHandlerMethod(object sender, KeyEventArgs eventArgs) {
// Here you respond to the event in some way. The sender object
// will be the TextBox, and eventArgs will tell you about the event
// (such as what key was pressed).

}

Here is what it looks like in Mathematica to assign a myKeyPressHandler Mathematica function

to the KeyPress event.

60 .NET/Link User Guide

Here is what it looks like in Mathematica to assign a myKeyPressHandler Mathematica function

to the KeyPress event.

AddEventHandler@myTextBoxüKeyPress, myKeyPressHandlerD

Note that it looks almost exactly like the Visual Basic .NET version. Once you have executed the

line above, whenever a key is pressed while myTextBox has the input focus, .NET will call back

to Mathematica and execute the myKeyPressHandler function. The Mathematica function will be

called with the same arguments as the KeyEventHandler delegate, and it should return the

same type of value (although most event handlers return void, so the return value is ignored).

Here is what it might look like.

myKeyPressHandler@sender_, keyEventArgs_D :=
Print@“The “ <> keyEventArgsüKeyCodeüToString@D <> “key was pressed“D

AddEventHandler@
objüeventName, funcNameD

set the Mathematica function that will be called when the
object obj fires the eventName event

RemoveEventHandler@delegateD remove an event handler assigned by a previous call to
AddEventHandler

Assigning the Mathematica function that will be called in response to an event notification.

Wiring up your application’s event logic via calls to Mathematica functions is vastly more flexible

than writing a traditional application in .NET. When you write in a compiled .NET language, or

use a drag-and-drop GUI builder, you hard code the event logic. You have to decide at compile

time what every click, scroll, and keystroke will do. But when you use .NET/Link, you decide

how your program is wired together at run time. You can even change the behavior on the fly

simply by typing a few lines of code.

You can remove an event handler using the RemoveEventHandler function. When you call

AddEventHandler, it returns a NETObject. This object is the delegate created for you by the

internals of .NET/Link. You can save this object and later pass it into RemoveEventHandler to

remove the Mathematica callback that it represents. This is just about the only use you would

have for the return value of AddEventHandler.

dlg = AddEventHandler[myTextBox@KeyPress, myKeyPressHandler];
...
RemoveEventHandler[dlg];

Mathematica event handler functions called in response to events are automatically wrapped in

NETBlock. This means that the objects sent as arguments to the function, as well as any new

objects you create during the execution of the function, are released after the function returns.

You do not have to use NETBlock or ReleaseNETObject manually. If you want an object from

your handler function to persist in Mathematica after the function returns, you must use

KeepNETObject to allow it to escape the unseen NETBlock that wraps the function call. Here is

a modified version of myKeyPressHandler that stores the KeyCode objects in a list for later

inspection.

.NET/Link User Guide 61

Mathematica event handler functions called in response to events are automatically wrapped in

NETBlock. This means that the objects sent as arguments to the function, as well as any new

objects you create during the execution of the function, are released after the function returns.

You do not have to use NETBlock or ReleaseNETObject manually. If you want an object from

your handler function to persist in Mathematica after the function returns, you must use

KeepNETObject to allow it to escape the unseen NETBlock that wraps the function call. Here is

a modified version of myKeyPressHandler that stores the KeyCode objects in a list for later

inspection.

myKeyPressHandler2@sender_, keyEventArgs_D :=
Module@8keyCode< ,
keyCode = keyEventArgsüKeyCode;
AppendTo@keysPressed, keyCodeD;
KeepNETObject@keyCodeD

D

AddEventHandler takes two options that control its behavior. SendDelegateArguments allows

you to specify which of the delegate arguments you want to send to your Mathematica handler

function and in which order. By default, .NET/Link sends all the delegate arguments, but as an

optimization, you might not want to send them all. Creation of a new NETObject expression in

Mathematica is comparatively expensive, and the arguments to most event delegates are

objects. In the case of the KeyPress event example above, the first argument is the TextBox

object, which probably already exists in Mathematica, so it is not a significant optimization to

avoid sending it. The KeyEventArgs object, however, is definitely new to Mathematica, so you

might want to avoid sending it if you do not need it. Here is an example of setting up an event

handler that sends only the first argument to the Mathematica callback function.

AddEventHandler@myTextBoxüKeyPress,
myKeyPressHandler3, SendDelegateArguments Ø 81<D

This is what the myKeyPressHandler3 function would look like.

myKeyPressHandler3@sender_D := Print@“A key was pressed“D

The values you can specify for the SendDelegateArguments option are All (the default), None,

or a list of integers giving the indices of the arguments you want to send.

option name default value

SendDelegateArguments All which delegate arguments to send to the
Mathematica event handler function

CallsUnshare False whether or not your event handler function
calls the advanced function
UnshareKernel

Options to AddEventHandler.

The CallsUnshare option is for advanced programmers who are using the ShareKernel and

UnshareKernel functions to manually control kernel sharing, instead of using DoNETModeless.

The sharing functions are discussed in "Manually Sharing the Kernel and Front End with .NET".

If your Mathematica callback function calls UnshareKernel, you must set CallsUnshare to True

in the call to AddEventHandler.

62 .NET/Link User Guide

The CallsUnshare option is for advanced programmers who are using the ShareKernel and

UnshareKernel functions to manually control kernel sharing, instead of using DoNETModeless.

The sharing functions are discussed in "Manually Sharing the Kernel and Front End with .NET".

If your Mathematica callback function calls UnshareKernel, you must set CallsUnshare to True

in the call to AddEventHandler.

AddEventHandler is a convenience function that allows you to easily assign a Mathematica

function that will be called when an event fires. As part of its operation, AddEventHandler

creates a .NET delegate object that is assigned to the event, and whose action is to call the

specified Mathematica function. In some cases, you might want to create such a delegate

object manually, but not attach it to an event. .NET/Link provides the NETNewDelegate function

for this purpose. NETNewDelegate creates a delegate of the specified type whose action is to

call the designated Mathematica function. The main use for NETNewDelegate is to create a

delegate object that will be supplied to an external C function invoked via .NET’s PInvoke facili-

ties. It is often used in conjunction with DefineNETDelegate for this purpose. The EnumWin-

dows.nb example file demonstrates using DefineNETDelegate and NETNewDelegate to call a C

function that takes a callback function pointer as an argument.

NETNewDelegate@type, funcNameD create a new instance of the specified delegate type whose
action is to call the specified Mathematica function

DefineNETDelegate@name,
returnType,8argType,...<D

create a new delegate type, for when there is no existing
.NET delegate of the appropriate signature

Creating delegate objects that call Mathematica.

Now that you have seen how to specify Mathematica event handler callbacks, recall that the

kernel must be in a special state to be receptive to calls originating from user events in .NET.

The two main ways of doing this are the functions DoNETModal and DoNETModeless, discussed

in the next sections.

Modal Windows

The basic concepts of modal and modeless .NET/Link interfaces are discussed in the earlier

section "Modal versus Modeless Operation". Here is an example of a simple modal window. The

window is a simple Form object that changes its background color to a new random color each

time it is clicked.

.NET/Link User Guide 63

In[1]:= frm = NETNew@“System.Windows.Forms.Form“D

Out[1]= «NETObject@System.Windows.Forms.FormD »

Note that simply creating a new Form object does not make it visible. Use the ShowNETWindow

function to make a window visible and to bring it in front of all other windows. The DoNETModal

function, used later, will make a form visible, but ShowNETWindow is useful while you are just

tinkering with an interface, before you want to actually run it modally.

In[2]:= ShowNETWindow@frmD;

At this point, you should see a small frame window centered on the screen. Drag it to the side

so that it is not hidden by Mathematica windows when you bring the current notebook window

to the foreground. A huge advantage of using .NET/Link for user interface development, com-

pared to a typical compiled .NET language, is that you can experiment with your interface while

it is running. Now change the color of the background.

In[3]:= LoadNETType@“System.Drawing.Color“D;
frmüBackColor = Color`Red;

Now add a Mathematica handler for the form’s Click event.

In[5]:= AddEventHandler@frmüClick, onClickD;

This is the definition of the onClick function. It sets the form’s BackColor property to a ran-

dom color. This function ignores the event arguments, but you can learn what they are from

the signature of the Click event.

In[6]:= onClick@args___D :=
frmüBackColor =
Color`FromArgb@Random@Integer, 80, 255<D,
Random@Integer, 80, 255<D, Random@Integer, 80, 255<DD

At this point, if you click the form, you will get a beep and nothing will happen to the color.

When the Click event fires, .NET tries to call Mathematica to execute the onClick function,

but it is not safe to make this call because Mathematica is not listening for input on the .NET

link. The call to Mathematica would hang forever. .NET/Link knows the kernel is not ready, so it

refuses to make the call and issues a beep warning instead.

What you need is a way to put the kernel into a state where it is continuously reading from the

.NET link. This is what makes the window “modal”~the kernel cannot do anything else until the

window is closed. The function that implements this modal state is DoNETModal. The first argu-

ment to DoNETModal is a top-level window object (in the .NET Framework, this means a SysÖ

tem.Windows.Forms.Form or any class that inherits from it).

64 .NET/Link User Guide

DoNETModal@ formD put the kernel into a state where its attention is solely
directed at the .NET link until the specified form window is
closed

DoNETModal@ form, returnValueD run the form modally and return the result of the returnValue
computation (this is executed before the window is
destroyed)

Running modal windows.

Now that everything is ready, you can enter the modal state and use the window.

In[7]:= DoNETModal@formD

DoNETModal will not return until the .NET form window is closed. Click the window a few times

to see the color change, then click the close box in the title bar to destroy the form and cause

DoNETModal to return.

You often want to get some information from a modal dialog box when it is closed, such as the

value from a text box, or whether the form was closed by clicking an OK or Cancel button.

When DoNETModal returns, the form object has been destroyed, so it is too late to call methods

on it. If you need to get some information out of a form before it is destroyed, use the optional

second argument DoNETModal. This argument specifies a computation that will be executed just

before the form is destroyed (it is held unevaluated until this time). DoNETModal will return the

result of this computation. The PackageHelper.nb example file shows how to use the second

argument to DoNETModal to determine whether a form was closed by clicking the OK or Cancel

button.

Here is how the entire example looks when packaged into a single program.

In[8]:= SimpleModal@D :=
NETBlock@
Module@8frm, onClick<,
frm = NETNew@“System.Windows.Forms.Form“D;
LoadNETType@“System.Drawing.Color“D;
frmüBackColor = Color`Red;
AddEventHandler@frmüClick, onClickD;
onClick@args___D := frmüBackColor = Color`FromArgb@Random@Integer, 80, 255<D,

Random@Integer, 80, 255<D, Random@Integer, 80, 255<DD;
DoNETModal@frmD

D
D

The .NET Framework documentation discusses how to implement modal windows using the

ShowDialog() method. There are some advantages and disadvantages to using this technique

instead of DoNETModal. One disadvantage is that a .NET window is not guaranteed to come in

front of notebook windows if you use ShowDialog(). However, this failure seems to happen

only for the very first window displayed in a session. Windows displayed with ShowDialog()

are truly modal in the sense that other .NET windows cannot be used until the modal one is

closed. The ShowDialog() method makes it easy to determine how the window was closed

(whether the OK or Cancel button was clicked), because it returns one of the DialogResult

enumeration values. You can get the same result by using the second argument to DoNETModal.

.NET/Link User Guide 65

The .NET Framework documentation discusses how to implement modal windows using the

ShowDialog() method. There are some advantages and disadvantages to using this technique

instead of DoNETModal. One disadvantage is that a .NET window is not guaranteed to come in

front of notebook windows if you use ShowDialog(). However, this failure seems to happen

only for the very first window displayed in a session. Windows displayed with ShowDialog()

are truly modal in the sense that other .NET windows cannot be used until the modal one is

closed. The ShowDialog() method makes it easy to determine how the window was closed

(whether the OK or Cancel button was clicked), because it returns one of the DialogResult

enumeration values. You can get the same result by using the second argument to DoNETModal.

H* Returns the DialogResult value. *L
DoNETModal@someFormWindow, someFormWindowüDialogResultD

The PackageHelper.nb example file demonstrates a classic modal dialog with OK and Cancel

buttons implemented with DoNETModal.

DoNETModal takes one option, FormStartPosition, that specifies the position in which the

window will appear on screen. The possible values are Center (the default), Automatic (the

form will have the Windows default location), and Manual (the form will appear at a location

specified elsewhere, for example, by setting the form’s Location property).

option name default value

FormStartPosition Center the position in which the window will be
displayed on screen

Options for DoNETModal.

Modeless Windows

The previous section demonstrated how to use the DoNETModal function to display and run

modal windows, which cause the kernel to remain busy until the window is closed. Another type

of window, which could be called modeless, remains open and usable without completely tying

up the kernel. The basic concepts of modal and modeless .NET/Link interfaces are discussed in

more detail in the earlier section "Modal Versus Modeless Operation".

.NET/Link provides the DoNETModeless function to run a window modelessly. The first argument

to DoNETModeless is a top-level window (specifically, a Form or any class that inherits from it).

The window is made visible and brought in front of all notebook windows.

66 .NET/Link User Guide

DoNETModeless@ formD display the specified Form window and return immediately,
leaving the window active

Modeless windows.

Here is the SimpleModal example from the previous section implemented as a modeless

window.

In[1]:= SimpleModeless@D :=
NETBlock@
Module@8frm<,
frm = NETNew@“System.Windows.Forms.Form“D;
LoadNETType@“System.Drawing.Color“D;
frmüBackColor = Color`Red;
AddEventHandler@frmüClick, onClickD;
DoNETModeless@frmD

D
D

onClick@sender_, eventArgs_D :=
senderüBackColor = Color`FromArgb@Random@Integer, 80, 255<D,

Random@Integer, 80, 255<D, Random@Integer, 80, 255<DD;

Executing SimpleModeless@D will make the window visible and then return immediately. You

can click the window to change its background color and also continue to use the kernel for

other computations via the notebook front end.

In[2]:= SimpleModeless@D

There are several important differences in the code of SimpleModeless and SimpleModal,

beyond the obvious call to DoNETModeless instead of DoNETModal. These differences revolve

around the fact that the form runs after the SimpleModeless function returns. The onClick

function must not be local to the Module, because the function’s definition would be cleared

when the Module ends. A NETBlock is used to automatically release all .NET objects created

when SimpleModeless runs, but that means that you cannot refer to frm by name in the code

for onClick, because the NETBlock has ended by the time onClick is executed (the symbol

frm is also local to the Module so its value is cleared anyway). The first argument to the

onClick function is the object that fired the event, which is the Form object, so you can use the

first argument to refer to it instead of the symbol frm.

DoNETModeless is very useful during development, even for a window that will be run modally

in its final form. Because DoNETModal does not return until the window is closed, you cannot

modify your event logic or anything else about your window while it is running. You can use

DoNETModeless to make your event callbacks “live” without tying up the kernel, so that you can

tinker with your window while it is being displayed. When you are satisfied that it works as

desired, you can package a complete program that runs with DoNETModal.

.NET/Link User Guide 67

option name default value

FormStartPosition Center the position in which the window will be
displayed on screen

ActivateWindow True whether to make the window visible

ShareFrontEnd False whether the front end in addition to the
kernel should be shared with .NET

Options for DoNETModeless.

DoNETModeless takes several options. FormStartPosition specifies the position in which the

window will appear on screen. The possible values are Center (the default), Automatic (the

form will be in the Windows default location), and Manual (the form will appear at a location

specified elsewhere, for example, by setting the form’s Location property). ActivateWindow

controls whether the window should be made visible and brought to the foreground. Set

ActivateWindow to False in the rare cases where you want to call DoNETModeless to enter the

modeless state, but only later make the window visible.

The final option, ShareFrontEnd, is used to allow .NET interfaces to interact with the notebook

front end. The functions ShareKernel and ShareFrontEnd are discussed in the next section,

and programmers using DoNETModeless are generally shielded from those low-level functions.

DoNETModeless is essentially a means of encapsulating calls to ShareKernel and

UnshareKernel, starting sharing when the window first appears and ending it when the window

is closed. If you want your modeless interface to cause actions in the notebook front end (such

as printing some text or making graphics appear), you need to force DoNETModeless to turn on

front end as well as kernel sharing. This can be done by setting the ShareFrontEnd option to

True.

One common circumstance where the ShareFrontEnd option is useful is when you want to

debug your program by inserting Print statements in event handler functions. In a modeless

interface, Print output and Mathematica warning messages triggered by event handler func-

tions are sent to the .NET side and therefore do not appear in the notebook. If you want to see

this information, setting ShareFrontEnd to True will cause it to appear in the frontmost note-

book window. If you use this option during development, but do not need it in the final version

of your program, be sure to remove it, as front end sharing is expensive to turn on and off, and

can delay the initial appearance of your window.

68 .NET/Link User Guide

Manually Sharing the Kernel and Front End with .NET

Note: In Mathematica 5.1 and later, the kernel is always shared with the .NET link. This means

that the functions ShareKernel and UnshareKernel are not necessary and, in fact, do nothing

at all. If you are writing programs that only need to run in Mathematica 5.1 and later, you

never need to call ShareKernel or UnshareKernel. If your programs need to work on all ver-

sions of Mathematica, then you will need to use these functions as described below.

The previous sections described the DoNETModal and DoNETModeless functions, which are ways

of putting the kernel into a state where it is receptive to calls from events originating in .NET.

Most programmers will only need to use those two functions to display and run .NET windows.

Recall that DoNETModeless makes the kernel receptive to input either from .NET or from the

notebook front end. In effect, the kernel is “shared” between the front end and .NET. In some

circumstances you might want to initiate kernel sharing, but find that DoNETModeless is not

appropriate for your needs. You can take direct control of kernel sharing by calling the

ShareKernel function.

ShareKernel was introduced with J/Link, and is defined in the JLink` context. Loading

NETLink` loads JLink`, so you do not have to worry about the different contexts unless you

are using ShareKernel or related functions in your own package. When you call BeginPackage,

Mathematica only makes available to the code in your package the contexts explicitly named in

the BeginPackage statement, not other contexts that are needed by those packages. This

means that for every symbol that you want to use within a package, you must always explicitly

include that symbol’s context in your BeginPackage statement. Here is an outline of a package

that uses .NET/Link and also calls ShareKernel directly.

BeginPackage[“SomePackageThatUsesSharing`“, {“NETLink`“, “JLink`“}]

... code that calls
ShareKernel/UnshareKernel/ShareFrontEnd/UnshareFrontEnd ...

EndPackage[]

The "J/Link User Guide" discusses ShareKernel and ShareFrontEnd in detail, and you should

refer to those sections for full information. One thing to remember about using ShareKernel or

ShareFrontEnd with .NET is that you must supply the link to .NET as the argument, otherwise

they will use the Java link by default.

tok = ShareKernel@NETLink@DD;

Always save the result from ShareKernel to later pass into UnshareKernel.

.NET/Link User Guide 69

Always save the result from ShareKernel to later pass into UnshareKernel.

UnshareKernel@tokD;

As mentioned earlier, DoNETModeless calls ShareKernel to initiate sharing, and arranges for

UnshareKernel to be called when the window is closed. In J/Link, programmers have to call

ShareKernel and UnshareKernel directly to create a modeless window. Having a special

function like DoNETModeless that turns sharing on and off automatically is much simpler.

One example of a program that needs to call ShareKernel directly is presented in "Handling

COM Events". That program sets up event handlers in Mathematica for COM events fired by the

Internet Explorer application. There is no top-level .NET Form window to pass into

DoNETModeless, so sharing has to be managed explicitly.

Displaying Mathematica Graphics and Typeset Expressions

.NET/Link includes a special subclass of the standard PictureBox class, called WolframÖ

.NETLink.UI.MathPictureBox, that makes it easy to display Mathematica graphics or typeset

expressions in a .NET window. The example file SimpleAnimationWindow.nb demonstrates how

to use it. You will find complete documentation for this class in the .NET/Link API

documentation.

Bringing .NET Windows to the Foreground

If you are creating a .NET window with a Mathematica program, you probably want that window

to pop up in front of the notebook the user is working in so that its presence becomes appar-

ent. The functions DoNETModal and DoNETModeless automatically make the form visible and

bring it to the foreground. You might expect that the Show() or Activate() methods of the

Form class would also do this for you, but they do not always work because the .NET windows

live in a different application than the notebook front end.

.NET/Link provides a Mathematica function, ShowNETWindow, that performs all the necessary

steps to make a .NET window visible and appear in front of all other windows. You do not need

to call ShowNETWindow if you are using DoNETModal or DoNETModeless, as it is called automati-

cally. Even when using DoNETModeless, however, ShowNETWindow can be useful to bring a

window back to the foreground if the user has brought other windows in front of it since it was

first displayed.

70 .NET/Link User Guide

ShowNETWindow@ formD make the specified .NET form window visible and bring it in
front of all other windows, including notebook windows

Bringing a .NET window to the foreground.

Like DoNETModal and DoNETModeless, ShowNETWindow takes the FormStartPosition option,

which specifies the position in which the window will appear on screen. The possible values are

Center (the default), Automatic (the form will be in the Windows default location), and Manual

(the form will appear at a location specified elsewhere, for example, by setting the form’s

Location property).

Example Files

The following GUI example programs are included with .NET/Link.

Circumcircle.nb

PackageHelper.nb

SimpleAnimationWindow.nb

RealTimeAlgebra.nb

AsteroidsGame.nb

Writing Your Own .NET Types to Use from
Mathematica

Introduction

This documentation has shown you how to load and use existing .NET types. This gives Mathe-

matica programmers immediate access to the entire universe of .NET types. Sometimes,

though, existing types are not enough, and you need to write your own.

.NET/Link essentially obliterates the boundary between .NET and Mathematica, allowing you to

pass expressions of any type back and forth and use .NET objects in Mathematica in a meaning-

ful way. This means that when writing your own .NET types to call from Mathematica, you

usually do not need to do anything special. You write the code in exactly the same way you

would if you wanted to use the type only from .NET, and you can use any .NET language you

like.

.NET/Link User Guide 71

.NET/Link essentially obliterates the boundary between .NET and Mathematica, allowing you to

pass expressions of any type back and forth and use .NET objects in Mathematica in a meaning-

ful way. This means that when writing your own .NET types to call from Mathematica, you

usually do not need to do anything special. You write the code in exactly the same way you

would if you wanted to use the type only from .NET, and you can use any .NET language you

like.

In some cases, you might want to exert more direct control over the interaction with Mathemat-

ica. For example, you might want a method to send a result to Mathematica that is different

from what the method actually returns. Or you might want the method to not only return some-

thing, but also trigger a side effect in Mathematica~for example, printing something or display-

ing a message under certain conditions. You can even have an extended “dialog” with Mathemat-

ica before your method returns, perhaps invoking multiple computations in Mathematica and

reading their results. You might also want to write code that calls into Mathematica as the

result of some event triggered in .NET.

If you do not want to do any of these things, then you can happily ignore this tutorial. The

whole point of .NET/Link is to make concern about the interaction with Mathematica through

MathLink unnecessary. Most programmers who want to write .NET types to be used from Mathe-

matica will just write .NET types, period, without thinking about Mathematica or .NET/Link. For

those programmers who want more control or want to know more about the possibilities avail-

able with .NET/Link, read on.

One point to remember when creating your own types to use with .NET/Link is that you must

use LoadNETAssembly to load the assembly that contains the types. Assemblies must always be

loaded before the types they contain can be used in .NET/Link, but it is easy to forget this

because .NET/Link automatically loads assemblies that are part of the .NET Framework as they

are needed.

Manually Returning a Result to Mathematica

The default behavior of a .NET method or property called from Mathematica is to return to

Mathematica exactly what the method or property itself returns. There are times, however,

when you want to return something else. For example, you might want to return an integer in

some circumstances and a symbol in others. Or you might want a method to return one thing

when it is being called from .NET but return something different when called from Mathematica.

In these cases, you will need to manually send a result to Mathematica before the method

returns.

Say you are writing a file-reading class that you want to call from Mathematica. Because you

want behavior that is almost identical to the standard class System.IO.StreamReader, your

class will be a subclass of it. The only changes you want to make are to provide some more

Mathematica-like behavior. One example is that you want the Read() method to return not -1

when it reaches the end of the file, but rather the symbol EndOfFile, which is what Mathe-

matica’s built-in file-reading functions return.

72 .NET/Link User Guide

Say you are writing a file-reading class that you want to call from Mathematica. Because you

want behavior that is almost identical to the standard class System.IO.StreamReader, your

class will be a subclass of it. The only changes you want to make are to provide some more

Mathematica-like behavior. One example is that you want the Read() method to return not -1

when it reaches the end of the file, but rather the symbol EndOfFile, which is what Mathe-

matica’s built-in file-reading functions return.

// C# code
using System.IO;
using Wolfram.NETLink;

public class MyFileReader : StreamReader {

... constructors, other methods deleted ...

public override int Read() {

int i = base.Read();
if (i == -1) {

IKernelLink link = StdLink.Link;
if (link != null) {

link.BeginManual();
link.PutSymbol(“EndOfFile“);

}
}
return i;

}
}

If the file has reached the end, i will be -1, and you want to manually return something to

Mathematica. The first thing you need to do is get an IKernelLink object that can be used to

communicate with Mathematica. This is obtained by calling the static property StdLink.Link.

If you have written installable MathLink programs in C, you will recognize the choice of names

here. A C program has a global variable named stdlink that holds the link back to Mathemat-

ica. .NET/Link has a StdLink class that has a few methods related to this link object.

.NET/Link User Guide 73

The next thing you do is check whether Link returns null. It will never be null if the method

is being called from Mathematica, so you can use this test to determine whether the method is

being called from Mathematica, or as part of a normal .NET program. In this way, you can have

a method that can be used from .NET in the usual way when a Mathematica kernel is nowhere

in sight.

Once you have verified that a link back to the kernel exists, the first thing you do is inform

.NET/Link that you will be sending the result back to Mathematica yourself, so it should not try

to automatically send the method’s return value. This is accomplished by calling the BeginManÖ

ual() method on the IKernelLink object.

You must call BeginManual() before you send any part of a result back to Mathematica. If you

fail to do this, the link will get out of sync and the next .NET/Link call you make from Mathemat-

ica will probably hang. It is safe to call BeginManual() more than once, so you do not have to

worry that your method might be called from another method that has already called

BeginManual().

Returning to the example program, the next thing after BeginManual() is to make the

required “put”-type calls to send the result back to Mathematica (in this case, just a single

PutSymbol()). The internal .NET/Link code that wraps all method calls will handle the cleanup

and recovery from any MathLink error that might have occurred calling PutSymbol(). You do

not need to do anything for MathLinkException exceptions that occur while you are putting a

result manually~the method call will return $Failed to Mathematica automatically.

Requesting Evaluations by Mathematica

So far, you have seen only cases where a .NET method has a very simple interaction with

Mathematica. It is called and returns a result, either automatically or manually. There are many

circumstances, however, where you might want to have a more complex interaction with Mathe-

matica. You might want a message to appear in Mathematica, or some Print output, or you

might want to have Mathematica evaluate something and return the answer to you. This is a

completely separate issue from what you want to return to Mathematica at the end of your

method~you can request evaluations during the body of a method whether it returns its final

result manually or not.

In some sense, when you perform this type of interaction with Mathematica you are turning the

tables on Mathematica, reversing the “master” and “slave” roles for a moment. When Mathemat-

ica calls into .NET, the .NET code is acting as the slave, performing a computation and returning

control to Mathematica. In the middle of a .NET method, however, you can call back into Mathe-

matica, temporarily turning it into a computational server for the .NET side. Thus you would

expect to encounter essentially all the same issues that are discussed in Calling Mathematica

from .NET, and you would need to understand the full .NET/Link API as seen by .NET

programmers.

74 .NET/Link User Guide

In some sense, when you perform this type of interaction with Mathematica you are turning the

tables on Mathematica, reversing the “master” and “slave” roles for a moment. When Mathemat-

ica calls into .NET, the .NET code is acting as the slave, performing a computation and returning

control to Mathematica. In the middle of a .NET method, however, you can call back into Mathe-

matica, temporarily turning it into a computational server for the .NET side. Thus you would

expect to encounter essentially all the same issues that are discussed in Calling Mathematica

from .NET, and you would need to understand the full .NET/Link API as seen by .NET

programmers.

The full treatment of the IMathLink and IKernelLink interfaces is presented in Calling Mathe-

matica from .NET. Here we will discuss a few special methods in IKernelLink interface that are

specifically intended for use by “installed” methods. You have already seen one, the BeginManÖ

ual() method. This section will present the Message(), Print(), and Evaluate() methods.

The tasks of issuing a Mathematica message from a .NET method or triggering some Print

output are so commonly done that the IKernelLink interface has special methods for these

operations. The method Message() performs all the steps of issuing a Mathematica message.

void Message(string symtag, params string[] args);

The Print() method performs all the steps necessary to invoke Mathematica’s Print function.

public void Print(string s);

Here is an example method that uses both. Assume that the following messages are defined in

Mathematica.

Foo::arg = “The `1` argument to foo must be greater than or equal to 0.“

.NET/Link User Guide 75

Here is the C# code.

public static double Foo(double x, double y) {

IKernelLink link = StdLink.Link;
if (link != null) {

link.Print(“inside foo“);
if (x < 0)

link.Message(“Foo::arg“, “first“);
if (y < 0)

link.Message(“Foo::arg“, “second“);
}
return Math.Sqrt(x) * Math.Sqrt(y);

}

Note that Print() and Message() send the required code to Mathematica and also read the

result from the link (it will always be the symbol Null).

Here is what happens when you call Foo().

LoadNETAssembly@“c:\\path\\to\\FooAssembly“D;
LoadNETType@“FooClass“D;
FooClass`Foo@1.0, -2.0D

inside foo

Foo::arg :The second argument to foomust be greater than or equal to 0.

Indeterminate

Note that you automatically get Indeterminate returned to Mathematica when a floating-point

result from .NET is NaN (“Not-a-Number”).

The methods Print() and Message() are convenience functions for two special cases of the

more general notion of sending intermediate evaluations to Mathematica before your method

returns a result. The general means of doing this is to wrap whatever you send to Mathematica

in EvaluatePacket, which is a signal to the kernel that this is not the final result, but rather

something that it should evaluate and send the result back to .NET. You can explicitly send the

EvaluatePacket head, or you can use one of the methods in IKernelLink that uses

EvaluatePacket for you. These methods are Evaluate(), EvaluateToInputForm(), EvaluÖ

ateToOutputForm(), EvaluateToImage(), and EvaluateToTypeset(). They are discussed in

detail in the .NET/Link API documentation.

76 .NET/Link User Guide

Here is a simple example.

public static double Foo(double x, double y) {

IKernelLink link = StdLink.Link;
if (link != null) {

link.Evaluate(“2+2“);
// Wait for, and then read, the answer.
link.WaitForAnswer();
int sum1 = link.GetInteger();

// EvaluateToOutputForm makes the result come back as a
// string formatted in OutputForm, and all in one step
// (no WaitForAnswer call needed).
string s = link.EvaluateToOutputForm(“3+3“, 0);
int sum2 = Int32.Parse(s);

// If you want, put the whole evaluation piece by piece,
// including the EvaluatePacket head.
link.PutFunction(“EvaluatePacket“);
link.PutFunction(“Plus“, 2);
link.Put(4);
link.Put(4);
link.WaitForAnswer();
int sum3 = link.GetInteger();

}
return Math.Sqrt(x) * Math.Sqrt(y);

}

Throwing Exceptions

Any exceptions that your method throws will be handled gracefully by .NET/Link, resulting in

the printing of a message in Mathematica describing the exception. This is discussed in

"Exceptions". If you are sending computations to Mathematica, as described in the previous

section, you need to make sure that an exception does not interrupt your code unexpectedly. In

other words, if you start a transaction with Mathematica, make sure you complete it or you will

leave the link out of sync and future calls to .NET will probably hang.

.NET/Link User Guide 77

Making a Method Interruptible

If you are writing a method that may take a while to complete, you should consider making it

interruptible from Mathematica. In C MathLink programs, a global variable named MLAbort is

provided for this purpose. In .NET/Link programs, you call the WasInterrupted property in the

IKernelLink interface.

Here is an example method that performs a long computation, checking every 100 iterations

whether the user tried to abort it (using the Interrupt Evaluation or Abort Evaluation com-

mands in the Evaluation menu).

public int Foo() {

IKernelLink link = StdLink.Link;
for (int i = 0; i < 10000, i++) {

... perform one step ...
if (i % 100 == 0 && link.WasInterrupted)

return 0; // Return value will not be seen by Mathematica.
}
return 42;

}

This method returns 0 if it detects an attempt by the user to abort, but this value will never be

seen by Mathematica. This is because .NET/Link causes a method, property, or constructor call

that is aborted to return Abort@D, whether or not you detect the abort in your code. Therefore,

if you detect an abort and want to honor the user’s request, just return some value right away.

When .NET/Link returns Abort@D, the user’s entire computation is aborted, just as if the

Abort@D was embedded in Mathematica code. This means that you do not have to be con-

cerned with any details of propagating the abort back to Mathematica~all you have to do is

return prematurely if you detect an abort request, and the rest is handled for you.

.NET/Link makes no distinction between an interrupt request and an abort request; they each

cause WasInterrupted to return true. Recall that Mathematica has separate commands for

interrupting and aborting computations. The “Abort” operation (‡-. on Windows) causes the

entire computation to end as soon as possible and return $Aborted. The “Interrupt” operation

(‡-, on Windows) brings up a dialog box with further choices. If this Interrupt dialog box is

triggered when a .NET method is executing, it has a different set of buttons than when normal

Mathematica code is executing. One of the options is Send Abort to Linked Program and

another is Send Interrupt to Linked Program. Both of these choices have the same effect for

.NET methods, which is to cause WasInterrupted to return true and the call to return

Abort@D when it completes. The third button is Kill Linked Program, which will cause the .NET

runtime to quit. If you call a .NET method that is not interruptible, killing the .NET runtime in

this way is the only way to make the method call terminate. You can also kill the .NET runtime

using the Windows Task Manager.

78 .NET/Link User Guide

.NET/Link makes no distinction between an interrupt request and an abort request; they each

cause WasInterrupted to return true. Recall that Mathematica has separate commands for

interrupting and aborting computations. The “Abort” operation (‡-. on Windows) causes the

entire computation to end as soon as possible and return $Aborted. The “Interrupt” operation

(‡-, on Windows) brings up a dialog box with further choices. If this Interrupt dialog box is

triggered when a .NET method is executing, it has a different set of buttons than when normal

Mathematica code is executing. One of the options is Send Abort to Linked Program and

another is Send Interrupt to Linked Program. Both of these choices have the same effect for

.NET methods, which is to cause WasInterrupted to return true and the call to return

Abort@D when it completes. The third button is Kill Linked Program, which will cause the .NET

runtime to quit. If you call a .NET method that is not interruptible, killing the .NET runtime in

this way is the only way to make the method call terminate. You can also kill the .NET runtime

using the Windows Task Manager.

Sometimes you might want a .NET method to detect an abort and do something other than

cause the entire Mathematica computation to abort. For example, you might want a loop to

stop and return its results up to that point. Note that this is not generally recommended. Users

expect a program to abort and return $Aborted when they issue an abort request. In some

cases, however, especially if the code is not intended for use by a large community, you might

find it useful to use an abort as a “message” to communicate some information to your .NET

code instead of just having the computation aborted. This idea is similar to Mathematica’s

CheckAbort function, which allows you to detect an abort and absorb it so that it does not

propagate further and abort the entire computation. To “absorb” the abort in your .NET code so

that .NET/Link does not return Abort@D, simply reset the WasInterrupted property to false.

Here is an example.

public int Foo() {

IKernelLink link = StdLink.Link;
for (int i = 0; i < 10000, i++) {

... perform one step ...
if (i % 100 == 0 && link.WasInterrupted) {

link.WasInterrupted = false;
return resultSoFar; // This is the value that will be returned

to Mathematica
}

}
...
return 42;

}

.NET/Link User Guide 79

Writing Your Own Event Handler Code

"Handling Events" introduced the topic of triggering calls into Mathematica as a response to

events fired in .NET, such as clicking a button. The AddEventHandler function provides an easy

means of setting up event handlers in Mathematica. You are not required to use

AddEventHandler, of course. You can create your own delegates in any .NET language to

handle events and insert calls into Mathematica directly into their code. If you choose to do

this, there is one very important rule that must be adhered to when writing event handler code

that calls into Mathematica. You must always call StdLink.RequestTransaction() before

sending a computation to Mathematica. RequestTransaction() will throw an exception if

Mathematica is not in a state where it is receptive to calls originating in .NET. You can catch

this exception if you wish, or you can ignore it and .NET/Link will catch it for you and issue a

warning beep. In other words, RequestTransaction() prevents you from interfering with the

internals of .NET/Link by trying to call the kernel when the kernel and .NET/Link are not ready.

To be precise, RequestTransaction() will throw an exception unless one of the following

conditions holds.

† Mathematica 5.1 or later is being used (in 5.1 and later the kernel is always shared with
.NET)

† Mathematica is executing DoNETModal

† Mathematica is executing DoNETModeless, and the kernel is not busy servicing a computa-
tion from the front end

† Kernel sharing has been turned on via ShareKernel or ShareFrontEnd, and the kernel is
not busy with another computation

† Mathematica is already in the middle of a call to .NET

† .NET is not being used from Mathematica (that is, the code is called in a standalone .NET
program that is using Mathematica for computations; InstallNET has not been called)

The fifth bullet point above warrants further discussion. Recall that whenever Mathematica has

called into .NET, it is reading from the .NET link and therefore is receptive to calls that arrive

from .NET. This means that callbacks to Mathematica from code that is itself called from Mathe-

matica do not need to call RequestTransaction() (although it is harmless to do so). Event

handlers, however, are typically called as the result of some user action on the .NET side, and

thus they originate in .NET.

The code below shows a prototypical event handler method written in C#.

80 .NET/Link User Guide

The code below shows a prototypical event handler method written in C#.

// Add a delegate to the KeyPress event.
myTextBox.KeyPress += new KeyEventHandler(MyKeyPressHandler);
...

// Elsewhere, define MyKeyPressHandler as follows.
public void MyKeyPressHandler(object sender, KeyEventArgs eventArgs) {

IKernelLink ml = StdLink.Link;
StdLink.RequestTransaction();
// Send a single computation to Mathematica to react to the KeyPress

event.
ml.PutFunction(“EvaluatePacket“, 1);
... code to put rest of expression to evaluate goes here ...
ml.EndPacket();
ml.WaitAndDiscardAnswer();

}

Debugging Your .NET Classes

You can use your favorite debugger to debug .NET code that is called from Mathematica. The

only issue is that you typically have to launch a .NET program inside the debugger to do this.

The .NET program that you need to launch is InstallableNET.exe, which is the program that

is normally launched for you when you call InstallNET. This program resides in the NETLink

directory right next to the Wolfram.NETLink.dll assembly file.

If you are using Visual Studio .NET and you want to debug a class library project that you are

using with .NET/Link, the exact steps depend on the language you are using. Select the project,

and choose Properties from the Project menu. In the Debugging panel of the Configuration

Properties section, set the startup application to be the InstallableNET.exe program. Set the

command-line arguments to something like -linkmode listen -linkname foo. Then start

the debugger. The InstallableNET program will launch and wait for Mathematica to connect.

In your Mathematica session, execute the following.

InstallNET[LinkConnect[“foo“]]

This works because InstallNET can take a LinkObject as its argument, in which case it will

not try to launch .NET itself. This allows you to manually establish the MathLink connection

between .NET and Mathematica, then feed that link to InstallNET and let it do the rest of the

work of preparing the Mathematica and .NET sides to interact with each other.

Calling DLLs from Mathematica

.NET/Link User Guide 81

Calling DLLs from Mathematica

Introduction

This section describes how you can use .NET/Link to call DLL functions from Mathematica.

These are traditional Windows DLLs, typically C-language libraries (although many languages

have the capability to create such DLLs). In .NET terminology, these types of DLLs are called

“unmanaged” because they do not execute within the .NET runtime. Although the task of calling

unmanaged functions does not appear to have anything to do with .NET, .NET/Link can lever-

age existing facilities in .NET for calling such functions. In other words, because .NET can call

DLLs, and Mathematica can call .NET, you can now easily call DLLs in Mathematica.

The capability to easily call external C functions from Mathematica means that Windows pro-

grammers have virtually no reason to ever write another so-called “template” MathLink pro-

gram that wraps an external function and directly handles MathLink communication. Other

tutorials have shown how .NET/Link eliminates the need for special programming to call .NET

code. In this tutorial we see how .NET/Link also eliminates those extra steps for calling legacy

DLLs.

Many programming languages allow you to call DLL functions by simply “declaring” them with a

line of code. Here are examples of such a declaration in several languages. The function is

GetTickCount(), which is part of the Windows API that is defined in kernel32.dll.

// Visual Basic 6
Declare Function GetTickCount Lib “kernel32“ () As Long

// Visual Basic .NET
<DLLImport(“kernel32.dll“)>
Shared Function GetTickCount() As Integer

// C#
[DllImport(“kernel32.dll“)]
static extern int GetTickCount();

82 .NET/Link User Guide

The Mathematica function DefineDLLFunction is analogous to the above declarations. You

specify the name of the DLL, the name of the function, and the types of the return value and

arguments.

In[142]:= getTickCount = DefineDLLFunction@“GetTickCount“, “kernel32.dll“, “int“, 8<D

Out[142]= Function@Null, If@NETLink`DLL`Private`checkArgCount@GetTickCount, 8ÒÒ1<, 0D,
Wolfram`NETLink`DynamicDLLNamespace`DLLWrapper2`GetTickCount@ÒÒ1D, $FailedD, 8HoldAll<D

Note that DefineDLLFunction returns a function. You should assign it to a symbol and then use

that symbol as the name of the function:

In[147]:= getTickCount@D

Out[147]= 789 292 652

There are four arguments to DefineDLLFunction. The first argument is the name of the func-

tion in the DLL. The second argument is the name of the DLL, and you can give either the full

pathname to the DLL or just its filename. ("How DLLs are Found" discusses in detail how DLLs

are found by .NET/Link.) The third argument is the return type, given as a string. The fourth

argument is a list of the types of the arguments. If the function takes zero arguments, like

GetTickCount(), you specify an empty list. The type specifications are strings, and .NET/Link

supports a number of ways to specify types. Type specifications are discussed in greater detail

in the section "Specifying Arguments and Return Values".

DefineDLLFunction@“ funcName“,
“dllName“,returnType,8argType,...<D

create a Mathematica function suitable for calling the
named function from the named DLL

DefineDLLFunction@“declaration“D create a Mathematica function from a complete external
function delcaration given in C# syntax

Defining DLL functions.

DefineDLLFunction supports several options. The first is CallingConvention, which you need

to use if the DLL function uses a calling convention different from the standard convention,

which is “stdcall” on versions of Windows other than Windows CE. In rare cases, functions use

the “cdecl” calling convention. The “thiscall” convention can be used when calling methods in

C++ classes. See the .NET Framework documentation for the

System.Runtime.InteropServices.CallingConvention enumeration for more information

on these values. For most uses, you leave the CallingConvention option at its default setting.

The MarshalStringsAs option is discussed in the section "Strings". The ReferencedAssemblies

option is discussed in the section "Declarations Requiring Special Attributes".

.NET/Link User Guide 83

option name default value

CallingConvention Automatic the calling convention expected by the DLL
function (possible values are "StdCall",
"CDecl", "ThisCall", and Automatic.

MarshalStringsAs “ANSI“ how string arguments (char*, string,
String) should be marshaled to and from
the DLL function (possible values are
"ANSI", "Unicode", and Automatic)

ReferencedAssemblies Automatic a list of the names of assemblies refer-
enced by your declaration

Options for DefineDLLFunction.

How DLLs Are Found

The second argument to DefineDLLFunction is the name of the DLL in which the function

resides. You can specify a full pathname to the DLL or just give the filename and rely on

.NET/Link’s automatic search mechanism to find it. DLLs can be found by just their filename if

they are located on your system’s PATH or if they are in special subdirectories within Mathemat-

ica application directories. This automatic search of application directories allows you to dis-

tribute Mathematica applications that include one or more DLLs without requiring your users to

install the DLL files in a separate location outside your application directory.

Mathematica applications are typically deployed as single directories (with subdirectories),

installed into one of several standard locations where Mathematica expects to find them. These

standard locations can be written as $InstallationDirectory\AddOns\Applications,

$BaseDirectory\Applications, and $UserBaseDirectory\Applications, where

$InstallationDirectory, $BaseDirectory, and $UserBaseDirectory refer to the locations

given by these built-in Mathematica symbols. If your Mathematica application includes DLLs

that are intended to be called via .NET/Link, your application directory needs to be installed into

one of these standard locations, and the DLLs need to be placed into a Libraries\Windows

subdirectory of your application directory. "Distributing Applications that use .NET/Link" dis-

cusses the layout of an application directory in more detail.

When you call DefineDLLFunction, no attempt is made to locate the DLL~that happens only

when the function is first called. This means that if .NET/Link cannot find the DLL or the named

function within it, you will see an error message only when the function is called, not when it is

defined.

Specifying Arguments and Return Values

84 .NET/Link User Guide

Specifying Arguments and Return Values

Introduction

To specify the types of the return value and arguments you use strings such as “int”, “double”,

and “void”. You can use type names that conform to the syntax of whichever language you are

most comfortable with (C, C#, or Visual Basic .NET). You can also use many type names used

in the Windows API, such as “WORD”, “BOOL”, and “LPSTR”. In most cases, you will be working

from a function prototype in the C language, and it will be most convenient to use the names

directly from the prototype. For example, consider the following declaration for the floor()

function from the math.h header file in the Standard C library.

double floor(double x);

It is not likely that you would want to call this particular mathematical function from Mathemat-

ica, but it serves as a simple example from a DLL that everyone will have. On Windows, the C

runtime library is in the DLL msvcrt.dll. Here is one way to use DefineDLLFunction to create

a Mathematica function that calls the floor() function.

In[158]:= externalFloor = DefineDLLFunction@“floor“, “msvcrt.dll“, “double“, 8“double“<D;

In[161]:= externalFloor@4.2D

Out[161]= 4.

DefineDLLFunction allows you to use the C type names directly, which is handy when you are

looking at a C-language prototype from a header file. The following are equivalent ways of

making the same definition.

H* Using Visual Basic-style names. *L
DefineDLLFunction@“floor“, “msvcrt.dll“, “Double“, 8“Double“<D;

H* Using Visual Basic-style names with full VB syntax. *L
DefineDLLFunction@“floor“, “msvcrt.dll“, “Double“, 8“ByVal d As Double“<D;

H* Using.NET Framework names. *L
DefineDLLFunction@“floor“, “msvcrt.dll“, “System.Double“, 8“System.Double“<D;

.NET/Link User Guide 85

Using C# or Visual Basic .NET syntax for type names is convenient if you are copying an exter-

nal function declaration from some sample code in one of those languages. In fact, the easiest

way to use DefineDLLFunction is to find an existing declaration for the external function in

some C# or Visual Basic .NET sample code, and just copy the type names used in that declara-

tion. Here is what declarations for floor() would look like in those languages.

// Visual Basic .NET
<DLLImport(“msvcrt.dll“)>
Shared Function floor(ByVal d As Double) As Double

// C#
[DllImport(“msvcrt.dll“)]
static extern double floor(double);

You can also use a Visual Basic 6 Declare Function statement as a guide to the correct type

names, but keep in mind some important differences between VB 6 and VB .NET. First, in VB 6

parameters are ByRef by default (they are ByVal by default in VB .NET), so a type name like

Double in a VB 6 declaration should be translated to ByRef Double. Also, Integer in VB 6 is

equivalent to Short in VB .NET, and Long in VB 6 is equivalent to Integer in VB .NET. You

must use type names that are appropriate for VB .NET.

The following subsections discuss allowed type names in greater detail.

Primitive Types

The following table shows what type names are legal to use for primitive types (i.e., integers,

reals, booleans) and what types they map to in Mathematica.

86 .NET/Link User Guide

Type in External Function Declaration Mathematica Type

C-language names: Integer

char, int, short,
long Hand unsigned versionsL

C Ò names:

byte, sbyte, char, short,
int Hand unsigned versionsL

Visual Basic .NET names:

Short, Integer,
Long Hthese are all ByValL

.NET Framework names:

Byte, SByte, Char, Int16, UInt16,
Int32, UInt32, Int64, UInt64

Win32 API names:

BOOL, BYTE, SHORT, INT, UINT,
LONG, WORD, DWORD, LPARAM, WPARAM

float, double, Single, Double Real

bool, Boolean True or False

void, Void Null, when used for a
return value; for zero-
argument functions, use 9=

as the argument type list

Legal type specifications for primitive types in DefineDLLFunction.

The use of the above type names should be straightforward. Note that “long” means a standard

Windows C long (4 bytes), not the C# long, which is 8 bytes. Also, the Windows API BOOL type

is mapped to an integer (0 and non-zero) rather than True and False. Pointers to, and arrays

of, primitive types are discussed in a later subsection.

.NET/Link User Guide 87

Strings

There are some subtleties you need to be aware of when calling DLL functions that take and

return strings. These center on how the DLL function expects strings to be represented: either

as ANSI-style, single-byte, null-terminated strings or as Unicode, double-byte, null-terminated

strings. The process of converting data from one representation to another as it moves across

system boundaries is called marshaling. The default behavior of .NET when calling unmanaged

code is to marshal strings as single-byte, null-terminated strings, because most DLL functions

are written to handle this common C string format. If you need different behavior than the

default, you can use the MarshalStringsAs option to DefineDLLFunction.

Here are examples of two DLL functions from the Windows C runtime library that operate on

different types of strings. Each converts a string to lowercase; the _strlwr() function takes an

ANSI string and the _wcslwr() function takes a wide-character string.

char *_strlwr(char *string);

wchar_t *_wcslwr(wchar_t *string);

Here are calls to DefineDLLFunction for both of these functions. Because the _wcslwr()

function takes and returns a wide-character string, you need to override the default marshaling

of strings.

In[197]:= strlwr = DefineDLLFunction@“_strlwr“, “msvcrt.dll“, “string“, 8“string“<D;
wcslwr = DefineDLLFunction@“_wcslwr“, “msvcrt.dll“,

“string“, 8“string“<, MarshalStringsAs Ø “Unicode“D;

Both functions behave identically on a string with characters that fit into a single byte.

In[199]:= strlwr@“ABC“D ã wcslwr@“ABC“D ã “abc“

Out[199]= True

As expected, the strlwr function fails on a string with characters that require two bytes. Note

that the p character is truncated to a single byte (in this example the truncation occurs as the

string is passed from .NET into the DLL, but it would also happen on the way back out of the

DLL).

In[200]:= strlwr@“ApB“D

Out[200]= apb

88 .NET/Link User Guide

Things work when you call the wide-character version:

In[202]:= wcslwr@“ApB“D

Out[202]= apb

If you have more than one string as a parameter or return type and the strings must be mar-

shaled differently, then you cannot use the MarshalStringsAs option, as this applies to all

strings in the function. You can use the special “full declaration” form for DefineDLLFunction,

as discussed in "Declarations Requiring Special Attributes".

Type in External Function Declaration Mathematica Type

C-language names: String
char*

C Ò names:

string

Visual Basic .NET names:

String

.NET Framework names:

String

Win32 API names:
LPSTR, LPCSTR

Legal type specifications for strings in DefineDLLFunction. These are all equivalent.

In DefineDLLFunction for _strlwr() and _wcslwr(), we used the type name “string,” which

is C# syntax, to indicate a string. As the table above shows, the following are completely equiva-

lent declarations.

H* C syntax: *L
DefineDLLFunction@“_strlwr“, “msvcrt.dll“, “char*“, 8“char*“<D;

H* CÒ syntax: *L
DefineDLLFunction@“_strlwr“, “msvcrt.dll“, “string“, 8“string“<D;

H* VB.NET syntax: *L
DefineDLLFunction@“_strlwr“, “msvcrt.dll“, “String“, 8“String“<D;

H* Alternate VB.NET syntax: *L
DefineDLLFunction@“_strlwr“, “msvcrt.dll“, “String“, 8“ByVal d As String“<D;

H* .NET Framework names: *L
DefineDLLFunction@“_strlwr“, “msvcrt.dll“, “System.String“, 8“System.String“<D;

So far we have only discussed strings used as “[in]” parameters to functions~that is, where

character data is being sent into the function. Some functions that are typed to take char* use

the string as an “[out]” parameter, meaning that it is actually a buffer that is written into by

the function. Functions that use strings as [out] parameters typically require you to pass in an

extra argument that gives the length of the string buffer you have allocated, or they have a

documented maximum number of characters that they will write into your buffer. An example

of a function that writes data into a string is the familiar Standard C library function sprintf().

.NET/Link User Guide 89

So far we have only discussed strings used as “[in]” parameters to functions~that is, where

character data is being sent into the function. Some functions that are typed to take char* use

the string as an “[out]” parameter, meaning that it is actually a buffer that is written into by

the function. Functions that use strings as [out] parameters typically require you to pass in an

extra argument that gives the length of the string buffer you have allocated, or they have a

documented maximum number of characters that they will write into your buffer. An example

of a function that writes data into a string is the familiar Standard C library function sprintf().

int sprintf(char *buffer, const char *format [,argument] ...);

The buffer argument is a string into which the function writes. It is an [out] parameter, and

although you could pass a string of data into this function to be overwritten (provided it was

long enough so that the written data did not overrun the length of the string), you would have

no way of getting the modified string back out. The .NET runtime supports a special trick for

working with [out] string parameters, which is to use an instance of the System.Text.StringÖ

Builder class. A StringBuilder is marshaled to an unmanaged function as a character

buffer. After the function returns, the StringBuilder object will hold the data that was written

into the buffer. You can extract the data as a string using the StringBuffer.ToString()

method.

Let’s see how this is done with the sprintf() function. This function takes a variable argument

count, but DefineDLLFunction cannot handle that, so we will define a version specifically for

the case of one integer argument after the format string (three total arguments).

In[222]:= sprintf = DefineDLLFunction@“sprintf“, “msvcrt.dll“,
“int“, 8“System.Text.StringBuilder“, “const char*“, “int“<D;

One small point to note in the above call to DefineDLLFunction is that you can specify a const

qualifier on any argument slot. It is ignored by .NET/Link because it is not relevant for

.NET/Link’s purposes, but you can use it if you think it makes your declarations more self-

documenting or if you are just blindly copying a C function prototype.

To call sprintf you first create a StringBuilder object that has a buffer large enough to hold

all the data that might be written into it. This example will use a small string, so 20 bytes is

more than enough.

In[223]:= sb = NETNew@“System.Text.StringBuilder“, 20D;
sprintf@sb, “xxx%daaa“, 42D

Out[224]= 8

90 .NET/Link User Guide

The return value is the number of characters written into the buffer. To see the string, call

ToString().

In[225]:= sbüToString@D

Out[225]= xxx42xxx

Arrays and Pointers

When dealing with functions that take or return pointers or arrays, you need to be a little care-

ful and make sure you understand how the parameter is treated by the function you are calling.

For example, if you see a parameter of type int*, it could be any of the following:

† an array of integers passed in to the function (an [in] array)

† an array of integers that will be written into by the function (an [out] array), that possibly
also requires initial values in the array (an [in, out] array)

† the address of an integer variable that will have a value written into it by the function (an
[out] int), that possibly also requires an initial value (an [in, out] int)

Each of these possibilities requires a different type specification in DefineDLLFunction. As an

example, consider the modf() function from the Standard C library:

double modf(double d, double* pint);

This function breaks up the double d into an integer plus a fraction. The fraction is the return

value, and the integer value is stored in the double pointed to by pint. From this description

you can see that the double* parameter is not an array, but the address of a double that will

get written into (an [out] double). Try calling DefineDLLFunction using the type names

directly from the prototype and see what you get.

In[251]:= modf = DefineDLLFunction[“modf“, “msvcrt.dll“, “double“, {“double“, “double*“}];

When you use a pointer type like double* directly in DefineDLLFunction, as in the above

example, .NET/Link assumes that the parameter is an [in, out] double (the last item in the

bullet list above). In C# notation this type of parameter is called ref double, and in Visual

Basic .NET notation it is ByRef As Double. From “Out” and “Ref” Parameters, you know that

what you need to pass to a ref parameter slot is a symbol that has a value of the correct type

going in, and that this symbol will also be assigned a possibly modified value on the way out.

This means that to call modf and have it assign the second argument to a symbol called inteÖ

gerPart, we need to give integerPart a numerical value before the call or .NET/Link will

complain about bad arguments.

.NET/Link User Guide 91

In[253]:= integerPart = 0;
modf@3.5, integerPartD

Out[254]= 0.5

In[255]:= integerPart

Out[255]= 3.

This is not ideal because the second argument is conceptually an [out] double, not an [in, out]

double~its value going into the function is not used, so there is no point in having to give it

any value before the call. To improve the definition you can use “out double“ instead of

“double*“ as the type specification.

In[256]:= betterModf =
DefineDLLFunction@“modf“, “msvcrt.dll“, “double“, 8“double“, “out double“<D;

Clear@integerPartD;
betterModf@3.5, integerPartD
integerPart

Out[258]= 0.5

Out[259]= 3.

In summary, if you use a pointer type directly in DefineDLLFunction, .NET/Link will treat this

as a ref (C# notation) or ByRef (VB notation) parameter. If this does not correctly capture the

use of the parameter, you should use a different type specification. I prefer to use C# notation

for type names, so that an int* parameter that is treated as an address of an integer that will

be written into is specified as “out int“. If the value is both read and written by the function

it is a “ref int“. Visual Basic .NET does not have a syntax for a “pure” [out] parameter, so

using C# notation is the best choice for that case.

So far we have not considered the case of an array parameter. In a C function prototype, int*

could mean an array of ints, although this would often be written as int[]. If you need to

pass an array of data to a DLL function, the parameter type must be written with array brack-

ets, as in "int[]", not as "int*" (you have already seen how DefineDLLFunction treats types

declared explicitly as pointers). Consider the following two (fictitious) DLL function prototypes.

int SumArray(int[] array, int length);

void ReverseArray(int[] array, int length);

The SumArray() function takes an array of integers and the length of the array, and it returns

the sum. Here is how you would write DefineDLLFunction and the call to the function.

92 .NET/Link User Guide

SumArray = DefineDLLFunction@“SumArray“, “SomeDLL.dll“, “int“, 8“int@D“, “int“<D;

H* Alternate version using VB .NET syntax:
SumArray = DefineDLLFunction@“SumArray“,

“SomeDLL.dll“, “Integer“, 8“xHL As Integer“, “Integer“<D; *L

result = SumArray@82, 4, 6, 8, 10<, 5D;

Note that bracket notation is used to indicate an array passed into the function, and you call it

from Mathematica with a list of integers.

The ReverseArray() function is quite different. It reverses the array of data in place, so the

array is used as an [in, out] parameter. You can define it as follows:

ReverseArray =
DefineDLLFunction@“ReverseArray“, “SomeDLL.dll“, “void“, 8“int@D“, “int“<D;

But consider what would happen if you called it like this:

ReverseArray@82, 4, 6, 8, 10<, 5D;

This would succeed in the sense that the DLL function would receive an array of ints and

reverse it, but there is no way to propagate the modified array back out of the function. You

might guess that "ref int[]" would be the correct type to use, but that actually translates to

(int[])* because adding ref or out to a type is effectively adding a level of indirection. The

trick is to create a .NET array object and pass that object into the function. After the function

returns, you can get the array data as a Mathematica list. This works because anywhere in

.NET/Link if you have an argument slot typed to take an array you can call it from Mathematica

with either a list or a reference to a .NET object that is an array of the appropriate type. Here is

the proper way to call a DLL function that writes into an array:

H*This creates a.NET object of type Int32@D and fills it with
the data. If you didn‘t care about the initial values in the array,

you could use NETNew@“System.Int32@D“, 5D.*L
intArray = MakeNETObject@82, 4, 6, 8, 10<D;

ReverseArray@intArray, 5D;

H* This converts the object reference to its value as a Mathematica list. *L
NETObjectToExpression@intArrayD

But consider what would happen if you called it like this:

ReverseArray@82, 4, 6, 8, 10<, 5D;

The example files include more pointer-related techniques, including the use of the .NET Frame-

work IntPtr type to represent a generic pointer.

.NET/Link User Guide 93

Function Pointers

Some DLL functions take a callback function pointer as an argument. .NET maps function point-

ers to delegates, so you pass a delegate object of the appropriate type for a function pointer

argument. "Handling Events" introduces the NETNewDelegate function, and its main use is for

creating delegate objects for function pointers in DLL calls. It is often the case that there is no

existing .NET delegate type with the correct signature for the function pointer. You can use the

DefineNETDelegate function to create a .NET delegate type with the appropriate signature. The

EnumWindows.nb example file demonstrates using DefineNETDelegate and NETNewDelegate to

call a DLL function that takes a callback function pointer as an argument.

Declarations Requiring Special Attributes

The .NET runtime supports a large number of attributes to control precisely how a function is

called and how arguments are marshaled. The CallingConvention and MarshalStringsAs

options to DefineDLLFunction give you some control over these aspects, but they do not

support anywhere near all of the available attributes. Here is an example from the .NET Frame-

work documentation of a complicated C# declaration for the MoveFile() function from the

Windows API. Although this declaration was made deliberately over-complicated, it demon-

strates some of the possible attributes.

[DllImport(“KERNEL32.DLL“, EntryPoint=“MoveFileW“, SetLastError=true,
CharSet=CharSet.Unicode, ExactSpelling=true,
CallingConvention=CallingConvention.StdCall)]
public static extern bool MoveFile(String src, String dst);

When faced with the need to specify attributes beyond what can be done with options to

DefineDLLFunction, you can use an alternative form where you specify a full declaration as a

string in C# syntax.

MoveFile =
DefineDLLFunction@“@DllImportH\“KERNEL32.DLL\“, EntryPoint=\“MoveFileW\“,

SetLastError=true, CharSet=CharSet.Unicode,
ExactSpelling=true,\nCallingConvention=CallingConvention.StdCallLD
public static extern bool MoveFileHString src, String dstL;“D;

In this version of .NET/Link, only C# syntax is supported not Visual Basic .NET.

Another example of a function that would need this type of full declaration would be one that

had two string arguments that needed separate marshaling conventions.

void TwoStrings(char* ansiString, wchar_t* unicodeString);

Here is how you would define it in Mathematica.

94 .NET/Link User Guide

Here is how you would define it in Mathematica.

TwoStrings =
DefineDLLFunction@“@DllImportH\“SomeDLL.dll\“LD public static extern void

TwoStringsH@MarshalAsHUnmanagedType.LPStrLD string ansiString,
@MarshalAsHUnmanagedType.LPWStrLD string unicodeStringL;“D;

If your DLL declaration uses a type that is not in the System assembly, you need to use the

ReferencedAssemblies option to specify its assembly. This is analogous to adding a reference

to an assembly in a Visual Studio project. Here is an example of using this option. The RectanÖ

gle class is found in the System.Drawing assembly, so you will get an error unless you explic-

itly name it as a referenced assembly.

GetWindowRect = DefineDLLFunction@“GetWindowRect“,
“user32.dll“, “BOOL“, 8“HWND“, “ref System.Drawing.Rectangle“<,
ReferencedAssemblies Ø 8“System.Drawing.dll“<D;

Example Files

The following example programs, included with .NET/Link, demonstrate calling C-style DLLs

from Mathematica.

BZip2Compression.nb

WindowsAPI.nb

EnumWindows.nb

Calling COM from Mathematica

Introduction

The .NET runtime has many features that support interoperability with COM (the Component

Object Model, also referred to as ActiveX). Although the arrival of .NET makes COM/ActiveX

officially a "legacy" technology, there are still a huge number of COM objects and libraries in

use, and COM remains an important part of the Windows programming world. Because COM

objects are easily called from .NET, they are easily called from Mathematica via .NET/Link.

COM programming is a complex subject (one reason, no doubt, that Microsoft replaced it with

.NET), and readers are assumed to have some familiarity with the basics of COM. There is

considerable discussion of COM and .NET interoperability issues in the .NET SDK documentation.

The central element in .NET-to-COM interoperability is a special proxy object called a Runtime

Callable Wrapper. Whenever you create a COM object and want to import it into the .NET envi-

ronment, the .NET runtime creates an RCW object that represents the COM object in the .NET

environment. The RCW mediates calls from .NET into COM, marshaling arguments and return

values back and forth between the .NET and COM worlds. You will see examples of RCW objects

in the sections that follow.

.NET/Link User Guide 95

The central element in .NET-to-COM interoperability is a special proxy object called a Runtime

Callable Wrapper. Whenever you create a COM object and want to import it into the .NET envi-

ronment, the .NET runtime creates an RCW object that represents the COM object in the .NET

environment. The RCW mediates calls from .NET into COM, marshaling arguments and return

values back and forth between the .NET and COM worlds. You will see examples of RCW objects

in the sections that follow.

.NET/Link provides two main ways of calling COM objects from Mathematica. The first technique

is to use so-called COM Automation (late binding). This is convenient because it requires no

preparation, but it is not ideal for various reasons discussed later. The second, preferred, tech-

nique is to create or obtain an interop assembly for the COM objects you want to call. An

interop assembly is a special .NET assembly that wraps a COM library and makes that library’s

types and interfaces look like native .NET types. These two methods for calling COM objects are

discussed in the next two sections.

Using Automation (Late Binding)

A COM interface is essentially just a table of function pointers. This is ideal for C++ program-

mers to use, but there needs to be a way for scripting languages, which have no compilation

stage and no access to C++ header files, to use COM objects. The solution to this problem is a

special COM interface called IDispatch. A COM object that implements IDispatch allows the

user of the object to determine at runtime the methods and properties available, and then

invoke them. IDispatch is the COM equivalent to the "reflection" capabilities in .NET. Using

COM objects via their IDispatch interface is often referred to as late binding, Automation, or

Dispatch. We will use the term Automation.

Not all COM objects support Automation but many do, including all those that want to be usable

from the widest variety of programming languages and environments. Visual Basic 6 is capable

of using COM objects via either Automation or early binding (discussed later). Most scripting

languages, including VBScript, however, can only use Automation. .NET/Link can use either

Automation or early binding. Early binding is the preferred technique, and it is discussed in the

next section. Here, we focus on Automation. Using COM objects via Automation in .NET/Link is

almost exactly like using Automation in Visual Basic or VBScript. If you can find sample code in

either of those languages that uses the COM objects you are interested in, then you can gener-

ally translate that code verbatim into Mathematica.

As an example of a COM library, this section will use the Microsoft Speech API. Although

Microsoft will eventually move all its APIs to pure .NET implementations, many are still available

only as COM objects, and the Speech API is an example. (Note that Microsoft has a .NET-based

speech tool called the Speech Application SDK. This is targeted at ASP .NET developers creating

telephony applications and should not be confused with the older COM-based Speech API, which

will be used in the next examples.) You do not need to have the Speech API installed to under-

stand this section, as you can simply read the inputs and outputs, but if you want to reevaluate

the input or play around yourself, you can download the Speech API from

http://www.microsoft.com/speech/download/sdk51/. If the line that calls CreateCOMObject

fails, you do not have the Speech API installed.

96 .NET/Link User Guide

As an example of a COM library, this section will use the Microsoft Speech API. Although

Microsoft will eventually move all its APIs to pure .NET implementations, many are still available

only as COM objects, and the Speech API is an example. (Note that Microsoft has a .NET-based

speech tool called the Speech Application SDK. This is targeted at ASP .NET developers creating

telephony applications and should not be confused with the older COM-based Speech API, which

will be used in the next examples.) You do not need to have the Speech API installed to under-

stand this section, as you can simply read the inputs and outputs, but if you want to reevaluate

the input or play around yourself, you can download the Speech API from

http://www.microsoft.com/speech/download/sdk51/. If the line that calls CreateCOMObject

fails, you do not have the Speech API installed.

The basic function for creating COM objects for control via Automation is CreateCOMObject.

This function is analogous to the CreateObject() function in Visual Basic. The argument to

CreateCOMObject is a string that provides either the ProgID or CLSID of a COM coclass. A

ProgID is a human-readable string, such as "Excel.Application", whereas the CLSID is a

sequence of hex digits, such as "{000208d5-0000-0000-c000-000000000046}". You can obtain

the CLSID or ProgID of a COM object from its documentation, or, even better, from some

sample code in Visual Basic that uses it.

CreateCOMObject@“ProgID“D create a COM object with the given ProgID (e.g.,
Excel.Application)

CreateCOMObject@“CLSID“D create a COM object with the given CLSID (e.g.,
{000208d5-0000-0000-c000-000000000046})

GetActiveCOMObject@“ProgID“D acquire a reference to an already-active COM object with
the given ProgID (e.g., Excel.Application)

GetActiveCOMObject@“CLSID“D acquire a reference to an already-active COM object with
the given CLSID (e.g., {000208d5-0000-0000-
c000-000000000046})

Obtaining COM objects.

This creates an instance of the SpVoice COM object.

In[1]:= voice = CreateCOMObject@“Sapi.SpVoice“D

Out[1]= «NETObject@COMInterface@SpeechLib.ISpeechVoiceDD »

The voice object is unlike any .NET object you have seen yet. This object is a Runtime Callable

Wrapper (RCW), a class of objects that was mentioned in the Introduction. You can think of it

as a proxy object that represents the COM object in the .NET world. For most .NET objects, the

string inside the brackets in the OutputForm representation of the object gives the name of the

object’s .NET type. The voice object is different~the string shows the name of the default COM

interface supported by the object (SpeechLib.ISpeechVoice). Here is the actual type name of

the object.

.NET/Link User Guide 97

The voice object is unlike any .NET object you have seen yet. This object is a Runtime Callable

Wrapper (RCW), a class of objects that was mentioned in the Introduction. You can think of it

as a proxy object that represents the COM object in the .NET world. For most .NET objects, the

string inside the brackets in the OutputForm representation of the object gives the name of the

object’s .NET type. The voice object is different~the string shows the name of the default COM

interface supported by the object (SpeechLib.ISpeechVoice). Here is the actual type name of

the object.

In[2]:= voiceüGetType@DüToString@D

Out[2]= System.__ComObject

As you might have guessed, System.__ComObject is the name of the RCW class. Seeing a

.NET object represented in Mathematica as <<NETObject[System.__ComObject]>> would not

be very informative, as this could be any COM object and thus tells you nothing about the

object. When .NET/Link returns an RCW object to Mathematica, it tries to determine the name

of the default COM interface that the object supports. If this is successful, then .NET/Link

reports the object as <<NETObject[COMInterface[Default.COM.Interface]]>>. Remember

that this is the name of a COM interface and has no meaning whatsoever to .NET or .NET/Link.

It is displayed simply to help you know something about the COM object that this .NET object

represents. For .NET/Link to be able to determine the default COM interface name, the object

must provide sufficiently detailed type information via a COM type library. Most COM objects

provide this feature, so you will often see RCW objects formatted with a COM interface name.

In some cases, however, the search for a default interface name will fail, and you will see a

COM object formatted only as <<NETObject[System.__ComObject]>>.

One drawback to using COM objects via Automation is that you cannot get information about

COM methods and properties using NETTypeInfo.

In[3]:= NETTypeInfo@voiceD

NETTypeInfo::com: Type information is not currently available for "raw" COM objects.

Out[3]//TableForm=

Although you can call methods and properties on the COM object, you cannot see these meth-

ods directly from .NET. For information about methods and properties and their arguments, you

will need to turn to the documentation for the COM object. Often you can find sample code in

Visual Basic for using a COM object, and using it from Mathematica via .NET/Link will look

almost exactly the same.

98 .NET/Link User Guide

The ISpeechVoice COM interface includes a property called Volume.

In[4]:= voiceüVolume

Out[4]= 100

The Speak() method speaks a string of text. Here is the declaration for the Speak() method

from the IDL file for the SpeechLib type library.

long Speak([in] BSTR Text, [in, optional, defaultvalue(0)]
SpeechVoiceSpeakFlags Flags);

Experienced COM programmers will recognize the elements of this declaration. The first argu-

ment is a BSTR, which is a string in the COM world. Such arguments are called with a string

from .NET, and thus with a string from Mathematica. The second argument is marked as

optional, with a default value of 0. This means that the Speak() method can be called without

the second argument.

In[5]:= voiceüSpeak@“This is an example of using the SpVoice object via Automation“D;

The second argument is listed as being of the type SpeechVoiceSpeakFlags, which is a COM

enumeration containing constants that control how the text is spoken. One drawback to using

COM objects via Automation is that there is no way to access COM enumerations. To use the

second argument, you have to supply an integer value that corresponds to the correct value of

the enum. You can get this information from the documentation or from the type library itself

using a tool like OLE View, which is bundled with Microsoft Visual Studio. To speak the voice

asynchronously, meaning the Speak() method will return before the text finishes speaking, you

use the flag SVSFlagsAsync, which has the value 1.

In[6]:= voiceü
Speak@“This is an example of using the SpVoice object via Automation. This

text is spoken asynchronously“, 1D;

Drawbacks to Using Automation

You have seen how .NET/Link allows you to use COM objects via their IDispatch interface.

This has the advantage of requiring no preparation at all, but there are several drawbacks:

† You can only call methods on an object’s default interface.

† You cannot use NETTypeInfo to get information about the methods and properties of an
object.

† You cannot access COM enumerations or structs.

† You cannot use COM events.

These drawbacks are the same as you would encounter using COM from a pure scripting lan-

guage like VBScript. The next section discusses a better way to use COM with .NET/Link.

.NET/Link User Guide 99

These drawbacks are the same as you would encounter using COM from a pure scripting lan-

guage like VBScript. The next section discusses a better way to use COM with .NET/Link.

Using an Interop Assembly (Early Binding)

The previous section described using COM objects in .NET/Link via their IDispatch interface,

often called late binding or Automation. There are drawbacks to that technique, but luckily .NET

supports calling COM objects via a more sophisticated and efficient technique called early bind-

ing. This is similar to how COM objects are used in C++, as method dispatch happens via the

vtable interface, not IDispatch. To use early binding in .NET, you must first create or find a so-

called interop assembly. An interop assembly is a special assembly that contains metadata that

describes the types and methods in a COM type library. Once you have an interop assembly, it

can be loaded and used like any other .NET assembly, and the COM types it describes look like

native .NET types to clients.

Interop assemblies can be created with a tool called tlbimp.exe ("type library importer"),

which is included with the .NET Framework SDK, and also with Visual Studio .NET. You will find

ample documentation on how to run tlbimp, and you will see an example later. It is also

possible to create an interop assembly programmatically, and .NET/Link provides the

LoadCOMTypeLibrary function for this purpose. LoadCOMTypeLibrary takes a COM type library,

creates an interop assembly from it, and loads this assembly into .NET/Link. You can think of it

as analogous to LoadNETAssembly, except that it takes a path to a COM type library instead.

LoadCOMTypeLibrary@typeLibPathD create an interop assembly from the given type library and
load it

Loading COM type libraries.

Earlier you used the COM-based Microsoft Speech API via Automation. The preferred method is

to load the type library to allow early binding.

In[7]:= speechAsm = LoadCOMTypeLibrary@
“C:\\Program Files\\Common Files\\Microsoft Shared\\Speech\\sapi.dll“D

Out[7]= NETAssembly@interop.SpeechLib, 25D

100 .NET/Link User Guide

Interop assemblies created by LoadCOMTypeLibrary are created with default rules for naming

of namespaces and types, and it is useful to use NETTypeInfo on the assembly to see what

types are available. For each coclass in the COM type library, a class will be created in the

interop assembly with the name of the coclass with the word "Class" appended. You saw earlier

that there was a coclass called SpVoice, so you expect to find a .NET class called SpVoiceÖ

Class in the interop assembly. There are a lot of types in this assembly; this shows just the

classes.

In[8]:= NETTypeInfo[speechAsm, “Classes“]

Assembly: interop.SpeechLib

Full Name: interop.SpeechLib, Version=5.0.0.0

Location:

Ê Classes
class SpeechLib. _ISpeechRecoContextEvents _SinkHelper

class SpeechLib. _ISpeechVoiceEvents _SinkHelper

class SpeechLib. SpAudioFormatClass

class SpeechLib. SpCompressedLexiconClass

class SpeechLib. SpCustomStreamClass

class SpeechLib. SpeechConstants

class SpeechLib. SpeechStringConstants

class SpeechLib. SpFileStreamClass

class SpeechLib. SpInProcRecoContextClass

class SpeechLib. SpInprocRecognizerClass

class SpeechLib. SpLexiconClass

class SpeechLib. SpMemoryStreamClass

class SpeechLib. SpMMAudioEnumClass

class SpeechLib. SpMMAudioInClass

class SpeechLib. SpMMAudioOutClass

class SpeechLib. SpNotifyTranslatorClass

class SpeechLib. SpNullPhoneConverterClass

class SpeechLib. SpObjectTokenCategoryClass

class SpeechLib. SpObjectTokenClass

class SpeechLib. SpPhoneConverterClass

class SpeechLib. SpPhraseInfoBuilderClass

class SpeechLib. SpRecPlayAudioClass

class SpeechLib. SpResourceManagerClass

class SpeechLib. SpSharedRecoContextClass

class SpeechLib. SpSharedRecognizerClass

class SpeechLib. SpStreamClass

class SpeechLib. SpStreamFormatConverterClass

class SpeechLib. SpTextSelectionInformationClass

class SpeechLib. SpUnCompressedLexiconClass

class SpeechLib. SpVoiceClass

class SpeechLib. SpWaveFormatExClass

You will find NETTypeInfo very useful when exploring an interop assembly. When creating a

COM object earlier using Automation, you used the CreateCOMObject function. Now that you

have .NET classes that represent the COM coclasses, you can call NETNew instead.

.NET/Link User Guide 101

You will find NETTypeInfo very useful when exploring an interop assembly. When creating a

COM object earlier using Automation, you used the CreateCOMObject function. Now that you

have .NET classes that represent the COM coclasses, you can call NETNew instead.

In[9]:= voice = NETNew@“SpeechLib.SpVoiceClass“D

Out[9]= «NETObject@SpeechLib.SpVoiceClassD »

You use this object just like any other .NET object. Here is the Speak() method. For some

reason, the optional nature of the second argument is not preserved in the interop assembly, so

you have to call Speak() with two arguments.

In[10]:= voiceüSpeak@“Using COM objects is easier with an interop assembly“, 1D

Out[10]= 1

When using Automation, you saw that the second argument is a COM enumeration called

SpeechVoiceSpeakFlags. When using Automation, however, there is no way to access an

enumeration, so you had to pass an integer value. But with an interop assembly there is a .NET

enumeration you can use to make your code more readable.

In[11]:= LoadNETType@“SpeechLib.SpeechVoiceSpeakFlags“D;
voiceüSpeak@“Using COM objects is easier with an interop assembly“,

SpeechVoiceSpeakFlags`SVSFlagsAsyncD;

One great advantage of having an interop assembly is that you can use NETTypeInfo to get

information about the methods and properties supported by objects. This shows the properties

of the voice object.

In[12]:= NETTypeInfo@voice, “Properties“D

Ê Properties
virtual SpeechLib.SpeechVoiceEvents AlertBoundary

virtual bool AllowAudioOutputFormatChangesOnNextSet

virtual SpeechLib.SpObjectToken AudioOutput

virtual SpeechLib.ISpeechBaseStream AudioOutputStream

virtual SpeechLib.SpeechVoiceEvents EventInterests

virtual SpeechLib.SpeechVoicePriority Priority

virtual int Rate

virtual SpeechLib.ISpeechVoiceStatus Status @read onlyD

virtual int SynchronousSpeakTimeout

virtual SpeechLib.SpObjectToken Voice

virtual int Volume

Note that once an interop assembly is loaded for a type library, if you call CreateCOMObject

with the name of a COM coclass, you get back a native .NET object of the class that corre-

sponds to the COM coclass, not a raw RCW as before. This means that CreateCOMObject and

NETNew become equivalent ways of creating an instance of a COM coclass.

102 .NET/Link User Guide

Note that once an interop assembly is loaded for a type library, if you call CreateCOMObject

with the name of a COM coclass, you get back a native .NET object of the class that corre-

sponds to the COM coclass, not a raw RCW as before. This means that CreateCOMObject and

NETNew become equivalent ways of creating an instance of a COM coclass.

In[13]:= voice2 = CreateCOMObject@“Sapi.SpVoice“D

Out[13]= «NETObject@SpeechLib.SpVoiceClassD »

option name default value

SaveAssemblyAs None a full pathname to the assembly file you
want created

SafeArrayAsArray False whether to marshal SAFEARRAY types as
System.Array

Options to LoadCOMTypeLibrary.

LoadCOMTypeLibrary takes two options that control the assembly-creation process. The first is

SaveAssemblyAs, which allows you to specify a filename into which you want the created assem-

bly saved. LoadCOMTypeLibrary can take a while to execute, so it is useful to save the assem-

bly in a file and load it using LoadNETAssembly in the future. This makes LoadCOMTypeLibrary

the programmatic equivalent to running the tlbimp.exe tool, in that it can write out the gener-

ated assembly. The second option to LoadCOMTypeLibrary is SafeArrayAsArray, which speci-

fies whether to import all COM SAFEARRAY's as the System.Array class rather than a typed,

single dimensional managed array. The default is False. See the .NET Framework documenta-

tion for the System.Runtime.InteropServices.TypeLibImporterFlags enumeration for

more details on this advanced option. If you need more control over the generated assembly,

use the tlbimp.exe tool as described in the next section.

In the earlier discussion of using COM objects via Automation, the role of the RCW was

described. You saw that the class name of a "raw" RCW is System.__ComObject. It is impor-

tant to remember that all COM objects are represented in .NET as RCWs, even when using an

interop assembly. You can see below that the SpVoiceClass derives from __ComObject.

.NET/Link User Guide 103

In[14]:= NETTypeInfo@voice, “Type“D

Ê Type
class SpeechLib.SpVoiceClass
Inheritance:

System.Object
System.MarshalByRefObject

System.__ComObject
SpeechLib.SpVoiceClass

Interfaces Implemented: SpeechLib.ISpeechVoice, SpeechLib.SpVoice, SpeechLib._ISpeechVoiceEvents_Event

Assembly-Qualified Name: SpeechLib.SpVoiceClass, interop.SpeechLib, Version=5.0.0.0

Assembly Location: Dynamically generated

Here is another way to prove the inheritance relationship.

In[15]:= InstanceOf@voice, “System.__ComObject“D

Out[15]= True

Using tlbimp.exe to Create an Interop Assembly

As mentioned earlier, the .NET Framework SDK includes a tool called tlbimp.exe (type library

importer) that creates an interop assembly from a COM type library. You can use this tool to

create an interop assembly and load it using LoadNETAssembly, instead of using the

LoadCOMTypeLibrary function. The tlbimp program has many options to control how the

assembly is generated, so if you need this level of control, you will definitely want to run it

manually. The .NET Framework SDK documentation describes how to use tlbimp in detail, but

here is an example of how it could be used to create an interop assembly for the SpeechLib

type library.

tlbimp “C:\Program Files\Common Files\Microsoft Shared\Speech\sapi.dll“
/out:c:\interop.SpeechLib.dll

Once the assembly has been created, load it like any other assembly.

LoadNETAssembly@“c:\\interop.SpeechLib.dll“D;

104 .NET/Link User Guide

Primary Interop Assemblies

A primary interop assembly (PIA) is a special interop assembly that is signed by the vendor and

given a strong name so that it can be placed into the global assembly cache (GAC). The idea

behind a PIA is that a vendor of a COM type library will create an "official" interop assembly

that represents the ideal interface to their type library. The .NET runtime recognizes PIAs as

being special "blessed" assemblies, and it will load one automatically when you call

CreateCOMObject on a coclass for which the associated PIA has been installed. If you are using

a COM library, you should check to see if the vendor has created a PIA for it. If so, you should

install it.

A good example of PIAs is the set created by Microsoft to accommodate the Office XP suite,

which exposes a rich object model for Automation. Anyone trying to control an Office XP

component like Word or Excel from Mathematica should obtain the Office PIAs from

http://msdn.microsoft.com/library/default.asp?url=/downloads/list/office.asp. These PIAs are

installed by default with Office 2003, but you can install them for use with Office XP and per-

haps earlier versions of Office as well.

The ExcelPieChart.nb example file shows how to call Excel from Mathematica using .NET/Link.

That example will work whether or not you have the Office PIAs installed, but if the PIAs are

present, you have the advantages of working with strongly typed .NET objects instead of raw

RCW objects. If the PIAs are installed on your machine, and CreateCOMObject is called to start

an instance of Excel, it automatically returns a .NET type from the Excel interop assembly, not

a raw RCW like <<NETObject[COMInterface[Excel._Application]]>>.

In[16]:= excel = CreateCOMObject@“Excel.Application“D

Out[16]= «NETObject@Microsoft.Office.Interop.Excel.ApplicationClassD »

.NET/Link User Guide 105

Releasing COM Resources

One of the roles of the RCW object in .NET is to manage the life cycle of the COM object it

wraps. The COM object is destroyed when the RCW object is freed by the .NET garbage collec-

tor. Often, this level of control over the lifetime of the COM object is fine. Remember, though,

that the .NET garbage collector may run infrequently, and generally only when the .NET mem-

ory space (the "managed" heap) fills up. RCW objects have a small footprint in the managed

heap, but they may hold onto very large objects (such as an instance of Excel) in the unman-

aged COM world. In some COM usage scenarios, the .NET garbage collector may not run even

though there are a large number of unfreed and unused RCW objects that are keeping alive a

large amount of memory and other resources in the COM world. For this reason, it is important

to have a function that forces the COM resources held by an object to be released. That func-

tion is ReleaseCOMObject.

ReleaseCOMObject@objD releases the COM resource owned by the given
COM object

Releasing COM resources.

Every COM object in .NET is represented by a single unique RCW. If you acquire a reference to

the same COM object through two different means, you will get the same RCW each time. This

sole RCW keeps a reference count on the COM object. This reference count is internal to COM

and should not be confused with the reference count of a .NET object. Calling

ReleaseCOMObject does not actually force the immediate release of COM resources~it just

decrements this internal COM reference count. Often this count will be just one,

ReleaseCOMObject will cause it to go to zero, and then the resources will be freed.

ReleaseCOMObject returns the new reference count, so you can see if it has gone to zero yet.

Here is an example of acquiring multiple references to the same COM object. The following line

launches a new instance of Excel. It will not become visible, but you can see it in the Task

Manager listing of processes.

In[17]:= excel1 = CreateCOMObject@“Excel.Application“D

Out[17]= «NETObject@Microsoft.Office.Interop.Excel.ApplicationClassD »

Now acquire two more references to that same instance of Excel. The GetActiveCOMObject

function is like CreateCOMObject except that instead of creating a new object, it acquires an

already-active one. It is analogous to the GetActiveObject() function in the COM API and

Visual Basic 6. The Pause is necessary here because COM apparently needs to catch its breath

a bit between calls to GetActiveObject().

106 .NET/Link User Guide

Now acquire two more references to that same instance of Excel. The GetActiveCOMObject

function is like CreateCOMObject except that instead of creating a new object, it acquires an

already-active one. It is analogous to the GetActiveObject() function in the COM API and

Visual Basic 6. The Pause is necessary here because COM apparently needs to catch its breath

a bit between calls to GetActiveObject().

In[18]:= excel2 = GetActiveCOMObject@“Excel.Application“D;
Pause@1D;
excel3 = GetActiveCOMObject@“Excel.Application“D;

If you called ReleaseCOMObject[excel1] now, you probably would not want Excel to quit,

because there are other outstanding references to Excel via the excel2 and excel3 objects.

Note how calling ReleaseCOMObject decrements the COM reference count on the instance of

Excel until it finally goes to zero. Only when it reaches zero will the Excel process quit.

In[21]:= 8ReleaseCOMObject@excel1D, ReleaseCOMObject@excel2D, ReleaseCOMObject@excel3D<

Out[21]= 82, 1, 0<

You have now seen how to use ReleaseCOMObject to force the timely release of COM

resources. It is never strictly necessary to do this, as the .NET garbage collector will get around

to it eventually, but often it is not timely enough. An alternative to using ReleaseCOMObject is

simply to make sure that you use NETBlock or ReleaseNETObject to allow the .NET objects

you create to be released. Then you can manually force the .NET garbage collector to run. This

is especially convenient if you have code that creates a lot of COM objects. Rather than keeping

track of all of them and calling ReleaseCOMObject on each one, it is easier to use NETBlock to

ensure that the objects all have .NET reference counts of zero when you are done with them,

and then call the garbage collector. Here is an outline of what that looks like.

SomeFunction[args__] :=
Module[{result},

NETBlock[
... some code here that creates and manipulates COM objects
result = ...

];
LoadNETType[“System.GC“];
GC`Collect[];
result

]

.NET/Link User Guide 107

Casting COM Objects

The CastNETObject function is described in "Casting". This function is rarely used for normal

.NET objects, but it has special duties with respect to COM objects. The following example

requires that you have the Microsoft Office XP primary interop assemblies installed on your

machine. The next line will create a new instance of the Excel application, although it will not be

visible.

In[22]:= excel = NETNew@“Microsoft.Office.Interop.Excel.ApplicationClass“D

Out[22]= «NETObject@Microsoft.Office.Interop.Excel.ApplicationClassD »

Now create a new workbook.

In[23]:= excelüWorkbooksüAdd@D;

The ApplicationClass class has a property called ActiveSheet that will return the work-

sheet in the workbook you just created.

In[24]:= activeSheet = excelüActiveSheet

Out[24]= «NETObject@COMInterface@Excel._WorksheetDD »

Notice that the result from ActiveSheet is a raw RCW object, not a strongly typed .NET object

(recall that raw RCW objects are of the class System.__ComObject, and .NET/Link tries to

format them with the name of the default COM interface that they support). There is a

Microsoft.Office.Interop.Excel.WorksheetClass class in the Excel interop assembly

that represents worksheets, so why was the result of ActiveSheet not an instance of that

class? To see the answer, look at the declaration of the ActiveSheet property.

In[25]:= NETTypeInfo@excel, “Properties“, “ActiveSheet“D

Ê Properties Hmatching string pattern ActiveSheetL

virtual object ActiveSheet @read onlyD

Note that this property is typed to return only object, not WorksheetClass. That is because

the active sheet could be a chart or a worksheet, and these are different classes. In an interop

assembly, methods or properties that are typed to return object will return a raw RCW. This

reminds you that COM objects in .NET are different animals than normal .NET objects. When

any object is marshaled from COM into .NET, it always arrives as a raw RCW. With the help of

type information from an interop assembly, the .NET runtime can cast a raw RCW to a specific

managed type. For example, if a method is typed to return class X, and the method returns a

COM object (as an RCW), .NET casts the RCW to the type X before returning it from the

method. If a method is typed to return only object, like the ActiveSheet property, then there

is no type information that .NET can use to cast the object, so you end up with a raw RCW.

108 .NET/Link User Guide

Note that this property is typed to return only object, not WorksheetClass. That is because

the active sheet could be a chart or a worksheet, and these are different classes. In an interop

assembly, methods or properties that are typed to return object will return a raw RCW. This

reminds you that COM objects in .NET are different animals than normal .NET objects. When

any object is marshaled from COM into .NET, it always arrives as a raw RCW. With the help of

type information from an interop assembly, the .NET runtime can cast a raw RCW to a specific

managed type. For example, if a method is typed to return class X, and the method returns a

COM object (as an RCW), .NET casts the RCW to the type X before returning it from the

method. If a method is typed to return only object, like the ActiveSheet property, then there

is no type information that .NET can use to cast the object, so you end up with a raw RCW.

You can use the object returned by ActiveSheet, but you will be calling it via late binding

because it has no type information. If you want to make a strongly typed object that you can

call via early binding, then you do exactly what you would do in C# or Visual Basic .NET~you

cast the object to the desired type. Once you have cast to the desired managed type, you once

again have all the advantages that come from using an interop assembly instead of using late

binding. In this example, you know that the active sheet is a worksheet, so you can cast it to

WorksheetClass.

In[26]:= activeSheet = CastNETObject@excelüActiveSheet,
“Microsoft.Office.Interop.Excel.WorksheetClass“D

Out[262]= «NETObject@Microsoft.Office.Interop.Excel.WorksheetClassD »

If this sounds confusing, remember that this is exactly what is done in C# or Visual Basic .NET.

Here is what it would look like in C#.

ApplicationClass excel = new ApplicationClass();
excel.Workbooks.Add();
WorksheetClass activeSheet = (WorksheetClass) excel.ActiveSheet;

If the COM object cannot be cast to the specified managed type, CastNETObject will issue a

message and return $Failed.

In "Casting", it was stated that there is never a need to downcast in .NET/Link, because objects

always have their true runtime type~there is never a type lower in the inheritance hierarchy to

downcast to. This rule does not apply for casting COM objects, because in some sense the

runtime type of all COM objects is just the raw RCW class __ComObject. In the presence of

type information, the .NET runtime can downcast automatically to more derived managed

types. When a property or method is typed to return only object, you can downcast the object

yourself, provided you know the correct type.

.NET/Link User Guide 109

Handling COM Events

The .NET runtime knows how to map COM events to .NET events, which means that responding

to events fired by COM objects is just like responding to events fired by .NET objects. You must

use an "interop assembly" to handle COM events in Mathematica code~you cannot use late

binding.

The following example shows how to handle COM events fired by Internet Explorer. Internet

Explorer supports a rich object model for the content of an HTML window. This is called the

document object model, and it is exposed to clients via the mshtml COM library. Microsoft

bundles with the .NET Framework a primary interop assembly for mshtml, to make it easier to

use from .NET programs. Presumably, there will eventually be a native .NET version of Internet

Explorer and mshtml, but for now, as with many other COM-based Microsoft technologies, you

use them from .NET via an interop assembly. The example developed below will display a web

page in an Internet Explorer window, and as the user moves the mouse over elements in the

page, the elements will have their font size changed randomly.

The mshtml COM component and its associated primary interop assembly only manage the

content of an Internet Explorer window. The Internet Explorer application is a separate COM

object that must be created in the usual way for raw COM objects.

In[27]:= ie = CreateCOMObject@“InternetExplorer.Application“D

Out[27]= «NETObject@COMInterface@SHDocVw.IWebBrowser2DD »

The fact that this object is formatted with COMInterface[...] indicates that it is a raw RCW

and you can only interact with it via Automation. This is fine, as only a few simple properties

are needed. To get documentation for COM objects, look them up in the MSDN Library, either

online or in the Visual Studio help system.

First, navigate to a URL.

In[28]:= ieünavigate@“www.wolfram.comêsolutionsêmathlink“D

Now make the browser window visible and loop until the page has completely loaded.

In[29]:= ieüVisible = True;
While@ieüBusy, Pause@1DD;

110 .NET/Link User Guide

You want to interact not with the Internet Explorer application but with the document object

that it contains, so acquire that object.

In[31]:= doc = ieüDocument

Out[31]= «NETObject@mshtml.HTMLDocumentClassD »

Note that this object is a strongly typed .NET object, not a raw RCW. Because there is a pri-

mary interop assembly for the document object model, whenever such a COM object is

imported into .NET it can be automatically wrapped in the .NET class that is mapped to the

document COM coclass. You are now in the cozy world of using strongly typed objects from an

interop assembly.

COM events fired by an object are mapped to .NET events in the interop assembly. You will see

a .NET event member for each method in every [source] COM interface that a .NET class

implements. You can use NETTypeInfo to see the events that are fired by the HTMLDocumentÖ

Class class. There are quite a few for this class, so this just shows the one you need.

In[32]:= NETTypeInfo@doc, “Events“, “*onmouseover*“D

Ê Events Hmatching string pattern *onmouseover*L
virtual event mshtml.HTMLDocumentEvents2_onmouseoverEventHandler HTMLDocumentEvents2_Event _onmouseover

virtual event mshtml.HTMLDocumentEvents_onmouseoverEventHandler HTMLDocumentEvents_Event _onmouseover @

There are two onmouseover events inherited from two different interfaces. You want to use the

one named HTMLDocumentEvents2_Event_onmouseover, which supplies an argument. There

is no separate documentation for the mshtml primary interop assembly, so you have to use the

documentation for the COM version and make the appropriate mental translations, which are

usually quite straightforward. You can find full documentation on the mshtml component at

http://msdn.microsoft.com/library/default.asp?url=/workshop/browser/mshtml/reference/

reference.asp.

"Handling Events" shows you how to use the AddEventHandler function to assign Mathematica

functions to be called when events are fired in .NET. You use the same function for COM events,

as they are made to look just like .NET events by the interop assembly. Note that as always

you must change _ characters to U when using .NET names as symbols.

In[33]:= AddEventHandler@docüHTMLDocumentEvents2UEventUonmouseover, onMouseOverD;

Now define the onMouseOver function. The NETTypeInfo call above told you that the argument

to the event is of interface type mshtml.IHTMLEventObj. This is the managed equivalent of the

IHTMLEventObj COM interface, and from the documentation for that interface you can cook up

the following simple function that wraps every element in a element that specifies a

random font size.

.NET/Link User Guide 111

Now define the onMouseOver function. The NETTypeInfo call above told you that the argument

to the event is of interface type mshtml.IHTMLEventObj. This is the managed equivalent of the

IHTMLEventObj COM interface, and from the documentation for that interface you can cook up

the following simple function that wraps every element in a element that specifies a

random font size.

In[34]:= onMouseOver@evt_D :=
Module@8element<,
element = evtüsrcElement;
elementüinnerHTML = “<FONT size=‘“ <>

ToString@Random@Integer, 81, 7<DD <> “‘>“ <> elementüinnerHTML <> “<êFONT>“;
D

Before you actually try moving the mouse over the web page, there is one more detail that

must be handled. "Manually Sharing the Kernel and Front End with .NET" shows how to use the

ShareKernel function to put the kernel into a state where it was receptive to calls arriving from

.NET. ShareKernel is not often needed in .NET/Link, because you can usually enter and leave

the sharing state automatically using the DoNETModeless function. DoNETModeless requires a

top-level window as its argument, however. Here you have no such window, just an instance of

Internet Explorer. Therefore you have to use ShareKernel to manually enter the sharing state.

As always, you save the result from ShareKernel to pass into UnshareKernel later.

In[35]:= tok = ShareKernel@NETLink@DD;

Now bring the Internet Explorer window to the foreground and move the mouse over it (without

pressing the mouse button). It might take a second or two for the first font effect to occur.

Make sure you clean things up when you are done.

(sharing) In[36]:=
ieüQuit@D;
UnshareKernel@tokD;

This is a frivolous example, but you can imagine many more useful and sophisticated ways to

interact with a browser window using Mathematica.

112 .NET/Link User Guide

Displaying ActiveX Controls

Many COM objects have a visual representation, such as a toolbar, grid box, or other window

element. Although the term "ActiveX control" is really just a synonym for "COM object," visual

COM objects are usually referred to as ActiveX controls. If you want to display an ActiveX

control in a .NET program, you must create a special type of interop assembly for the control.

This assembly is created with the aximp.exe tool (ActiveX importer), which is similar to the

tlbimp tool discussed earlier, except that it is specific to ActiveX controls that must be hosted

within a .NET window. If a control is to be hosted within a .NET window, it needs a special

wrapper class that inherits from System.Windows.Forms.Control. The aximp tool creates this

wrapper class.

There is full documentation for aximp in the .NET Framework SDK, but here is a simple exam-

ple. Say you want to use the Microsoft Calendar Control in a .NET window (you probably have

this control installed on your machine). Assume that the type library for this control is in the file

d:\OfficeXP\Office10\mscal.ocx on your machine. (One way to get information like this is

by looking up the control using the OLE View tool that is bundled with Visual Studio.) The

following command line runs aximp (of course, aximp.exe has to be on your PATH for this to

work as written).

c:\> aximp d:\OfficeXp\Office10\mscal.ocx

The above invocation of aximp creates two assemblies in the current directory: MSACAL.dll

and AxMSACAL.dll (the "MSACAL" comes from the library MSACAL statement in the control’s

type library definition). The MSACAL.dll assembly contains managed types for the ICalendar

interface and CalendarClass class, along with a few others. This is the same interop assembly

that would be created by using the tlbimp tool. The second assembly, AxMSACAL.dll, contains

the special wrapper class that makes the Calendar control into a .NET control that can be

hosted in a .NET window. This wrapper class is called AxCalendar, named according to the

convention "Ax" followed by the name of the COM coclass (Calendar). The ildasm.exe tool

(intermediate language disassembler) is very useful for examining the created assemblies. The

ildasm.exe program is bundled with the .NET Framework SDK and resides in the same direc-

tory as aximp.exe and tlbimp.exe.

When you load the AxMSACAL.dll assembly, the MSACAL.dll assembly will be loaded as well,

because AxMSACAL.dll is dependent on it and it resides in the same directory.

.NET/Link User Guide 113

In[1]:= LoadNETAssembly@“c:\\AxMSACAL.dll“D

Out[1]= NETAssembly@AxMSACAL, 1D

Now create an instance of the AxCalendar wrapper class. This class has all the methods and

properties of the Calendar COM object, and it also inherits from the System.Windows.Forms.CoÖ

ntrol class, so it can be used like any other .NET control.

In[2]:= cal = NETNew@“AxMSACAL.AxCalendar“D

Out[2]= «NETObject@AxMSACAL.AxCalendarD »

Now create a .NET form to host the control and display it. The DoNETModal function at the end

will display the form and return the calendar’s Value property when the form is closed. This

property will hold the date the user selected.

In[3]:= form = NETNew@“System.Windows.Forms.Form“D;
calüParent = form;
LoadNETType@“System.Windows.Forms.DockStyle“D;
calüDock = DockStyle`Fill;
calDate = DoNETModal@form, calüValueD

Out[7]= «NETObject@System.DateTimeD »

The .NET runtime has conveniently mapped the result of the Value property to a DateTime

object. This is easily manipulated to get the selected date as a string.

In[8]:= calDateüToString@D

Out[8]= 1ê1ê2007 12:00:00 AM

Now clean up by releasing the calendar object. Note that you do not call ReleaseCOMObject on

the AxCalendar object, because it is not a COM object~it is a pure .NET class that merely

holds a reference to a COM object. The actual COM object is of class MSACAL.CalendarClass,

but you never directly create an instance of that class, just the AxCalendar wrapper.

In[9]:= ReleaseNETObject@calD

Example Files

The following example program included with .NET/Link demonstrates calling COM components

from Mathematica.

ExcelPieChart.nb

114 .NET/Link User Guide

Calling Mathematica from .NET

Introduction

"Calling .NET from Mathematica" describes using .NET/Link to allow you to call from Mathemat-

ica into .NET, thereby extending the Mathematica environment to include the functionality in all

existing and future .NET classes. This tutorial shows you how to use .NET/Link in the opposite

direction, as a means to write .NET programs that use the Mathematica kernel as a computa-

tional engine.

.NET/Link uses MathLink, Wolfram Research’s protocol for sending data and commands

between programs. Many of the concepts and techniques in .NET/Link programming are the

same as those for programming with the MathLink C-language API. The .NET/Link documenta-

tion is not intended to be an encyclopedic compendium of everything you need to know to write

.NET programs that use MathLink. Programmers may have to rely a little on the general docu-

mentation of MathLink programming. The Tutorial is divided into two major sections along the

same lines as this documentation. You will want to read the second part. Many of the functions

.NET/Link provides have C-language counterparts that are identical or nearly so.

You should at least skim the tutorial "Calling .NET from Mathematica" at some point. Your .NET

“front end” can use the same techniques for calling .NET methods from Mathematica code and

passing .NET objects as arguments that programmers use when running the kernel from the

notebook front end. This allows you to have a very high-level interface between .NET and

Mathematica. When you are writing MathLink programs in C, you have to think about passing

and returning simple things like strings and integers. With .NET/Link you can pass .NET objects

back and forth between .NET and Mathematica.

The sections below merely provide an overview of topics in .NET/Link programming. The main

class-by-class reference for .NET/Link is the API documentation. You should also look at the

example programs.

When you are reading this text, or programming in .NET or Mathematica, remember that the

entire source code for .NET/Link is provided. If you want to see how anything works (or why it

doesn’t), you can always consult the source code directly.

What Is MathLink?

.NET/Link User Guide 115

What Is MathLink?

MathLink is a platform-independent protocol for communicating between programs. In more

concrete terms, it is a means to send and receive Mathematica expressions. MathLink is the

means by which the notebook front end and kernel communicate with each other. It is also

used by a large number of commercial and freeware applications and utilities that link Mathemat-

ica and other programs or languages. It is implemented as a library of C-language functions.

.NET/Link brings the capabilities of MathLink into .NET in a way that is simpler to use and much

more powerful than the raw C-level API.

Overview of the Main .NET/Link Interfaces and
Classes

Introduction

The .NET/Link class library is written in an object-oriented style intended to maximize its extensi-

bility in the future without requiring users' code to change. This requires a clean separation

between interface and implementation. This is accomplished by exposing the main link function-

ality through interfaces, not classes. The names of the concrete classes that implement these

interfaces will hardly be mentioned because programmers do not need to know or care what

they are. Rather, you will use objects that belong to one of the interface types. You do not need

to know what the actual classes are because you will never create an instance directly; instead,

you use a "factory method" to create an instance of a link class. This will become clear further

on.

This section gives a brief overview of the main interfaces and classes. They will be discussed in

more detail later. In addition, there is full documentation for the class library in the .NET/Link

API documentation. Most of these classes and interfaces are in the Wolfram.NETLink name-

space; others are in Wolfram.NETLink.UI.

116 .NET/Link User Guide

IMathLink and IKernelLink

The two most important link interfaces you need to know about are IMathLink and

IKernelLink. The IMathLink interface is essentially a port of the MathLink C API into .NET.

Most of the method names will be familiar to experienced MathLink programmers. IKernelLink

extends IMathLink and adds some important high-level convenience methods that are only

meaningful if the other side of the link is a Mathematica kernel (for example, the method WaitÖ

ForAnswer(), which assumes the other side of the link will respond with a defined series of

packets).

The basic idea is that the IMathLink interface encompasses all the operations that can be

performed on a link without making any assumptions about what program is on the other side

of the link. IKernelLink adds the assumption that the other side is a Mathematica kernel.

IKernelLink is the most important interface, as most programmers will work exclusively with

IKernelLink. Of course, since IKernelLink extends IMathLink, many of the methods you will

use on your IKernelLink objects are declared and documented in the IMathLink interface.

The most important class that implements IMathLink is NativeLink, so named because it calls

directly into Wolfram Research’s MathLink library. In the future, other classes could be added

that do not rely on native methods~for example, one that uses .NET remoting to communicate

across a network. As discussed above, programmers do not need to be concerned about what

these classes are, because they will never type a link class name in their code.

MathLinkFactory

MathLinkFactory is the class that you use to create link objects. It contains the static methods

CreateMathLink(), CreateKernelLink(), and CreateLoopbackLink(), which take various

argument sequences. These are the equivalents of calling MLOpen in a C program.

MathLinkException

MathLinkException is the exception class that is thrown by many of the methods in IMathLink

and IKernelLink. The .NET/Link API uses exceptions to indicate errors, rather than function

return values like the MathLink C API. In C, you write code that checks the return values like

this:

.NET/Link User Guide 117

// C code
if (!MLPutInteger(link, 42)) {

// was error; print message and clean up.
}

In .NET/Link, you can wrap MathLink calls in a try block and catch MathLinkException.

Expr

The Expr class provides a direct representation of Mathematica expressions in .NET. Expr has a

number of methods that provide information about the structure of the expression and that let

you extract components. These methods have names and behaviors that will be familiar to

Mathematica programmers~for example, Length(), Part(), NumberQ(), VectorQ(), Take(),

Delete(), and so on. When reading from a link, instead of using the low-level IMathLink

interface methods for discovering the structure and properties of the incoming expression, you

can just read an entire expression from the link using GetExpr(), and then use Expr methods

to inspect it or decompose it. For writing to a link, Expr objects can be used as arguments to

some of the most important IKernelLink methods.

MathKernel

MathKernel is a non-visual component that provides a very high-level interface for interacting

with Mathematica. It is especially intended for use in visual programming environments, as it is

highly configurable via properties. For many types of .NET programs that use Mathematica for

computations, the IKernelLink interface provides ideal functionality. For some types of pro-

grams, however, programmers might find the MathKernel object even easier to use. This is

especially true for programs that want to capture not just the result of a computation, but also

messages, Print output, or graphics generated as side effects of the computation.

MathPictureBox

The MathPictureBox class provides an easy way to display Mathematica graphics and typeset

expressions. This class is often used from Mathematica code, but it is just as useful in .NET

programs.

Sample Program

118 .NET/Link User Guide

Sample Program

The .NET/Link distribution includes a SimpleLink sample program that demonstrates simple

techniques for launching Mathematica and performing computations. The code is available in

both C# and Visual Basic .NET.

Building and Deploying Programs

The .NET/Link Assembly

The .NET/Link assembly file is Wolfram.NETLink.dll, and it is found in the <Mathematica

dir>\SystemFiles\Links\NETLink directory. When you compile .NET programs that use

.NET/Link, you will need to add a reference to this file. In previous versions of .NET/Link, this

assembly was placed into the .NET global assembly cache (GAC) by the Mathematica installer.

Starting with .NET/Link 1.2, however, the Wolfram.NETLink.dll assembly is no longer strong-

named and therefore cannot be placed into the GAC. .NET programs that use .NET/Link will

therefore need to have a copy of this assembly in their application directory (that is, right next

to their .exe file). Alternatively, the Wolfram.NETLink.dll assembly can be located in a

subdirectory of the application’s directory, according to the standard rules for how .NET probes

for assemblies that are not strong-named.

A consequence of the fact that Wolfram.NETLink.dll is not strong-named is that you can

replace your application’s copy with an updated version, and the updated version will be used

without requiring the application to be recompiled. In contrast, strong-named assemblies in

.NET are strictly versioned, so that when a program is compiled against a specific version of the

assembly, the program can only run with that precise version. Of course, this strict versioning

is touted as a benefit of .NET, and it is advantageous in certain circumstances, but for various

technical reasons it is not desirable for Wolfram.NETLink.dll to be strong-named.

.NET/Link User Guide 119

Compiling from the Command Line

The .NET Framework SDK includes command-line compilers for several .NET languages, includ-

ing C# and Visual Basic .NET. You can use these free tools without purchasing Visual Studio

.NET, and you might want to use them to build simple programs even if you do have Visual

Studio .NET.

The command-line compilers rely on several DOS environment variables being set correctly, so

the .NET Framework SDK comes with a batch file named sdkvars.bat that you can run in your

DOS session to set these variables. If you own Visual Studio .NET and want to use any com-

mand-line tools, use the Microsoft Visual Studio .NET/Visual Studio .NET Tools/ViÖ

sual Studio .NET Command Prompt item on the Windows Start menu to launch a DOS

session with all the required settings.

It is convenient to place a copy of Wolfram.NETLink.dll into your build directory before you

compile, as you would otherwise need to include the full path to this assembly on the compiler

command line, and you will need a copy of it to be present in the program’s directory anyway.

The examples below assume that you have copied (not moved!) the Wolfram.NETLink.dll file

from <Mathematica dir>\SystemFiles\Links\NETLink into the directory in which you are

performing the build. Here is a sample command for a C# program:

csc /target:winexe /reference:Wolfram.NETLink.dll MyProgram.cs

Here is a comparable example for Visual Basic .NET:

vbc /target:winexe /reference:Wolfram.NETLink.dll MyProgram.vb

Either of the above commands will result in the creation of a MyProgram.exe file in the current

directory. This program will need to have a copy of Wolfram.NETLink.dll alongside it to run.

120 .NET/Link User Guide

Using Visual Studio .NET

Programs that use .NET/Link need to have a reference to the Wolfram.NETLink.dll assembly

in their project settings. You add a reference to an assembly by selecting Add Reference from

the Project menu. The Mathematica installer makes the necessary settings so that the WolÖ

fram.NETLink.dll assembly shows up in the Add Reference dialog box. It will be listed as

.NET/Link 1.3 in the .NET tab. If for some reason it does not show up there, you can simply use

the Browse button to locate the file manually (it will be in the <Mathematica dir>\SystemÖ

Files\Links\NETLink directory, or perhaps in another more convenient location if you put a

copy elsewhere).

When Visual Studio .NET builds your program it will automatically place a copy of WolframÖ

.NETLink.dll in the output directory, alongside your .exe file. Your program will require a

copy of Wolfram.NETLink.dll alongside it to run, so if you deploy your program to another

location or distribute it to other users, you must keep the Wolfram.NETLink.dll file with it.

Deploying Programs

If you build a .NET program that uses .NET/Link and want to distribute it to others, you will

need to include a copy of the Wolfram.NETLink.dll assembly alongside your application’s

.exe file. Alternatively, you can put Wolfram.NETLink.dll in a subdirectory of the applica-

tion’s directory, according to the standard rules for how .NET probes for assemblies that are not

strong-named.

.NET/Link User Guide 121

