
Wolfram Mathematica ® Tutorial Collection

MATHLINK® DEVELOPMENT IN C

For use with Wolfram Mathematica® 7.0 and later.

For the latest updates and corrections to this manual:
visit reference.wolfram.com

For information on additional copies of this documentation:
visit the Customer Service website at www.wolfram.com/services/customerservice
or email Customer Service at info@wolfram.com

Comments on this manual are welcomed at:
comments@wolfram.com

Printed in the United States of America.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

©2008 Wolfram Research, Inc.

All rights reserved. No part of this document may be reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright
holder.

Wolfram Research is the holder of the copyright to the Wolfram Mathematica software system ("Software") described
in this document, including without limitation such aspects of the system as its code, structure, sequence,
organization, “look and feel,” programming language, and compilation of command names. Use of the Software
unless pursuant to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an
infringement of the copyright.

Wolfram Research, Inc. and Wolfram Media, Inc. ("Wolfram") make no representations, express,
statutory, or implied, with respect to the Software (or any aspect thereof), including, without limitation,
any implied warranties of merchantability, interoperability, or fitness for a particular purpose, all of which
are expressly disclaimed. Wolfram does not warrant that the functions of the Software will meet your
requirements or that the operation of the Software will be uninterrupted or error free. As such, Wolfram
does not recommend the use of the software described in this document for applications in which errors
or omissions could threaten life, injury or significant loss.

Mathematica, MathLink, and MathSource are registered trademarks of Wolfram Research, Inc. J/Link, MathLM,
.NET/Link, and webMathematica are trademarks of Wolfram Research, Inc. Windows is a registered trademark of
Microsoft Corporation in the United States and other countries. Macintosh is a registered trademark of Apple
Computer, Inc. All other trademarks used herein are the property of their respective owners. Mathematica is not
associated with Mathematica Policy Research, Inc.

Contents

MathLink Development in C (Windows) . 1

Overview . 1

Supported Development Platforms . 2

Installing the MathLink Components . 2

Building MathLink Programs . 9

Running MathLink Programs . 27

Troubleshooting . 31

MathLink Development in C (Mac OS X) . 31

Supported Development Platforms . 32

Installing the MathLink Components . 32

Building MathLink Programs . 34

Running MathLink Programs . 41

Troubleshooting . 44

MathLink Development in C (Unix and Linux) . 44

Supported Development Platforms . 45

Installing the MathLink Components . 45

Building MathLink Programs . 47

Running MathLink Programs . 51

Troubleshooting . 54

MathLink Development in C (Windows)

This document describes how to compile and run MathLink programs written in the C language

on computers running a Microsoft Windows operating system. ("MathLink and External Program

Communication" describes how to write MathLink programs in both the Mathematica language

and the C language.) This document also describes how MathLink is implemented for Windows.

This document does not teach you, in general, how to use your compiler and other develop-

ment tools, nor does it teach you how to program in C or generally how to use a Windows-

based computer. It is assumed that you have at least worked through the tutorial introduction

that came with your set of tools. If you have any trouble building or running your MathLink

programs, see the "Troubleshooting" section at the end of this document.

Most of what is described in this document is Windows specific. To learn how to compile and run

MathLink programs for another platform, see the Developer Guide for that platform.

Overview

MathLink is implemented as a collection of dynamically linked, shared libraries. When a Math-

Link program is launched, the main shared library is found in a standard place on disk, loaded

by the operating system, and bound to the client MathLink program so that calls to MathLink

functions are directed to code within the shared library. On a computer running a 32-bit Win-

dows operating system (2000, XP, Vista), the main shared library is called ml32i3.dll and is

typically placed in the Windows system directory. Any additional shared libraries (such as

mishm32.mlp, mltcpip32.mlp, mltcp32.mlp and mlmap32.mlp) are found by ml32i3.dll by

reading their locations from the configuration file mathlink.ini. If mathlink.ini is not present, the

additional shared libraries are found by an algorithm internal to ml32i3.dll. This configuration

file is typically located in the Windows directory.

On Windows 64 platforms (XP 64, Server 2003, Vista 64), the main shared library for 64-bit

MathLink programs is ml64i3.dll, and the additional shared libraries are mlshm64.mlp,

mltcpip64.mlp, and mltcp64.mlp.

An import library (a .lib file) is used when a MathLink program is built. This import library is

added to a project file or included in the link command in a makefile. (This import library con-

tains no code; it simply exports the same function names as the shared library in order to

satisfy the linker.)

An import library (a .lib file) is used when a MathLink program is built. This import library is

added to a project file or included in the link command in a makefile. (This import library con-

tains no code; it simply exports the same function names as the shared library in order to

satisfy the linker.)

The C interface to MathLink is specified in the header file mathlink.h. This file is included in any

C or C++ source files that call functions in the MathLink shared library.

The MathLink shared library ml32i3.dll or ml64i3.dll is needed at the time a MathLink program

is run and needs to be placed where the Windows operating system can find it. The import

library and header file are needed at the time a MathLink program is built and need to be

placed where your compiler and linker can find them. The installation and use of these compo-

nents and others are described in more detail below.

Supported Development Platforms

As a shared library, MathLink can be used with any development environment that adheres to

the standard calling conventions and binary interface for DLLs specified by Microsoft. However,

this document only describes how to build C programs that use MathLink using Microsoft C++

development environment.

Each development environment supports the notion of a "project document" whereby source

files and options for the compiler, linker, and debugger are managed using a project window, a

collection of dialog boxes, and other interactive interface elements. In addition to this inte-

grated development environment (IDE), all the vendors supply tools that can be run from the

command prompt or invoked by a make utility.

Installing the MathLink Components

This section describes how to install the components from the MathLink Developer Kit so that

you can build and run MathLink programs. The MathLink Developer Kit is copied to your hard

disk when you install Mathematica.

The following instructions assume that the MathLink Developer Kit for Windows have been

installed in the location C: \ Program Files \ Wolfram Research \ Mathematica \ 6.0 \ SystemFiles \

2 MathLink Development in C

Links\MathLink\DeveloperKit\ by the Mathematica installer. For Windows there are normally two

Developer Kits installed, one for 32-bit Windows platforms, in a folder named Windows, and one

for Windows 64 platforms, in a folder named Windows-x86-64. If you have received a Devel-

oper Kit as a component separate from Mathematica, copy the folder Windows or Windows-

x86-64 to your hard drive, for example to C:\MathLink. In this case, you will need to modify the

following installation instructions to reflect the location of your Developer Kit.

Recommended Installation

SystemAdditions Installation for All Compilers

If your Developer Kit was installed as part of Mathematica, then the runtime MathLink compo-

nents have already been installed into your Windows system directory by the Mathematica

installer. However, as a MathLink developer, you should be aware of how to properly install

these components.

CompilerAdditions Installation for Microsoft Compilers

Note that the following instructions assume that you have installed Microsoft's Visual Studio

2005 in the directory C:\Program Files\Microsoft Visual Studio 8\VC. This is the default direc-

tory for V8.0 of the Developer Studio. For V7.0, the default directory is C:\Program Files\

Microsoft Visual Studio .NET 2003\Vc7. For Windows 64 systems you will find the default Visual

Studio installation in the C:\Program Files (x86)\Microsoft Visual Studio 8\VC.

1. Select the "Lib", "Include", and "Bin" directories within the "MLDev32" (on Windows 64
systems you will use the "Windows-x86-64\CompilerAdditions\MLDev64" folder) folder
within the CompilerAdditions folder. You can open a window containing these folders by
running the following command:

explorer "C:\Program Files\Wolfram
Research\Mathematica\6.0\SystemFiles\Links\MathLink\DeveloperKit\Windows\Co
mpilerAdditions\MLDev32"

The word explorer is optional but the quotation marks are not.

2. While holding down the Ctrl key, drag and drop these three folders into your C:\
Program Files\Microsoft Visual Studio 8\VC\PlatformSDK folder (C:\Program Files (x86)\
Microsoft Visual Studio 8\VC\PlatformSDK on Windows 64 systems).

3. Click Yes or Yes to All in any confirmation boxes that appear.

This will copy the files from these subdirectories of the "MLDev32" directory into the
appropriate subdirectories of your "PlatformSDK" directory.

On Windows 64 systems the contents of the "C:\Program Files (x86)\Wolfram Research\-
Mathematica\6.0\SystemFiles\Links\MathLink\DeveloperKit\Windows-x86-64\CompilerAddi-
tions\MLDev64\lib" directory will need to go into the C:\Program Files (x86)\Microsoft
Visual Studio 8\VC\PlatformSDK\Lib\AMD64 folder.

MathLink Development in C 3

On Windows 64 systems the contents of the "C:\Program Files (x86)\Wolfram Research\
Mathematica \ 6.0 \ SystemFiles \ Links \ MathLink \ DeveloperKit \ Windows-x86-64 \
CompilerAdditions\MLDev64\lib" directory will need to go into the C:\Program Files (x86)\
Microsoft Visual Studio 8\VC\PlatformSDK\Lib\AMD64 folder.

Elements of the MathLink Developer Kit

MathLink is a layered software system consisting of components that are independent of the

operating system and components that make direct use of the communication mechanisms

provided by the operating system.

The primary role of the system-independent component is to encode expressions as a string of

bytes. This software is implemented in the shared library called ml32i3.dll (for 32-bit programs)

and in ml64i3.dll (for 64-bit programs). The role of the OS-specific component is to transfer the

bytes from one program to another. There may be several implementations of this service.

Each implementation is called a MathLink device and is implemented in a shared library with the

.mlp extension.

MathLink Shared Libraries and Header Files

The following is a description of each file or directory in the MathLink Developer Kit (MLDK) for

Windows. See the section "Recommended Installation" to install these components.

The MathLink Developer Kit for Windows 64 platform has a similar set of files, with the main

difference appearing in the file names of the components. Where 32-bit Windows components

contain a 32 in the component file name, 64 bit versions contain a 64 in the component file

name.

SystemAdditions Directory

The files in the SystemAdditions directory are shared libraries which implement MathLink, and

are usually installed into a place where the system can find them whenever MathLink programs

are executed. (See the section "Recommended Installation" to install these components.) The

six shared libraries needed by most MathLink programs are at the top level of this directory.

These seven files for 32-bit Windows are ml32i3.dll, ml32i2.dll, ml32i1.dll, mlshm32.mlp,

mltcpip32.mlp, mlmap32.mlp, and mltcp32.mlp. The five files for Windows 64 are ml64i3.dll,

ml64i2.dll, mlshm64.mlp, mltcpip64, and mltcp64.mlp.

ml32i3.dll/ml64i3.dll

4 MathLink Development in C

ml32i3.dll/ml64i3.dll

This is the shared library used by 32-bit MathLink Windows (64-bit MathLink Windows programs

use ml64i3.dll) programs that implements Interface 3 of the MathLink application programming

interface (API). It should be placed where the operating system's loader will find it when your

32-bit MathLink program is run. (It is not needed to build 32-bit MathLink programs~only to

run them.) You could place this file next to your built MathLink program, or in the Windows

system directory, or someplace on your PATH. See the following discussion for more informa-

tion and alternative installation options. The Mathematica installer places this file in your Win-

dows system directory and (for the convenience of installers and uninstallers) adds a reference

to it in the system registry under

CurrentVersion\SharedDLLs].

ml32i2.dll/ml64i2.dll
ml32i1.dll

These shared libraries are similar to "ML32I3.DLL" but implements interface 1 and interface 2 of

the MathLink API instead of interface 3. Like "ML32I3.DLL", it is used by 32-bit V3 MathLink

programs. There is no shared library for the interface 1 implementation for Windows 64.

The MathLink Devices

The following shared libraries appropriate for your operating system should be placed where the

operating system's loader will find them when your MathLink program is run. (They are not

needed to build MathLink programs~only to run them.) Typically they are placed next to the

MathLink libraries (any of the above .DLL files) in the Windows system directory.

All the MathLink devices follow a naming scheme that describes what protocol they implement

and what types of programs may use them.

All devices and libraries in the SystemAdditions folder should be copied to the Windows system

directory. On some 32-bit versions of Microsoft Windows, the Windows system directory is

C:\WINDOWS\SYSTEM, whereas on others versions it is C:\WINNT\SYSTEM32 or

C:\WINDOWS\SYSTEM32.

On 64-bit systems the device files will need to be copied to the correct Windows system folder

depending on whether the device libraries are 32-bit or 64-bit libraries. The 32-bit libraries are

MathLink Development in C 5

[HKEY_LOCAL_MACHINE \ SOFTWARE\Microsoft\Windows\

located in the Mathematica layout at C:\Program Files (x86)\Wolfram Research\

Mathematica \ 6.0 \ SystemFiles \ Links \ MathLink \ DeveloperKit \ Windows \ SystemAdditions. The

64- bit device libraries are located in C:\Program Files (x86)\Wolfram Research\

Mathematica \ 6.0 \SystemFiles\Links\MathLink\DeveloperKit\Windows-x86-64\SystemAdditions.

The 32-bit device libraries must go in C:\Windows\SysWOW64 and the 64-bit libraries must

go C:\Windows\system32.

‹ Some MathLink devices, when loaded, in turn load other MathLink devices~they will not

work on their own. Therefore it is not recommended to install only some of the appropriate

components~you should make all the appropriate devices available to your operating system.

SharedMemory Device

"MLSHM32.MLP"/"MLSHM64.MLP"

This is a MathLink device that uses the Win32 memory-mapped file mechanism to transfer data

between processes. These shared libraries are used when the "SharedMemory" protocol is

specified when opening a link. In Mathematica 6.0, it is the default device for local connections.

For example, a C program that executes:

char* argv[] = {"-linkname", "foo", "-linkprotocol", "SharedMemory", "-
linkmode", "connect"};
link = MLOpenArgv(stdenv, argv, argv + 6, 0);

will connect to a Mathematica program that evaluates:

LinkOpen@"foo", LinkProtocol -> "SharedMemory", LinkMode -> ListenD

TCPIP Device

"MLTCPIP32.MLP"/"MLTCPIP64.MLP"

This is a MathLink device that uses the services of the TCP internet protocol to transfer data

between processes. These shared libraries are used when the "TCPIP" protocol is specified

when opening a link. In Mathematica 6.0, it is the preferred device for remote connections.

For example, a C program that executes:

char* argv[] = {"-linkname", "6000", "-linkprotocol", "TCPIP", "-
linkmode", "connect"};
link = MLOpenArgv(stdenv, argv, argv + 6, 0);

6 MathLink Development in C

will connect to a Mathematica program that evaluates:

LinkOpen@"6000", LinkProtocol -> "TCPIP", LinkMode -> ListenD

LinkProtocol -> "TCPIP" can be used to connect MathLink programs running on different

computers on a network.

FileMap Device

"MLMAP32.MLP"

This is a MathLink device that uses the Win32 memory-mapped file mechanism to transfer data

between processes. These shared libraries are used when the "FileMap" protocol is specified

when opening a link.

For example, a C program that executes:

char* argv[] = {"-linkname", "foo", "-linkprotocol", "FileMap", "-
linkmode", "connect"};
link = MLOpenArgv(stdenv, argv, argv + 6, 0);

will connect to a Mathematica program that evaluates:

LinkOpen@"foo", LinkProtocol -> "FileMap", LinkMode -> ListenD

These devices are used by default by MathLink programs when no LinkProtocol is specified.

Windows 64 does not support the "FileMap" protocol.

TCP Device

"MLTCP32.MLP"/"MLTCP64.MLP"

This is a MathLink device that uses the services of the TCP internet protocol to transfer data

between processes. These shared libraries are used when the "TCP" protocol is specified when

opening a link.

For example, a C program that executes:

char* argv[] = {"-linkname", "6000", "-linkprotocol", "TCP", "-linkmode",
"connect"};
link = MLOpenArgv(stdenv, argv, argv + 6, 0);

will connect to a Mathematica program that evaluates:

LinkOpen@"6000", LinkProtocol -> "TCP", LinkMode -> ListenD

The "TCP" LinkProtocol can be used to connect MathLink programs running on different

computers on a network.

MathLink Development in C 7

The "TCP" LinkProtocol can be used to connect MathLink programs running on different

computers on a network.

The "TCP" LinkProtocol was deprecated in Mathematica 5.1 and only continues to exist for

backwards compatibility. Users of "TCP" should convert their code to use "TCPIP".

CompilerAdditions Directory

"MLDev32\INCLUDE\", "MLDev64\INCLUDE"

mathlink.h

mathlink.h is the header file that must be included in your C and C++ source files. It should be

placed where your compiler can find it. You could place this header file in the same directory as

your source files that include it, or in the same location as the standard header files provided

with your development tools. Alternatively, you could add the location of mathlink.h to the

search path for header files. (This is typically done using command line switches, an environ-

ment variable, or a setting in a dialog box.)

"MLDev32\LIB\", "MLDev64\LIB"

This folder contains import libraries that your linker would use to resolve references in your

code to functions in the MathLink shared library. One of these .LIB files would be referenced in

your project file, makefile, or link command line. Because the format of an import library is not

standardized, one import library is supplied for each of the most popular development

environments.

"ML32I3M.LIB"/"ML64I3M.LIB"

This is the import library for use with the Microsoft C/C++ development tools including

Microsoft Visual Studio. (It is a COFF import library created by the Microsoft linker.) This file

should be placed where it will be found by the Microsoft linker. To avoid having to specify a

path, place this file in your C:\Program Files\Microsoft Visual Studio 8\VC\PlatformSDK\LIB

directory. Place the 64-bit .LIB file in C:\Program Files\Microsoft Visual Studio 8\VC\

PlatformSDK\Lib\AMD64 directory.

8 MathLink Development in C

"MLDev32\BIN\", "MLDev64\BIN"

"MPREP.EXE"

"MPREP" is a 32-bit console program that writes MathLink programs automatically by process-

ing "template" files. It may be convenient to place this file in the "Bin" directory of your develop-

ment tools. On Windows 64, "MPREP" is a 64-bit console program.

PrebuiltExamples Directory

This folder contains prebuilt versions of the example programs. "Building MathLink Programs"

describes how to build them yourself using the source code in the "MathLinkExamples" folder.

"Running MathLink Programs" describes how to run these programs.

MathLinkExamples Directory

This folder contains the source code for some very simple MathLink programs. By using this

source code, you can learn how to build and run MathLink programs without having to write any

code yourself.

Extras Directory

This folder contains sample programs and utilities that you may find useful.

Alternative Components Directory

"DebugLibraries"

This is a copy of "MathLinkLibraries" that does extensive error checking and logs information

that may be useful. See the "Troubleshooting" section for a description of how to use this

library.

Building MathLink Programs

The general procedure for building MathLink programs is to include mathlink.h in any C or C++

source files that make MathLink function calls, to compile your source files, and then to link the

resulting object code with the MathLink import library and any other standard libraries required

by your application. If your application uses the MathLink template mechanism, then your

template files must first be processed into a C source file using mprep. The details for several

popular development environments are provided here.

The build instructions in "Building MathLink Programs with Microsoft Visual Studio" assume you

have followed the recommended installation instructions for the MathLink compiler additions. If

you have placed the compiler additions elsewhere on your hard disk, you may need to modify

the instructions by setting environment variables, specifying additional command line argu-

ments, or specifying full pathnames when referring to the MathLink compiler additions.

MathLink Development in C 9

The build instructions in "Building MathLink Programs with Microsoft Visual Studio" assume you

have followed the recommended installation instructions for the MathLink compiler additions. If

you have placed the compiler additions elsewhere on your hard disk, you may need to modify

the instructions by setting environment variables, specifying additional command line argu-

ments, or specifying full pathnames when referring to the MathLink compiler additions.

MathLink Versioning

As a shared library, each revision of MathLink must maintain compatibility with previous revi-

sions. Yet, at times, new functionality needs to be added. MathLink adopts a simple versioning

strategy that can be adapted to many compile-time and run-time environments.

Strategy

MathLink evolves by improving its implementation and by improving its interface. The values of

MLREVISION or MLINTERFACE defined in mathlink.h are incremented whenever an improvement

is made and released.

MLREVISION is the current revision number. It is incremented every time a change is made to

the source and MathLink is rebuilt and distributed on any platform. (Bug fixes, optimizations, or

other improvements transparent to the interface increment only this number.)

MLINTERFACE is a name for a documented interface to MathLink. This number is incremented

whenever a named constant or function is added, removed, or its behavior is changed in a way

that could break existing correct client programs. It is expected that the interface to MathLink

will be improved over time so that implementations of higher numbered interfaces are more

complete or more convenient to use for writing effective client programs. In particular, a spe-

cific interface provides all the useful functionality of an earlier interface.

For Windows, the different interfaces of the MathLink libraries are implemented in different

shared libraries. The file "ml32i1.dll" contains the implementation of interface 1 of the latest

MathLink revision, the file "ml32i2.dll" contains the implementation of interface 2, and the file

"ml32i3.dll" contains the implementation of interface 3. You need only keep the latest revision

(as shown in the Properties box for the shared library) of these files in your Windows system

folder to run any MathLink program.

In addition, each MathLink interface has a separate import library to link against so that develop-

ers make a conscious decision as to which interface they require at compile time. So, for exam-

ple, a developer using Microsoft's Visual Studio who needs functionality that was added for

interface 3 must link with "ml32i3m.lib" rather than "ml32i2m.lib" or "ml32i1m.lib".

10 MathLink Development in C

In addition, each MathLink interface has a separate import library to link against so that devel-

opers make a conscious decision as to which interface they require at compile time. So, for

example, a developer using Microsoft's Visual Studio who needs functionality that was added for

interface 3 must link with "ml32i3m.lib" rather than "ml32i2m.lib" or "ml32i1m.lib".

Using MathLink Template Files

If your program uses the MathLink template mechanism as described in "MathLink and External

Program Communication", you must preprocess your source files that contain template entries

using the mprep console program. A template entry is a sequence of lines that contain template

keywords. (Each entry defines a Mathematica function that when evaluated calls an associated

C function.) When mprep processes such source files, it converts template entries into C func-

tions, passes other text through unmodified, and writes out additional C functions that imple-

ment a remote procedure call mechanism using MathLink. The result is a C source file that is

ready for compilation.

For example, the command:

mprep addtwo.tm -o addtwotm.c

will produce a C source file "addtwotm.c" from the template entries and other text in

"addtwo.tm". You would then compile the output file using the C compiler. If you use the

"Make" utility to build your program, you could add a rule similar to the following one to your

makefile.

addtwotm.c : addtwo.tm
 mprep addtwo.tm -o addtwotm.c

Building MathLink Programs with Microsoft Visual Studio

Using the Command Line Tools

In order to use the command line tools from a command window, you must run the batch file

VCVARSALL.BAT to configure the environment. You can find the file in C:\Program Files\

Mirosoft Visual Studio 8\VC\VCVARSALL.BAT. Alternatively, you can use the shortcut provided

in Start  All Programs  Microsoft Visual Studio 2005  Visual Studio Tools  Visual

Studio 2005 Command Prompt. VCVARSALL.BAT takes an argument to indicate which set of

compiler tools the environment should use. For 32-bit Windows development use:

VCVARSALL.BAT x86. For Windows 64 development use: VCVARSALL.BAT amd64. Alternatively

on Windows 64 machines you can use the shortcut provided in Start  All Programs 
Microsoft Visual Studio 2005  Visual Studio Tools  Visual Studio 2005 x64 Win64

Command Prompt. VCVARSALL.BAT will correctly configure the PATH, INCLUDE, and LIB

environment variables so that you can use the Microsoft Compiler tools from your command

line environment.

MathLink Development in C 11

12 MathLink Development in C

compiler tools the environment should use. For 32-bit Windows development use:

VCVARSALL.BAT x86. For Windows 64 development use: VCVARSALL.BAT amd64. Alternatively

on Windows 64 machines you can use the shortcut provided in Start  All Programs 
Microsoft Visual Studio 2005  Visual Studio Tools  Visual Studio 2005 x64 Win64

Command Prompt. VCVARSALL.BAT will correctly configure the PATH, INCLUDE, and LIB

environment variables so that you can use the Microsoft Compiler tools from your command

line environment.

Building a MathLink Program to Be Called by the Mathematica Kernel

To build the ADDTWO.EXE example program:

1. Start a command prompt window by running Start  All Programs  Microsoft Visual
Studio 2005  Visual Studio Tools  Visual Studio 2005 Command Prompt (On
Windows 64 use Start  All Programs  Microsoft Visual Studio 2005  Visual
Studio Tools  Visual Studio 2005 x64 Win64 Command Prompt).

2. Change to the "addtwo" directory within the "MathLinkExamples" directory.

C:
cd "C:\Program Files\Wolfram Research\Mathematica\6.0\"
cd SystemFiles\Links\MathLink\DeveloperKit\Windows\MathLinkExamples\addtwo\

On Windows 64 use the following commands:

C:
cd "C:\Program Files (x86)\Wolfram Research\Mathematica\6.0\"
cd SystemFiles\Links\MathLink\DeveloperKit\Windows-
x86-64\MathLinkExamples\addtwo\

3. Type the following five commands.

SET CL=/nologo /c /DWIN32 /D_WINDOWS /W3 /O2 /DNDEBUG
SET LINK=/NOLOGO /SUBSYSTEM:windows /INCREMENTAL:no /PDB:NONE kernel32.lib
user32.lib gdi32.lib
MPREP addtwo.tm -o addtwotm.c
CL addtwo.c addtwotm.c
LINK addtwo.obj addtwotm.obj ml32i3m.lib /OUT:addtwo.exe

On Windows 64 use the following command in place of the last command:

LINK addtwo.obj addtwotm.obj ml64i3m.lib /OUT:addtwo.exe

Building a MathLink Program That Calls the Mathematica Kernel

To build the FACTOR.EXE example program:

1. Start a command prompt window by running Start  All Programs  Microsoft Visual
Studio 2005  Visual Studio Tools  Visual Studio 2005 Command Prompt (On
Windows 64 use Start  All Programs  Microsoft Visual Studio 2005  Visual
Studio Tools  Visual Studio 2005 x64 Win64 Command Prompt).

2. Change to the "factor" directory within the "MathLinkExamples" directory.

C:
cd "C:\Program Files\Wolfram Research\Mathematica\5.1\"
cd AddOns\MathLink\DeveloperKit\Windows\MathLinkExamples\factor\

On Windows 64 use the following commands:

C:
cd "C:\Program Files (x86)\Wolfram Research\Mathematica\6.0\"
cd SystemFiles\Links\MathLink\DeveloperKit\Windows-
x86-64\MathLinkExamples\factor\

3. Type the following four commands.

SET CL=/nologo /c /DWIN32 /D_CONSOLE /W3 /O2 /DNDEBUG
SET LINK=/NOLOGO /SUBSYSTEM:console /INCREMENTAL:no /PDB:NONE kernel32.lib
user32.lib
CL factor.c
LINK factor.obj ml32i2m.lib /OUT:factor.exe

On Windows 64 use the following command in place of the last command:

LINK factor.obj ml64i3m.lib /OUT:factor.exe

Debugging a MathLink Program Called from the Mathematica Kernel

To build a debug version of ADDTWO.EXE

1. Follow steps 1-3 in "Building a MathLink Program to Be Called by the Mathematica Ker-
nel", replacing the commands in step 3 with the following.

SET CL=/nologo /c /DWIN32 /D_WINDOWS /W3 /Z7 /Od /D_DEBUG
SET LINK=/NOLOGO /SUBSYSTEM:windows /DEBUG /PDB:NONE /INCREMENTAL:no
kernel32.lib user32.lib gdi32.lib
MPREP addtwo.tm -o addtwotm.c
CL addtwo.c addtwotm.c
LINK addtwo.obj addtwotm.obj ml32i3m.lib /OUT:addtwo.exe

On Windows 64 use the following command in place of the last command:

MathLink Development in C 13

On Windows 64 use the following command in place of the last command:

LINK addtwo.obj addtwotm.obj ml64i3m.lib /OUT:addtwo.exe

To debug ADDTWO.EXE:

2. Start Microsoft Visual Studio.

3. From the File menu, choose Open  Project/Solution.

The Open Solution dialog box appears.

4. Select Executable Files from the Files of type drop-down list to display .EXE files in the
File Name list.

5. Select the drive and directory containing ADDTWO.EXE.

6. Select ADDTWO.EXE and click the Open button.

7. To start debugging, press F5 or choose the Start Debugging command under the Debug
menu.

When you are done debugging and close the project solution, you will be asked if you
want to save the new solution associated with ADDTWO.EXE. Choose OK if you want to
retain your breakpoints and other debugger settings.

Debugging a MathLink Program That Calls the Mathematica Kernel

To build a debug version of FACTOR.EXE

1. Follow steps 1-3 in "Building a MathLink Program That Calls the Mathematica Kernel",
replacing the commands in step 3 with the following.

SET CL=/nologo /c /DWIN32 /D_CONSOLE /W3 /Z7 /Od /D_DEBUG
SET LINK=/NOLOGO /SUBSYSTEM:console /INCREMENTAL:no /PDB:NONE /DEBUG
kernel32.lib user32.lib
CL factor.c
LINK factor.obj ml32i3m.lib /OUT:factor.exe

On Windows 64 use the following command in place of the last command:

LINK factor.obj ml64i3m.lib /OUT:factor.exe

To debug FACTOR.EXE:

2. Start Microsoft Visual Studio.

3. From the File menu, choose Open  Project/Solution.

The Open Solution dialog box appears.

4. Select Executable Files from the Files of type drop-down list to display .EXE files in the
File Name list.

14 MathLink Development in C

4.

Select Executable Files from the Files of type drop-down list to display .EXE files in the
File Name list.

5. Select the drive and directory containing FACTOR.EXE.

6. Select FACTOR.EXE and click the Open button.

7. From the Project menu, choose Properties.

The Project Settings dialog box appears.

8. Click the Debugging item under Configuration Properties.

The Debug Settings page appears.

9. In the Command Arguments textbox, type: -linklaunch.

10. Click the OK button.

11. To start debugging, press F5 or choose the Start Debugging command under the Debug
menu.

12. When MLOpenArgcArgv() is executed, the Choose a MathLink Program to Launch
dialog box appears. Open “MathKernel.exe”.

When you are done debugging and close the project solution, you will be asked if you
want to save the new solution associated with FACTOR.EXE. Choose OK if you want to
retain your breakpoints and other debugger settings.

Short Summary of Compiler Switches

Switch Action

ênologo do not display the copyright notice

êW3 display extended warnings

êZ7 store debugging information in the object files

êZi store debugging information in a separate project database
file

êFdaddtwo.pdb specify name of the project database file~used with /Zi

êOd turn off optimization (default)

êO2 optimizer prefers faster code over smaller code

êD defines used by some standard header files and
mathlink.h

MathLink Development in C 15

4.

êc compile only without linking

üfilename read more command line arguments from the file

CFLAGS environment variable containing more command line
arguments

Short Summary of Linker Switches

Switch Action

êNOLOGO do not display the copyright notice

êDEBUG store debugging information in the executable or project
database

êPDB:NONE store debugging information in the executable~used with
/DEBUG

êPDB:addtwo.pdb override the default name for the project database

êOUT:addtwo.exe name the output file

êINCREMENTAL:no links more slowly but keeps things smaller and neater

êSUBSYSTEM:windows the application does not need a console because it creates
its own windows (default when WinMain() is defined)

êSUBSYSTEM:console a console is provided (default when main() is defined)

Standard System Libraries

Import library Base system services

kernel32.lib base OS support such as the file system, interprocess
communication, process control, memory, and the console

advapi32.lib support for security and Registry calls

Import library GUI system services

user32.lib support for user interface elements such as windows,
messages, menus, controls, and dialog boxes

gdi32.lib support for drawing text and graphics

winspool.lib support for printing and print jobs

comdlg32.lib support for the common dialogs such as those for opening
and saving files and printing

16 MathLink Development in C

Import library Shell system services

shell32.lib support for drag and drop, associations between executa-
bles and filename extensions, and icon extraction from
executables

Import library OLE system services

ole32.lib support OLE v2 .1

oleaut32.lib support for OLE automation

uuid.lib support for universally unique identifiers used in OLE and
RPC (static library)

Import library Database system services

odbc32.lib access to database management systems through ODBC

odbccp32.lib ODBC setup and administration

Using the Program Build Utility NMAKE

NMAKE is a utility provided with Microsoft's development tools that manages the process of

building programs. NMAKE reads a makefile which describes the dependencies and commands

required to build and rebuild one or more programs. NMAKE rebuilds any components that have

become out of date when one or more prerequisite files have been updated. This document

does not describe NMAKE or makefiles in detail. A simple makefile is provided here that illus-

trates how the build commands listed above can be automatically executed by simply typing

NMAKE at a command prompt. To learn more about NMAKE, its general and powerful mecha-

nisms and how to use macros or special forms, see the NMAKE Reference in your "Microsoft

Visual Studio Guide".

MathLink Development in C 17

Using a Makefile to Build a Template Program That Uses the WIN32 API

To build ADDTWO.EXE using the NMAKE utility:

1. Using a text editor, create a file containing the following text.

addtwo.mak a makefile for building the addtwo.exe example program

CFLAGS = /nologo /c /W3 /Z7 /Od /DWIN32 /D_DEBUG /D_WINDOWS

Linking against gdi32.lib for access to windowing mechanisms
LFLAGS = /DEBUG /PDB:NONE /NOLOGO /SUBSYSTEM:windows /INCREMENTAL:no
kernel32.lib user32.lib gdi32.lib

Uncomment the value below for working on a Windows 64 system
PLATFORM = WIN64
PLATFORM = WIN32

!if "$(PLATFORM)" == "WIN32"
LIBFILE = ml32i3m.lib
!else
LIBFILE = ml64i3m.lib
!endif

addtwo.exe : addtwo.obj addtwotm.obj
 LINK addtwo.obj addtwotm.obj $(LIBFILE) /OUT:addtwo.exe @<<
$(LFLAGS)
<<

addtwo.obj : addtwo.c
 CL @<< addtwo.c
$(CFLAGS)
<<

addtwotm.obj : addtwotm.c
 CL @<< addtwotm.c
$(CFLAGS)
<<

Need to call mprep to preprocess MathLink template
addtwotm.c : addtwo.tm
 mprep addtwo.tm -o addtwotm.c

2. Save the file as "addtwo.mak" in the "addtwo" directory within the "MathLinkExamples"
directory.

3. Start a command prompt window by running Start  All Programs  Microsoft Visual
Studio 2005  Visual Studio Tools  Visual Studio 2005 Command Prompt (On
Windows 64 use Start  All Programs  Microsoft Visual Studio 2005  Visual
Studio Tools  Visual Studio 2005 x64 Win64 Command Prompt).

18 MathLink Development in C

3.

Start a command prompt window by running Start  All Programs  Microsoft Visual
Studio 2005  Visual Studio Tools  Visual Studio 2005 Command Prompt (On
Windows 64 use Start  All Programs  Microsoft Visual Studio 2005  Visual
Studio Tools  Visual Studio 2005 x64 Win64 Command Prompt).

4. Change to the "addtwo" directory.

5. Type the following command.

NMAKE /f addtwo.mak

Makefiles consist of a collection of build rules, macros and other special forms.

A build rule consists of a target file, followed by a colon, followed by a list of the target's prereq-

uisite files (which must either exist or can be built by other build rules in the makefile), followed

by one or more indented lines containing the commands required to build the target from its

prerequisites. For example, the makefile above states that the file "addtwotm.c" depends on

"addtwo.tm" and should be rebuilt any time "addtwo.tm" is modified. The build command

mprep addtwo.tm -o addtwotm.c is used to rebuild the target "addtwotm.c".

Macros are named strings of text that can be inserted into the makefile using the

notation $ HnameL. For example, in this makefile, $(CFLAGS) is expanded by NMAKE wherever it

appears into the string /nologo /c /W3 /Z7 /Od /DWIN32 /D_DEBUG /D_WINDOWS.

You might expect that the command to compile "addtwo.c" would appear in the makefile simply

as CL $(CFLAGS) addtwo.c. However it would then be possible for you to edit the definition of

CFLAGS so that the resulting compiler command exceeds the maximum allowable length of a

command line. Because command lines are restricted in length, command line tools often

provide a mechanism to read command line arguments from so-called response files. The

syntax is generally üresponsefile. This mechanism is used above along with NMAKE's ability to

produce temporary files using the following special form.

<<

text to put in temporary file

<<

MathLink Development in C 19

3.

Using a Makefile to Build a Console Program

To build FACTOR.EXE using the NMAKE utility:

1. Using a text editor, create a file containing the following text.

factor.mak a makefile for building the factor.exe example program
This makefile builds a console program

CFLAGS = /nologo /c /MLd /W3 /Z7 /Od /DWIN32 /D_DEBUG /D_CONSOLE
LFLAGS = /DEBUG /PDB:NONE /NOLOGO /SUBSYSTEM:console /INCREMENTAL:no
kernel32.lib user32.lib

Uncomment the value below for working on a Windows 64 system
PLATFORM = WIN64
PLATFORM = WIN32

!if "$(PLATFORM)" == "WIN32"
LIBFILE = ml32i3m.lib
!else
LIBFILE = ml64i3m.lib
!endif

factor.exe : factor.obj
 LINK factor.obj $(LIBFILE) /OUT:factor.exe @<<
$(LFLAGS)
<<

factor.obj : factor.c
 CL @<< factor.c
$(CFLAGS)
<<

2. Save the file as "factor.mak" in the "factor" directory within the "MathLinkExamples"
directory.

3. Start a command prompt window by running Start  All Programs  Microsoft Visual
Studio 2005  Visual Studio Tools  Visual Studio 2005 Command Prompt (On
Windows 64 use Start  All Programs  Microsoft Visual Studio 2005  Visual
Studio Tools  Visual Studio 2005 x64 Win64 Command Prompt).

4. Change to the "factor" directory.

5. Type the following two commands.

NMAKE /f factor.mak

Using the Integrated Development Environment Visual Studio 2005

20 MathLink Development in C

Using the Integrated Development Environment Visual Studio 2005

Steps Common to All Projects

Steps required to use MathLink with Microsoft Visual Studio 2005:

1. Copy mathlink.h from the MathLink Developer Kit to the Microsoft Visual Studio 2005
Include directory.

32-bit Windows

Developer Kit path 32-bit Windows: C:\Program Files\Wolfram Research\Mathematica\
6.0\SystemFiles\Links\MathLink\DeveloperKit\Windows\CompilerAdditions\mldev32\
include

Visual Studio 2005 Include directory 32-bit Windows: C:\Program Files\Microsoft Visual
Studio 8\VC\PlatformSDK\Include

Windows 64

Developer Kit path Windows 64: C:\Program Files (x86)\Wolfram Research\Mathematica\
6.0\SystemFiles\Links\MathLink\DeveloperKit\Windows-x86-64\CompilerAdditions\
mldev64\include

Visual Studio 2005 Include directory Windows 64: C:\Program Files (x86)\Microsoft Visual
Studio 8\VC\PlatformSDK\Include

2. Copy the .lib files to the Microsoft Visual Studio Lib directory

32-bit Windows

Copy ml32i1m.lib, ml32i2m.lib, and ml32i3m.lib from:
C:\Program Files\Wolfram Research\Mathematica\6.0\SystemFiles\Links\MathLink\
DeveloperKit\Windows\CompilerAdditions\mldev32\lib
to:
C:\Program Files\Microsoft Visual Studio 8\VC\PlatformSDK\Lib

Windows 64

Copy ml64i2m.lib, and ml64i3m.lib from:
C:\Program Files (x86)\Wolfram Research\Mathematica\6.0\AddOns\MathLink\
DeveloperKit\Windows-x86-64\CompilerAdditions\mldev64\lib
to:
C:\Program Files (x86)\Microsoft Visual Studio 8\VC\PlatformSDK\Lib\AMD64

MathLink Development in C 21

3. Copy mprep.exe:

32-bit Windows

from:
C:\Program Files\Wolfram Research\Mathematica\6.0\SystemFiles\Links\MathLink\
DeveloperKit\Windows\CompilerAdditions\mldev32\bin
to:
C:\Program Files\Microsoft Visual Studio 8\VC\PlatformSDK\bin

Windows 64

from:
C:\Program Files (x86)\Wolfram Research\Mathematica\6.0\SystemFiles\Links\MathLink\
DeveloperKit\Windows-x86-64\CompilerAdditions\mldev64\bin
to:
C:\Program Files (x86)\Microsoft Visual Studio 8\VC\PlatformSDK\bin

Creating a Project for "addtwo.exe"

To create a project solution that can be used to edit, build, and debug, "addtwo.exe":

1. Start Microsoft Visual Studio 2005.

2. Click File  New  Project.

The New Project dialog box appears.

3. In the Project Types pane click the tree expand icon next to the Visual C++ Projects.
Select Win32. In the Templates pane click the Win32 Project icon.

4. In the Location text field type:

32-bit Windows

C:\Program Files\Wolfram Research\Mathematica\6.0\SystemFiles\Links\MathLink\
DeveloperKit\Windows\MathLinkExamples

Windows 64

C:\Program Files (x86)\Wolfram Research\Mathematica\6.0\SystemFiles\Links\MathLink\
DeveloperKit\Windows-x86-64\MathLinkExamples

In the Name text field type addtwo.

Click OK.

The Win32 Application Wizard dialog box appears.

5. Click Application Settings. Under the Additional options set, click the Empty Project
text box. Click Finish.

22 MathLink Development in C

5.

Click Application Settings. Under the Additional options set, click the Empty Project
text box. Click Finish.

6. Select the addtwo project in the Solution Explorer by clicking once. From the Project
menu select Project  Add Existing Item.

The Add Existing Item dialog box appears.

7. From the Look in pull-down menu select the following directory:

32-bit Windows

C:\Program Files\Wolfram Research\Mathematica\6.0\SystemFiles\Links\MathLink\
DeveloperKit\Windows\MathLinkExamples\addtwo

Windows 64

C:\Program Files (x86)\Wolfram Research\Mathematica\6.0\SystemFiles\Links\MathLink\
DeveloperKit\Windows-x86-64\MathLinkExamples\addtwo

8. In the File name: text box enter: "addtwo.c" "addtwo.tm" separated by spaces. Click
Add.

9. A prompt box might appear asking if you want to create a 'New Rule' for building .tm
files. Click No.

10. In the Solution Explorer drag the addtwo.tm file into the Source Files folder.

11. Select the addtwo project in the Solution Explorer by clicking once. From the Project
menu select Project  Add New Item.

The Add New Item dialog box appears.

In the Location text field add:

32-bit Windows

C:\Program Files\Wolfram Research\Mathematica\6.0\SystemFiles\Links\MathLink\
DeveloperKit\Windows\MathLinkExamples\addtwo

Windows 64

C:\Program Files (x86)\Wolfram Research\Mathematica\6.0\SystemFiles\Links\MathLink\
DeveloperKit\Windows-x86-64\MathLinkExamples\addtwo

In the Name: text field type addtwotm.c.

Click Add.

12. Right-click the addtwo project in the Solution Explorer and select Properties.

13. Click the expand tree button next to Configuration Properties.

14. Click the expand tree button next to Linker.

MathLink Development in C 23

5.

14.

Click the expand tree button next to Linker.

15. Click the Input entry.

16. In the Additional Dependencies text field enter ml32i3m.lib.

Click OK.

17. Click addtwo.tm in the Solution Explorer. From the Project menu select Project 
Properties.

The addtwo.tm Property Pages dialog box appears.

18. Click the expand tree button next to Configuration Properties.

19. Click the expand tree button next to Custom Build Step.

20. Click the General entry.

21. In the rightmost pane click the empty box across from the Command Line. In this text
box type (include the quotes): "$(VCInstallDir)PlatformSDK\bin\mprep.exe"
"$(InputPath)" -o "$(ProjectDir)..\addtwotm.c"

22. In the text field across from the Outputs text type: ..\addtwotm.c.

Click OK. After the build the file addtwotm.c will be created in the following location:

32-bit Windows

C:\Program Files\Wolfram Research\Mathematica\6.0\SystemFiles\Links\MathLink\
DeveloperKit\Windows\MathLinkExamples\addtwo

Windows 64

C:\Program Files (x86)\Wolfram Research\Mathematica\6.0\SystemFiles\Links\MathLink\
DeveloperKit\Windows-x86-64\MathLinkExamples\addtwo

23. Right-click the addtwo project in the SolutionExplorer and select Properties.

24. Click the expand tree button next to Configuration Properties.

25. Click the General entry.

26. Click the Project Defaults expand tree button.

27. Set the pull-down menu opposite Character Set to Not Set.

Click OK.

28. From the Build menu, select Build  Build Solution.

29. After the project builds, Microsoft Visual Studio 2005 will display a dialog box informing
you that the file addtwotm.c has changed and asking you if you would like to reload the
file. Click Yes.

24 MathLink Development in C

14.

29.

After the project builds, Microsoft Visual Studio 2005 will display a dialog box informing
you that the file addtwotm.c has changed and asking you if you would like to reload the
file. Click Yes.

30. The addtwo.exe binary is now in:

32-bit Windows

C:\Program Files\Wolfram Research\Mathematica\6.0\SystemFiles\Links\MathLink\
DeveloperKit\Windows\MathLinkExamples\addtwo\Debug

Windows 64

C:\Program Files (x86)\Wolfram Research\Mathematica\6.0\SystemFiles\Links\MathLink\
DeveloperKit\Windows-x86-64\MathLinkExamples\addtwo\Debug

Creating a Project for "factor.exe"

To create a project solution that can be used to edit, build, and debug "factor.exe":

1. Start Microsoft Visual Studio .NET.

2. Click File  New  Project.

The New Project dialog box appears.

3. In the Project Types pane click the tree expand icon next to the Visual C++ Projects.
Select Win32. In the Templates pane click the Win32 Console Application icon.

4. In the Location text field type:

32-bit Windows

C:\Program Files\Wolfram Research\Mathematica\6.0\SystemFiles\Links\MathLink\
DeveloperKit\Windows\MathLinkExamples

Windows 64

C:\Program Files (x86)\Wolfram Research\Mathematica\6.0\SystemFiles\Links\MathLink\
DeveloperKit\Windows-x86-64\MathLinkExamples

In the Name text field type factor.

Click OK.

The Win32 Application Wizard dialog box appears.

5. Click Application Settings. Under the Additional options set, click the Empty Project
text box. Click Finish.

6. Select the factor project in the Solution Explorer by clicking once. From the Project
menu select Project  Add Existing Item.

MathLink Development in C 25

29.

6.

Select the factor project in the Solution Explorer by clicking once. From the Project
menu select Project  Add Existing Item.

The Add Existing Item dialog box appears.

7. From the Look in pull-down menu select the following directory:

32-bit Windows

C:\Program Files\Wolfram Research\Mathematica\6.0\SystemFiles\Links\MathLink\
DeveloperKit\Windows\MathLinkExamples\factor

Windows 64

C:\Program Files (x86)\Wolfram Research\Mathematica\6.0\SystemFiles\Links\MathLink\
DeveloperKit\Windows-x86-64\MathLinkExamples\factor

8. In the File name: text box enter: factor.c.

Click Add.

9. Right-click the factor project in the Solution Explorer and select Properties.

10. Click the expand tree button next to Configuration Properties.

11. Click the expand tree button next to Linker.

12. Click the Input entry.

13. In the Additional Dependencies text field enter ml32i3m.lib.

Click OK.

14. From the Build menu, select Build  Build Solution.

15. The factor.exe binary is now in:

32-bit Windows

C:\Program Files\Wolfram Research\Mathematica\6.0\SystemFiles\Links\MathLink\
DeveloperKit\Windows\MathLinkExamples\factor\Debug

Windows 64

C:\Program Files (x86)\Wolfram Research\Mathematica\6.0\SystemFiles\Links\MathLink\
DeveloperKit\Windows-x86-64\MathLinkExamples\factor\Debug

26 MathLink Development in C

6.

Running MathLink Programs

The instructions in "Building MathLink Programs" describe how to build two MathLink programs

using source code in the "MathLinkExamples" directory. These two programs, "addtwo.exe" and

"factor.exe", are already built for you in the "PrebuiltExamples" folder. Before building them on

your own, you should try to run the prebuilt examples to verify that the MathLink system addi-

tions are installed and working and to learn what to expect from these examples when they are

properly built.

After trying out the two examples, you should read the following subsections to learn about

other issues you will confront running MathLink programs on a Windows computer.

There are two basic types of MathLink program, epitomized by the "addtwo" and "factor"

programs. The first is an installable program. An installable program provides new functionality

to the kernel by linking a C program to the kernel through a calling mechanism. In order to get

this new functionality, the user of Mathematica must run the Install[] function. With the

addtwo example you will be adding a new function called AddTwo[] that adds two numbers

(provided as arguments) together. The kernel and installable programs have a special relation-

ship that allows them to communicate only with one another. When an installable program is

run it requires that you provide some information in order for it to connect. The other type of

program is a front end. Front ends do all the work of creating and managing their own links. In

addition to the "factor" example, the Mathematica front end and the Mathematica kernel are

also examples of the front end type. A front end does not require any extra information in order

to run, but it will usually make a connection at some point during its execution.

Running a Prebuilt Example from the Mathematica Kernel

The first example program, “addtwo”, is a MathLink template program that is installed into

Mathematica. That is, this program runs in the background, providing, as a service to Mathemat-

ica, one or more externally compiled functions. To the Mathematica user, these functions

appear to be built-in. The “addtwo” program uses a template file that defines the Mathematica

function AddTwo[] as a call to the C function addtwo(). (The template mechanism is described

in "Setting Up External Functions to Be Called from Mathematica".) The source code for this

program looks like this:

MathLink Development in C 27

:Begin:
:Function: addtwo
:Pattern: AddTwo[i_Integer, j_Integer]
:Arguments: { i, j }
:ArgumentTypes: { Integer, Integer }
:ReturnType: Integer
:End:

:Evaluate: AddTwo::usage = "AddTwo[x, y] gives the sum of two machine
integers x and y."

int addtwo(int i, int j)
{
 return i+j;
}

int __stdcall WinMain(HINSTANCE hinstCurrent, HINSTANCE hinstPrevious,
LPSTR lpszCmdLine, int nCmdShow)
{

char buff[512];
char FAR * buff_start = buff;
char FAR * argv[32];
char FAR * FAR * argv_end = argv + 32;

if(!MLInitializeIcon(hinstCurrent, nCmdShow)) return 1;
MLScanString(argv, &argv_end, &lpszCmdLine, &buff_start);
return MLMain(argv_end - argv, argv);

}

Evaluate the following two cells.

SetDirectory@$InstallationDirectory <>
"êSystemFilesêLinksêMathLinkêDeveloperKitê" <> $SystemID <> "êPrebuiltExamples"D

link = Install@".êaddtwo"D

To see a list of the newly available functions, evaluate the following cell.

LinkPatterns@linkD

This displays the usage message for the AddTwo@D function as defined in the file "addtwo.tm".

? AddTwo

Now try it.

AddTwo@2, 3D

See what happens if the sum of the two machine integers will not fit in a machine integer or if
either argument is not a machine integer. (2^31 - 1 is the largest machine integer. If your
compiler uses 2-byte integers, then 2^15 - 1 is the largest C int.)

28 MathLink Development in C

See what happens if the sum of the two machine integers will not fit in a machine integer or if
either argument is not a machine integer. (2^31 - 1 is the largest machine integer. If your
compiler uses 2-byte integers, then 2^15 - 1 is the largest C int.)
AddTwo@2^31 - 1, 1D

The AddTwo program is not prepared for big integers.

AddTwo@2^31, 1D

This does not match AddTwo[_Integer, _Integer].

AddTwo@x, 1D

Install@D called LinkOpen@D and then exchanged information with the external program to
set up the definition for AddTwo[]. You really do not have to worry about these details, but if
you are curious, evaluate the following.
?? AddTwo

When you are finished using the external program, evaluate the following.

Uninstall@linkD

Invoking the Mathematica Kernel from Within a Prebuilt Example

The second example program, "factor", is a Mathematica front end in the sense that the

Mathematica kernel runs in the background providing, as a service to "factor", the computa-

tional services of the kernel~in this case the ability to factor an integer typed by the user.

This example program, like several of the others, is a console program. That is, rather than

presenting a graphical user interface, it interacts with the user in a console window using the

standard error, input and output streams defined by ANSI C. (As you experiment with Math-

Link, you may find it convenient, initially, to use a console window. This is discussed in detail in

the section "Building MathLink Programs".)

To run the example program FACTOR.EXE

1. Start a command prompt.

2. Change to the "PrebuiltExamples" directory.

3. Type the following commands.

factor -linklaunch

The Choose a MathLink Program To Launch dialog box appears.

4. Open MathKernel.exe.

MathLink Development in C 29

4.

Open MathKernel.exe.

After a moment, a prompt will appear requesting that you type an integer.

5. Type an integer with fewer than 10 digits and press Enter. (The other factor examples
relax the restriction on the size of integer you may type in.)

Integer to factor: 123456789

The prime factors returned by Mathematica are printed and "factor" closes its link with
Mathematica.

Integer to factor: 123456789
3 ^ 2
3607 ^ 1
3803 ^ 1

Supported Link Protocols

MathLink links are opened by the C function MLOpenArgcArgv HL and the Mathematica functions

LinkCreate, LinkLaunch, and LinkConnect, each of which accepts an option for specifying a

link protocol. On 32-bit Windows platforms, the legal values for the LinkProtocol option are

"SharedMemory", "TCPIP", "FileMap", and "TCP". On Windows 64 platforms the legal values

for the LinkProtocol option are "SharedMemory", "TCPIP", and "TCP". A link protocol is the

mechanism used to transport data from one end of a connection to the other. The default is

"SharedMemory" for all link modes except LoopBack.

Note that the "FileMap" and "SharedMemory" protocols allow link names to be arbitrary words

with 31 or fewer characters, while link names are often unsigned 16-bit integers for the

"TCPIP" and "TCP" protocols. Even though "TCPIP" and "TCP" link names are integers, they

are still given as strings (of digits) to MLOpenArgcArgv HL and LinkOpen@D.

Note that for LinkMode -> Launch, the link name is not just a pathname to a file to launch, but

a command line with space-separated arguments. Hence, spaces in filenames need to be prop-

erly quoted. For example

LinkOpen@ "My Prog.exe"D H*wrong!*L

would try to launch the program "My" with command line argument of "Prog.exe". Whereas,

LinkOpen@ "\"My Prog.exe\""D

 would launch "My Prog.exe".

Troubleshooting

30 MathLink Development in C

4.

Troubleshooting

† Check that the MathLink system additions are placed in the Windows system directory or
are placed next to your executable. For Windows 9x and ME use C:\Windows\system. For
Windows 2000, 32-bit Windows XP, and 32-bit Windows Vista use C:\Windows\system32.
For Windows 64 XP, Windows Server 2003, and Windows 64 Vista, use C:\Windows\
system32 for the 64-bit system additions and C:\Windows\SysWOW64 for the 32-bit sys-
tem additions.

† Make sure that the MathLink system additions you are using are from the latest Developer
Kit. Two programs that are using runtime components from different revisions of MathLink
may not work, or if they do work may be slower than using the latest components.

† Turn off compiler optimization until your program is working. This makes compiling faster,
debugging easier, and, besides, the optimizer may be broken and the cause of some prob-
lems. (Optimized code uses the stack and registers differently than unoptimized code in
such a way that may expose or mask a bug in your code. For example, the common mis-
take of returning a pointer to a local variable may or may not cause a problem depending
on stack and register use.)

† Check the return values from the MathLink library functions or call MLError HL at key points
in your program. MathLink will often be able to tell you what has gone wrong. (If you do
not assign the return value to a variable, you can still check the return value of MathLink
functions using your debugger's register window. The 32-bit library returns its results in
register EAX.)

† While developing your program, place the debug version "ML32I3.DLL" in the same folder.
This library will do more extensive error checking and log information that may be useful.

† The files mathlink.h, mprep, "ML32I3.DLL", and the .LIB import libraries are a matched set.
If you have used an earlier release of MathLink, or a different interface of MathLink, you
should take care that you do not mix components when building your application.

† The network control panel must show that TCP/IP is installed before you can use
LinkProtocol -> “TCPIP“ or LinkProtocol -> “TCP“. Try typing “telnet” at a command
prompt. Telnet will not function without TCP/IP installed.

MathLink Development in C (Mac OS X)

This document describes how to compile and run MathLink programs written in the C language

on Mac OS X systems. ("MathLink and External Program Communication" describes how to

write MathLink programs in both the Mathematica language and the C language.)

This document does not teach you, in general, how to use your compiler and other develop-

ment tools, nor does it teach you how to program in C. If you have any trouble building or

running your MathLink programs, see the troubleshooting section at the end of this document.

MathLink Development in C 31

This document does not teach you, in general, how to use your compiler and other develop-

ment tools, nor does it teach you how to program in C. If you have any trouble building or

running your MathLink programs, see the troubleshooting section at the end of this document.

Most of what is described in this document is Unix specific and is applicable to all supported

Unix platforms. However, there may be some information which is specific to Mac OS X

machines. To learn how to compile and run MathLink programs for another platform, see the

Developer Guide for that platform.

Supported Development Platforms

The mathlink.framework shared library in the MathLink Developer Kit (MLDK) for Mac OS X can

be used for Mac OS X 10.3.9 and newer and Xcode 1.1 and newer. The framework includes

universal binary support for the 32-bit PPC, 32-bit x86, and 64-bit x86 architectures.

Installing the MathLink Components

The MathLink Developer Kit is located in the $InstallationDirectory/SystemFiles/Links/

MathLink/DeveloperKit/MacOSX directory within your Mathematica directory.

Recommended Installation

CompilerAdditions Installation

The MathLink components that you will need to build MathLink programs have already been

installed in the Mathematica bundle. One way to use these components is to leave them in the

Mathematica.app directory and specify their full pathname when you call your compiler. This

approach is taken in the example “makefiles” in the section "Building MathLink Programs".

An alternative is to copy these components (“mathlink.h”, “libMLi3.a”, and

“mathlink.framework”) into directories in which your compiler will automatically search for such

files. These directories are commonly “/usr/include” or “/usr/lib” for the “libMLi3.a” and

mathlink.h and /Library/Frameworks or ~/Library/Frameworks for “mathlink.framework”. On

many systems not all users have write access to these directories.

32 MathLink Development in C

MathLinkExamples Installation

Copy the “MathLinkExamples” directory to your home directory.

MathLink Framework Components

The following is a description of each file or directory in the MLDK.

CompilerAdditions Directory

mathlink.h

mathlink.h is the header file that must be included in your C and C++ source files. It should be

placed where your compiler can find it. You could copy this header file into the same directory

as your source files, copy it into the same location as the standard header files, or leave it

where it is if you added the MathLink directory to the search path for header files.

libMLi3.a

libMLi3.a is the static library that contains all of the MathLink functions. It should be included in

your project. You could copy this library into the same directory as your source files or leave it

where it is if you added the MathLink directory to the search path for libraries.

mathlink.framework

mathlink.framework is the dynamic library framework that contains all the MathLink functions.

Use the framework when you want to build a version of your program that links dynamically

with the MathLink library. You could copy this library in the same directory as your source files

or leave it where it is if you added the MathLink directory to the framework search paths.

mprep

mprep is an application that writes MathLink programs automatically by processing “template”

files. It may be convenient to copy this application into the same directory as your project or to

create an alias to it.

mcc

mcc is a script that preprocesses and compiles your MathLink source files.

MathLink Development in C 33

AlternativeLibraries/libMLi3.a

In $InstallationDirectory / SystemFiles / Links / MathLink / DeveloperKit / MacOSX/Compiler

Additions/AlternativeLibraries, the MathLink Developer Kit contains a version of “libMLi3.a” that

was compiled on a Mac OS X 10.4.x system. The byte size of the C long double type changed

between Mac OS X 10.3.9 and 10.4.0. If you are building on a 10.4.x system, use the

“libMLi3.a” in the AlternativeLibraries directory. If you need a “mathlink.framework” that has

been updated for 10.4.x, use the “mathlink.framework” found in $InstallationDirectory/

SystemFiles / Links / MathLink / DeveloperKit / MacOSX-x86-64 / CompilerAdditions. This

“mathlink.framework” contains a Tiger-built Universal version of the MathLink framework suit-

able for running on Mac OS X 10.4.x for PPC, PPC64, x86-64, and I386 architectures.

MathLinkExamples Directory

This directory contains the source code for some very simple MathLink programs. By using this

source code, you can learn how to build and run MathLink programs without having to write any

code yourself.

PrebuiltExamples Directory

This directory contains prebuilt versions of the example programs. "Running MathLink Pro-

grams" describes how to run two of these programs. "Building MathLink Programs" describes

how to build them yourself using the source code in the “MathLinkExamples” directory.

Building MathLink Programs

The general procedure for building MathLink programs is to include mathlink.h in any C or C++

source files that make MathLink function calls, to compile your source files, and then to link the

resulting object code with the “libMLi3.a” library or “mathlink.framework” and any other stan-

dard libraries required by your application. If your application uses the MathLink template

mechanism, then your template files must first be processed into a C source file using mprep.

Using MathLink Template Files

If your program uses the MathLink template mechanism as described in "MathLink and External

Program Communication", you must simultaneously preprocess source files containing template

34 MathLink Development in C

entries using the mprep application. (A template entry is a sequence of lines that contain

template keywords. Each entry defines a Mathematica function that when evaluated calls an

associated C function.) When mprep processes such source files, it converts template entries

into C functions, without changing other text, and writes out additional C functions that imple-

ment a remote procedure call mechanism using MathLink. The result is a C source file that is

ready for compilation.

For example, the command

mprep addtwo.tm -o addtwotm.c

will produce a C source file “addtwotm.c” from the template entries and the other text remain-

ing in “addtwo.tm”. You would then compile the output file using the C compiler. If you use the

“make” utility to build your program, you could add a rule similar to the following to your

makefile.

addtwotm.c : addtwo.tm
 mprep addtwo.tm -o addtwotm.c

Building MathLink Programs from the Command Line

What follows is a sample makefile needed to build the sample programs in the MLDK, including

“addtwo” and “factor”. To build a sample program, in this case “addtwo”, evaluate the follow-

ing command in the MathLinkExamples directory.

make addtwo

Using a Makefile
This makefile can be used to build all or some of the sample
programs. To build all of them, use the command
'make all'. To build one, say addtwo, use the command
'make addtwo'.

MLINKDIR =
/Applications/Mathematica.app/SystemFiles/Links/MathLink/DeveloperKit
SYS = MacOSX
CADDSDIR = ${MLINKDIR}/${SYS}/CompilerAdditions

INCDIR = ${CADDSDIR}
LIBDIR = ${CADDSDIR}

MPREP = ${CADDSDIR}/mprep

all : addtwo bitops counter factor factor2 factor3 quotient reverse
sumalist

addtwo : addtwotm.o addtwo.o
${CC} -I${INCDIR} addtwotm.o addtwo.o -L${LIBDIR} -lMLi3 -o $@

bitops : bitopstm.o bitops.o
${CC} -I${INCDIR} bitopstm.o bitops.o -L${LIBDIR} -lMLi3 -o $@

counter : countertm.o
${CC} -I${INCDIR} countertm.o -L${LIBDIR} -lMLi3 -o $@

factor : factor.o
${CC} -I${INCDIR} factor.o -L${LIBDIR} -lMLi3 -o $@

factor2 : factor2.o
${CC} -I${INCDIR} factor2.o -L${LIBDIR} -lMLi3 -o $@

factor3 : factor3.o
${CC} -I${INCDIR} factor3.o -L${LIBDIR} -lMLi3 -o $@

quotient : quotient.o
${CC} -I${INCDIR} quotient.o -L${LIBDIR} -lMLi3 -o $@

reverse : reversetm.o
${CC} -I${INCDIR} reversetm.o -L${LIBDIR} -lMLi3 -o $@

sumalist : sumalisttm.o sumalist.o
${CC} -I${INCDIR} sumalisttm.o sumalist.o -L${LIBDIR} -lMLi3 -o $@

.c.o :
${CC} -c -I${INCDIR} $<

addtwotm.c : addtwo.tm
${MPREP} $? -o $@

bitopstm.c : bitops.tm
${MPREP} $? -o $@

countertm.c : counter.tm
${MPREP} $? -o $@

reversetm.c : reverse.tm
${MPREP} $? -o $@

sumalisttm.c : sumalist.tm
${MPREP} $? -o $@

MathLink Development in C 35

This makefile can be used to build all or some of the sample
programs. To build all of them, use the command
'make all'. To build one, say addtwo, use the command
'make addtwo'.

MLINKDIR =
/Applications/Mathematica.app/SystemFiles/Links/MathLink/DeveloperKit
SYS = MacOSX
CADDSDIR = ${MLINKDIR}/${SYS}/CompilerAdditions

LIBDIR = ${CADDSDIR}

MPREP = ${CADDSDIR}/mprep

all : addtwo bitops counter factor factor2 factor3 quotient reverse
sumalist

addtwo : addtwotm.o addtwo.o
${CC} -I${INCDIR} addtwotm.o addtwo.o -L${LIBDIR} -lMLi3 -o $@

bitops : bitopstm.o bitops.o
${CC} -I${INCDIR} bitopstm.o bitops.o -L${LIBDIR} -lMLi3 -o $@

counter : countertm.o
${CC} -I${INCDIR} countertm.o -L${LIBDIR} -lMLi3 -o $@

factor : factor.o
${CC} -I${INCDIR} factor.o -L${LIBDIR} -lMLi3 -o $@

factor2 : factor2.o
${CC} -I${INCDIR} factor2.o -L${LIBDIR} -lMLi3 -o $@

factor3 : factor3.o
${CC} -I${INCDIR} factor3.o -L${LIBDIR} -lMLi3 -o $@

quotient : quotient.o
${CC} -I${INCDIR} quotient.o -L${LIBDIR} -lMLi3 -o $@

reverse : reversetm.o
${CC} -I${INCDIR} reversetm.o -L${LIBDIR} -lMLi3 -o $@

sumalist : sumalisttm.o sumalist.o
${CC} -I${INCDIR} sumalisttm.o sumalist.o -L${LIBDIR} -lMLi3 -o $@

.c.o :
${CC} -c -I${INCDIR} $<

addtwotm.c : addtwo.tm
${MPREP} $? -o $@

bitopstm.c : bitops.tm
${MPREP} $? -o $@

countertm.c : counter.tm
${MPREP} $? -o $@

reversetm.c : reverse.tm
${MPREP} $? -o $@

sumalisttm.c : sumalist.tm
${MPREP} $? -o $@

36 MathLink Development in C

This makefile can be used to build all or some of the sample
programs. To build all of them, use the command
'make all'. To build one, say addtwo, use the command
'make addtwo'.

MLINKDIR =
/Applications/Mathematica.app/SystemFiles/Links/MathLink/DeveloperKit
SYS = MacOSX
CADDSDIR = ${MLINKDIR}/${SYS}/CompilerAdditions

INCDIR = ${CADDSDIR}
LIBDIR = ${CADDSDIR}

MPREP = ${CADDSDIR}/mprep

all : addtwo bitops counter factor factor2 factor3 quotient reverse
sumalist

addtwo : addtwotm.o addtwo.o
${CC} -I${INCDIR} addtwotm.o addtwo.o -L${LIBDIR} -lMLi3 -o $@

bitops : bitopstm.o bitops.o
${CC} -I${INCDIR} bitopstm.o bitops.o -L${LIBDIR} -lMLi3 -o $@

counter : countertm.o
${CC} -I${INCDIR} countertm.o -L${LIBDIR} -lMLi3 -o $@

factor : factor.o
${CC} -I${INCDIR} factor.o -L${LIBDIR} -lMLi3 -o $@

factor2 : factor2.o
${CC} -I${INCDIR} factor2.o -L${LIBDIR} -lMLi3 -o $@

factor3 : factor3.o
${CC} -I${INCDIR} factor3.o -L${LIBDIR} -lMLi3 -o $@

quotient : quotient.o
${CC} -I${INCDIR} quotient.o -L${LIBDIR} -lMLi3 -o $@

reverse : reversetm.o
${CC} -I${INCDIR} reversetm.o -L${LIBDIR} -lMLi3 -o $@

sumalist : sumalisttm.o sumalist.o
${CC} -I${INCDIR} sumalisttm.o sumalist.o -L${LIBDIR} -lMLi3 -o $@

.c.o :
${CC} -c -I${INCDIR} $<

addtwotm.c : addtwo.tm
${MPREP} $? -o $@

bitopstm.c : bitops.tm

countertm.c : counter.tm
${MPREP} $? -o $@

reversetm.c : reverse.tm
${MPREP} $? -o $@

sumalisttm.c : sumalist.tm
${MPREP} $? -o $@

Building Mac OS X MathLink Programs with Xcode

Creating a Project

To create a project that can be used to edit, build, and debug “addtwo”:

1. Start Xcode.

2. From the File menu, choose New Project.

The New Project dialog box appears.

3. In the New Project dialog, select Standard Tool and then click Next.

The New Standard Tool dialog box appears.

4. Create the Project.

In the New Standard Tool dialog box, enter addtwo as the project name, and press the
Tab key. The default location for your project will be ~/addtwo/. This is a directory in your
home directory called addtwo (e.g. /Users/ < login name >/addtwo). Later steps assume
that you use this default directory. Click Finish.

5. Copy the source files to the project directory.

Start the Terminal application and change the directory (cd) to where Mathematica was
installed. When you reach that directory, cd to $InstallationDirectory /
Mathematica.app/SystemFiles/Links/MathLink/DeveloperKit/MacOSX/MathLinkExamples.

cd
"/Applications/Mathematica.app/SystemFiles/Links/MathLink/DeveloperKit/MacO
SX/MathLinkExamples"

Copy the addtwo source files to your project directory that you chose in step 4 using the
copy (cp) command.

cp addtwo.tm addtwo.c ~/addtwo/

6. Run mprep on the template file.

MathLink Development in C 37

6.

Run mprep on the template file.

Change directory to the project directory.

cd ~/addtwo/

Use mprep to generate a source file.

/Applications/Mathematica.app/SystemFiles/Links/MathLink/DeveloperKit/
CompilerAdditions/mprep addtwo.tm -o addtwo.tm.c

7. Add files to the project.

† In the addtwo project window under the Groups & Files pane click the triangle next
to the addtwo entry.

† Right-click on the Source entry.

† Select Add  Existing Files.

† From the drop-down menu click < user name > directory and then click the addtwo
directory, select addtwo.c, and click Add.

† In the next drop-down menu be sure that the program addtwo box is checked in the
Add To Targets section and click Add.

† Right-click on the Source entry.

† Select Add  Existing Files.

† From the drop-down menu click < user name > directory and then click the addtwo
directory, select addtwo.tm.c, and click Add.

† In the next drop-down menu be sure that the program addtwo box is checked in the
Add To Targets section and click Add.

† Click the Finder icon in the Dock to make the Finder active. Go to the folder where
Mathematica is installed.

† Click on the Mathematica icon while pressing the Ctrl key. A popup menu will appear.
Select Show Package Contents to view the contents of Mathematica. Open the
folders SystemFiles/Links/MathLink/DeveloperKit/MacOSX/CompilerAdditions.

† Drag the file mathlink.h from the Finder window to the Source group to the Groups
& Files list in Xcode. Make sure that Copy items into destination folder is not
checked and click the Add button.

† Drag the file libMLi3.a from the Finder window to the Source group to the Groups &
Files list in Xcode. Make sure that Copy items into destination folder is not
checked and click the Add button.

38 MathLink Development in C

6.

8. Remove main.c from the project.

Right-click on the file main.c and select Delete. In the drop-down menu click the Delete
References & Files button.

9. Build the project.

From the Build menu, select Build.

Creating a Project for “factor”

To create a project that can be used to edit, build, and debug “factor”:

1. Start Xcode.

2. From the File menu, choose New Project.

The New Project dialog box appears.

3. In the New Project dialog box, select Standard Tool and then click Next.

The New Standard Tool dialog box appears.

4. Create the Project.

In the New Standard Tool dialog, enter factor as the project name and press the Tab
key. The default location for your project will be ~/factor/. This is a directory in your
home directory called factor (e.g. /Users/ < login name >/factor). Later steps assume that
you use this default directory.

Click Finish.

5. Copy the source files to the project directory.

Start the Terminal application and change the directory (cd) to where Mathematica was
installed. When you reach that directory, cd to Mathematica.app / SystemFiles / Links /
MathLink/DeveloperKit/MacOSX/MathLinkExamples.

cd /Applications/Mathematica.app/SystemFiles/Links/MathLink/DeveloperKit/
MacOSX/MathLinkExamples

Copy the factor source files to your project directory that you chose in step 4 using the
copy (cp) command.

cp factor.c ~/factor/

6. Change directory to the project directory.

MathLink Development in C 39

7. Add files to the project.

† In the factor project window under the Groups & Files pane click the triangle next
to the factor entry.

† Right-click on the Source entry.

† Select Add  Existing Files.

† From the drop-down menu click < user name > directory and then click the addtwo
directory, select factor.c, and click Add.

† Click the Finder icon in the Dock to make the Finder active. Go to the folder where
Mathematica is installed.

† Click the Mathematica icon while pressing the Ctrl key. A pop-up menu will appear.
Select Show Package Contents to view the contents of Mathematica. Open the
folders SystemFiles/Links/MathLink/DeveloperKit/MacOSX/CompilerAdditions.

† Drag the file mathlink.h from the Finder window to the Source group to the Groups
& Files list in Xcode. Make sure that Copy items into destination folder is not
checked and click the Add button.

† Drag the file libMLi3.a from the Finder window to the Source group to the Groups &
Files list in Xcode. Make sure that Copy items into destination folder is not
checked and click the Add button.

8. Remove main.c from the project.

Right-click on the file main.c and select Delete. In the drop-down menu click the Delete
References & Files button.

9. Build the project.

From the Build menu, select Build.

Using mcc

mcc is a script that preprocesses and compiles your MathLink source files. It will preprocess

MathLink templates in any file whose name ends with .tm, and then call “cc” on the resulting C

source code. mcc will pass command-line options and other files directly to “cc”. Following is a

command that would build the “addtwo” application using mcc.

mcc addtwo.tm addtwo.c -o addtwo

The instructions in "Building MathLink Programs" describe how to build two MathLink programs

using source code in the “MathLinkExamples” directory. These two programs, “addtwo” and

“factor”, are already built for you in the “PrebuiltExamples” folder. Before building them on

your own, you should try to run the prebuilt examples to verify that the MathLink system addi-

tions are installed and working and to learn what to expect from these examples when they are

properly built. The rest of the comments assume that you are using the programs found in the

Developer Kit.

40 MathLink Development in C

Running MathLink Programs

The instructions in "Building MathLink Programs" describe how to build two MathLink programs

using source code in the “MathLinkExamples” directory. These two programs, “addtwo” and

“factor”, are already built for you in the “PrebuiltExamples” folder. Before building them on

your own, you should try to run the prebuilt examples to verify that the MathLink system addi-

tions are installed and working and to learn what to expect from these examples when they are

properly built. The rest of the comments assume that you are using the programs found in the

Developer Kit.

Running a Prebuilt Example from the Mathematica Kernel

The first example program, “addtwo”, is a MathLink template program that is installed into

Mathematica. That is, this program runs in the background, providing, as a service to Mathemat-

ica, one or more externally compiled functions. To the Mathematica user, these functions

appear to be built-in. In order to get this new functionality, the user of Mathematica must run

the Install[] function. The “addtwo” program uses a template file that defines the Mathemat-

ica function AddTwo[] as a call to the C function addtwo(). (The template mechanism is

described in "MathLink and External Program Communication".) The source code for this pro-

gram looks likes this.

:Begin:
:Function: addtwo
:Pattern: AddTwo[i_Integer, j_Integer]
:Arguments: { i, j }
:ArgumentTypes: { Integer, Integer }
:ReturnType: Integer
:End:

:Evaluate: AddTwo::usage = "AddTwo[x, y] gives the sum of two machine
integers x and y."

int addtwo(int i, int j)
{

return i+j;
}

int main(int argc; char* argv[])
{

return MLMain(argc, argv);
}

MathLink Development in C 41

:Begin:
:Function: addtwo
:Pattern: AddTwo[i_Integer, j_Integer]
:Arguments: { i, j }
:ArgumentTypes: { Integer, Integer }
:ReturnType: Integer
:End:

:Evaluate: AddTwo::usage = "AddTwo[x, y] gives the sum of two machine
integers x and y."

int addtwo(int i, int j)
{

return i+j;

int main(int argc; char* argv[])
{

return MLMain(argc, argv);
}

Evaluate the following two cells.

SetDirectory@$InstallationDirectory <>
"êSystemFilesêLinksêMathLinkêDeveloperKitêPrebuiltExamples"D

link = Install@".êaddtwo"D

To see a list of the newly available functions, evaluate the following cell.

LinkPatterns@linkD

This displays the usage message for the AddTwo[] function as defined in the file “addtwo.tm”.

? AddTwo

Now try it:

AddTwo@2, 3D

See what happens if the sum of the two machine integers will not fit in a machine integer or if
either argument is not a machine integer. (2^31-1 is the largest machine integer. If your
compiler uses 2-byte integers, then 2^15-1 is the largest C int.)
AddTwo@2^31 - 1, 1D

The “addtwo” program is not prepared for big integers.

AddTwo@2^31, 1D

This does not match AddTwo@_Integer, _IntegerD.

AddTwo@x, 1D

Install@D called LinkOpen@D and then exchanged information with the external program to
set up the definition for AddTwo[]. You really do not have to worry about these details, but if
you are curious, evaluate the following.
?? AddTwo

When you are finished using the external program, evaluate the following.

Uninstall@linkD

42 MathLink Development in C

Invoking the Mathematica Kernel from Within a Prebuilt Example

The second example program, “factor”, is a Mathematica front end in the sense that the

Mathematica kernel runs in the background providing, as a service to “factor”, the computa-

tional services of the kernel~in this case, the ability to factor an integer typed by the user.

These examples assume that Mathematica is installed in the Applications directory.

Launch the “factor” application by executing the following command.

factor -linkmode launch -linkname
'"/Applications/Mathematica.app/Contents/MacOS/MathKernel" -mathlink'

After a moment, a prompt will appear requesting that you type an integer. Type an integer with

fewer than 10 digits and press the Return key. (The other factor examples relax the restriction

on the size of integer you may type in.)

Integer to factor:

The prime factors returned by Mathematica are printed, and “factor” closes its link with

Mathematica.

Integer to factor: 123456789
3 ^ 2
3607 ^ 1
3803 ^ 1

Supported Link Protocols

The C function MLOpenArgcArgv HL and the Mathematica function LinkOpen@D are documented

in "MathLink and External Program Communication". On Macintosh OS X machines, the legal

values for the LinkProtocol option are "TCPIP", "TCP", "SharedMemory", and "Pipes". A

LinkProtocol is the mechanism used to transport data from one end of a connection to the

other. "Pipes" is the default protocol for LinkMode -> Launch links. "SharedMemory" is the

default for LinkMode -> Listen and LinkMode -> Connect links.

Note that link names are unsigned 16-bit integers for the "TCPIP" and "TCP" protocols. Even

though "TCPIP" link names are integers, they are still given as strings (of digits) to

MLOpenArgcArgv HL and LinkOpen@D.

Troubleshooting

MathLink Development in C 43

Troubleshooting

† Turn off compiler optimization until your program is working. This makes compiling faster,
debugging easier, and, besides, the optimizer may be broken and the cause of some prob-
lems. (Optimized code uses the stack and registers differently than unoptimized code in
such a way that may expose or mask a bug in your code. For example, the common mist-
ake of returning a pointer to a local variable may or may not cause a problem depending on
stack and register use.)

† Check the return values from the MathLink library functions or call MLError HL at key points
in your program. MathLink will often be able to tell you what has gone wrong.

† The files “mathlink.h” and “libMLi3.a” are a matched set. If you have used an earlier release
of MathLink, you should take care that you do not mix components when building your
application.

† Check whether the C compiler you are using supports prototypes. If it does not, you will
need to change your code and the way you build your project. This is explained in the
section "Building MathLink Programs".

MathLink Development in C (Unix and
Linux)

This document describes how to compile and run MathLink programs written in the C language

on Linux/Unix systems. ("MathLink and External Program Communication" describes how to

write MathLink programs in both the Mathematica language and the C language.)

This document does not teach you, in general, how to use your compiler and other develop-

ment tools, nor does it teach you how to program in C. If you have any trouble building or

running your MathLink programs, see the "Troubleshooting" section at the end of this document.

Most of what is described in this document is Linux/Unix specific, and is applicable to all sup-

ported Linux/Unix platforms. To learn how to compile and run MathLink programs for another

platform, see the Developer Guide for that platform.

44 MathLink Development in C

Supported Development Platforms

As a shared library, MathLink can be used with any development environment that adheres to

the standard calling conventions and binary interfaces as specified by the following compilers

listed.

While some of the following compilers listed integrate with integrated development environ-

ments produced by the compiler creators, they also function equally well with a make utility.

 $SystemID C compiler C++ compiler

 AIX-Power64 IBM XL C Enterprise Edition
V8 .0 for AIX

IBM XL C++ Enterprise Edition V8.0 for AIX

 HPUX-PA64 HP92453-01 B.11.11.14 HP
C Compiler

HP ANSI C++ B3910B A.03.67

 Linux gcc - 3.2.3 20030502 (Red
Hat Linux 3.2.3-52)

g++ - 3.2.3 20030502 (Red Hat Linux
3.2.3-52)

 Linux-IA64 Intel C 9.0 Intel C++ 9.0

 Linux-x86-64 gcc - 3.2.3 20030502 (Red
Hat Linux 3.2.3-34)

g++ - 3.2.3 20030502 (Red Hat Linux
3.2.3-34)

 Solaris-SPARC Sun C 5.8 2005/10/13 Sun C++ 5.8 2005/10/13

 Solaris-x86-64 Sun C 5.8 Patch 121016-03
2006/06/07

Sun C++ 5.8 Patch 121018-04 2006/08/02

Installing the MathLink Components

The MathLink Developer Kit (MLDK) is located in the directory $InstallationDirectory/

SystemFiles/Links/MathLink/DeveloperKit/$SystemID within your Mathematica directory.

Recommended Installation

CompilerAdditions Installation

The MathLink components that you will need to build MathLink programs have already been

installed by the Mathematica installer. One way to use these components is to leave them in

the Mathematica directory and specify their full path name when you call your compiler. This

approach is taken in the example "makefiles" in the section “Building MathLink Programs”.

An alternative is to copy these components (“mathlink.h,” “libML32i3.a,” and “libML32i3.so”)

into directories in which your compiler will automatically search for such files. These directories

are commonly /usr/include and /usr/lib, but may be different on your system. On many

systems not all users have write access to these directories.

MathLink Development in C 45

An alternative is to copy these components (“mathlink.h,” “libML32i3.a,” and “libML32i3.so”)

into directories in which your compiler will automatically search for such files. These directories

are commonly /usr/include and /usr/lib, but may be different on your system. On many

systems not all users have write access to these directories.

MathLinkExamples Installation

Copy the MathLinkExamples directory to your home directory.

MathLink Framework Components

The following is a description of each file or directory in the MLDK.

CompilerAdditions Directory

mathlink.h

mathlink.h is the header file that must be included in your C and C++ source files. It should be

placed where your compiler can find it. You could copy this header file into the same directory

as your source files that include it, or in the same location as the standard header files, or leave

it where it is if you added the MathLink directory to the search path for header files.

libML32i3.a/libML64i4.a

This is the static library that contains all the MathLink functions. It should be included in your

project. You could copy this library into the same directory as your source files, or leave it

where it is if you added the MathLink directory to the search path for libraries. The 32/64 indi-

cates whether the library is a 32-bit or a 64-bit version of the MathLink library.

libML32i3.so/libML64i3.a/(.sl on HPUX)

This is the dynamic shared library that contains all of the MathLink functions. It should be

included in your project. You could copy this library into the same directory as your source files,

into a systemwide location such as /lib or /usr/lib, or leave it where it is if you added the Math-

Link directory to the search path for libraries. The 32/64 indicates whether the library is a 32-

bit or a 64-bit version of the MathLink library.

46 MathLink Development in C

mprep

mprep is an application that writes MathLink programs automatically by processing “template”

files. It may be convenient to copy this application into the same directory as your project or to

create an alias to it.

mcc

mcc is a script that preprocesses and compiles your MathLink source files.

MathLinkExamples Directory

This directory contains the source code for some very simple MathLink programs. By using this

source code, you can learn how to build and run MathLink programs without having to write any

code yourself.

PrebuiltExamples Folder

This folder contains prebuilt versions of the example programs. "Running MathLink Programs"

describes how to run two of these programs. "Building MathLink Programs" describes how to

build them yourself using the source code in the MathLinkExamples folder.

Building MathLink Programs

The general procedure for building MathLink programs is to include mathlink.h in any C or C++

source files that make MathLink function calls, to compile your source files, and then to link the

resulting object code with the “libML32i3.a”, “libML64i3”, “libML32i3.so”, or “libML64i3.so”

library and any other standard libraries required by your application. If your application uses

the MathLink template mechanism, then your template files must first be processed into a C

source file using mprep.

Using MathLink Template Files

If your program uses the MathLink template mechanism as described in "MathLink and External

Program Communication", you must simultaneously preprocess your source files that contain

template entries using the mprep application. (A template entry is a sequence of lines that

MathLink Development in C 47

contain template keywords. Each entry defines a Mathematica function that when evaluated

calls an associated C function.) When mprep processes such source files, it converts template

entries into C functions, passes other text through unmodified, and writes out additional C

functions that implement a remote procedure call mechanism using MathLink. The result is a C

source file that is ready for compilation.

For example, the command

mprep addtwo.tm -o addtwotm.c

will produce a C source file “addtwotm.c” from the template entries and other text in

“addtwo.tm”. You would then compile the output file using the C compiler. If you use the

“make” utility to build your program, you could add a rule similar to the following one to your

makefile.

addtwotm.c : addtwo.tm
 mprep addtwo.tm -o addtwotm.c

Building MathLink programs

What follows is a sample makefile needed to build the sample programs in the MLDK, including

“addtwo” and “factor”. To build a sample program, in this case “addtwo”, evaluate the follow-

ing command in the MathLinkExamples directory.

make addtwo

Using a Makefile
This makefile can be used to build all or some of the sample
programs. To build all of them, use the command
'make all'. To build one, say addtwo, use the command
'make addtwo'.

MLINKDIR =
/usr/local/Wolfram/Mathematica/6.0/SystemFiles/Links/MathLink/DeveloperKit
SYS = Linux # Set this value with the result of evaluating $SystemID
CADDSDIR = ${MLINKDIR}/${SYS}/CompilerAdditions

INCDIR = ${CADDSDIR}
LIBDIR = ${CADDSDIR}

EXTRALIBS = -lm -lpthread -lrt # Set these with appropriate libs for your
system.
MLLIB = ML32i3 # Set this to ML64i3 if using a 64-bit system

MPREP = ${CADDSDIR}/mprep

all : addtwo bitops counter factor factor2 factor3 quotient reverse
sumalist

addtwo : addtwotm.o addtwo.o
${CC} -I${INCDIR} addtwotm.o addtwo.o -L${LIBDIR} -l${MLLIB}

${EXTRALIBS} -o $@

bitops : bitopstm.o bitops.o
${CC} -I${INCDIR} bitopstm.o bitops.o -L${LIBDIR} -l${MLLIB}

${EXTRALIBS} -o $@

counter : countertm.o
${CC} -I${INCDIR} countertm.o -L${LIBDIR} -l${MLLIB} ${EXTRALIBS} -o $@

factor : factor.o
${CC} -I${INCDIR} factor.o -L${LIBDIR} -l${MLLIB} ${EXTRALIBS} -o $@

factor2 : factor2.o
${CC} -I${INCDIR} factor2.o -L${LIBDIR} -l${MLLIB} ${EXTRALIBS} -o $@

factor3 : factor3.o
${CC} -I${INCDIR} factor3.o -L${LIBDIR} -l${MLLIB} ${EXTRALIBS} -o $@

quotient : quotient.o
${CC} -I${INCDIR} quotient.o -L${LIBDIR} -l${MLLIB} ${EXTRALIBS} -o $@

reverse : reversetm.o
${CC} -I${INCDIR} reversetm.o -L${LIBDIR} -l${MLLIB} ${EXTRALIBS} -o $@

sumalist : sumalisttm.o sumalist.o
${CC} -I${INCDIR} sumalisttm.o sumalist.o -L${LIBDIR} -l${MLLIB}

${EXTRALIBS} -o $@

.c.o :
${CC} -c -I${INCDIR} $<

addtwotm.c : addtwo.tm
${MPREP} $? -o $@

bitopstm.c : bitops.tm
${MPREP} $? -o $@

countertm.c : counter.tm
${MPREP} $? -o $@

reversetm.c : reverse.tm
${MPREP} $? -o $@

sumalisttm.c : sumalist.tm
${MPREP} $? -o $@

48 MathLink Development in C

This makefile can be used to build all or some of the sample
programs. To build all of them, use the command
'make all'. To build one, say addtwo, use the command
'make addtwo'.

MLINKDIR =
/usr/local/Wolfram/Mathematica/6.0/SystemFiles/Links/MathLink/DeveloperKit
SYS = Linux # Set this value with the result of evaluating $SystemID
CADDSDIR = ${MLINKDIR}/${SYS}/CompilerAdditions

INCDIR = ${CADDSDIR}
LIBDIR = ${CADDSDIR}

EXTRALIBS = -lm -lpthread -lrt # Set these with appropriate libs for your
system.
MLLIB = ML32i3 # Set this to ML64i3 if using a 64-bit system

MPREP = ${CADDSDIR}/mprep

all : addtwo bitops counter factor factor2 factor3 quotient reverse
sumalist

addtwo : addtwotm.o addtwo.o
${CC} -I${INCDIR} addtwotm.o addtwo.o -L${LIBDIR} -l${MLLIB}

${EXTRALIBS} -o $@

bitops : bitopstm.o bitops.o
${CC} -I${INCDIR} bitopstm.o bitops.o -L${LIBDIR} -l${MLLIB}

${EXTRALIBS} -o $@

counter : countertm.o
${CC} -I${INCDIR} countertm.o -L${LIBDIR} -l${MLLIB} ${EXTRALIBS} -o $@

factor : factor.o
${CC} -I${INCDIR} factor.o -L${LIBDIR} -l${MLLIB} ${EXTRALIBS} -o $@

factor2 : factor2.o
${CC} -I${INCDIR} factor2.o -L${LIBDIR} -l${MLLIB} ${EXTRALIBS} -o $@

factor3 : factor3.o
${CC} -I${INCDIR} factor3.o -L${LIBDIR} -l${MLLIB} ${EXTRALIBS} -o $@

quotient : quotient.o
${CC} -I${INCDIR} quotient.o -L${LIBDIR} -l${MLLIB} ${EXTRALIBS} -o $@

reverse : reversetm.o
${CC} -I${INCDIR} reversetm.o -L${LIBDIR} -l${MLLIB} ${EXTRALIBS} -o $@

sumalist : sumalisttm.o sumalist.o
${CC} -I${INCDIR} sumalisttm.o sumalist.o -L${LIBDIR} -l${MLLIB}

${EXTRALIBS} -o $@

.c.o :
${CC} -c -I${INCDIR} $<

addtwotm.c : addtwo.tm
${MPREP} $? -o $@

bitopstm.c : bitops.tm
${MPREP} $? -o $@

countertm.c : counter.tm
${MPREP} $? -o $@

reversetm.c : reverse.tm
${MPREP} $? -o $@

sumalisttm.c : sumalist.tm
${MPREP} $? -o $@

MathLink Development in C 49

This makefile can be used to build all or some of the sample
programs. To build all of them, use the command
'make all'. To build one, say addtwo, use the command
'make addtwo'.

MLINKDIR =
/usr/local/Wolfram/Mathematica/6.0/SystemFiles/Links/MathLink/DeveloperKit
SYS = Linux # Set this value with the result of evaluating $SystemID
CADDSDIR = ${MLINKDIR}/${SYS}/CompilerAdditions

INCDIR = ${CADDSDIR}
LIBDIR = ${CADDSDIR}

EXTRALIBS = -lm -lpthread -lrt # Set these with appropriate libs for your
system.
MLLIB = ML32i3 # Set this to ML64i3 if using a 64-bit system

MPREP = ${CADDSDIR}/mprep

all : addtwo bitops counter factor factor2 factor3 quotient reverse
sumalist

addtwo : addtwotm.o addtwo.o
${CC} -I${INCDIR} addtwotm.o addtwo.o -L${LIBDIR} -l${MLLIB}

${EXTRALIBS} -o $@

bitops : bitopstm.o bitops.o
${CC} -I${INCDIR} bitopstm.o bitops.o -L${LIBDIR} -l${MLLIB}

${EXTRALIBS} -o $@

counter : countertm.o
${CC} -I${INCDIR} countertm.o -L${LIBDIR} -l${MLLIB} ${EXTRALIBS} -o $@

factor : factor.o
${CC} -I${INCDIR} factor.o -L${LIBDIR} -l${MLLIB} ${EXTRALIBS} -o $@

factor2 : factor2.o
${CC} -I${INCDIR} factor2.o -L${LIBDIR} -l${MLLIB} ${EXTRALIBS} -o $@

factor3 : factor3.o
${CC} -I${INCDIR} factor3.o -L${LIBDIR} -l${MLLIB} ${EXTRALIBS} -o $@

quotient : quotient.o
${CC} -I${INCDIR} quotient.o -L${LIBDIR} -l${MLLIB} ${EXTRALIBS} -o $@

reverse : reversetm.o
${CC} -I${INCDIR} reversetm.o -L${LIBDIR} -l${MLLIB} ${EXTRALIBS} -o $@

sumalist : sumalisttm.o sumalist.o
${CC} -I${INCDIR} sumalisttm.o sumalist.o -L${LIBDIR} -l${MLLIB}

${EXTRALIBS} -o $@

.c.o :
${CC} -c -I${INCDIR} $<

addtwotm.c : addtwo.tm
${MPREP} $? -o $@

bitopstm.c : bitops.tm
${MPREP} $? -o $@

countertm.c : counter.tm
${MPREP} $? -o $@

reversetm.c : reverse.tm
${MPREP} $? -o $@

sumalisttm.c : sumalist.tm
${MPREP} $? -o $@

Use the following table to determine the extra libraries needed for linking MathLink programs

on your system.

 $SystemID EXTRALIBS

 AIX - Power64 -lm -lpthread -lc128

 HPUX - PA64 -lm /usr/lib/libdld.sl /usr/lib/libm.0 -lpthread -lrt

 Linux -lm -lpthread -lrt

 Linux - IA64 -lm -lpthread -lrt

 Linux - x86 - 64 -lm -lpthread -lrt

 Solaris - SPARC -lm -lsocket -lnsl -lrt

 Solaris - x86 - 64 -lm -lsocket -lnsl -lrt

Using mcc

mcc is a script that preprocesses and compiles your MathLink source files. It will preprocess

MathLink templates in any file whose name ends with .tm , and then call “cc” on the resulting C

source code. mcc will pass command-line options and other files directly to cc. Following is a

command that would build the “addtwo” application using mcc.

mcc addtwo.tm addtwo.c -o addtwo

50 MathLink Development in C

Running MathLink Programs

The instructions in "Building MathLink Programs" describe how to build two MathLink programs

using source code in the “MathLinkExamples” directory. These two programs, “addtwo” and

“factor”, are already built for you in the “PrebuiltExamples” folder. Before building them on

your own, you should try to run the prebuilt examples to verify that the MathLink system addi-

tions are installed and working and to learn what to expect from these examples when they are

properly built.

There are two basic types of MathLink program, epitomized by the "addtwo" and "factor"

programs. The first is an installable program. An Installable program provides new functionality

to the kernel by linking a C program to the kernel through a calling mechanism. In order to get

this new functionality, the user of Mathematica must run the Install[] function. With the

“addtwo” example you will be adding a new function called AddTwo[] that adds two numbers

(provided as arguments) together. The kernel and installable programs have a special relation-

ship that allows them only to communicate with one another. When an installable program is

run it requires that you provide some information in order for it to connect. The other type of

program is a front end. Front ends do all of the work of creating and managing their own links.

In addition to the "factor" example, the Mathematica front end and the Mathematica kernel

are also example of the front end type. A front end does not require any extra information in

order to run, but it will usually make a connection at some point during its execution.

Running a Prebuilt Example from the Mathematica Kernel

The first example program, “addtwo”, is a MathLink template program that is installed into

Mathematica. That is, this program runs in the background, providing, as a service to Mathemat-

ica, one or more externally compiled functions. To the Mathematica user, these functions

appear to be built-in. The “addtwo” program uses a template file that defines the Mathematica

function AddTwo[] as a call to the C function addtwo(). (The template mechanism is described

in "MathLink and External Program Communication".) The source code for this program looks

likes this.

:Begin:
:Function: addtwo
:Pattern: AddTwo[i_Integer, j_Integer]
:Arguments: { i, j }
:ArgumentTypes: { Integer, Integer }
:ReturnType: Integer
:End:

:Evaluate: AddTwo::usage = "AddTwo[x, y] gives the sum of two machine
integers x and y."

int addtwo(int i, int j)
{

return i+j;
}

int main(int argc; char* argv[])
{

return MLMain(argc, argv);
}

MathLink Development in C 51

:Begin:
:Function: addtwo
:Pattern: AddTwo[i_Integer, j_Integer]
:Arguments: { i, j }
:ArgumentTypes: { Integer, Integer }
:ReturnType: Integer
:End:

:Evaluate: AddTwo::usage = "AddTwo[x, y] gives the sum of two machine
integers x and y."

int addtwo(int i, int j)
{

return i+j;
}

int main(int argc; char* argv[])
{

return MLMain(argc, argv);
}

Edit the path string and evaluate the following two cells.

SetDirectory@$InstallationDirectory <>
"êSystemFilesêLinksêMathLinkêDeveloperKitê" <> $SystemID <> "êPrebuiltExamples"D

link = Install@".êaddtwo"D

To see a list of the newly available functions, evaluate this cell.

LinkPatterns@linkD

This displays the usage message for the AddTwo[] function as defined in the file “addtwo.tm”.

? AddTwo

Now try it:

AddTwo@2, 3D

See what happens if the sum of the two machine integers will not fit in a machine integer or if
either argument is not a machine integer. (2^31-1 is the largest machine integer. If your
compiler uses 2-byte integers, the 2^15-1 is the largest C int.)
AddTwo@2^31 - 1, 1D

The “addtwo” program is not prepared for big integers:

AddTwo@2^31, 1D

This does not match AddTwo[_Integer, _Integer]:

52 MathLink Development in C

This does not match AddTwo[_Integer, _Integer]:

AddTwo@x, 1D

Install@D called LinkOpen@D and then exchanged information with the external program to
set up the definition for AddTwo[]. You really do not have to worry about these details, but if
you are curious, evaluate the following.
?? AddTwo

When you are finished using the external program, evaluate the following.

Uninstall@linkD

Invoking the Mathematica Kernel from Within a Prebuilt Example

The second example program, “factor”, is a Mathematica front end in the sense that the

Mathematica kernel runs in the background providing, as a service to “factor”, the computa-

tional services of the kernel~in this case the ability to factor an integer typed by the user.

Launch the “factor” application by executing the following command:

factor -linkmode launch -linkname 'math -mathlink'

After a moment, a prompt will appear requesting that you type an integer. Type an integer with

fewer than 10 digits and press the Enter key. (The other factor examples relax the restriction

on the size of integer you may type in.)

Integer to factor:

The prime factors returned by Mathematica are printed and “factor” closes its link with

Mathematica.

Integer to factor: 123456789
3 ^ 2
3607 ^ 1
3803 ^ 1

MathLink Development in C 53

Supported Link Protocols

The C function MLOpenArgcArgv HL and the Mathematica function LinkOpen@D are documented

in "MathLink and External Program Communication". On Linux/Unix machines, the legal values

for the LinkProtocol option are "TCPIP", "TCP", "SharedMemory", and "Pipes". A

LinkProtocol is the mechanism used to transport data from one end of a connection to the

other. "Pipes" is the default protocol for all LinkMode -> Launch links. "SharedMemory" is the

default protocol for all LinkMode -> Listen and LinkMode -> Connect links.

Note that link names are unsigned 16-bit integers for the "TCPIP" and "TCP" protocols. Even

though "TCPIP" link names are integers, they are still given as strings (of digits) to

MLOpenArgcArgv HL and LinkOpen@D.

Troubleshooting

† Turn off compiler optimization until your program is working. This makes compiling faster,
debugging easier, and, besides, the optimizer may be broken and the cause of some prob-
lems. (Optimized code uses the stack and registers differently than unoptimized code in
such a way that may expose or mask a bug in your code. For example, the common mist-
ake of returning a pointer to a local variable may or may not cause a problem depending on
stack and register use.)

† Check the return values from the MathLink library functions or call MLError HL at key points
in your program. MathLink will often be able to tell you what has gone wrong.

† The files “mathlink.h”, “libML32i3.a”, and “libML32i3.so” (libML64i3.* on 64-bit platforms)
are a matched set. If you have used an earlier release of MathLink, you should take care
that you do not mix components when building your application.

† Check whether the C compiler you are using supports prototypes. If it does not, you will
need to change your code and the way you build your project. This is explained in the
section "Building MathLink Programs".

54 MathLink Development in C

