
Differential Evolution in Discrete and Combinatorial
Optimization

Mathematica tutorial notes

Daniel Lichtblau
Wolfram Research, Inc.
100 Trade Center Drive
Champaign, IL 61820
danl@wolfram.com

Abstract

We will show a number of ways in which Differential Evolution, a member of the genetic/evolutionary family of
optimization methods, can be used for the purpose of discrete optimization. Problems under consideration include
standard integer linear programming, knapsack problems, set partitioning, set covering, quadratic assignment, mixed
(discrete−continuous) optimization, and more.

Introduction
The primary purpose of this tutorial is to introduce a few standard types of discrete and combinatorial optimization problems, and indicate ways in which one might
attack them using Differential Evolution. Our main focus will be on indexing by relative position (also known as order based representation); we will describe
some related approaches as well. We will not delve much into why these might be regarded as "interesting" problems, as that would be a book in itself. Suffice it to
say that many problems one encounters in the optimization literature have their origins in very real engineering problems, e.g. layout of hospital wings, electronic
chip design, optimal task assignments, boolean logic optimization, routing, assembly line design, and so on. The types of problems we will consider, which are
abstractions of the ones from engineering, go by names such as knapsack problems, set coverings, set partitioning, and permutation assignment. A secondary goal
of this tutorial will be to introduce a few ideas regarding hybridization of Differential Evolution with some other methods from optimization. Portions of this work
have previously appeared as a chapter in [11].

I will observe that throughout these notes we regard Differential Evolution as a soft optimization tool. Methods we present are entirely heuristic in nature. We
usually do not get guarantees of result quality; generally this must be assessed by independent means (say, comparison with other tactics such as random search or
greedy algorithms, or a priori problem−specific knowledge). So we use the word optimization a bit loosely, and really what we usually mean is improvement. While
this may seem to be bad from a theoretical point of view, it has advantages. For one, the field is relatively young and is amenable to an engineering mind set. One
need not invent a new branch of mathematics in order to make progress. We will note a few directions that might, for the ambitious reader, be worthy of further
pursuit.

Another caveat is that I make no claim as to Differential Evolution being the best method for the problems we will discuss. Nor do I claim that the approaches to be
seen are the only, let alone best, ways to use it on these problems. What I do claim is that Differential Evolution is quite a versatile tool, one that can be adapted to
get reasonable results on a wide range of combinatorial optimization problems. Even more, this can be done using but a small amount of code. It is my hope to
convey the utility of some of the methods I have used with success, and to give ideas of ways in which they might be further enhanced.

Rather different Mathematica approaches to some types of discrete optimization problem may be found in [9, 10, 11].

Differential Evolution in Mathematica
As I will illustrate the setup and solving attempts using Mathematica (Wolfram 2007), I need to describe in brief how Differential Evolution is built into and
accessed within that program. Now recall the general setup for this method [15, 16]. We have some number of vectors, or chromosomes, of continuous−valued
genes. They mate according to a crossover probability, mutate by differences of distinct other pairs in the pool, and compete with a parent chromosome to see who
moves to the next generation. All these are as described by Price and Storn, in their Dr. Dobbs Journal article from 1997 [15] . In particular, crossover and mutation
parameters are as described therein. In Mathematica the relevant options go by the names of CrossProbability, ScalingFactor, and SearchPoints.
Each variable corresponds to a gene on every chromosome. Using the terminology of the article, CrossProbability is the CR parameter, SearchPoints
corresponds to NP (size of the population, that is, number of chromosome vectors), and ScalingFactor is F. Default values for these parameters are roughly as
recommended in that article.

The Mathematica function that invokes these is called NMinimize. It takes a Method option that can be set to DifferentialEvolution. It also takes a
MaxIterations option that, for this method, corresponds to the number of generations. One explicitly invokes Differential Evolution in Mathematica as follows.

NMinimize@8objective, constraints<, variables,
Method ® 8DifferentialEvolution, methodoptions<, otheroptsD

Here methodoptions might include setting to nondefault values any or all of the options indicated below. We will show usage of some of them as we present
examples. Further details about these options may be found in the program documentation. All of this is available online; see, for example,
http://reference.wolfram.com/mathematica/ref/NMinimize.html

Here are the options one can use to control behavior of NMinimize.

1

Options@NMinimize‘DifferentialEvolutionD

:CrossProbability ® 1

2
, InitialPoints ® Automatic,

PenaltyFunction ® Automatic, PostProcess ® Automatic, RandomSeed ® 0,

ScalingFactor ®
3

5
, SearchPoints ® Automatic, Tolerance ® 0.001>

There are some issues in internal implementation that need discussion to avoid later confusion. First is the question of how constraints are enforced. This is
particularly important since we will often constrain variables to take on only integer values, and in specific ranges. For integrality enforcement there are (at least)
two viable approaches. One is to allow variables to take on values in a continuum, but use penalty functions to push them toward integrality [2]. For example, one

could add, for each variable x, a penalty term of the form Hx - roundHxLL2 (perhaps multiplied by some suitably large constant). NMinimize does not use this
approach, but a user can choose to assist it to do so by explicitly using the PenaltyFunction method option. Another method, the one used by NMinimize, is
to explicitly round all (real−valued) variables before evaluating in the objective function. Experience in the development of this function indicated this was typically
the more successful approach.

This still does not address the topic of range enforcement. For example, say we are using variables in the range 81, ¼, n< to construct a permutation of n elements.
If a value slips outside the range then we might have serious difficulties. For example, in low level programming languages such as C, having an out−of−bounds
array reference can cause a program to crash. While this would not as likely happen in Mathematica, the effect would still be bad, for example a hang or perhaps a
garbage result due to processing of a meaningless symbolic expression. So it is important either that our code, or NMinimize, carefully enforce variable bounds.
As it happens, the implementation does just this. If a variable is restricted to lie between a low and high bound (this is referred to as a rectangular, or box, con−
straint), then the NMinimize code will force it back inside the boundary. Here I should mention that this is really a detail of the implementation, and should not in
general be relied upon by the user. I point it out so that the reader will not be mystified upon seeing code that blithely ignores the issue throughout the rest of this
chapter. I also note that it is not hard to make alterations e.g. to an objective function, to preprocess input so that bound constraints are observed. In order to
maximize simplicity of code presented below, I did not do this.

In the literature on combinatorial (and other) optimization via evolutionary means, one frequently runs across notions of genotype and phenotype. The former refers
to the actual chromosome values. Recall the basic workings of Differential Evolution. One typically forms a new chromosome from mating its parent chromosome
with a mutation of a random second parent. Said mutation is in turn given as a difference of two other random chromosomes. These operations are all done at the
genotype level. It is in translating the chromosome to a combinatorial object e.g. a permutation, that one encounters the phenotype. This refers, roughly, to the
expression of the chromosome as something we can use for objective function evaluation. Said slightly differently, one decodes a genotype to obtain a phenotype.
We want genotypes that are amenable to the mutation and mating operations of Differential Evolution, and phenotypes that will respond well to the genotype, in the
sense of allowing for reasonable improvement of objective function. Discussion of these matters, with respect to the particulars of Differential Evolution, may be
found in [16]. Early discussion of these issues, and methods for handling them, appear in [5, 4].

Two simple examples
I like to start discussion of Differential Evolution in discrete optimization by presenting two fairly straightforward examples. They serve to get the reader accli−
mated to how we might set up simple problems, and also to how they look as input to
Mathematica. These are relatively simple examples of discrete optimization and hence are good for easing into the more complicated examples that follow.

Pythagorean triples
First we will search for Pythagorian triples. These, as one may recall from high school, are integer triples Hx, y, zL such

that x2 + y 2 = z2 . So we wish to find integer triples that satisfy this equation. One way to set up such a problem is to form the square of the difference, x2 + y2 - z2.
We seek integer triples that make this vanish, and moreover this vanishing is a minimization condition (because we have a square). Note that this is to some extent
arbitrary, and minimizing the absolute value rather than the square would suffice just as well for our purpose.

We constrain all variables to be between 5 and 25 inclusive. We also specify explicitly that the variables are integer valued. We will say a bit more about this in a
moment.

NMinimize@8Hx^2+ y^2- z^2L^2, Element@8x, y, z<, IntegersD, 5 £ x £ 25,
5 £ y £ 25, 5 £ z £ 25, x £ y<, 8x, y, z<D

80., 8x ® 7, y ® 24, z ® 25<<

We see that NMinimize is able to pick an appropriate method by default. Indeed, it uses DifferentialEvolution when
variables are specified as discrete, that is, integer valued.

Now we show how to obtain different solutions by specifying that the random seed used by the DifferentialEvolution
method change for each run. We will suppress warning messages (the algorithm mistakenly believes it is not converging).
After all, we are only interested in the results; we can decide for ourselves quite easily if they work.

2

Quiet@
Timing@
Table@NMinimize@8Hx^2+ y^2- z^2L^2, Element@8x, y, z<, IntegersD,

5 £ x £ 25, 5 £ y £ 25, 5 £ z £ 25, x £ y<, 8x, y, z<,
Method ® "DifferentialEvolution ", RandomSeed® RandomInteger@1000DD, 820<DDD

817.1771, 880., 8x ® 9, y ® 12, z ® 15<<, 80., 8x ® 15, y ® 20, z ® 25<<,
80., 8x ® 6, y ® 8, z ® 10<<, 80., 8x ® 5, y ® 12, z ® 13<<,
80., 8x ® 6, y ® 8, z ® 10<<, 80., 8x ® 7, y ® 24, z ® 25<<,
80., 8x ® 15, y ® 20, z ® 25<<, 80., 8x ® 15, y ® 20, z ® 25<<,
80., 8x ® 15, y ® 20, z ® 25<<, 80., 8x ® 8, y ® 15, z ® 17<<,
80., 8x ® 5, y ® 12, z ® 13<<, 80., 8x ® 9, y ® 12, z ® 15<<,
80., 8x ® 9, y ® 12, z ® 15<<, 80., 8x ® 5, y ® 12, z ® 13<<,
80., 8x ® 6, y ® 8, z ® 10<<, 80., 8x ® 5, y ® 12, z ® 13<<,
80., 8x ® 5, y ® 12, z ® 13<<, 80., 8x ® 5, y ® 12, z ® 13<<,
80., 8x ® 5, y ® 12, z ® 13<<, 80., 8x ® 15, y ® 20, z ® 25<<<<

We observe that each of these is a valid Pythagorean triple (of course, there are several repeats). Recalling our objective
function, any failure would appear as a false minimum, that is to say, a square integer strictly larger than zero.

A coin problem

We now show a basic coin problem. We are given 143,267 coins in pennies, nickels, dimes, and quarters, of total value $12563.29, and we are to determine how
many coins might be of each type. There are several ways one might set up such a
problem in NMinimize. We will try to minimize the sum of squares of differences between actual values and desired values of the two linear expressions implied
by the information above. For our search space we will impose obvious range constraints on the various coin types. In order to obtain different results we will want
to alter the seeding of the random number generator; this changes the random initial parameters used to seed the optimization code. That is why we specify the
method with this option added. We will do 10 runs of this.

Timing@
Table@
8min, sol< =
NMinimize@8Hp + 5 n + 10 d+ 25 q- 1 256 329L^2 + Hp + n + d + q - 143 267L^2,
8p, n, d, q< Î Integers, 0£ p £ 1 256 329, 0£ n £ 1 256 329� 5,
0 £ d £ 1 256 329� 10, 0 £ q £ 1 256 329� 25<, 8p, n, d, q<, MaxIterations ® 1000,

Method ® 8DifferentialEvolution , RandomSeed® Random@Integer, 1000D<D, 810<DD

NMinimize::cvmit :
Failed to converge to the requested accuracy or precision within 1000 iterations.

8229.634, 880., 8p ® 22 554, n ® 70 469, d ® 24 978, q ® 25 266<<,
80., 8p ® 4094, n ® 79 778, d ® 42 102, q ® 17 293<<,
80., 8p ® 23 139, n ® 64 874, d ® 31 502, q ® 23752<<,
80., 8p ® 26 649, n ® 72 620, d ® 15 558, q ® 28440<<,
80., 8p ® 2914, n ® 76 502, d ® 48 358, q ® 15 493<<,
80., 8p ® 9714, n ® 49 778, d ® 73 110, q ® 10 665<<,
80., 8p ® 26 019, n ® 26 708, d ® 77 782, q ® 12758<<,
80., 8p ® 58 229, n ® 31 772, d ® 19 494, q ® 33772<<,
80., 8p ® 8609, n ® 70 931, d ® 46 674, q ® 17 053<<,
80., 8p ® 35 049, n ® 55 160, d ® 25 398, q ® 27660<<<<

We obtained valid solutions each time. Using only, say, 400 iterations we tend to get solutions about half the time and
"near" solutions the other half (wherein either the number of coins and/or total value is off by a very small amount). Notice that this type of problem is one of
constraint satisfaction. An advantage to such problems is that we can discern from the proposed solution whether it is valid; those are exactly the cases for which we
get an object value of zero, with all constraints satisfied.

Maximal determinants
In this section we illustrate a heuristic methods on certain extremal matrix problems of modest size. As motivation for looking at this particular problem, I remark
that it is sometimes important to understand extremal behavior of random polynomials or matrices comprised of elements from a given set.

Below we apply knapsack−style optimization to study determinants of matrices of integers with all elements lying in the set {−1,0,1}. The problem is to minimize
the determinant of such a matrix (since we can multiply any row by −1 and still satisfy the constraints, the smallest negative value corresponds to the largest
positive value). We will make the simplifying assumption that all diagonal elements are 1.

Our objective function is simply the determinant. We want this function only to evaluate when the variables have been assigned numeric values. This is quite
important because symbolic determinants are quite slow to compute. Hence we set up the function so that it is only defined when numeric values are plugged in.

detfunc@a : 88_?NumberQ ..< ..<D �; Length@aD � Length@First@aDD := Det@aD

3

Our code will take a matrix dimension as argument, and also an optional argument specifying whether to print the constraints. We use that in a small problem to
show the constraints explicitly, so that the reader may check that we have set this up correctly. Before showing the actual code we first outline the process.

Outline of detMin

1. Input: the dimension, and the parameter settings we will use for NMinimize.

2. Create a matrix of variables.

3. Create a set of constraints.

a. All variables must be integers.

b. All variables lie in the range @-1, 1D.

c. Variables corresponding to the diagonal elements are all set to 1.

4. Call NMinimize on the objective function, using the above constraints and taking program parameters from the argument list.

5. Return the optimum found by NMinimize, along with the matrix that gives this value.

Here is the actual program to do this.

detMin@n_, cp_, sp_, it_, printsetup_: FalseD := Module@
8mat, vars, problemlist , j, best<,
mat = Array@x, 8n, n<D;
vars = Flatten@matD;
problemlist =
8detfunc@matD,
Flatten@8Element@vars, IntegersD, Map@-1 £ ð £ 1 &, varsD,

Table@x@j, jD � 1, 8j, n<D<D<;
If@printsetup , Print@problemlist@@2DDDD;
best = NMinimize@problemlist , vars, MaxIterations® it,

Method ® 8DifferentialEvolution , CrossProbability® cp, SearchPoints ® sp<D;
8best@@1DD, mat �. best@@2DD<
D

Here is our result for the 3×3 case. We also show the constraints for this small example.

Timing@8min, mat< = detMin@3, .1, 20, 20, TrueDD

8Hx@1, 1D x@1, 2D x@1, 3D x@2, 1D x@2, 2D x@2, 3D x@3, 1D x@3, 2D x@3, 3DL Î Integers,
-1 £ x@1, 1D £ 1, -1 £ x@1, 2D £ 1, -1 £ x@1, 3D £ 1, -1 £ x@2, 1D £ 1, -1 £ x@2, 2D £ 1, -1 £ x@2, 3D £ 1,
-1 £ x@3, 1D £ 1, -1 £ x@3, 2D £ 1, -1 £ x@3, 3D £ 1, x@1, 1D � 1, x@2, 2D � 1, x@3, 3D � 1<

80.528033, 8-4., 881, 1, 1<, 81, 1, -1<, 81, -1, 1<<<<

We obtain −4 as the minimum (can you do better?) We now try at dimension 7. We will use a larger search space and more iterations. Indeed, our option settings
were determined by trial and error. Later we will say more about how this might systematically be done.

Timing@8min, mat< = detMin@7, .1, 80, 80DD

854.6874, 8-576., 881, 1, -1, -1, 1, -1, 1<,
81, 1, -1, 1, -1, -1, -1<, 81, -1, 1, 1, 1, -1, -1<, 8-1, -1, -1, 1, 1, 1, 1<,
81, 1, -1, -1, 1, 1, -1<, 81, 1, 1, 1, 1, 1, 1<, 81, -1, -1, -1, -1, 1, 1<<<<

Readers familiar with the Hadamard bound for absolute values of matrix determinants will recognize that the minimum must be no smaller than the ceiling of -7
7

2 ,

or -907. (In brief, this bound is the product of the lengths of the rows of a matrix; for our family, the maxinal length of each row is 7 . That this product
maximizes the absolute value of the determinant can be observed from the fact that this absolute value is the volume of the rectangular prism formed by the row
vectors of the matrix. This volume can be no larger than the product of their lengths; it achieves that value precisely when the rows are pairwise orthogonal.)

We can ask how good is the quality of our result. Here is one basis for comparison. A random search that took approximately twice as long as the code above found
nothing smaller than -288. Offhand I do not know if −576 is the true minimum, though I suspect that it is.

It is interesting to see what happens when we try this with dimension increased to eight.

Timing@8min, mat< = detMin@8, 1� 50, 100, 200DD

8222.618, 8-4096.,
881, -1, 1, 1, 1, -1, -1, -1<, 8-1, 1, -1, 1, 1, 1, -1, -1<, 8-1, 1, 1, 1, 1, -1, 1, 1<,
81, 1, -1, 1, -1, -1, -1, 1<, 8-1, -1, -1, -1, 1, -1, -1, 1<,
81, 1, 1, -1, 1, 1, -1, 1<, 81, 1, -1, -1, 1, -1, 1, -1<, 81, -1, -1, 1, 1, 1, 1, 1<<<<

4

In this case we actually attained the Hadamard bound; one can check that the rows (and likewise the columns) are all pairwise orthogonal, as must be the case in
order to attain the Hadamard bound. Indeed, when the dimension is a power of two, one can always attain this bound. The motivated reader might try to work out a
recursive (or otherwise) construction that gives such pairwise orthogonal sets.

Partitioning a set
The last sections were a warmup to the main focus of this tutorial. We introduced a bit of Mathematica coding, and in particular use of Differential Evolution, in the
context of discrete optimization. We now get serious in discussing combinatorial optimization problems and techniques.

We start with the Set Partitioning Problem. We will illustrate this with an old example from computational folklore: we are to partition the integers from 1 to 100
into two sets of 50, such that the sums of the square roots in each set are as close to equal as possible.

There are various ways to set this up as a problem for NMinimize. We will show two of them. First we will utilize a simple way of choosing 50 elements from a
set of 100. We will use 100 real values, all between 0 and 1. (Note that we are using continuous variables even though the problem itself involves a discrete set.)
We take their relative positions as defining a permutation of the integers from 1 to 100. A variant of this approach to decoding permutations is described in [5, 4].

In more detail: their sorted ordering (obtained, in our code, from the Mathematica Ordering function) determines which is to be regarded as first, which as
second, and so on. As this might be confusing, we illustrate the idea on a smaller set of six values. We begin with our range of integers from 1 to 6.

smallset = Range@6D

81, 2, 3, 4, 5, 6<

Now suppose we also have a set of six real values between 0 and 1.

vals = RandomReal@1, 86<D

80.131973, 0.80331, 0.28323, 0.694475, 0.677346, 0.255748<

We use this second set of values to split smallset into two subsets of three, simply by taking as one such subset the elements with positions corresponding to
those of the three smallest member of vals. The complementary subset would therefore be the elements with positions corresponding to those of the three largest
members of vals. One can readily see (and code below will confirm) that the three smallest elements of vals, in order of increasing size, are the first, sixth, and
third elements.

Ordering@valsD

81, 6, 3, 5, 4, 2<

We split this into the positions of the three smallest, and those of the three largest, as below.

8smallindices , largeindices< = 8Take@ð, 3D, Drop@ð, 3D< &@Ordering@valsDD

881, 6, 3<, 85, 4, 2<<

We now split smallset according to these two sets of indices. Because it is simply the values one through six, the subsets are identical to their positions.

8s1, s2< = Map@smallset@@ðDD &, 8smallindices , largeindices<D

881, 6, 3<, 85, 4, 2<<

The same idea applies to splitting any set of an even number of elements (small modifications could handle an odd number, or a split into subsets of unequal
lengths).

With this at hand we are now ready to try our first method for attacking this problem.

Set partitioning via relative position indexing
Here is the code we actually use to split our 100 integers into two sets of indices.

Outline of splitRange

1. Input: a vector of real numbers, of even length.

2. Return the positions of the smaller half of elements, followed by those of the larger half.

splitRange@vec_D := With@8newvec = Ordering@vecD, halflen = Floor@Length@vecD � 2D<,
8Take@newvec, halflenD, Drop@newvec, halflenD<D

Just to see that it works as advertised, we use it to replicate the result from our small example above.

5

splitRange@valsD

881, 6, 3<, 85, 4, 2<<

Once we have a way to associate a pair of subsets to a given set of 100 values in the range from 0 to 1, we form our objective function. A convenient choice is
simply an absolute value of a difference; this is often the case in optimization problems. We remark that squares of differences are also commonly used, particularly
when the optimization method requires differentiability with respect to all program variables. This is not an issue for Differential Evolution, as it is a derivative−
free optimization algorithm.

Here is an outline of the objective function, followed by the actual code.

Outline of spfun

1. Input: a vector of real numbers, of even length.

2. Use splitRange to find positions of the smaller half of elements, and the positions of the larger half.

3. Sum the square roots of the first set of positions, and likewise sum the square roots of the second set.

4. Return the absolute value of the difference of those two sums.

spfun@vec :8__Real<D :=
With@8vals = splitRange@vecD<,
Abs@HApply@Plus, Sqrt@N@First@valsDDDD - Apply@Plus, Sqrt@N@Last@valsDDDDLDD

It may be a bit difficult to see what this does, so we illustrate again on our small example. Supposing we have split smallset into two subsets as above, what is
the value of the objective function? Well, what we do is take the first, sixth, and third elements, add their square roots, and do likewise with the fifth, fourth, and
second elements. We subtract one of these sums from the other and take the absolute value of this difference. For speed we do all of this in machine precision
arithmetic. In exact form it would be:

sqrts = Sqrt@splitRange@valsDD
sums = Total@sqrts, 82<D
sumdifference = Apply@Subtract, sumsD
abssummdiffs = Abs@sumdifferenceD
approxabs = N@abssummdiffsD

991, 6 , 3 =, 9 5 , 2, 2 ==

91 + 3 + 6 , 2 + 2 + 5 =

-1 - 2 + 3 - 5 + 6

1 + 2 - 3 + 5 - 6

0.468741

As a check of consistency, observe that this is just what we get from evaluating our objective function on vals.

spfun@valsD

0.468741

We now put these components together into a function that provides our set partition.

Outline of getHalfSet

1. Input: An even integer n, and options to pass along to NMinimize.

2. Create a list of variables, vars, of length n.

3. Set up initial ranges that the variables all lie between 0 and 1 (these are not hard constraints but just tell NMinimize where to take random initial values).

4. Call NMinimize, passing it obfun[vars] as objective function.

5. Return the minimum value found, and the two complementary subsets of the original integer set 81,¼, n< that give rise to this value.

getHalfSet@n_, opts___RuleD := Module@8vars, xx, ranges, nmin, vals<,
vars = Array@xx, nD;
ranges = Map@8ð, 0, 1< &, varsD;
8nmin, vals< = NMinimize@spfun@varsD, ranges, optsD;
8nmin, Map@Sort, splitRange@vars �. valsDD<D

6

As in previous examples, we explicitly set the method so that we can more readily pass it nondefault method−specific options. Finally, we set this to run many
iterations with a lot of search points. Also we turn off post−processing. Why do we care about this? Well, observe that our variables are not explicitly integer
valued. We are in effect fooling NMinimize into doing a discrete (and in fact combinatorial) optimization problem, without explicit use of discrete variables.
Hence default heuristics are likely to conclude that we should attempt a "local" optimization from the final configuration produced by the differential evolution
code. This will almost always be unproductive, and can take considerable time. So we explicitly disallow it. Indeed, if we have the computation time to spend, we
are usually better off increasing our number of generations, or the size of each generation, or both.

Timing@
8min, 8s1, s2<< =
getHalfSet@100,
Method ® 8DifferentialEvolution , CrossProbability® .8, SearchPoints ® 100,

PostProcess ® False<, MaxIterations ® 10 000DD

92134.42,
92.00622 ´ 10-7, 881, 2, 4, 6, 7, 11, 13, 15, 16, 17, 19, 21, 23, 25, 26, 27, 31, 34,

37, 41, 43, 44, 45, 47, 50, 51, 52, 54, 56, 66, 67, 69, 72, 73,
75, 77, 78, 79, 80, 86, 87, 88, 89, 90, 91, 93, 96, 97, 98, 100<,
83, 5, 8, 9, 10, 12, 14, 18, 20, 22, 24, 28, 29, 30, 32, 33, 35, 36,
38, 39, 40, 42, 46, 48, 49, 53, 55, 57, 58, 59, 60, 61, 62, 63,

64, 65, 68, 70, 71, 74, 76, 81, 82, 83, 84, 85, 92, 94, 95, 99<<==

We obtain a fairly small value for our objective function. I do not know what is the actual global minimum, and the interested reader might wish to take up this
problem with an eye toward obtaining a better result.

A reasonable question to ask is how would one know, or even suspect, where to set the CrossProbability parameter? A method I find useful is to do "tuning
runs". What this means is we do several runs with a relatively small set of search points and a fairly low bound on the number of generations (the
MaxIterations option setting, in NMinimize). Once we have a feel for which values seem to be giving better results, we use them in the actual run with
options settings at their full values. Suffice it to say that this approach is far from scientific. About the best one can say is that, while it is not obviously fantastic, it
is also not obviously bad. Note that this sort of situation happens often in engineering, and that is why one can make nice incremental improvements to a technology
such as optimization.

Set partitioning via knapsack approach
Another approach to this problem is as follows. We take the full set and pick 100 corresponding random integer values that are either 0 or 1. An element in the set is
put into one or the other subset according to the value of the bit corresponding to that element. For this to give an even split we also must impose a constraint that
the size of each subset is half the total size. To get an idea of what these constraints are, we show again on our small example of size six.

vars = Array@x, 6D;
ranges = Map@H0 <= ð <= 1L &, varsD;
Join@ranges, 8Element@vars, IntegersD, Apply@Plus, varsD � 3<D

80 £ x@1D £ 1, 0 £ x@2D £ 1, 0 £ x@3D £ 1, 0 £ x@4D £ 1, 0 £ x@5D £ 1,
0 £ x@6D £ 1, Hx@1D x@2D x@3D x@4D x@5D x@6DL Î Integers,
x@1D + x@2D + x@3D + x@4D + x@5D + x@6D � 3<

We are now ready to define our new objective function.

Outline of spfun2

1. Input: a vector of integers, of even length n. All entries are 0 or 1.

2. Convert every 0 to −1.

3. Form a list of square roots of the integers in 81,¼, n<.

4. Multiply, componentwise, with the list of ones and negative ones.

5. Return the absolute value of the sum from step (4).

spfun2@vec :8__Integer<D := Abs@H2 * vec - 1L.Sqrt@N@Range@Length@vecDDDDD

Again we use our small example. What would our objective function be if the vector has ones in the first two and last places, and zeros in the middle three? First we
find the exact value.

exactval =
Abs@Total@Sqrt@smallset@@81, 6, 3<DDDD - Total@Sqrt@smallset@@85, 4, 2<DDDDD

N@exactvalD

1 + 2 - 3 + 5 - 6

0.468741

7

We see that, as expected, this agrees with our objective function.

spfun2@81, 0, 1, 0, 0, 1<D

0.468741

With this knowledge it is now reasonably straightforward to write the code that will perform our optimization. We create a set of variables, one for each element in
the set. We constrain the variables to take on values that are either 0 or 1, and such that the sum is exactly half the cardinality of the set (that is, 100/2, or 50, in the
example of interest to us). Since we force variables to be integer valued, NMinimize will automatically use DifferentialEvolution for its method. Again,
we might still wish to explicitly request it so that we can set option to nondefault values.

Outline of getHalfSet2

1. Input: An even integer n, and options to pass along to NMinimize.

2. Create a list of variables, vars, of length n.

3. Set up constraints.

a. All variables lie between 0 and 1.

b. All variables are integers.

c. Their total is
n

2
.

4. Call NMinimize, passing it spfun2[vars] as objective function, along with the constraints and the option settings that were input.

5. Return the minimum value found, and the two complementary subsets of the original integer set 81,¼, n< that give rise to this value.

getHalfSet2@n_, opts___D := Module@
8vars, x, nmin, vals, ranges, s1<,
vars = Array@x, nD;
ranges = Map@H0 £ ð £ 1L &, varsD;
8nmin, vals< =
NMinimize@
8spfun2@varsD, Join@ranges, 8Element@vars, IntegersD, Total@varsD � n � 2<D<,
vars, optsD;

s1 = Select@Inner@Times, Range@nD, Hvars �. valsL, ListD, ð ¹ 0 &D;
8nmin, 8s1, Complement@Range@nD, s1D<<

D

Timing@8min, 8s1, s2<< = getHalfSet2@100, MaxIterations ® 1000,
Method ® 8DifferentialEvolution , CrossProbability® .8, SearchPoints ® 100<DD

81732.97,
80.000251303, 881, 4, 5, 7, 12, 13, 14, 15, 16, 19, 20, 22, 23, 31, 32, 36, 37, 38,

41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 55, 59, 60, 62, 65,
66, 71, 73, 78, 79, 83, 84, 87, 88, 89, 90, 91, 94, 97, 99, 100<,
82, 3, 6, 8, 9, 10, 11, 17, 18, 21, 24, 25, 26, 27, 28, 29, 30, 33, 34,
35, 39, 40, 48, 53, 54, 56, 57, 58, 61, 63, 64, 67, 68, 69, 70,
72, 74, 75, 76, 77, 80, 81, 82, 85, 86, 92, 93, 95, 96, 98<<<<

We check that we have a valid partition (both sets of equal size). This is important because some constraints are enforced internally via penalties, and thus might be
violated.

Length@s1D == Length@s2D

True

One unfamiliar with the subject might well ask what this has to do with knapsacks. The gist is as follows. A Knapsack Problem involves taking, or not taking, an
element from a given set, and attempting to optimize some condition that is a function of those elements taken. There is a large body of literature devoted to such
problems, as they subsume the Integer Linear Programming Problem (in short, linear program, but with variables constrained to be integer valued). It is a pleasant
quality of Differential Evolution that it can be adapted to such problems.

Discussion of the two methods
The second method we showed is a classical approach in integer linear programming. One uses a set of variables constrained to be either 0 or 1 (that is, binary
variables). We constrain their sum so that we achieve a particular goal, in this case it is that exactly half be put into one of the two subsets. Positions of zeros or
ones determine which of two complementary subsets receives elements of the parent set.

The first method, which seemed to work better for Differential Evolution (at least with parameter settings we utilized) is less common. It is a bit mysterious, in that
we use the ordering of an ensemble of reals to determine placement of individual elements of a set. This implies a certain nonlocality in that a change to one value
can have a big effect on the interpretation of other entries. This is because it is their overall sorted ordering, and not individual values, that gets used by the
objective function. Though it is not obvious that this would be useful, we saw in this example that we can get a reasonably good result.

8

We will encounter the second method later in these notes, applied to an example of some practical significance.

Minimal covering of a set by subsets
The problem below was once posed in the Usenet news group comp.soft−sys.math.mathematica. It is an archetypical example of the classical subset covering
problem. In this example we are given a set of sets, each containing integers between 1 and 64. Their union is the set of all integers in that range, and we want to
find a set of 12 subsets that covers that entire range. In general we would want to find a set of subsets of minimal cardinality; this is an instance where we know in
advance that that cardinality is 12.

subsets = 881, 2, 4, 8, 16, 32, 64<, 82, 1, 3, 7, 15, 31, 63<, 83, 4, 2, 6, 14, 30, 62<,
84, 3, 1, 5, 13, 29, 61<, 85, 6, 8, 4, 12, 28, 60<, 86, 5, 7, 3, 11, 27, 59<,
87, 8, 6, 2, 10, 26, 58<, 88, 7, 5, 1, 9, 25, 57<, 89, 10, 12, 16, 8, 24, 56<,
810, 9, 11, 15, 7, 23, 55<, 811, 12, 10, 14, 6, 22, 54<, 812, 11, 9, 13, 5, 21, 53<,
813, 14, 16, 12, 4, 20, 52<, 814, 13, 15, 11, 3, 19, 51<, 815, 16, 14, 10, 2, 18, 50<,
816, 15, 13, 9, 1, 17, 49<, 817, 18, 20, 24, 32, 16, 48<, 818, 17, 19, 23, 31, 15, 47<,
819, 20, 18, 22, 30, 14, 46<, 820, 19, 17, 21, 29, 13, 45<,
821, 22, 24, 20, 28, 12, 44<, 822, 21, 23, 19, 27, 11, 43<,
823, 24, 22, 18, 26, 10, 42<, 824, 23, 21, 17, 25, 9, 41<, 825, 26, 28, 32, 24, 8, 40<,
826, 25, 27, 31, 23, 7, 39<, 827, 28, 26, 30, 22, 6, 38<, 828, 27, 25, 29, 21, 5, 37<,
829, 30, 32, 28, 20, 4, 36<, 830, 29, 31, 27, 19, 3, 35<, 831, 32, 30, 26, 18, 2, 34<,
832, 31, 29, 25, 17, 1, 33<, 833, 34, 36, 40, 48, 64, 32<,
834, 33, 35, 39, 47, 63, 31<, 835, 36, 34, 38, 46, 62, 30<,
836, 35, 33, 37, 45, 61, 29<, 837, 38, 40, 36, 44, 60, 28<,
838, 37, 39, 35, 43, 59, 27<, 839, 40, 38, 34, 42, 58, 26<,
840, 39, 37, 33, 41, 57, 25<, 841, 42, 44, 48, 40, 56, 24<,
842, 41, 43, 47, 39, 55, 23<, 843, 44, 42, 46, 38, 54, 22<,
844, 43, 41, 45, 37, 53, 21<, 845, 46, 48, 44, 36, 52, 20<,
846, 45, 47, 43, 35, 51, 19<, 847, 48, 46, 42, 34, 50, 18<,
848, 47, 45, 41, 33, 49, 17<, 849, 50, 52, 56, 64, 48, 16<,
850, 49, 51, 55, 63, 47, 15<, 851, 52, 50, 54, 62, 46, 14<,
852, 51, 49, 53, 61, 45, 13<, 853, 54, 56, 52, 60, 44, 12<,
854, 53, 55, 51, 59, 43, 11<, 855, 56, 54, 50, 58, 42, 10<,
856, 55, 53, 49, 57, 41, 9<, 857, 58, 60, 64, 56, 40, 8<, 858, 57, 59, 63, 55, 39, 7<,
859, 60, 58, 62, 54, 38, 6<, 860, 59, 57, 61, 53, 37, 5<, 861, 62, 64, 60, 52, 36, 4<,
862, 61, 63, 59, 51, 35, 3<, 863, 64, 62, 58, 50, 34, 2<, 864, 63, 61, 57, 49, 33, 1<<;

We do a brief check that the union of the subset elements is indeed the set of integers from 1 through 64.

Union@Flatten@subsetsDD � Range@64D

True

An ad hoc approach to subset covering
We will set up our objective function as follows. We represent a set of 12 subsets of this master set by a set of 12 integers in the range from 1 to the number of
subsets (which in this example is, coincidently, also 64). This set is allowed to contain repetitions. Our objective function to minimize will be based on how many
elements from 1 through 64 are "covered". Specifically it will be 2 raised to the #(elements not covered) power. The code below does this.

Outline of scfun

1. Input: a vector V of integers, a set S of subsets, and an integer n to denote the range of integers 81,¼, n<.

2. Compute U, the union of elements contained in the subsets Sj , for all j Î V.

3. Calculate c, the cardinality of the complement of our initial range by U.

a. More succinctly this is ¤ 81,¼, n< - U¤, where subtraction is taken to mean set complement, and ¤S¤ denotes the cardinality of S.

4. Return 2c.

scfun@n : 8___Integer<, set_, mx_IntegerD :=
2^Length@Complement@Range@mxD, Union@Flatten@set@@nDDDDDD

This may be a bit elusive. We will examine its behavior on a specific set of subsets. Suppose we take the first 12 of our subsets.

first12 = Take@subsets, 12D

881, 2, 4, 8, 16, 32, 64<, 82, 1, 3, 7, 15, 31, 63<, 83, 4, 2, 6, 14, 30, 62<,
84, 3, 1, 5, 13, 29, 61<, 85, 6, 8, 4, 12, 28, 60<, 86, 5, 7, 3, 11, 27, 59<,
87, 8, 6, 2, 10, 26, 58<, 88, 7, 5, 1, 9, 25, 57<, 89, 10, 12, 16, 8, 24, 56<,
810, 9, 11, 15, 7, 23, 55<, 811, 12, 10, 14, 6, 22, 54<, 812, 11, 9, 13, 5, 21, 53<<

9

Their union is

elementsinfirst12 = Union@Flatten@first12DD

81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64<

Our objective function for this set of subsets raises 2 to the power that is the cardinality of the set of integers 1 through 64 complemented by this set. So how many
elements does this union miss?

missed = Complement@Range@64D, elementsinfirst12D
Length@missedD

817, 18, 19, 20, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52<

24

2^Length@missedD

16 777216

Does this agree with the function we defined above? Indeed it does.

scfun@Range@12D, subsets, 64D

16 777216

We now give outline and code to find a set of spanning subsets.

Outline of spanningSets

1. Input: a set S of m subsets, an integer k specifying how many we are to use for our cover, and option values to pass to NMinimize. We assume the union of
all subsets covers some range 81,¼, n<.

2. Create a vector of k variables.

3. Set up constraints.

a. All variables are between 1 and m.

b. All variables are integer valued.

4. Call NMinimize, using the constraints and scfun as defined above, along with option settings.

5. Return the minimal value (which we want to be 1, in order that there be full coverage), and the list of positions denoting which subsets we used in the cover.

spanningSets@set_, nsets_, iter_, sp_, cp_D :=
Module@8vars, rnges, max= Length@setD, nmin, vals<,
vars = Array@xx, nsetsD;
rnges = Map@H1 £ ð £ maxL &, varsD;
8nmin, vals< =
NMinimize@8scfun@vars, set, maxD, Append@rnges, Element@vars, IntegersDD<,
vars, MaxIterations® iter,
Method ® 8DifferentialEvolution , SearchPoints® sp, CrossProbability ® cp<D;

vals = Union@vars �. valsD;
8nmin, vals<D

In small tuning runs I found that a fairly high crossover probability setting seemed to work well.

Timing@8min, sets< = spanningSets@subsets, 12, 700, 200, .94DD
Length@Union@Flatten@subsets@@setsDDDDD

8365.099, 81., 81, 7, 14, 21, 24, 28, 34, 35, 47, 52, 54, 57<<<

64

While this is not lightning fast, we do obtain a good result in a few minutes of run time.

10

Subset covering via knapsack formulation
Another method is to cast this as a standard knapsack problem. First we transform each of our set of subsets into a bit vector representation. In this form each subset
is represented by a positional list of zeros and ones. In effect we are translating from a sparse to a dense representation.

Outline of densevec

1. Input: a set S of integers and a length n. It is assumed that the members of S all lie in 81,¼, n<.

2. Create a vector V of length n.

a. Initialize all elements to be 0.

3. Loop: For each j Î S, set the jth element of V to be 1.

4. Return V .

densevec@spvec_, len_D := Module@8vec = Table@0, 8len<D<,
Do@vec@@spvec@@jDDDD = 1, 8j, Length@spvecD<D;
vecD

We now apply this function to each member of our set of subsets, that is, make a dense representation of each subset.

mat = Map@densevec@ð, 64D &, subsetsD;

It might not be obvious what we have done, so we illustrate using the fourth of our 64 matrix rows.

mat@@4DD

81, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0<

We have ones at positions that correspond to the elements contained in our fourth subset, and zeros elsewhere. Specifically, the ones are at the positions shown
below.

Flatten@Position@mat@@4DD, 1DD

81, 3, 4, 5, 13, 29, 61<

But this is, up to ordering, exactly the elements in the fourth subset. That is to say, we pass a basic consistency check.

Sort@subsets@@4DDD

81, 3, 4, 5, 13, 29, 61<

As in our last knapsack problem, we again work with binary variables and minimize their sum, subject to certain constraints. We use a binary variable to represent
each subset. A one means we use that subset in our set cover, and a zero means we do not. Let us consider the vector of those zeros and ones. Now our requirement
is that we fully cover the superset, that is, the range of integers from 1 to 64.

How might we impose this? Well, let us take a look at the dot product of such a vector with the matrix of bit vectors that we already formed. Again we use as an
example the first 12 subsets, so our vector representing this has ones in the first 12 slots, and zeros in the remaining 64−12=52 slots.

first12vec = Join@ConstantArray@1, 12D, ConstantArray@0, 52DD

81, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0,
0, 0<

What does the dot product of this vector with our matrix of bit vectors represent? Well, let’s consider the meaning of this matrix for a moment. A one in row j,

column k means that subset j contains element k. One then realizes that the dot product gives us the following information. The kth element in the result will be a

nonnegative number (possibly zero), and represent the number of times that k appears in the union of subsets represented by first12vec. So the condition we
will need to impose in our optimization is that the dot product of this vector with our matrix of bitvectors has all positive entries. Notice that first12vec fails to
satisfy this condition.

first12vec .mat

84, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 2, 2, 2, 2, 0, 0, 0,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1<

Outline of spanningSets2

1.

11

1.

Input: a set S of m subsets (each now represented as a bit vector), and option values to pass to NMinimize. We assume the union of all subsets covers some
range 81,¼, n<.

2. Create a vector of m variables, vars.

3. Set up constraints.

a. All variables lie between 0 and 1.

b. All variables are integer valued.

c. The union of subsets corresponding to variables with value of 1 covers the full range 81,¼, n<.

i. This is done by checking that each elements of S.vars is greater or equal to 1.

4. Call NMinimize to minimize the sum of vars, subject to the above constraints, using the input option settings.

5. Return the minimal value and the list of positions denoting which subsets we used in the cover.

spanningSets2@set_, iter_, sp_, seed_, cp_: .5D :=
Module@8vars, rnges, max= Length@setD, nmin, vals<,
vars = Array@xx, maxD;
rnges = Map@H0 £ ð £ 1L &, varsD;
8nmin, vals< =
NMinimize@8Apply@Plus, varsD, Join@rnges, 8Element@vars, IntegersD<,

Thread@vars.set ³ Table@1, 8max<DDD<, vars, MaxIterations® iter,
Method ® 8DifferentialEvolution , CrossProbability® cp, SearchPoints ® sp,

RandomSeed ® seed<D;
vals = vars �. vals;
8nmin, vals<D

Timing@8min, sets< = spanningSets2@mat, 2000, 100, 0, .9DD

81930.4 Second,
812., 80, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,

1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1<<<

We have again obtained a result that uses 12 subsets. We check that it covers the entire range.

Total@Map@Min@ð, 1D &, sets.matDD

64

We see that this method was much slower. Experience indicates that it needs a lot of iterations and careful setting of the CrossProbability option. So at
present NMinimize has difficulties with this formulation. All the same it is encouraging to realize that one may readily set this up as a standard knapsack problem,
and still hope to solve it using Differential Evolution. Moreover, as the alert reader may have observed, we actually had an added benefit from using this method:
nowhere did we need to assume that minimal coverings require 12 subsets.

An assignment problem
Our next example is a benchmark from the literature of discrete optimization [17]. We are given two square matrices. We want a permutation that, when applied to
the rows and columns of the second matrix, multiplied element−wise with corresponding elements of the first, and all elements summed, gives a minimum value.
The matrices we use have 25 rows. This particular example is known as the NUG25 problem. It is an example of a Quadratic Assignment Problem (QAP). The
optimal result is known and was verified by a large parallel computation. We mention that the methods of handling this problem can, with minor modification, be
applied to related problems that require the selecting of a permutation (for example, the traveling salesman problem).

12

mat1 = 880, 1, 2, 3, 4, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8<,
81, 0, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 4, 5, 6, 5, 4, 5, 6, 7<,
82, 1, 0, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 4, 5, 6, 5, 4, 5, 6<,
83, 2, 1, 0, 1, 4, 3, 2, 1, 2, 5, 4, 3, 2, 3, 6, 5, 4, 3, 4, 7, 6, 5, 4, 5<,
84, 3, 2, 1, 0, 5, 4, 3, 2, 1, 6, 5, 4, 3, 2, 7, 6, 5, 4, 3, 8, 7, 6, 5, 4<,
81, 2, 3, 4, 5, 0, 1, 2, 3, 4, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7<,
82, 1, 2, 3, 4, 1, 0, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 4, 5, 6<,
83, 2, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 4, 5<,
84, 3, 2, 1, 2, 3, 2, 1, 0, 1, 4, 3, 2, 1, 2, 5, 4, 3, 2, 3, 6, 5, 4, 3, 4<,
85, 4, 3, 2, 1, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 6, 5, 4, 3, 2, 7, 6, 5, 4, 3<,
82, 3, 4, 5, 6, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6<,
83, 2, 3, 4, 5, 2, 1, 2, 3, 4, 1, 0, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 3, 4, 5<,
84, 3, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 3, 4<,
85, 4, 3, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 0, 1, 4, 3, 2, 1, 2, 5, 4, 3, 2, 3<,
86, 5, 4, 3, 2, 5, 4, 3, 2, 1, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 6, 5, 4, 3, 2<,
83, 4, 5, 6, 7, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 1, 2, 3, 4, 5<,
84, 3, 4, 5, 6, 3, 2, 3, 4, 5, 2, 1, 2, 3, 4, 1, 0, 1, 2, 3, 2, 1, 2, 3, 4<,
85, 4, 3, 4, 5, 4, 3, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 2, 3<,
86, 5, 4, 3, 4, 5, 4, 3, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 0, 1, 4, 3, 2, 1, 2<,
87, 6, 5, 4, 3, 6, 5, 4, 3, 2, 5, 4, 3, 2, 1, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1<,
84, 5, 6, 7, 8, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4<,
85, 4, 5, 6, 7, 4, 3, 4, 5, 6, 3, 2, 3, 4, 5, 2, 1, 2, 3, 4, 1, 0, 1, 2, 3<,
86, 5, 4, 5, 6, 5, 4, 3, 4, 5, 4, 3, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 0, 1, 2<,
87, 6, 5, 4, 5, 6, 5, 4, 3, 4, 5, 4, 3, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 0, 1<,
88, 7, 6, 5, 4, 7, 6, 5, 4, 3, 6, 5, 4, 3, 2, 5, 4, 3, 2, 1, 4, 3, 2, 1, 0<<;

mat2 = 880, 3, 2, 0, 0, 10, 5, 0, 5, 2, 0, 0, 2, 0, 5, 3, 0, 1, 10, 0, 2, 1, 1, 1, 0<,
83, 0, 4, 0, 10, 0, 0, 2, 2, 1, 5, 0, 0, 0, 0, 0, 1, 6, 1, 0, 2, 2, 5, 1, 10<,
82, 4, 0, 3, 4, 5, 5, 5, 1, 4, 0, 4, 0, 4, 0, 3, 2, 5, 5, 2, 0, 0, 3, 1, 0<,
80, 0, 3, 0, 0, 0, 2, 2, 0, 6, 2, 5, 2, 5, 1, 1, 1, 2, 2, 4, 2, 0, 2, 2, 5<,
80, 10, 4, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 5, 0, 2, 1, 0, 2<,
810, 0, 5, 0, 2, 0, 10, 10, 5, 10, 6, 0, 0, 10, 2, 10, 1, 5, 5, 2, 5, 0, 2, 0, 1<,
85, 0, 5, 2, 0, 10, 0, 1, 3, 5, 0, 0, 2, 4, 5, 10, 6, 0, 5, 5, 5, 0, 5, 5, 0<,
80, 2, 5, 2, 0, 10, 1, 0, 10, 2, 5, 2, 0, 3, 0, 0, 0, 4, 0, 5, 0, 5, 2, 2, 5<,
85, 2, 1, 0, 0, 5, 3, 10, 0, 5, 6, 0, 1, 5, 5, 5, 2, 3, 5, 0, 2, 10, 10, 1, 5<,
82, 1, 4, 6, 0, 10, 5, 2, 5, 0, 0, 1, 2, 1, 0, 0, 0, 0, 6, 6, 4, 5, 3, 2, 2<,
80, 5, 0, 2, 0, 6, 0, 5, 6, 0, 0, 2, 0, 4, 2, 1, 0, 6, 2, 1, 5, 0, 0, 1, 5<,
80, 0, 4, 5, 0, 0, 0, 2, 0, 1, 2, 0, 2, 1, 0, 3, 10, 0, 0, 4, 0, 0, 4, 2, 5<,
82, 0, 0, 2, 0, 0, 2, 0, 1, 2, 0, 2, 0, 4, 5, 0, 1, 0, 5, 0, 0, 0, 5, 1, 1<,
80, 0, 4, 5, 0, 10, 4, 3, 5, 1, 4, 1, 4, 0, 0, 0, 2, 2, 0, 2, 5, 0, 5, 2, 5<,
85, 0, 0, 1, 2, 2, 5, 0, 5, 0, 2, 0, 5, 0, 0, 2, 0, 0, 0, 6, 3, 5, 0, 0, 5<,
83, 0, 3, 1, 0, 10, 10, 0, 5, 0, 1, 3, 0, 0, 2, 0, 0, 5, 5, 1, 5, 2, 1, 2, 10<,
80, 1, 2, 1, 0, 1, 6, 0, 2, 0, 0, 10, 1, 2, 0, 0, 0, 5, 2, 1, 1, 5, 6, 5, 5<,
81, 6, 5, 2, 2, 5, 0, 4, 3, 0, 6, 0, 0, 2, 0, 5, 5, 0, 4, 0, 0, 0, 0, 5, 0<,
810, 1, 5, 2, 0, 5, 5, 0, 5, 6, 2, 0, 5, 0, 0, 5, 2, 4, 0, 5, 4, 4, 5, 0, 2<,
80, 0, 2, 4, 5, 2, 5, 5, 0, 6, 1, 4, 0, 2, 6, 1, 1, 0, 5, 0, 4, 4, 1, 0, 2<,
82, 2, 0, 2, 0, 5, 5, 0, 2, 4, 5, 0, 0, 5, 3, 5, 1, 0, 4, 4, 0, 1, 0, 10, 1<,
81, 2, 0, 0, 2, 0, 0, 5, 10, 5, 0, 0, 0, 0, 5, 2, 5, 0, 4, 4, 1, 0, 0, 0, 0<,
81, 5, 3, 2, 1, 2, 5, 2, 10, 3, 0, 4, 5, 5, 0, 1, 6, 0, 5, 1, 0, 0, 0, 0, 0<,
81, 1, 1, 2, 0, 0, 5, 2, 1, 2, 1, 2, 1, 2, 0, 2, 5, 5, 0, 0, 10, 0, 0, 0, 2<,
80, 10, 0, 5, 2, 1, 0, 5, 5, 2, 5, 5, 1, 5, 5, 10, 5, 0, 2, 2, 1, 0, 0, 2, 0<<;

First we define a function to permute rows and columns of a matrix. It simply rearranges the matrix so that both rows and columns are reordered according to a
given permutation.

Outline of permuteMatrix

1. Input: a square matrix M and a permutation P of the set 81,¼, n<, where n is the dimension of M.

2. Form M
�

, the matrix obtained by rearranging rows and columns of M as specified by P.

3. Return M
�

.

permuteMatrix@mat_, perm_D := mat@@perm, permDD

We use a small matrix to see how this works.

13

MatrixForm@mat = Array@x, 84, 4<DD

x@1, 1D x@1, 2D x@1, 3D x@1, 4D
x@2, 1D x@2, 2D x@2, 3D x@2, 4D
x@3, 1D x@3, 2D x@3, 3D x@3, 4D
x@4, 1D x@4, 2D x@4, 3D x@4, 4D

Now we move rows/columns (4,1,3,2) to positions (1,2,3,4), and observe the result.

MatrixForm@permuteMatrix@mat, 84, 1, 2, 3<DD

x@4, 4D x@4, 1D x@4, 2D x@4, 3D
x@1, 4D x@1, 1D x@1, 2D x@1, 3D
x@2, 4D x@2, 1D x@2, 2D x@2, 3D
x@3, 4D x@3, 1D x@3, 2D x@3, 3D

Let us return to the NUG25 problem. Below is an optimal permutation (it is not unique). We remark that the computation that verified the optimality took substan−
tial time and parallel resources.

p = 85, 11, 20, 15, 22, 2, 25, 8, 9, 1, 18, 16, 3, 6, 19, 24, 21, 14, 7, 10, 17,
12, 4, 23, 13<;

We compute the objective function value we obtain from this permutation. As a sort of baseline, we show the result one obtains from applying no permutation. We
then compute results of applying several random permutations. This gives some idea of how to gauge the results below.

best = Total@Flatten@mat1 * permuteMatrix@mat2, pDDD
baseline = Total@Flatten@mat1 * mat2DD
randomvals = Table@

perm = Ordering@RandomReal@80, 1<, 825<DD;
Apply@Plus, Flatten@mat1 * permuteMatrix@mat2, permDDD,
810<D

3744

4838

84858, 5012, 5380, 5088, 4782, 4994, 5032, 5044, 5088, 5094<

A substantially longer run over random permutations gives an indication of how hard it is to get good results via a naive random search.

SeedRandom@1111D;
Timing@randomvals = Table@

perm = Ordering@RandomReal@80, 1<, 825<DD;
Total@Flatten@mat1 * permuteMatrix@mat2, permDDD,
81 000 000<D;D

Min@randomvalsD

4284

8449.06, Null<

Relative position indexing for permutations
We must decide how to make a set of values into a permutation. Our first approach is nearly identical to the ensemble order method we used on the set partition
problem. Specifically, we will let the Ordering function of a set of real values determine a permutation.

Outline of QAP

1. Input: square matrices M1 and M2 each of dimensionn, along with parameter settings to pass to NMinimize.

2. Form a vector of variables of length n.

a. Give them initial ranges from 0 to 1.

3. Form an objective function that sums the n2 products of elements of the first matrix and elements of the row−and−column permuted second matrix.

a. The permutation is determined by the ordering of values of the variables vector. (Remark: some readers might recognize this as a matrix inner product
computed via the matrix trace of the usual matrix product).

b.

14

b.

For improved speed (at the cost of memory) we memoize values of the objective function. What that means is we record them once computed, so that
recomputation is done by fast lookup. Readers familiar with data structure methods will recognize this as an application of hashing.

4. Call NMinimize on the objective function, using the above ranges, constraints, and input option settings.

5. Return the minimal value found, along with the permutation that gives rise to that value.

QAP@mat1_, mat2_, cp_, it_, sp_, sc_D :=
Module@8len = Length@mat1D, obfunc, obfunc2, vars, x, nmin, vals, rnges<,
vars = Array@x, lenD;
rnges = Map@8ð, 0, 1< &, varsD;
obfunc@vec :8__Real<D := obfunc2@Ordering@vecDD;
obfunc2@perm_D :=
obfunc2@permD = Total@Flatten@mat1 * permuteMatrix@mat2, permDDD;
8nmin, vals< = NMinimize@obfunc@varsD, rnges,

Method ® 8DifferentialEvolution , SearchPoints® sp, CrossProbability ® cp,
ScalingFactor ® sc, PostProcess ® False<, MaxIterations ® itD;

Clear@obfunc2D;
8nmin, Ordering@vars �. valsD<D

Again we face the issue that this problem requires nonstandard values for options to the DifferentialEvolution method, in order to achieve a reasonable
result. While this is regretable, it is clearly better than having no recourse at all. The idea behind having CrossProbability relatively small is that we do not
want many crossovers in mating a pair of vectors. This in turn is because of the way we define a permutation. In particular it is not just values but relative values
across the entire vector that give us the permutation. Thus disrupting more than a few, even when mating a pair of good vectors, is likely to give a bad vector. This
was also the case with the set partitioning example we encountred earlier.

We saw that the baseline permutation (do nothing) and random permutations tend to be far from optimal, and even a large random sampling will get us only about
half way from baseline to optimal. A relatively brief run with "good" values for the algorithm parameters, on the other hand, yields something notably better. (In the
next subsection we explicitly show how one might use short tuning runs to find such parameter settings.)

SeedRandom@11 111D;
Timing@8min, perm< = QAP@mat1, mat2, .06, 200, 40, .6DD

813.5048, 83864., 822, 20, 17, 12, 5, 13, 15,
23, 25, 2, 19, 10, 9, 8, 4, 1, 7, 6, 16, 18, 24, 21, 14, 3, 11<<<

We now try a longer run.

SeedRandom@11 111D;
Timing@8min, perm< = QAP@mat1, mat2, .06, 4000, 100, .6DD

8394.881, 83884., 815, 20, 19, 10, 13, 22, 1,
16, 7, 4, 9, 25, 6, 23, 12, 8, 11, 21, 14, 17, 5, 2, 18, 3, 24<<<

We learn a lesson here: sometimes a short run is lucky, and a longer one does not fare as well. We will retry with a different crossover, more iterations, and a larger
set of chromosomes.

Timing@8min, perm< = QAP@mat1, mat2, .11, 10 000, 200, .6DD

82186.43, 83826., 85, 2, 18, 11, 4, 12, 25, 8,
14, 24, 17, 3, 16, 6, 21, 20, 23, 9, 7, 10, 22, 15, 19, 1, 13<<<

This result is not bad.

Representing and using permutations as shuffles
The method we now show will generate a permutation as a shuffle of a set of integers. We first describe a standard way to shuffle, with uniform probability, a set of
n elements. First we randomly pick a number j1 in the range 81,¼, n< and, if j1 ¹ 1, we swap the first and j1th elements. We then select at random an element j2 in

the range 82,¼, n<. If j2 ¹ 2 we swap the second and j2th elements. The interested reader can convince him or herself that this indeed gives a uniform random

shuffle (in contrast, selecting all elements in the range 81,¼, n< fails to be uniform).

Our goal, actually, is not directly to generate shuffles, but rather to use them. Each chromosome will represent a shuffle, encoded as above by a set of swaps to
perform. So the effective constraint on the first variable is that it be an integer in the range 81,¼, n<, while the second must be an integer in the range 82,¼, n<, and
so on (small point: we do not actually require an nth variable, since its value must always be n). We will need a utility routine to convert quickly from a shuffle
encoding to a simple permutation vector. The code below will do this. We use the Compile function of Mathematica to get a speed boost.

Outline of getPerm

1. Input: a shuffle S encoded as n - 1 integers in the range81,¼, n<, with the jth actually restricted to lie in the subrange 8 j,¼, n<.

2. Initialize a vector P of length n to be the identity permutation (that is, the ordered list 81,¼, n<).

3. Iterate over S.

a.

15

a.

Swap the jth element of P with the element whose index is the (current) jth element of S.

4. Return P.

getPerm = Compile@88shuffle, _Integer, 1<<,
Module@8perm, len = Length@shuffleD + 1<,
perm = Range@lenD;
Do@perm@@8j, shuffle@@jDD<DD = perm@@8shuffle@@jDD, j<DD, 8j, len- 1<D;
permDD;

Okay, maybe that was a bit cryptic. Here is a brief example that will shed light on this process. Say our shuffle encoding for a set of five elements is 82, 4, 5, 4<.

What would this do to permute the set 81, 2, 3, 4, 5<? First we swap elements 1 and 2, so we have 82, 1, 3, 4, 5<. We next swap elements 2 and 4, giving

82, 4, 3, 1, 5<. Then we swap elements 3 and 5 to obtain 82, 4, 5, 1, 3<. Finally, as the fourth element in our shuffle is a 4, we do no swap. Let us check that we did
indeed get the permutation we claim.

getPerm@82, 4, 5, 4<D

82, 4, 5, 1, 3<

The constraints we would like to enforce are that all chromosome elements be integers, and that the jth such element be between j and the total length inclusive.
The bit of code below will show how we might set up such constraints.

len = 5;
vars = Array@x, len- 1D;
constraints = Prepend@Map@Hð@@1DD £ ð £ lenL &, varsD, Element@vars, IntegersDD

8Hx@1D x@2D x@3D x@4DL Î Integers,
1 £ x@1D £ 5, 2 £ x@2D £ 5, 3 £ x@3D £ 5, 4 £ x@4D £ 5<

There is a small wrinkle. It is often faster not to insist on integrality, but rather to use real numbers and simply round off (or truncate). To get uniform probabilities
initially, using rounding, we constrain so that a given variable is at least its minimal allowed integer value minus 1/2, and at most its maximal integer value plus 1/2.

Without further fuss, we give an outline and code for this optimization approach.

Outline of QAP2

1. Input: square matrices M1 and M2 each of dimension n, along with parameter settings to pass to NMinimize.

2. Form a vector of variables of length n - 1.

a. For j in 81,¼, n - 1< constrain the jth variable to lie in the range 8 j - .499¼, n + 1.499<.

3. Form an objective function that sums the n2 products of elements of the first matrix and elements of the row−and−column permuted second matrix.

a. The variables vector, with entries rounded to nearest integers, may be viewed as a shuffle on a set of n elements. The permutation is determined by
invoking getPerm on the variables vector.

4. Call NMinimize on the objective function, using the above variables, constraints, and input option settings.

5. Return the minimal value found, along with the permutation that gives rise to that value.

QAP2@mat1_, mat2_, cp_, it_, sp_D :=
Module@8len = Length@mat1D - 1, obfunc, vars, x, nmin, vals, constraints<,
vars = Array@x, lenD;
constraints = Map@Hð@@1DD - .499 £ ð £ len + 1.499L &, varsD;
obfunc@vec :8__Real<D :=
Total@Flatten@mat1 * permuteMatrix@mat2, getPerm@Round@vecDDDDD;
8nmin, vals< = NMinimize@8obfunc@varsD, constraints<, vars,

Method ® 8DifferentialEvolution , SearchPoints® sp, CrossProbability ® cp,
PostProcess ® False<, MaxIterations ® it, Compiled ® FalseD;

8nmin, getPerm@Round@vars �. valsDD<D

We show a sample tuning run. We keep the number of iterations and number of chromosomes modest, and try cross probabilities between 0.05 and 0.95, at
increments of .05.

Quiet@Table@8j, First@ QAP2@mat1, mat2, j� 100, 50, 20DD<, 8j, 5, 95, 5<DD

885, 4364.<, 810, 4436.<, 815, 4538.<, 820, 4428.<,
825, 4522.<, 830, 4506.<, 835, 4518.<, 840, 4550.<, 845, 4512.<,
850, 4456.<, 855, 4530.<, 860, 4474.<, 865, 4520.<, 870, 4412.<,
875, 4474.<, 880, 4454.<, 885, 4410.<, 890, 4314.<, 895, 4324.<<

16

From this we home in on the region of the larger values since they seem to be consistently a bit better than other values (it is interesting that this is the opposite of
what I had found for the relative index positioning approach in the previous subsection). We now do larger runs to get a better idea of what are the relative merits of
these various cross probability parameter settings.

Quiet@Table@8j, First@ QAP2@mat1, mat2, j� 100, 80, 20DD<, 8j, 87, 98, 1<DD

8887, 4298.<, 888, 4418.<, 889, 4346.<, 890, 4314.<, 891, 4396.<, 892, 4416.<,
893, 4300.<, 894, 4308.<, 895, 4274.<, 896, 4322.<, 897, 4282.<, 898, 4298.<<

We will finally try a longer run with cross probability set to 0.975.

Quiet@Timing@8min, perm< = QAP2@mat1, mat2, .975, 10 000, 100DDD

82590.27, 83814., 85, 2, 11, 22, 15, 18, 25,
16, 9, 1, 17, 3, 6, 8, 19, 12, 14, 7, 23, 20, 24, 4, 21, 10, 13<<<

This gets us reasonably close to the global minimum with a scant 15 lines of code. While it is mildly more complicated than the 10 line relative position indexing
method, it has the advantage that it is slightly less dependent on fine tuning of the cross probability parameter.

Another shuffle method
There are other plausible ways to set up permutations, such that they behave in a reasonable manner with respect to mutation and mating operations. Here is one
such.

We have for our vector a set of integers from 1 to n, the length of the set in question (again we will actually work with reals, and round off to get integers). The
range restriction is the only stipulation and in particular it may contain repeats. We associate to it a unique permutation as follows. We initialize a list to contain n
zeros. The first element in our list is then set to the first element in the vector. We also have a marker set telling us that that first element is now used. We iterate
over subsequent elements in our list, setting them to the corresponding values in vector provided those values are not yet used. Once done with this iteration we go
through the elements that have no values, assigning them in sequence the values that have not yet been assigned. This method, which is used in [7], is similar to that
of GeneRepair[12]. It is also related to a method of [21], although they explicitly alter the recombination (that is, the genotype) rather than the resulting phenotype.

Outline of getPerm2

1. Input: a shuffle S encoded as n integers in the range81,¼, n<.

2. Create vectors P1 and P2 of length n. The first will be for the permutation we create, and the second will mark as "used" those elements we have encountered.

a. Initialize elements of each to be 0.

3. Loop over S.

a. Denote by k the jth element of S. If the kth element of P2 is 0, this means we have not yet used k in our permutation.

i. Set P2HkL to j to mark it as used.

ii. Set P1H jL to k.

4. Initialize a counter k to 1.

5. Loop over P1.

a. If the jth element, P1H jL, is 0 then it needs to be filled in with a positive integer not yet used.

i. Find smallest k for which P2HkL is 0 (telling us that k is not used as yet in the permutation).

ii. For that k, set P1H jL to be k, and mark P2HkL nonzero (alternatively, could simply increment k so it will not revisit this value).

6. Return P1.

getPerm2 = Compile@88vec, _Integer, 1<<,
Module@8p1, p2, len = Length@vecD, k<, p1 = p2 = Table@0, 8len<D;
Do@k = vec@@jDD;
If@p2@@kDD � 0, p2@@kDD = j;
p1@@jDD = k;D, 8j, len<D;

k = 1;
Do@If@p1@@jDD � 0, While@p2@@kDD ¹ 0, k++D;

p1@@jDD = k;
p2@@kDD = jD, 8j, len<D;

p1DD;

We illustrate with a small example. Say we have the vector 84, 1, 4, 3, 1<. What permutation does this represent? Well, we have a 4 in the first slot, so the resulting
permutation vector starts with 4. Then we have a 1, so that’s the next element in the permutation. Next is a 4, which we have already used. We defer on that slot.
Next is a 3, so the fourth slot in our permutation is 3. last is a 1, which we have already encountered, so we defer on filling in the fifth position of our permutation.
We have completed one pass through the permutation. The entries we were unable to use were in positions 3 and 5. The values not yet used are 2 and 5 (because we
filled in a vector as 84, 1,x, 3, y<, where x and y are not yet known). We now simply use these in order, in the empty slots. That is, entry 3 is 2 and entry 5 is 5. We

obtain as our permutation 84, 1, 2, 3, 5<.

17

getPerm2@84, 1, 4, 3, 1<D

84, 1, 2, 3, 5<

This notion of associating a list with repeats to a distinct shuffle has a clear drawback insofar as earlier elements are more likely than later ones to be assigned to
their corresponding values in the vector. All the same, this provides a reasonable way to make a chromosome vector containing repeats correspond to a permutation
(and once the method has started to produce permutations, mating/mutation will not cause too many repeats provided the crossover probability is either fairly low or
fairly high). Moreover, one can see that any sensible mating process of two chromosomes will less drastically alter the objective function than would be the case in
the ensemble ordering, as the corresponding permutation now depends far less on overall ordering in the chromosomes. The advantage is that this method will thus
be somewhat less in need of intricate tuning for the crossover probability parameter (but we will do that anyway).

Outline of QAP3

1. Input: square matrices M1 and M2 each of dimension n, along with parameter settings to pass to NMinimize.

2. Form a vector of variables of length n.

a. Constrain each variable to lie in the range 8.501¼, n + .499<.

3. Form an objective function that sums the n2 products of elements of the first matrix and elements of the row−and−column permuted second matrix.

a. The variables vector, with entries rounded to nearest integers, may be viewed as a shuffle on a set of n elements. The permutation is determined by
invoking getPerm2 on the variables vector.

4. Call NMinimize on the objective function, using the above variables, constraints, and input option settings.

5. Return the minimal value found, along with the permutation that gives rise to that value.

QAP3@mat1_, mat2_, cp_, it_, sp_D :=
Module@8len = Length@mat1D, obfunc, vars, x, nmin, vals, constraints<,
vars = Array@x, lenD;
constraints = Map@H.501 £ ð £ len + 0.499L &, varsD;
obfunc@vec :8__Real<D :=
Total@Flatten@mat1 * permuteMatrix@mat2, getPerm2@Round@vecDDDDD;
8nmin, vals< = NMinimize@8obfunc@varsD, constraints<, vars,

Method ® 8DifferentialEvolution , SearchPoints® sp, CrossProbability ® cp,
PostProcess ® False<, MaxIterations ® it, Compiled ® FalseD;

8nmin, getPerm2@Round@vars �. valsDD<D

We’ll start with a tuning run.

Quiet@Table@8j, First@ QAP3@mat1, mat2, j� 100, 50, 20DD<, 8j, 5, 95, 5<DD

885, 4486.<, 810, 4498.<, 815, 4464.<, 820, 4492.<,
825, 4430.<, 830, 4516.<, 835, 4482.<, 840, 4396.<, 845, 4432.<,
850, 4472.<, 855, 4548.<, 860, 4370.<, 865, 4460.<, 870, 4562.<,
875, 4398.<, 880, 4466.<, 885, 4378.<, 890, 4426.<, 895, 4354.<<

I did a second run (not shown), in the upper range of crossover probabilities, and with more iterations and larger numbers of search points. It homed in on .93 as a
reasonably good choice for a crossover probability setting.

Timing@Quiet@ QAP3@mat1, mat2, .93, 8000, 100DDD

82380.2, 83888., 87, 20, 11, 8, 13, 4, 25, 10,
19, 18, 17, 22, 6, 3, 5, 15, 24, 14, 23, 21, 1, 16, 2, 12, 9, 26<<<

Hybridizing Differential Evolution for the assignment problem
Thus far we have seen methods that, for a standard benchmark problem from the quadratic assignment literature, take us to within shouting distance of the optimal
value. These methods used simple tactics to formulate permutations from a vector chromosome, and hence could be applied within the framework of Differential
Evolution. We now show a method that hybridizes Differential Evolution with another approach.

A common approach to combinatorial permutation problems is to swap pairs (this is often called 2−opt), or reorder triples, of elements. Also reversal of segments is
common. With Differential Evolution one might do these by modifying the objective function to try them, and then recording the new vector, if we choose to use it,
in the internals of the algorithm. This can be done in NMinimize, albeit via alteration of an undocumented internal variable. We show this below, using a simple
set of pair swaps. When we obtain improvement in this fashion, we have gained something akin to a local hill climbing method. I remark that such hybridization, of
an evolutionary method with a local improvement scheme, is often referred to as a memetic algorithm. Nice expositions of such approaches can be found in [13, 6].

The code creates a random value to decide when to use a swap even if it resulted in no improvement. This can be a useful way to maintain variation in the
chromosome set. We also use a print flag: if set to True, whenever we get an improvement on the current best permutation, we learn what is the new value and
how much time elapsed since the last such improvement. We also learn when we get such an improvement arising from a local change, that is, a swap.

As an aside, the use of a swap even when it gives a worse result has long standing justification. The idea is that we allow a decrease in quality in the hope that it will
later help in finding an improvement. This is quite similar to the method of simulated annealing, except we do not decrease the probability, over the course of
generations, of accepting a decrease in quality.

18

Outline of QAP4

1. Input: square matrices M1 and M2 each of dimensionn, along with parameter settings to pass to NMinimize, and a probability level p between 0 and 1 to
determine when to retain an altered chromosome that gives a decrease in quality.

2. Form a vector of variables of length n.

a. Give them initial ranges from 0 to 1.

3. Form an objective function that sums the n2 products of elements of the first matrix and elements of the row−and−column permuted second matrix.

a. As in QAP, the permutation is determined by the ordering of values of the variables vector.

4. Iterate some number of times (a reasonable value is 4).

a. Swap a random pair of elements in the variables vector.

b. Check whether we got improvement in the objective function.

c. If so, keep this improved vector.

d. If not, possibly still keep it depending on whether a random value between 0 and 1 is larger than p, and also whether the better vector is the best seen thus
far (we never replace the best one we have).

e. Depending on an input flag setting, either restart the swapping (if we are not done iterating) with our original vector, or else continue with the one created
from prior swaps.

5. Call NMinimize on the objective function, using the above ranges, constraints, and input option settings.

6. Return the minimal value found, along with the permutation that gives rise to that value.

19

QAP4@mat1_, mat2_, cp_, it_, sp_, sc_, maxj_: 4, keep_: 0.4, restorevector_ ,
printFlag_: FalseD :=

Module@8len = Length@mat1D, objfunc, objfunc2, objfunc3, vars, vv, nmin,
vals, rnges, best, bestvec, indx= 0, i = 0, tt = TimeUsed@D<,

vars = Array@vv, lenD;
rnges = Map@8ð, 0, 1< &, varsD;
objfunc2@vec_D :=
objfunc3@vecD = Total@Flatten@mat1 * permuteMatrix@mat2, vecDDD;

objfunc@vec :8__Real<D :=
Module@8val1, val2, r1, r2, vec1= vec, vec2 = vec, max = Max@Abs@vecDD, j = 0<,
8vec1, vec2< = 8vec1, vec2< � max;
val1 = objfunc2@Ordering@vec1DD;
While@j £ maxj,
j++;
8r1, r2< = RandomInteger@81, len<, 82<D;
If@restorevector , vec2= vec1D;
vec2@@8r1, r2<DD = vec2@@8r2, r1<DD;
val2 = objfunc2@Ordering@vec2DD;
If@val2 < best, j--;
If@printFlag , Print@"locally improved",8best, val2<DDD;

If@val2 £ val1 ÈÈ Hval1 > best && RandomReal@D > keepL,
Optimize‘NMinimizeDump‘vec = vec2;
If@val2 < val1, vec1 = vec2D;
val1 = Min@val1, val2D,
Optimize‘NMinimizeDump‘vec = vec1D;

If@val1 < best,
best = val1;
vec1 = bestvec = Optimize‘NMinimizeDump‘vec ;
If@printFlag , Print@"new low ",++indx,

" 8iteration , elapsed time, new value< ", 8i, TimeUsed@D - tt, best<DD;
tt = TimeUsed@D;
D;
D;
val1D;

bestvec = Range@lenD;
best = Total@Flatten@mat1 * mat2DD;
8nmin, vals< = NMinimize@objfunc@varsD, rnges, MaxIterations® it,

Compiled ® False, StepMonitor¦ Hi++; If@Mod@i, 10D � 0, Clear@objfunc3DDL,
Method ® 8DifferentialEvolution , SearchPoints® sp, CrossProbability ® cp,

ScalingFactor ® sc, PostProcess ® False<D;
Clear@objfunc2D;
8Total@Flatten@mat1 * permuteMatrix@mat2, Ordering@bestvecDDDD,
Ordering@bestvecD<D

We now show a run with printout included. The parameter settings are, as usual, based on shorter tuning runs.

Timing@QAP4@mat1, mat2, .08, 400, 320, .4, 4, .4, False, TrueDD

locally improved84838, 4788<

new low 1 8iteration, elapsed time, new value< 80, 0.192971, 4788<

locally improved84788, 4724<

new low 2 8iteration, elapsed time, new value< 80, 0.006999, 4724<

locally improved84724, 4696<

new low 3 8iteration, elapsed time, new value< 80, 0., 4696<

locally improved84696, 4644<

new low 4 8iteration, elapsed time, new value< 80, 0.001, 4644<

20

locally improved84644, 4612<

new low 5 8iteration, elapsed time, new value< 80, 0.118982, 4612<

locally improved84612, 4594<

new low 6 8iteration, elapsed time, new value< 80, 0.043993, 4594<

locally improved84594, 4566<

new low 7 8iteration, elapsed time, new value< 80, 0.001, 4566<

locally improved84566, 4498<

new low 8 8iteration, elapsed time, new value< 80, 0., 4498<

locally improved84498, 4370<

new low 9 8iteration, elapsed time, new value< 80, 0.486926, 4370<

locally improved84370, 4348<

new low 10 8iteration, elapsed time, new value< 80, 0.001, 4348<

locally improved84348, 4322<

new low 11 8iteration, elapsed time, new value< 810, 8.68968, 4322<

new low 12 8iteration, elapsed time, new value< 811, 0.421936, 4308<

new low 13 8iteration, elapsed time, new value< 820, 8.17776, 4304<

locally improved84304, 4242<

new low 14 8iteration, elapsed time, new value< 820, 0.832874, 4242<

locally improved84242, 4184<

new low 15 8iteration, elapsed time, new value< 822, 1.9997, 4184<

new low 16 8iteration, elapsed time, new value< 829, 6.40802, 4174<

new low 17 8iteration, elapsed time, new value< 831, 2.03469, 4102<

locally improved84102, 4096<

new low 18 8iteration, elapsed time, new value< 837, 5.40218, 4096<

locally improved84096, 4092<

new low 19 8iteration, elapsed time, new value< 841, 3.38849, 4092<

new low 20 8iteration, elapsed time, new value< 851, 9.8525, 4082<

new low 21 8iteration, elapsed time, new value< 855, 3.65544, 4076<

new low 22 8iteration, elapsed time, new value< 856, 1.51777, 4072<

new low 23 8iteration, elapsed time, new value< 856, 0.171974, 3980<

new low 24 8iteration, elapsed time, new value< 862, 5.70913, 3964<

new low 25 8iteration, elapsed time, new value< 864, 1.3028, 3952<

locally improved83952, 3948<

new low 26 8iteration, elapsed time, new value< 871, 6.91295, 3948<

new low 27 8iteration, elapsed time, new value< 875, 3.9274, 3940<

new low 28 8iteration, elapsed time, new value< 878, 2.75558, 3934<

new low 29 8iteration, elapsed time, new value< 885, 6.06508, 3930<

21

new low 30 8iteration, elapsed time, new value< 885, 0.39594, 3924<

new low 31 8iteration, elapsed time, new value< 886, 0.702893, 3922<

locally improved83922, 3894<

new low 32 8iteration, elapsed time, new value< 889, 3.11353, 3894<

locally improved83894, 3870<

new low 33 8iteration, elapsed time, new value< 8109, 18.6902, 3870<

new low 34 8iteration, elapsed time, new value< 8119, 9.75552, 3860<

new low 35 8iteration, elapsed time, new value< 8134, 15.1257, 3856<

locally improved83856, 3840<

new low 36 8iteration, elapsed time, new value< 8142, 7.71583, 3840<

new low 37 8iteration, elapsed time, new value< 8146, 3.83042, 3830<

new low 38 8iteration, elapsed time, new value< 8174, 26.13, 3816<

new low 39 8iteration, elapsed time, new value< 8196, 21.4287, 3800<

new low 40 8iteration, elapsed time, new value< 8203, 6.86196, 3788<

new low 41 8iteration, elapsed time, new value< 8203, 0.199969, 3768<

locally improved83768, 3750<

new low 42 8iteration, elapsed time, new value< 8222, 17.4773, 3750<

8277.978, 83750, 81, 19, 22, 15, 13, 7, 10, 9,
20, 23, 21, 6, 14, 4, 17, 16, 3, 8, 25, 12, 24, 18, 11, 2, 5<<<

This is now quite close to the global minimum. As might be observed from the printout, the swaps occasionally let us escape from seemingly sticky local minima.
So, for the problem at hand, this hybridization truly appears to confer an advantage over pure Differential Evolution. I will remark that it seems a bit more difficult
to get this type of hybridization to cooperate well with the various shuffle methods of creating permutations.

For contrast we go to the opposite extreme and do a huge number of swaps, on a relatively smaller number of chromosomes and using far fewer iterations. We will
reset our vector with swapped pairs to the original (or best variant found thereof, if we get improvements). This is to avoid straying far from reasonable vectors,
since we now do many swaps.

This is thus far a 2−opt approach rather than Differential Evolution per se. Nonetheless, we notice that the later stages of improvement do come during the actual
iterations of Differential Evolution, and quite possibly those final improvements are due in part to the maintaining of diversity and the use of mutation and
recombination.

Timing@QAP4@mat1, mat2, .08, 20, 60, .4, 2000, .6, True, TrueDD

locally improved84838, 4808<

new low 1 8iteration, elapsed time, new value< 80, 0.034995, 4808<

locally improved84808, 4786<

new low 2 8iteration, elapsed time, new value< 80, 0., 4786<

locally improved84786, 4738<

new low 3 8iteration, elapsed time, new value< 80, 0.001, 4738<

locally improved84738, 4690<

new low 4 8iteration, elapsed time, new value< 80, 0.001, 4690<

locally improved84690, 4614<

new low 5 8iteration, elapsed time, new value< 80, 0., 4614<

locally improved84614, 4502<

new low 6 8iteration, elapsed time, new value< 80, 0.000999, 4502<

22

locally improved84502, 4406<

new low 7 8iteration, elapsed time, new value< 80, 0.001, 4406<

locally improved84406, 4370<

new low 8 8iteration, elapsed time, new value< 80, 0., 4370<

locally improved84370, 4342<

new low 9 8iteration, elapsed time, new value< 80, 0.003, 4342<

locally improved84342, 4226<

new low 10 8iteration, elapsed time, new value< 80, 0.001, 4226<

locally improved84226, 4178<

new low 11 8iteration, elapsed time, new value< 80, 0.007998, 4178<

locally improved84178, 4174<

new low 12 8iteration, elapsed time, new value< 80, 0.001, 4174<

locally improved84174, 4170<

new low 13 8iteration, elapsed time, new value< 80, 0.007999, 4170<

locally improved84170, 4158<

new low 14 8iteration, elapsed time, new value< 80, 0.006999, 4158<

locally improved84158, 4114<

new low 15 8iteration, elapsed time, new value< 80, 0.002, 4114<

locally improved84114, 4070<

new low 16 8iteration, elapsed time, new value< 80, 0.001999, 4070<

locally improved84070, 4046<

new low 17 8iteration, elapsed time, new value< 80, 0.007999, 4046<

locally improved84046, 4042<

new low 18 8iteration, elapsed time, new value< 80, 0.046993, 4042<

locally improved84042, 4014<

new low 19 8iteration, elapsed time, new value< 80, 0.057991, 4014<

locally improved84014, 3982<

new low 20 8iteration, elapsed time, new value< 80, 0.004999, 3982<

locally improved83982, 3978<

new low 21 8iteration, elapsed time, new value< 80, 0.005, 3978<

locally improved83978, 3970<

new low 22 8iteration, elapsed time, new value< 80, 0.031995, 3970<

locally improved83970, 3966<

new low 23 8iteration, elapsed time, new value< 80, 0.068989, 3966<

locally improved83966, 3964<

new low 24 8iteration, elapsed time, new value< 80, 0.006999, 3964<

locally improved83964, 3960<

23

new low 25 8iteration, elapsed time, new value< 80, 0., 3960<

locally improved83960, 3944<

new low 26 8iteration, elapsed time, new value< 80, 0.018997, 3944<

locally improved83944, 3926<

new low 27 8iteration, elapsed time, new value< 80, 0.021997, 3926<

locally improved83926, 3916<

new low 28 8iteration, elapsed time, new value< 80, 0.003999, 3916<

locally improved83916, 3896<

new low 29 8iteration, elapsed time, new value< 80, 0.024996, 3896<

locally improved83896, 3892<

new low 30 8iteration, elapsed time, new value< 80, 0.096986, 3892<

locally improved83892, 3888<

new low 31 8iteration, elapsed time, new value< 80, 0.074988, 3888<

locally improved83888, 3868<

new low 32 8iteration, elapsed time, new value< 80, 0.089986, 3868<

locally improved83868, 3864<

new low 33 8iteration, elapsed time, new value< 80, 1.73874, 3864<

locally improved83864, 3860<

new low 34 8iteration, elapsed time, new value< 80, 0.100985, 3860<

locally improved83860, 3852<

new low 35 8iteration, elapsed time, new value< 80, 1.52377, 3852<

locally improved83852, 3838<

new low 36 8iteration, elapsed time, new value< 80, 0.012998, 3838<

locally improved83838, 3834<

new low 37 8iteration, elapsed time, new value< 80, 0.009999, 3834<

locally improved83834, 3818<

new low 38 8iteration, elapsed time, new value< 80, 0.055991, 3818<

locally improved83818, 3812<

new low 39 8iteration, elapsed time, new value< 80, 3.10753, 3812<

locally improved83812, 3786<

new low 40 8iteration, elapsed time, new value< 80, 0.071989, 3786<

locally improved83786, 3780<

new low 41 8iteration, elapsed time, new value< 80, 1.42878, 3780<

locally improved83780, 3768<

new low 42 8iteration, elapsed time, new value< 80, 0.033995, 3768<

locally improved83768, 3758<

new low 43 8iteration, elapsed time, new value< 80, 0.084987, 3758<

24

locally improved83758, 3756<

new low 44 8iteration, elapsed time, new value< 87, 269.394, 3756<

locally improved83756, 3754<

new low 45 8iteration, elapsed time, new value< 810, 98.83, 3754<

locally improved83754, 3752<

new low 46 8iteration, elapsed time, new value< 810, 0.222966, 3752<

locally improved83752, 3748<

new low 47 8iteration, elapsed time, new value< 816, 233.249, 3748<

locally improved83748, 3744<

new low 48 8iteration, elapsed time, new value< 816, 0.06699, 3744<

8791.696, 83744, 822, 15, 20, 11, 5, 1, 9, 8,
25, 2, 19, 6, 3, 16, 18, 10, 7, 14, 21, 24, 13, 23, 4, 12, 17<<<

Notice that this permutation is not identical to the one we presented at the outset, which in turn comes from benchmark suite results in the literature [17]. Also note
that we seem to get good results from swaps early on (indeed, we almost get a global minimizer prior to the main iterations). This raises the question of whether it
might be useful to plug in a different sort of heuristic, say larger swaps, or perhaps use of local (continuous) quadratic programming. The interested reader may
wish to explore such possibilities.

More examples
We now give several examples that have been posed by Mathematica users.

A mixed discrete−continuous optimization
The example we now show was brought to my attention by Lai Ngoc Anh (private communication). It arises in the context of computational chemistry. We have
data and wish to find a good "equation of state" approximation. This will be a Puisiux polynomial function (exponents may be rational instead of integer) of modest
degree, with nonnegative exponents. We are to find both the exponents and coefficients.

It turns out that this is best viewed as a "bi−level" type of optimization problem. At the outer level we attempt to find good exponents. We use these in a continuous
optimization, in order to find good corresponding coefficients. For the exponent optimization we will use Differential Evolution, as it readily enforces integrality.
So we will call on it, using an objective function that is itself computed by an optimization function.

The data are modified (differently scaled) from table 1 found in [14]. A nice article describing how such a fit was performed is [19]. Our method can be viewed as a
simpler variant; all the hard work is left to the Differential Evolution code.

data = 880.492836, -2.76349979<, 80.484912, -2.71627714<,
80.476987, -2.66934661<,

80.461139, -2.57627064<, 80.44529, -2.48420922<, 80.429441, -2.39306352<,
80.405668, -2.2578664<, 80.381894, -2.12420539<, 80.358121, -1.99180889<,
80.342272, -1.90410278<, 80.318499, -1.77321817<, 80.318499, -1.77320734<,
80.286801, -1.59966342<, 80.286801, -1.59964561<, 80.263028, -1.46992327<,
80.263028, -1.46990573<, 80.239254, -1.34031315<, 80.239254, -1.34031185<,
80.223406, -1.25390787<, 80.199632, -1.12418091<, 80.183783, -1.03751393<,
80.167935, -0.95065758<, 80.144161, -0.81990054<, 80.128312, -0.73235589<,
80.128312, -0.7323321<, 80.112464, -0.64440847<, 80.096615, -0.55600443<,
80.08869, -0.51160367<, 80.080766, -0.46706783<, 80.072841, -0.42236874<,
80.064917, -0.37750794<, 80.056993, -0.33245946<, 80.049068, -0.28720197<,
80.041144, -0.24171452<, 80.033219, -0.19597321<, 80.029257, -0.17298665<,
80.025295, -0.14992861<, 80.025295, -0.14990853<, 80.021333, -0.12677606<,
80.01737, -0.10352715<, 80.014201, -0.08485674<, 80.011823, -0.07080379<,
80.009446, -0.05670636<<;

25

getPolynomial@data_, x_, nvars_, expden_, iters_, npts_D := Catch@Module@
8c, j, coeffs, expons, poly, sos, xvals, yvals, evars, cminfunc, coeffvals ,
expvals, min1, min2<,

coeffs = Array@c, nvarsD;
expons = Array@j, nvarsD;
poly = coeffs.x^Hexpons � expdenL;
8xvals, yvals< = Transpose@dataD;
sos = Total@HHpoly �. x ® xvalsL - yvalsL^2D;
cminfunc@obj_, cvars_, evars_, evals :8_Integer ..<D :=
First@Quiet@FindMinimum@obj �. evars ® evals, cvarsDDD;

expvals = expons;
Catch@
min1 = NMinimize@8cminfunc@sos, coeffs, expons, expvalsD,

Flatten@8Element@expvals, IntegersD, Map@ð ³ 0 &, expvalsD<D<,
expvals, Method® 8"DifferentialEvolution ", "SearchPoints "® npts<,
MaxIterations ® itersD;

If@Head@min1D === NMinimize ÈÈ ! FreeQ@min1, IndeterminateD,
Throw@$FailedD,
8min1, expvals< = min1
D;
8min2, coeffvals< = FindMinimum@sos �. expvals, coeffsD;
8min2, poly �. Join@expvals, coeffvalsD<D

DD

Timing@getPolynomial@data, x, 4, 6, 200, 40DD

9219.598, 93.70378 ´ 10-9, -6.10819 x + 3.7723 x5�3 - 3.08831 x11�6 - 1.87827 x14�3==

We have obtained a rather low sum of squares of discrepancies, using a scant two dozen or so lines of code.

Another knapsack problem
This next problem was communicated by Peter Sisak, in the Usenet forum comp.soft−sys.math.mathematica [20]. We are given a set of file sizes, say in bytes. We
have a storage device of a given size and wish to store as much of the given files as possible, that is, to maximize the number of bytes stored.

This is readily seen to be a traditional knapsack problem. As such, one might seek to handle it using standard integer linear programming tools such as a branch−
and−bound strategy. The actual sizes given, unfortunately, make this quite difficult. There are various ways to ameliorate this, e.g by dividing and finding only an
approximate best solution (some approaches are shown in responses to the original query; see the URL in the references section for further details). We will instead
use Differential Evloution to find a reasonable approximation.

We set up the problem quite simply. We have a set of 0−1 variables, where a value of 1 means we will use the corresponding file. Our objective is to minimize the
difference between the total size we use, and the target (that is, the size of our storage device). We constrain of course so that the discrepancy is positive, that is, we
do not slightly spill over.

In[1]:= bigvals = 81 305 892 864, 1 385 113 088, 856 397 968, 1 106 152 425, 1 647 145 093,
1 309 917 696, 1 096 825 032, 1 179 242 496, 1 347 631 104, 696 451 130,
746 787 826, 1 080 588 288, 1 165 223 499, 1 181 095 818, 749 898 444, 1 147 613 713,
1 280 205 208, 1 242 816 512, 1 189 588 992, 1 232 630 196, 1 291 995 024,
911 702 020, 1 678 225 920, 1 252 273 456, 934 001 123, 863 237 392, 1 358 666 176,
1 714 134 790, 1 131 848 814, 1 399 329 280, 1 006 665 732, 1 198 348 288,
1 090 000 441, 716 904 448, 677 744 640, 1 067 359 748, 1 646 347 388, 1 266 026 326,
1 401 106 432, 1 310 275 584, 1 093 615 634, 1 371 899 904, 736 188 416,
1 421 438 976, 1 385 125 391, 1 324 463 502, 1 489 042 122, 1 178 813 212,
1 239 236 096, 1 258 202 316, 1 364 644 352, 557 194 146, 555 102 962, 1 383 525 888,
710 164 700, 997 808 128, 1 447 622 656, 1 202 085 740, 694 063 104, 1 753 882 504,
1 408 100 352<;

targ = 8 547 993 600;

26

closestSum@vals_, target_, maxiters_: 100, sp_: Automatic , cp_: AutomaticD :=
Module@8x, vars, len= Length@valsD, obj, constraints , max, best<,
vars = Array@x, lenD;
obj = vars.vals;
constraints = Join@Map@0 £ ð £ 1 &, varsD,
8obj £ target, Element@vars, IntegersD<D;

8max, best< = NMaximize@8obj, constraints<, vars,
Method ® 8"DifferentialEvolution ", "SearchPoints "® sp,

"CrossProbability "® cp<, MaxIterations ® maxitersD;
8max, target- max, N@Htarget - maxL � targetD, vars �. best<D

After some tuning runs, I settled on the default crossover probability of 1/2.

In[11]:= Timing@Quiet@closestSum@bigvals, targ, 300, 100, 1� 2DDD

Out[11]= 9138.787, 98.54792 ´ 109, 73 942., 8.65022 ´ 10-6,
80, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0<==

While this can be shown to be less than the optimum, we see we that for all intents and purposes we have attained our practical goal. That is to say, the percentage
of remaining storage is quite small relative to that which will be utilized from the computed set of files sizes.

Maximal independent vertex sets
We now show a Differential Evolution approach to the problem of finding a large set of vertices in a graph such that each is not directly connected to another. This
is referred to as an independent subset of vertices. A different way to go about this problem is discussed in [10].

For purposes of illustration we will start by generating a random graph of 100 vertices, with a specified independent set of size 20. For all vertex pairs such that at
least one is not in the specified set, we will have a 1/8 probability of there being an edge between them. The code below will generate such a set. We note that there
may be independent vertex sets strictly larger than the specified set; we only enforce that that particular set is comprised of independent vertices.

In[12]:= shuffle@n_Integer , m_IntegerD :=
Module@8res = Range@nD<, Do@rand = Random@Integer,8j, n<D;

res@@8j, rand<DD = res@@8rand, j<DD;, 8j, m<D;
Take@res, mDD

8n, m< = 8100, 20<;
density = 1 � 8;
SeedRandom@1111D;
indepset = Sort@shuffle@n, mDD
mat =

Array@Boole@ð1 < ð2 && Random@D < density && Complement@8ðð<, indepsetD =!= 8<D &,
8n, n<D;

Out[16]= 82, 3, 6, 9, 12, 16, 17, 18, 25, 27, 32, 46, 52, 58, 71, 72, 79, 81, 83, 97<

We now have an independent subset of cardinality 20, comprised of vertices 82, 3,¼, 97<. We now see if we can recover that set, or another of comparable size,
such that it contains vertices with no edge between any pair. We will use values of one for vertices we place in our set, and zero for those not in it.

The idea is to provide an objective function that "rewards" vertex values of one, but penalizes pairs of such vertices whenever there is an edge between them. For
the reward term, we use the inner product of the vertex values with itself. For the penalty, we sum the edge matrix (zero if no edge, one if an edge) times the vertex
values, over each pair of vertices. This tends to work tolerably well for the problem at hand, though of course one might need to adjust (e.g. by weighting the terms)
based on problem specifics.

In[18]:= independentVerticesQP@mat_D := Module@
8x, n = Length@matD, vars, poly1, poly2, poly, sol<,
vars = Array@x, nD;
poly1 = Sum@mat@@i, jDD * x@iD * x@jD, 8i, n- 1<, 8j, i+ 1, n<D;
poly2 = vars.vars;
poly = poly1 - poly2;
sol = NMinimize@8poly, Flatten@8H0 £ ð £ 1 &L �� vars, Element@vars, IntegersD<D<,

Map@8ð, 0, 1< &, varsD,
Method ® 8"DifferentialEvolution ", "SearchPoints "® 100, "PostProcess "® False<,
MaxIterations ® 250D;

8sol@@1DD, Flatten@Position@Round@Chop@vars �. sol@@2DDDD, _?Hð =!= 0 &L,
Heads ® FalseDD<D

27

Notice that we set the "PostProcess" option to False. This is because the post−processing capabilities of NMinimize might alone suffice for the task at
hand. We wish to show that Differential Evolution alone does a reasonable job here.

In[19]:= Timing@Quiet@iset = independentVerticesQP@matDDD

Out[19]= 8102.421, 8-23., 813, 16, 17, 18, 19, 21, 22, 27, 28,
33, 36, 48, 50, 52, 55, 56, 58, 62, 64, 70, 75, 79, 83, 85, 92, 98<<<

We have obtained a subset of size 23, that is, exceeding the size of the vertex subset we had rigged in advance to be independent. Some verification (not shown
here) will indicate it is in fact an independent subset .

Sparse matrix column sum minimization
We are given a sparse matrix comprised of, say, symbols. Each symbol can appear in multiple rows, but appears only once in a given row. We are required to to
select exactly one symbol per row. The object is to do so in such a way that we minimize the number of repeats. Moreover, we want to penalize a triple of repeats
more than two doubles, etc. The idea is to have the selected symbols be "as unique as possible", to abuse language ever so slightly.

We create an example where we have 60 rows, and we use 50 "symbols". We will denote symbol k in row j by b@ j, kD. In our example problem, each row will
contain 3 symbols (though in general it is not required that the number of symbols per row be constant).

In[25]:= n = 50;
mat = Table@RandomSample@Range@nD, 3D, 860<D;
rowlists = MapIndexed@b@ð2@@1DD, ðD &, mat, 82<D;
collists = GatherBy@Flatten@rowlistsD, ð@@2DD &D;

Let us look at what we have.

In[29]:= rowlists

Out[29]= 88b@1, 5D, b@1, 42D, b@1, 50D<, 8b@2, 30D, b@2, 32D, b@2, 26D<,
8b@3, 39D, b@3, 15D, b@3, 26D<, 8b@4, 8D, b@4, 5D, b@4, 18D<,
8b@5, 19D, b@5, 4D, b@5, 45D<, 8b@6, 5D, b@6, 15D, b@6, 34D<,
8b@7, 8D, b@7, 17D, b@7, 48D<, 8b@8, 34D, b@8, 40D, b@8, 35D<,
8b@9, 11D, b@9, 44D, b@9, 27D<, 8b@10, 15D, b@10, 20D, b@10, 32D<,
8b@11, 3D, b@11, 4D, b@11, 47D<, 8b@12, 21D, b@12, 45D, b@12, 41D<,
8b@13, 46D, b@13, 34D, b@13, 27D<, 8b@14, 6D, b@14, 34D, b@14, 2D<,
8b@15, 33D, b@15, 50D, b@15, 22D<, 8b@16, 30D, b@16, 19D, b@16, 11D<,
8b@17, 47D, b@17, 44D, b@17, 36D<, 8b@18, 6D, b@18, 44D, b@18, 36D<,
8b@19, 34D, b@19, 20D, b@19, 33D<, 8b@20, 43D, b@20, 20D, b@20, 27D<,
8b@21, 6D, b@21, 25D, b@21, 37D<, 8b@22, 20D, b@22, 34D, b@22, 13D<,
8b@23, 21D, b@23, 40D, b@23, 3D<, 8b@24, 49D, b@24, 19D, b@24, 36D<,
8b@25, 45D, b@25, 30D, b@25, 35D<, 8b@26, 6D, b@26, 10D, b@26, 1D<,
8b@27, 9D, b@27, 36D, b@27, 18D<, 8b@28, 4D, b@28, 11D, b@28, 35D<,
8b@29, 10D, b@29, 2D, b@29, 42D<, 8b@30, 34D, b@30, 32D, b@30, 17D<,
8b@31, 5D, b@31, 12D, b@31, 44D<, 8b@32, 47D, b@32, 26D, b@32, 33D<,
8b@33, 36D, b@33, 28D, b@33, 17D<, 8b@34, 2D, b@34, 38D, b@34, 45D<,
8b@35, 36D, b@35, 42D, b@35, 44D<, 8b@36, 46D, b@36, 44D, b@36, 39D<,
8b@37, 13D, b@37, 33D, b@37, 29D<, 8b@38, 36D, b@38, 39D, b@38, 21D<,
8b@39, 13D, b@39, 25D, b@39, 27D<, 8b@40, 10D, b@40, 44D, b@40, 12D<,
8b@41, 48D, b@41, 22D, b@41, 29D<, 8b@42, 14D, b@42, 42D, b@42, 34D<,
8b@43, 42D, b@43, 31D, b@43, 33D<, 8b@44, 31D, b@44, 43D, b@44, 41D<,
8b@45, 41D, b@45, 48D, b@45, 43D<, 8b@46, 40D, b@46, 19D, b@46, 26D<,
8b@47, 46D, b@47, 40D, b@47, 22D<, 8b@48, 29D, b@48, 3D, b@48, 25D<,
8b@49, 43D, b@49, 40D, b@49, 47D<, 8b@50, 6D, b@50, 31D, b@50, 14D<,
8b@51, 11D, b@51, 2D, b@51, 15D<, 8b@52, 39D, b@52, 16D, b@52, 8D<,
8b@53, 50D, b@53, 29D, b@53, 19D<, 8b@54, 25D, b@54, 23D, b@54, 14D<,
8b@55, 21D, b@55, 16D, b@55, 36D<, 8b@56, 19D, b@56, 43D, b@56, 8D<,
8b@57, 19D, b@57, 48D, b@57, 36D<, 8b@58, 13D, b@58, 5D, b@58, 17D<,
8b@59, 24D, b@59, 9D, b@59, 29D<, 8b@60, 34D, b@60, 50D, b@60, 45D<<

So the first row is comprised of symbols 5, 42, and 50, the second row uses symbols 30, 32, and 26, etc. We now formulate our optimization problem. We will
insist that all variables lie between 0 and 1, be integers (so of course it is a 0−1 problem), and that each row sum be one (so there is exactly one 1 per row). We will
minimize the sum of fourth powers of the column sums. Any power larger than one might be reasonable, but in using fourth powers we seem to do a reasonable job
of forcing uniqueness of symbol selections in columns.

28

In[30]:= vars = Flatten@rowlistsD;
c0 = Map@0 £ ð £ 1 &, varsD;
c1 = 8Element@vars, IntegersD<;
c2 = Map@Total@ðD � 1 &, rowlistsD;
constraints = Join@c0, c1, c2D;
obj = Total@Map@Total@ðD^4 &, collistsDD;

We now run this, again disabling the post−processing so that we are certain Differential Evolution is doing the serious work.

In[43]:= Timing@
Quiet@
8min, best< = NMinimize@8obj, constraints<, vars,

Method ® 8"DifferentialEvolution ", "CrossProbability "® 9 � 10,
"SearchPoints "® 50, "PostProcess "® False<, MaxIterations ® 500D;DD

Out[43]= 8175.735, Null<

Now let us check the quality of the results.

In[48]:= colsums = Total@Array@b, 860, 50<D �. best �. b@_, _D ¦ 0D
Count@colsums, 2D

Out[48]= 81, 1, 1, 1, 2, 1, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1,
1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1<

Out[49]= 11

We used 11 symbols twice. All others that were used show up but once. Given the way we had set up this problem instance, the best possible outcome would have
to use at least 10 symbols twice, so clearly we are either optimal, or quite close, for this particular problem instance.

Future directions
We have seen several examples of discrete optimization problems, and indicated ways in which one might approach them using Differential Evolution. Problems
investigated include basic integer programming, set partitioning, set covering by subsets, the permutation optimization problem of quadratic assignment, and an
optimal polynomial fitting problem. The main issues have been to adapt Differential Evolution to enforce discrete or combinatorial structure, e.g. that we obtain
integrality, partitions, or permutations from chromosome vectors.

There are many open questions and considerable room for development. Here are a few of them.

1. Figure out better ways to attack quadratic assignment problems so that we are less likely to encounter difficulty in tuning parameter values, premature
convergence, and so on.

2. Make the Differential Evolution program adaptive, that is, allow algorithm parameters themselves to be modified during the course of a run. This might make
results less sensitive to tuning of parameters such as CrossProbability.
a. Alternatively, develop a better understanding of how to select algorithm parameters in a problem−specific manner. Our experience has been that settings

for cross probability should usually be around .9 (which is quite high as compared to what is typical for continuous optimization). It would be useful to
have a more refined understanding of this and other tuning issues.

b. Figure out how to sensibly alter parameters over the course of the algorithm, not by evolution but rather by some other measure, say iteration count. For
example, one might do well to start of with a fairly even crossover (near 0.5, that is), and have it either go up toward 1, or drop toward 0, as the algorithm
progresses. Obviously it is not hard to code Differential Evolution to do this. What might be interesting research is to better understand when and how
such progression of algorithm parameters could improve performance.

3. Implement a two−level version of Differential Evolution, wherein several short runs are used to generate initial values for a longer run.

4. Use Differential Evolution in a hybridized form, say, with intermediate steps of local improvement. This would involving modifying chromosomes "in place",
so that improvements are passed along to subsequent generations. We showed a very basic version of this but surely there must be improvements to be found.

We remark that some ideas related to item 2 above are explored in [3]. Issues of self−adaptive tuning of Differential Evolution are discussed in some detail in [1]. A
nice exposition of early efforts along these lines, for genetic algorithms, appears in [4].

References
[1] J. Brest, S. Greiner, B. Bo<kovi., M. Mernik, and V. Z

Ç
umer. Self−adapting control parameters in differential evolution: a comparative study on numerical

benchmark problems. IEEE Transactions on Evolutionary Computation 10:(6)646−657. 2006.
[2] K. Gisvold and J. Moe. A method for nonlinear mixed−integer programming and its application to design problems. Journal of Engineering for Industry

94:353|364. 1972.
[3] C. Jacob. Illustrating Evolutionary Computation with Mathematica. Morgan Kaufmann. 2001.

[4] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison−Wesley. 1989.

[5] D. Goldberg and R. Lingle, Jr. Alleles, loci, and the traveling salesman problem. Proceedings of the 1st International Conference on Genetic Algorithms,
154−159. Lawrence Erlbaum Associates, Inc. Mahwah, NJ, USA. 1985.

[6] N. Krasnogor and J. Smith. A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Transactions on Evolutionary Computa−
tion 9:(5)474−488. 2005.

]

29

]

D. Lichtblau. Discrete optimization using Mathematica. Proceedings of the World Conference on Systemics, Cybernetics, and Informatics. Volume 16, N.
Callaos, T. Ebisuzaki, B. Starr, J. M. Abe, D. Lichtblau, eds., pages 169−174. International Institute of Informatics and Systemics. 2002.

[8] D. Lichtblau. Solving knapsack and related problems. 2004.
http://library.wolfram.com/infocenter/Conferences/7515/

[9] D. Lichtblau. Making Change and Finding Repfigits: Balancing a Knapsack. Proceedings of the Second International Congress on Mathematical Software
(ICMS 2006), A. Iglesias and N. Takayama, eds. Lecture Notes in Computer Science 4151:182−193. Springer−Verlag. 2006.

http://library.wolfram.com/infocenter/Conferences/7517/
[10] D. Lichtblau. Computer Assisted Mathematics: Tools and Tactics for Solving Hard Problems. Wolfram Technology Conference, 2006.

http://library.wolfram.com/infocenter/Conferences/6530/
[11] D. Lichtblau. Relative Position Indexing Approach. Chapter 4 in Differential Evolution: a Handbook for Permutation−Based Combinatorial Problems.G.

Onwubolu and D. Davendra, eds. Springer Berlin, 2009.
[12] G. Mitchell, D. O’Donoghue, D. Barnes, and M. McCarville. GeneRepair: a repair operator for genetic algorithms. Proceedings of the 2003 Genetic and

Evolutionary Computation Conference (GECCO 2003), 2003.
[13] P. Moscato. On Evolution, Search, Optimization, Genetic Algorithms, and Martial Arts. California Institute of Technology, Concurrent Computation

Program 826. Technical Report, 1989.
[14] P. Nowak, R. Kleinrahm, and W. Wagner. Measurement and correlation of the Hp, Ρ, TL relation of nitrogen. II. Saturated−liquid and saturated−vapour

densities and vapour pressures along the entire coexistence curve. Journal of Chemical Thermodynamics 29:1157|1174. 1997.
[15] K. Price and R. Storn. Differential evolution. Dr. Dobb’s Journal, April 1997. pp. 18|24, 78. 1997.

[16] K. Price, R. Storn, and J. Lampinen. Differential Evolution: A Practical Approach to Global Optimization. Natural Computing Series, Springer|Verlag, New
York. 2005.

[17] QAPLIB− A Quadratic Assignment Problem Library.

[18] http://www.opt.math.tu−graz.ac.at/qaplib/inst.html

[19] U Setzmann and W. Wagner. A new method for optimizing the structure of thermodynamic correlation equations. International Journal of Thermophysics
10(6):1103|1126. 1989.

[20] P. Sisak. 2010.
http://forums.wolfram.com/mathgroup/archive/2010/Mar/msg00905.html

[21] D. Tate and A. Smith. A genetic approach to the quadratic assignment problem. Computers and Operations Research 1:73−83. 1995.

[22] Wolfram Research, Inc. Mathematica 7.
http://www.wolfram.com
http://reference.wolfram.com/mathematica/ref/NMinimize.html

30

