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Abstract: Buchberger and Kandri-Rody and Kapur defined a strong Grébner basis for a polynt
ideal over a Euclidean domain in a way that gives rise to canonical reductions. This retains wh
perhaps the most important property of Grobner bases over fields. A difficulty is that these can
substantially harder to compute than their field counterparts. We extend their results for compt
these bases to give an algorithm that is effective in practice. In particular we show how to use
polynomials (rather than “critical pairs") so that the algorithm becomes quite similar to that for -
and thus known strategies for the latter may be employed. We also show how Buchberger’s in
criteria for detection of unneeded S—polynomials can be extended to work over a Euclidean dc
We then provide simple examples as well as applications to solving equations in quotient rings
Hensel lifting, Hermite normal form computations, and reduction of univariate polynomial lattic
These serve to demonstrate why Grobner basis computations over such rings are indeed wort
consideration.

Keywords and phrases: Grobner basis, Euclidean domain, Hensel lifting, Hermite normal form
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1 Introduction

Since their introduction by Bruno Buchberger in the 1960'’s, the theory and application of Grébner bases
developed extensively. While the original version worked with polynomial rings defined over fields, this
extended in different ways to other types of base ring such as Euclidean domains or principal ideal doma
book expositions for this may be found in [Becker, Weispfenning, and Kredel 1993] and [Adams and Lo
1994]. As might be expected, the less structured the base ring, the more problematic becomes the the
and/or computation of such bases. Moreover while the definitions for the field case are common throu
literature, one encounters variations when working over other rings, motivated by the wish (or decreasing
preserve various aspects of the field case. One particular variant, proposed independently in [Kandri—
Kapur 1984], and [Buchberger 1985, section 8], defines what is termed a "strong" Grobner basis over thi
As demonstrated in [Kandri-Rody and Kapur 1988] this extends more generally to polynomial rings over E
domains. Their motivation was to define these bases in such a way that canonical reductions to norme
essentially unchanged from the field case. A by—product was that one also retains similarity to the field ¢
algorithm for computing these. As a generalization, [Pan 1989] developed similar ideas but in the setting ¢
mial rings over effectively computable principal ideal domains. In this paper we restrict attention to E
domains firstly because that is the setting wherein one may preserve the notion of canonical forms, and ¢
order to avoid questions of computability.

There are at least two reasons to want a strong Grébner basis over a Euclidean domain. One is that as
we obtain canonical forms, and these are very useful in computations modulo polynomial ideals. The sec
reduction is now cheap; with a weak Grébner basis one must compute greatest-common-divisors in the t
order to perform reduction (see [Becker, Weispfenning, and Kredel 1993]), whereas with a strong basis
needs use a division algorithm (the price of course is that the basis computation itself may be more costly).

The theory behind strong bases was largely resolved by the early 1990’s but details regarding efficient cc
and preservation of the simplicity of Buchberger’s algorithm are scattered through the references. The int
paper is to gather this under one roof, so to speak, and to make explicit mention of any improvements and
tions of which we are aware. For example, a straightforward reduction algorithm can be slow as it e
emulates the extended GCD algorithm but with coefficient arithmetic carried over to polynomials. To ren



[Kandri-Rody and Kapur 1984; Kandri-Rody and Kapur 1988] use the extended GCD explicitly on coeffici
make use of two types of S—polynomial and require a restriction on how reduction may be performed. Ano
is that with the notable exception of [Mdéller 1988] the literature says relatively little about extending the Bu
criteria for eliminating redundant S—polynomials ([Adams and Loustaunau 1994] also considered these
some exercises, but in the context of what appears to be a very different algorithm for working over a PID)
a form that is very much in the spirit of the field case in [Buchberger 1985]. We also give several useful ap
of special cases of such bases.

It will turn out that our basis is identical to the D—Grdbner basis discussed in chapter 10 of [Becker, Weis
and Kredel 1993] (they refer to the two types of polynomial as S—polynomials and G-polynomials). But
have a cheaper way to compute this basis because of more general reduction and the availability of r
criteria, as well as fewer S—polynomials to consider. Thus we believe this algorithm demonstrates a reasor
of ease of implementation and runtime efficiency. The algorithm we will discuss is implemented in the |
Mathematica[Wolfram 1999] Mathematica(TM) is a registered trademark of Wolfram Research, Incorpor
General information about Grébner basesMathematicamay be found in [Lichtblau 1996].

The outline of this paper is as follows. First we cover the basic definitions, when working in a polynomial ic
the integers, of term ordering, canonical rewriting, S—polynomials, and Grébner bases. We then extend

presented in [Buchberger 1985] and [Kandri-Rody and Kapur 1988] so that it is more like the case where

over a field. We next extend the well-known Buchberger criteria for detecting unnecessary S—polync
advance of performing actual (and often time consuming) reductions. We follow with several general exan
then show some specialized applications that, among other things, connect these bases to important are:
in computational mathematics.

In the sequel we restrict our attention almost exclusively to the integers for clarity of exposition. It should
that definitions and theorems in this paper extend readily to all Euclidean domains over which one cal
effective computation, provided one can canonically select elements in a way that will be made preci
integer case below. It is then straightforward to adapt the ideas behind this case to the other common Eucl
e.g. Gaussian integers or univariate polynomials.

2 Notation and definitions

First we establish notation. We work in the polynomial ringn @fideterminates over the intege%[,x1 e xn] A

n
power product is a product of the forf (x,—)ei. A term, or monomial, is a power product times an integer cc
j=1
cient (note that some authors define one or the other of these to be what we call a power product). We wi
denote monomials agt; wherec; is an integer coefficient artglis a power product. One sees immediately tha
polynomial in our ring can be written as a sum of terms with distinct power products; this is the usual defin
polynomial in expanded form. Our typical usage of letters (possibly subscripted or otherwise annotated) in-
will be as follows:{a, b, c, d, €} are coefficients in our ring,f, g, h, p, q, r} are polynomials{i, j, k, m, n} are
integers, ands, t, u, v} are power products.

As in the field case we define well-founded orderings on the power product{s’.1 Let.jn} denote the (ordere
exponent vector of nonnegative integers for a given power product (tfijt is the exponent of , etc.). Suppos

u, v, andw are any three such exponent vectOris the exponent vector consisting of all zeros, and sums of
nent vectors are of course performed element-wise and correspond to products of power products.

Definition 1 A total ordering among such exponent vectors (and hence among power products) is well
provided

(i) 0 < ufor non-zerau
(iusvesS u+w = v+w

For example we have the oft-used "pure lexicographic” ordering whefgjn ...jn}>{m, , ...m,} wheneve



ji=m forall 1<i<k=nandjyx>m. For naming purposes we will sometimes call a term orddririg the sequt
when power products are compared it is always assumed that this is done with respect to a well founded or

Definition 2 We will regard our polynomials as sums of terms in descending term order. Thal
p=c, t +..+Cntythen we have, >t, >...>t, (of course this depends on the particular choice of term ¢

The term c, t is denoted the "head" term. In the language of rewriting rules one says that the head term

to minus the sum of the remaining terms. For a pair of power produdfs, , ...k} andw={m, , ..

thatw dividesv if m; <k; for all 1< j=<n. For abbreviation purposes we will writ€PHp] =t , ("PP" for "powe
product"),HCoeff[p] = (o andHMonomp] = c,t .

.my} we sa

We will assume the reader is familiar with the basic ideas of Grobner bases in polynomial rings over fiel
references for this include [Buchberger 1985; Cox, Little, and O’Shea 1992; Becker, Weispfenning, an
1993; Adams and Loustaunau 1994]. Recall that one of several equivalent definitions is that one obtains ¢
form when reducing a given polynomial by such a basis. The various definitions are no longer equivalent
works over a more general ring, and it is this particular one that gives rise to strong Grobner bases whe
ring is a Euclidean domain. Before this can be described we must first see what is meant by reduction
altered from the field case.

First we will impose an ordering on elements in the coefficient ring. For our later purposes this too will b
ordering, which we will denote by<. In particular, suppose our Euclidean norm on an elemémtthe ring i

denoted by|c|. Then whenevelc, | < |c, | we require that, << c, . For integers we could for example

absolute values with ties broken by sign. So, following [Kandri-Rody and Kapur 1984; Buchberger 1985, s
we may take for our ordering
O<<l<<-1<<2<<-2<< ...

As will become clear, what we really require is a way to obtain unique minimal remainders in the division al
This extra ordering suffices for that task.

Definition 3 Given a monomiam=ct and a polynomiap = c; tj with t the leading power product we say -
p reducesn provided
0] t ot (that is, we have= S ).

(i) Using the division algorithm to write = ac, + d, we havea=+ 0 (or, equivalently|d| <|c]). In this case w
write m—>m-as, p. More generally we may allow any multipliarsuch that the remainder satisfiels< |c|, bu
the quotientr from the division algorithm is the only one we use in actual practice.

Similarly if g and p are polynomials we sap reducesg provided it reduces some monomialof g. Note tha
reduction depends on term order in general. We make this explicit in a shorthand notation: if the resulting

p, T
mial isr we writeq ——>}r. Generally we will be interested in head term reductions, but for purposes of ot

canonical forms we will reduce lower terms as well. Note that it is in reductions that minimal remainders
important: we require that the reduced polynomial be "smaller" either in head power product or coefficient.
a small subtlety that should be made explicit. Our division algorithm must work in such a way that the qu2
and3 is 1, with a remainder ofl (becausel is smaller thar2 in the Euclidean norm).

Definition 4 Given a polynomiat] and a set of polynomials we say that is reducible byF if there is a polyno

mial p in F that reduces. There may be many such, and one may get different reductions. The point of a
basis is that we will get a unique result once no further reductions can be applied, regardless of choices ft
polynomials that were made along the way. If some chain of reductiongyfri@ads to a polynomial (regardles

F,oT
of whether it might be further reduced By, we writeq ——r.



We now mention why this form of reduction is useful. As we will see, one can obtain a basis computation .
that is quite similar to that for fields. This is quite important if one is to write (almost) generic code that
same time optimized for different coefficient domains. Indeed, we want to use heuristics that are borrowec
field case to the greatest extent possible, and the fewer departures from that case the more readily we ar
this. This may also be carried beyond the Buchberger algorithm. Specifically we note that there has been 1
over the years to do Grobner basis conversion. One such method in particular, the Grobner walk [Collart, |
ner, and Mall 1997], appears to be extendable to Euclidean domain base rings. Yet another reason to ha
of reduction is that it is fast; weak bases rely on slower GCD computations rather than division.

We define two types of S—polynomial. Recall that the idea behind these in the field case is to combine h
using the LCM of the lead power products, and then kill off the lead coefficient. In the Euclidean domain
can do this only if one lead coefficient divides the other, or if we will allow coefficient multipliers that al
nonunits. Moreover we must allow for reducing rather than entirely removing head coefficients. For exar
pair {2 x, 3y} will, in contrast to the field case, give rise to the S—polynomjalWhile two flavors of S—polynomi

marks a departure from the field case, we will see later how these may be used in an algorithm that i
identical to Buchberger's.

Definition 5 (S—polynomials)We are given polynomialp; = c;t; + r; wheret; = HPP[pj] for j € {1, 2. Without

loss of generality we may assurfe, | < |c, |. Let

2 ‘ '

{c.{a, , &, }} = ExtendedGCIfx ,c, |
(that is,c is the GCD withc= a ¢ +a,c, ). Lett= PolynomiaILCl\/[t1 ot ] with cofactorssl and s, soO tha
t=s t =s, t, . Finally taked= LCM|[c, ,c, | with cofactorsb, andb, so thatd=b ¢, =b, c,. With this
we define two types of S—polynomial:

Spoly, [P, P, [ =2, s Py +8, 5, 1

Spoly, [pl ' pz] =b, s, p, -b, s, P,
Note that the head term &Poly, [p, , p, | had coefficientt and power produdt and inSPoly, [p, , p, | we
have killed off that power product. Also note that Whngn divides c, then SPon1 [p1 ' P, ] is simply a powe
product multiple ofp, (becausea, =1 anda, =0). In this case it will obviously reduce to zero, and

SPon2 [p1 . P, ] will be of interest. Finally note that due to choices of cofaﬁ@nlyl is not uniquely defined; tr

will not matter for our purposes and we merely require that an extended gcd algorithm exist. Anticipa
results, we now define, for each pair, a unique S—polynomial.

Definition & Again given polynomialp; = ¢jt; + r; with t;=HPHp;] for j {1, 2 and ‘cl ‘ < ‘cz ‘ e,

divides c, thenSPolyp, , p, | =SPoly, [p, , p, |, otherwiseSPolyp, , p, | =SPoly, [p, , p, |. We remar

that this is in essence "definition CP3" in [Kandri-Rody and Kapur 1984]. It is also the efficient generalizati
definition from [Buchberger 1985]. In that case one uses quotient and remainder to remove as much of t
coefficient as possible from the lead term of the S—polynomial. When one lead coefficient divides the other
entirely removed and we ha\ﬂ}Pon2 . When this does not happen, iterating the process emulates the El

algorithm so after some number of steps we would ol&&ioly, .
We are now ready to define precisely a strong Grébner basis.
Definition 7 A set of polynomialss in Z[x1 , ...,xn] is called a strong Grébner basis over (the base #hghc

with respect to a given term orderiiigif, given any polynomiap e Z[x1 e xn], it has a canonical reduction

{G, T}. What this means is that no matter what polynomials fBowe use at any given step in the process, whe



G T

G T
can no longer reduce it we have a unique form. Restatpcl,—i#—}r andp —T, and neither1 norr, can b

1
further reduced by, thenr, =r, .

Last we will need a notion from the theory of Grébner bases over principal ideal rings.
Definition 8 Given a set of polynomials = {g, , ...,gn} € Z[X, , ..., X| and a polynomiaf with f = Th; g;.

We call this a strong standard representatiorf afith respect toG provided HMonom f] = HMonon{hj gj] for
somej andHPHhy gx] < HPH f] for all k+ j (obviously this is with respect to some given term order).

We see that in a strong standard representation one kills off the head term with exactly one summand. The
notion of a weak standard representation, wherein we allow multiple terms with the same head power prod
useful in construction of what are called "weak" Grobner bases. These in turn may be used to constr
Grobner bases as in [Méller 1989; Adams and Loustaunau 1994]. We do not pursue that approach here.
will work directly with strong standard representations. These in fact give rise to strong Grébner bases ove
ideal rings. The characterization in that case is that all elements of the ideal have a strong standard repres:
lose canonical forms of arbitrary polynomials. Is is easy to see that existence of such representations is ec
one of the common characterizing features from the field €ase:a strong Groébner basis for the idegdrovidec
that for anyf €| there is somg e G with HMonom[g] 1 HMonom f] (we require now that both lead coefficient

power product off be divisible by those aj).

3 Main results

We want to establish a type of Buchberger result connecting Grobner bases to reduction of S—polynomial
do this in steps.

Theorem 1 Given a set of polynomials={g, , ...,gn} in A=Z[x_, ...,%] and a term ordeF. Let| be the idex
generated bgs. Then following are equivalent.

(i) Everyg € G has a strong standard representation.
(ii) Every f € A has a canonical reduction bBg, T} (in other wordsG is a Grobner basis with respect to order

Proof. (i)=(ii) is similar to 10.22 and 10.23 in [Becker, Weispfenning, and Kredel 1993]. Suppose w

{e T} {e T}

f ——h, andf ——h, withh andh, both fully reduced. We need to show thiat: h, . Sinceh, —h, €I

it has a strong standard representation. Hib‘tonon'{h1 - h2 ] =ct and h1 - h2 =20j0j be a strong stands

representation withPHak gk] =ct. Letc, respectively c, be the coefficient of in h —respectivelyh, . Firs
supposec; =0. Then HMonon{h2 ] =ct and hencdfl2 is not fully reduced, contradicting our assumption. -
c, #0 and similarly we see thzﬂf(2 +0. Hence(c1 -C, )t reduces but neither1 tnorc, t reduces byG. Thus
by = HCoeff[gy] divides(cl -c, ). Moreover

Quotientc1 by = Quotien{c2 b =0
for otherwise at least one bf andh, could not be fully reduced. Thies andc, are in the same residue cl

modulo bk and so they are equal. This shows that the head telhm efh2 is zero, in other Wordla1 = h2 as
desired.



(ii)=(i) is similar in style to 10.8 of [Becker, Weispfenning, and Kredel 1993]. Suppade f =ct+r where

G T
t=HPHf]. By assumption of canonical reduction we hdv<{a—>}0. Thus we may writef = 3'h; g; where

Max{HPHh; gj]| =t (we remark that this is already a weak standard representationlaftJ = {j : HPHh; g;| = t}.
]

Assume for a contradiction that=1tJ> 1, thatt is minimal among all power products (with respectTjofor

which this happens, and that is minimal among coefficients for which there is no strong standard represe

involving this head power produttThese assumptions are tenable because we work with well ordered mo
over a totally ordered Euclidean domain.

For notational convenience assume without loss of generality thet, ..., m}. Now let

€, {s, o Sml} = ExtendedGC[@ﬂCoeﬁ‘[g1 | ... HCoeflgnl|
andu; =t/HPHgy| forl<j<m.
We next defingg = u s g, +..+UnSnOm. Then by constructiomlMonom{g] = Ct. If |€| = |c| thenm= 1becaus
we use Euclidean reduction that fordeCoeffh; gj|| <Ic| for 1< j<m, yet by construction as a GCD we h
&l < |HCoeff[h; gj]| for 1= j <m. Thus|¢| < c|.
By minimality of |c| there is a strong standard representagieny.q; g; with HPAcj k] =t andHPHq; gj| <t for
all j#k. Asc=HCoefffh g, |+...+Hcoeffihygmland €= GCD[HCoefflg, |, ... HCoeffgnl| we see thatic,

so we have = d ¢ for somed. Finally letf = f —d g. ThenHPH f] <t and hencd has a strong standard represe

tion by our minimality hypothesis which we write &s= 3p; g;. But thend Yq; g; + Y.p; g; is seen to be a stro
standard representation bfm

Theorem 2 Given a set of polynomials in Z[x1 e xn] and a term ordeF, the following are equivalent.

(i) G is a Grobner basis with respect to term oiler

G T G T
(ii) For every pair of polynomialfp, , p, } c G we haveSPoly, [p, , p, ]{—>}0 andSPoly, [p, , p, | —0.

fo. )

(iii) For every pair of polynomialép, , p, } c G we haveSPolyfp, , p, | —0.

We use both types of S—polynomial in the second equivalent statement because it is a bit easier to shc
yields a Grobner basis. We then show that the third statement is equivalent to the second. This is useful a
reasons because one wants to retain the original Buchberger algorithm intact to the extent possible, ar
having one rather than two S—polynomials for a given pair furthers this goal.

Proof. (i)=(ii) is from the definition of a Grébner basis. We now shows=iji) (this is similar to 10.11 in [Becke
Weispfenning, and Kredel 1993]).

SupposeG={g, , -..,gn} andf is in the ideal generated I We may writef = 3'h; g;. Lett = Max{HPHh; gj],
j

J={j:HPHh; g;| =t}, andi=HPAf]. We may assumeis minimal among such representations. iret t J. If

m=1 andt =1 then we have a strong standard representation, so we assume othetwigeh&n obviouslym> 1.
On the other hand, if >  then we require at least two terms in the representation to have power pradincoiafe
to kill off that term. Hencen> 1. Reordering if necessary, without loss of generality we may as3uni®, ..., m}.

We now set up some notation. Wrge= c¢;t; + rj andh; = b;s; +q; wheret; = HPHg;| ands; = HPHh;|. Note
thatsjtj=tfor1<j<m. Lett, , =PolynomialCMt, ,t, |,v=t/t, _,u =t /t ,andu, =t /t .



From this we see at once tha&:@'l =u, v and s, =u, V. We will assume for a contradiction t

|b1 c, |+ ...+ |bm Cyl is minimal among all representationsfothat have a largest power product.of\gain, such
representation must exist for well ordered monomials over a totally ordered Euclidean domain.

Let {c, {d1 . d, b= ExtendedGC[P:l . C, | e = LCM[C1 . C, ]/c1 e, = —LCM[cl . C, ]/02 . Soe, ande, are
minimal in norm such theﬁ1 c, +&, ¢, = 0.
In terms of these definitions we have

Spolyl [gl 9, ] :dl u g +dz u, g,

Spoly2 [gl 9, ] =€ u g +6 U, g,
Now b1 c, + b2 c, = d c for somed; moreover there exists such thaib1 =d d1 +eeg and b2 =d d2 +eeg .
Sinceb, #0andb, * 0 by construction, and= GCD[c, , c, |, it follows thatlb, ¢, |+|b, c, |>Idd.
We now have

h g +h, g, =(dd1 +ee1)ul vg +q, 9 +(dd2 +eez)u2 Vg, +0, 9, =

dvSPoly [g, . g, | +evSPoly, 9,9, |+(a, 9, +a, 9,)

By hypothesis the S-polynomials reduce to zero. NewPHSPoly, [g, , g, ||<t, HPHq, g, |<t, anc

HPHq, g, | <t. MoreoverHCoeffld vSPoly [g, , g, || =dc. We thus have a representationhofg, +h, g,
as a sun}. px gx whereby, lettindK = {k: HPH px gk] = t}, we obtain

D IHCoeffpcgl=ldd <o, ¢, |+]b, c, |
keK
But then we may use this representation to re;jich1 + h2 g, in the representation df, and this contradic
minimality of|bl c, | + ...+ [bm Gl
Since (ii) is stronger than (iii) it is clear that € (iii). We show (jii}=(ii).
Let pj = cjtj + rj with HPHpj| =t; for j € {1, 2. Assume without loss of generality tHaf |<|c, | If ¢, ic,

then SPoly, [pl , p2] is trivially a product ofp, and hence known to reduce, and thus we need onl

SPoly, [p, , p, |- So we may suppose thgt «c, . Let{c, {a, , &, }} = ExtendedGClx, , c, | withc, =d, canc
c, =d, c. Note that a d +a, d, =land in particular a, and a, are relatively prime. L
t=PolynomialLCMt, , t, |withs =t/t ands, =t/t, . Then
q=SPoly [p,.p, |=a, ¢ st +a s r +a,c, st +a s r, = ct+a S [ +a, s, I,
SPoly, [p, . p, |=(d, ¢, s t, +d, s r )-(d c,s,t, +d s, 1, )=d, s 1 -d s T,
Thus

h =SPoly, [p,,a|=c s t +s r —-d (ct+a s r, +a, s r,)
= (1_d1 al)sl rn-dasr,=adsr -adsr,=2a SPoly, [pl ' pz]
and similarlyh, = SPoly, [p, , q|=a, SPoly, [p, , p, |



Also by definition 6 it is clear th&Poly, |pj, q] = SPoly p;, q] for j € {1, 2.

Since a, and a, are relatively prime we obtaigPoly |h ,h, |=SPoly, [p, , p, |. This shows that provid
SPoly [p, , p, | is not trivial we will eventually obtaisPoly, [p, , p, | by iteratingSPoly. Hence for any pz
{p, . p, } we need only uséPolyfp, , p, | as given in definition 60

From the theorems above it is now not hard to see that our bases are the same as the D-bases of [Pan 1
Weispfenning, and Kredel 1993]. What is different is the mode of computation insofar as we allow E
reduction of lead coefficients rather than insist on divisibility. This will tend to make them smaller sooner,
could offer an advantage in efficiency. Note that this only applies when working over a Euclidean domain, ¢
algorithm in the above references has the advantage of greater generality, albeit ours has greater flexibility
of reducing polynomial.

There are other ways to improve computational efficiency. It is known from long experience that the
bottleneck to the algorithm is the reduction of S—polynomials. Buchberger himself was the first to give crite
which certain S—polynomials could be ignored (see [Buchberger 1985] and references therein). We reco
his criteria from the field case.

Theorem 3 (Buchberger’s criterion:1Jupposep; =c;t; + r; with HPP[pj] =tjfor je{l, 2 andc, ic, . Suppos

further that the lead power produdtf, and t, are coprime, that isPonnomiaILCl\/[t1 ,tz]

tt. Ther

SPoly{p, , p, | will reduce to zero and hence is superfluous.

Note that we are usin@Pon2 [pl ' P, ] in this case. While the divisibility requirement for lead coefficients r

seem unduly strong, one will observe that the algorithm proceeds in such a way as to make coefficients
respect to Euclidean norm. Thus in practice this requirement may not be terribly restrictive.

Proof SPolyp, ,p, |=c t, p, —c, t, p, =(p, =1, )P, —(P, -1, )P, =1, P, =1, P, . Ast divides
the head term of, p, whilet, does not, and, divides the head term of p, whilet, does not, these do 1

pl pz
collapse further. But clearhé P, —0 andrl P, —0, soSPoI;{pl ' P, ]—>O. |

Theorem 4 (Buchberger's criterion :2)Given pj; = cjtj + r; with HPHAp;|=t; for je{l,2,3 with
PolynomialLCMt, , t, | divisible byt, . Suppos&Polyp, , p, | andSPolyfp, , p, | have strong standard repre
tations (thus far these are the conditions for criterion 2 to be in effect in the field case). Itgither ic, or

C, 1€ IC, thenSPol){pl . P, ] will have a strong standard representation and hence is superfluous.

Note that again we are working witPoly, [pl ' P, ] Obviously the roles op, andp, can be interchange

Moreover, while the divisibility conditions again appear to be restrictive, in general one obtains alot of pol
with lead coefficient a unit and these make the conditions not so uncommon.

Proof. Lett = PonnomiaILCI\/[t1 L ] Assume inductively that if andg have strong standard representations

HPH f] <t, HPHg] < t, then so doe$ + g.

Define power product multipliers U\ = PolynomialLCMt;, t] /t;. Ther

C.
Spob{pl'pz]ziul, 2P Y B

Gy



First we assume ¢c, 1C IC,. Then  SPolfp, . p,|=u, ,p, —=U; | P, anc

SPoI){pz,pg]zuzy 3 Py ——U; 5 Py

Sincet, |P0Iynom|aILCI\/[tl 1 ] we know thau1 g U, and slmllarlyu2 gl We thus may write
c,u u
2 "1, 2 2,1
- SPolyfp, , p, |- SPolyp, , p, | =
€ U 3 Uy 3
) G U o G U
— U o P Ug 1 Py =Yy o By —— U; 5 Ps |=
G G U 3 G Uy 3
SPol c ul 2 u2 1
O){pl’pz]__p3 Ug 1 ~ U; 2
3 U s Uy 3
Now ulvztlzuz‘ltz, ul,Btl =u3,lt3, and u2’3t2 =u3’2t3. This implie:
Y o Yo h b b . Yo Wb .
—u, ,=——Uu, , = and similarly u, , = . Hence the parenthesized term v
U 3 ' Up 1 g ' ty U 3 ' i
ishes, and so
c, u u
2 "1, 2 2,1
SPolyfp, , p, |=— SPoly{p, , p, |- SPolyip, , p, |
€ W 3 Uy 3

Now use the hypothesis that each summand has a strong standard representation with head power pro
thant. Then so does the sum.

The case where, 1 c, 1c, is similar. For the first step, one instead shows

lJl,2

c u

SPolyp, . p, | = 2 SPoly{p, . p, |- 2 SPolyfp, ., p, |. O
C3 ul , 3 u3 , 2

A more general treatment of this criterion may be found in [Méller 1985], based on generating sets of hom

syzygy modules. We use this version because it is simple to code; as it is in essence the usual Buchberge

one can adapt "standard" code for the field case with only minor modification (as indeed is dordathémeatici

implementation).

One will note that the criteria above pertain to the second type of S—polynomial, and naturally it would b
have a criterion for eliminating as redundant an S—polynomial of the first type. There is such a criterion ir
theorem 10.11 of [Becker, Weispfenning, and Kredel 1993].

Theorem §Given pj = ¢jtj + rj with HPApj| =t for je (1,2, 3 with t , =PolynomialLCM;, t;]. Suppos
t3 |t1 Y
mial of P, divides the head monomial tﬁTPoI){p1 , pz] (the latter is top—D-reducible, in the terminology

Let{c, {a, , a, }} = ExtendedGCIx, , c, | and further suppose, ic. In other words, the head mor

[Becker, Weispfenning, and Kredel 1993]). Ti&Poly{p, , p, | is redundant.
Proof. Letu, =t j/ti forje(l, 2, 3. Letc/c3 =dandt, , /t3 =v. Then

SPO|){pl,p2]=al ul, 2 pl +a2 u2, 1 p2 :Ctl, 2 +a1 ul, 2 r1 +a2 u2, 1 r2
Also



SPOI){pl » Py ] = SPoly, [pl ' Py ]=
(Cl Lo+ rl)ul, 3 _(Cl /C3)(C3 ; + r3)u3' 1 7Y 3y _(Cl /Cs)us, 173
and similarlySPolyfp, , p, |=u, .1, =(c, /e, )u, ,rg.

Now

u Y (t1,2/t1)(t1,3/t3)
= =t1,2/t3=V
U 3 t1,3/"1

.. . u u
and a similar computation shows th&é——+% =v. Also
u

2,3

i gt d= — —d=0
e Y s
G G G G
Hence
u U, 4
SPoI){p1 . P, ] -dvp, -a SPoI){pl . P, ] -a, SPoI){p2 . s ] =
U 3 U, 3
ct ,+a u LT o+a,u, T, —(ctl’2 +dvr3)
G U U G Y U,
AW T — 1% Y% 17 &% — s
G u 3 G U, 3
C, U oY G U U, q 0
= |la, ————+a, —————-dv|r, =
C U s G U, 3

We have thus a strong standard representati@rPof){p1 . P, ] and this suffices to show that it is redundant.

We now have our algorithm, essentially the same as the Buchberger algorithm for polynomial rings over f
list all pairs of polynomials, marking as processed all those that the criteria warrant. We now iteratively sel
whose S—polynomial is not yet marked, reduce it, and if the result is not zero, we form new pairs. Agai
criteria to mark redundant pairs. We continue this iteration until we have no more pairs to process, at whicl
S—-polynomials can be reduced to zero. Termination in a finite number of steps is proven e.g. in [Kandri-|

Kapur 1988] by noting thﬂ[xl e xn] is Noetherian and hence an ascending chain condition applies to its i

One will note that our algorithm puts a certain emphasiSRoly, , wherein the lead coefficient is the GCD of

leading coefficients of the critical pair. This is in contrast to algorithms in [Moller 1988; Pan 1989; Weisp
and Kredel 1993; Adams and Loustaunau 1994] where the emphasis is nSj?eIgn in which, as with the fiel

case, one entirely kills off a leading coefficient. Given the dearth of available implementations, it is an oper
as to which approach is computationally more effective in general.
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4 Some special cases

Before proceeding to examples we will discuss an important special class of Euclidean domains. While
show that the theory developed above carries over in a general way, for the specific and very important ¢
our base ring is the set of univariate polynomialg over a (computable) fielei one can do better. Suppose we
given a set of polynomials in some set of indeterminateskgw¢rOne augments the indeterminates witlextend-
ing the term order so that every powerxok smaller than all power products containing other variables. On
computes a Grobner basis for the input in this setting of polynomials in one more variable. &eorem 4.5.1
in [Adams and Loustaunau 1994] shows that this is in fact a strong Grébner basis for the ideal over the ori
ring [F[x] (this fact had also been mentioned in [Kandri—-Rody and Kapur 1988]). Our experience is that the
of computing a basis over a field outweigh any efficiencies developed for working over a Euclidean doma
we use this tactic iMathematicaWe show applications to working over such polynomial rings in the example

If our base ring aipn and we work with univariate polynomials over this ring then we have an example of a

chain ring. For working with polynomials over such a ring we could use the results presented in [No
Sidligean 2001] . They show, among other things, that weak and strong Grébner bases for ideals over suc
equivalent. They also present a structure theorem for the univariate case and apply it to cyclic codes. As v
in the examples below, one can instead regard the ring as a quot® @ind use the computational method
this paper. We will return to this special case below, in the context of Hensel lifting. In a sense this is the
the way that Grobner bases for polynomial ideals over fields generalize the Euclidean algorithm for the |
case.

The other well known direction in which Grébner bases generalize an older concept is that of row reductic
another special case for bases over Euclidean domains is when all the polynomials are linear. We als
application of this case to matrix normal forms in the sequel. A minor modification will moreover yield a pol
lattice reduction.

5 Examples
In this and later sections we show several examples. We omit most proofs that the algorithms do as we
proofs would use arguments based on term ordering and integer sizes, and are generally straightforward.

We first show some simple examples adapted from [Adams and Loustaunau 1994]. For purposes of asses
we note that all timings were done with version SMt#thematicarunning on a 1.5 GHz Intel processor unde!
Linux operating system.

For the first example we wish to compute a basis for an ideal in the polynomiﬁ[m&' g5 ][x, y]. Note that oL

base ring,Z[\/ -5 } is not a Euclidean domain (or even a unique factorization domain). In such cases

resort to a common tactic of adding a new variable and defining polynomial so that in effect we work over &
ring; in this example it will beZ [, y, a/]/{az +5}. So our base ring will be the integers and we have ad
variable and a polynomial relation equating that variabl§ & (up to a conjugate, as these are indistinguisl
to this method without further variables and defining polynomials). For this to work as desired we must hav:

variable ordered lexicographically lower than all others. We then remove the first polynomial from the basi
due to this ordering, is exactly the defining polynomial for that algebraic extension element.

11



Rest|
GroebnerBasis[{2xy—ay, (1+a) X* - xy, ¢® + 5}, {X, y, e}, CoefficientDomain - I ntegers|]

2 2 2 3
{25 y+10y -5vya, 15y+5y +y a, -25y+xy+5y +12 yq,

2 2 2 3 2
6 x +10 y+5y -3 vya, X —-25y+5y +x a+12 ya}

The basis in that reference is a bit different due to different notions of coefficient handling, but the one abc
the same purposes.

As a second example, we will find a basis for the ideal interse@ion 2, 5y — 3} ) {Xy— 6} in Z[X, y]. This ma

be done as below. Note that we again use and subsequently eliminate an auxiliary variable, this time orde
graphically greater than the others (specifying it as the third argumer@telibner Basi s it is to be eliminated).

GroebnerBasig[Flatten[{w{3x -2, 5y -3}, (1 —w) {xy-6}}], {X, v},
w, CoefficientDomain — Integers, MonomialOrder — EliminationOrder]

2 2 2 2 2
{18 -30 y—-3 xy+5 xy , 12 -18 x—-2 xy+3 X Yy, 6 -6 y—7 Xy+Xy +X Yy }

Again, we do not obtain the identical basis due to differences in basis definition. Specifically, theirs does
our third polynomial. This is because they find a weak Grébner basis and that requires fewer polynon
disadvantage to that, as noted earlier, is that one now must work harder to reduce with these, and mc
cannot readily obtain canonical forms.

To get some idea of algorithm speed, we now show a more strenuous computation.

polys={7x°y* +8Xy* +3xz-11, 11y’ 2+ 4X* y+ Xy Z + 2,
5x°yz+ X +2Z+52 7Xyz+3Xy+5x+4y+7};

Timing[gbdlex = GroebnerBasis[polys, {x, y, Z}, CoefficientDomain - Integers,
MonomialOrder —» Degreel exicographic]]

{1.05 Second {34 475640417 355562336 236396270436 28119592

10898452513151823962 606 330508 750 762 670 218

6355322887 725405337810105619887 333184 234

-14760987 199637 601 090 452 154 096 210 512593 #24}}
A similar basis computed over the field of rationals is about 70 times faster using the same hardware an
(the result, as might be expected{i$because we started with more polynomials than variables). So the f:
the Euclidean domain case takes almost two orders of magnitude longer is not entirely a surprise insc
eventual result contains much more information. If we remove the first polynomial then the tasks are in sc
more similar and correspondingly the relative time ratio of computing over the rationals vs. the integers
under one order of magnitude.
An application of finding bases over the integers was pointed out to the author by Dan Grayson [Grayson :
in fact was implemented by him Mathematicaaround 1988 (using the Grébner basis over integers algorithn
[Kandri-Rody and Kapur 1984]). Given a systermafl polynomials inn unknowns, find a modulus such the
the system is exactly determined moduip and return all solutions (which lie i@)"). With reference to tt
previous example, the above system is seen to be exactly determined in the quotie

ZB4 475640417 355562 336 236 396270436281 195"

A related application is to do computations involving ideals defined over quotient rings that may cont
divisors. As an example we will find all solutions in the rifig _, . .., o O @ System below.

12



gb = GroebnerBasis|
{5072012170009, —4984359602099 + x* — 3y* — 9X z, ~1780431462965+ 7X Y+ 5Y° + Z,
-4585397367278 + x* - 3y + z— 12 2%}, {X, y, 7}, CoefficientDomain - I ntegers|

2
{5 072012170009 , 117487282945412173501962z—- 1363165624472z +

3 4 5 6
1654998137452z +928181308002z —-239795324199z - 1646238538583z —
7 8 9 10
982686930325z —-1734356432441z —1928316724538z +2384106829761z -

11 12 13 14
2266219400230z -—139245405743z +895384068341z + 161928956428z +

15 16 17 18
2194204640034z —-1243172466690z -1196909984892z +1z ,

2 3
2247545052503+ y+ 7885359513742+ 2214230166342z + 955710141543z +
4 5 6 7
2160238766386z —2474194692542z —-1684716364278z +2157370757916z -

8 9 10
1072725791722z +1173330106507z - 1057647942280z -

11 12 13
1511353993603z +1327624312048z -581007814126z +

1772345363 132214 - 185000519 654le5 —1538648034 589216 — 456160565 1952l7 ,

—899617339822+ x+ 2209081769554z - 509675450 15622 + 566438534 09123 +
1828943883 97124 - 1778487828 35925 -1120529181 70026 +1238816552 21627 -
1898793743 21828 + 1286010808 74929 +893019914 1532lO + 172896 055 5992ll +
1872411543 380212 +1420313673 322213 — 880454763 764214 -

15 16 17
1202867057825z —1977589465047z —2210999439 349z }

To obtain solutions one would proceed exactly as if working over a field. Specifically, we first find root:
univariate polynomial, then back substitute each solution to solve for the remaining variables. We show the
explicitly. This involves root finding in a quotient ring of the integers. The principles behind this are well
(factor the modulus, find roots modulo each prime factor, lift to accomodate powers of primes, use Chinese
der Algorithm to combine roots modulo powers of primes). The "hard" step, computationally speaking, is
factorization of the modulus.

Roots[gb[[2]] == 0, z, Modulus - gb[[1]]]

z==99999 || z==1848935269876|| z==3102 255 902 823
This functionality is now built intdlathematicain the functiorReduce:

Timing[Reduce[{~4 984359602099 + X* — 3y* - 9x z, —1780431462965 + 7Xy +5y* + Z,
-4585397367278 + x> = 3y + z— 127} == 0, {x, y, 2}, Modulus - 5072012 170009] |

{0.22 Second , (x=77777 && y==88888 && z==99999)||
(x=1712760123092 &&y==3989577716979 &&z=-1848935269876 ||

(x ==2127801384642 &&y==3379908964470 &&z==3102255902 823}
Another area of application for Grébner bases over the integers is in computations with finitely presented 1
discussed in chapter 10 of [Sims 1994]. Among other tools one requires a module Grobner basis. This is
we show in section 7 below.
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6 Application: Hensel lifting of univariate polynomials

We now show an application that uses the special case of polynomials in one variable over the integers
powern of a primep. We begin with a simple example rigged so that the correct result is obvious.

poly = Expand[(x® + 18 x* + 34 x® + 5x% + 21 x + 30) (x* + 24 X3 + 22X + 17 x + 15)];
We will first factor the polynomial modulo a small prime, removing the (possibly trivial) constant factor.

mod = 11;

fax = FactorList[poly, M odulus - mod];
fax = First /@ Rest[fax]

3 4 2 3 4 5
{4+6x+2x +X , 8 +10 Xx+5 x +Xx +7 X +x}

Next we wish to make the factors correct modulo a power of the prime. This correction step is referred to
lifting [von zur Gathen and Gerhard 1999, chapter 15] and is used in most algorithms for factoring polynon
the rationals. It is typically done by iterations of Newton's method in a p—adic setting, but Grobner ba
instead be used to advantage. In effect we take p—adic gcds of our polynomial and each factor raised to tt
power, and these gcds are the lifted factors. For this particular example we will take the factors, squ
compute Grobner bases over the integers of thg sy, squaredfactorsquaredmoduly, and extract the le

elements of these bases. This will correspond to quadratic Hensel lifting, insofar as a factor that is corre

some valug becomes correct moduf . We will in so doing recover the original factors up to sign.

(Last[GroebnerBasis[{modz, poly, #1}, CoefficientDomain — Integers|| &) /@ fax?

2 3 4 2 3 4 5
{—15 -17 x-22 x =24 x —-x , 30 +21 x+5 x +34 x +18 x +x}

This recovered the actual factors because we arranged an example for which the modular factors each cc
to an actual factor, and moreover the factors were monic, had coefficients of the same sign, and these w
than half the prime squared. Hence they are recovered exactly from one quadratic Hensel lift. The que:
answered is why these Grobner basis computations gave the quadratic Hensel lifts of the modular fe
address this next.

Theorem 6 Given a square free univariate polynomfabver the rationals, and an integeisuch that the leadil

coefficient off is not divisible by p, f is square free modulp, andf =, 9% h0 . Assumes= GCD[g0 2, f] exists

modulop?® . Thensis the Hensel lift of, modulop?® .

Note that thisp—adic gcd may be computed, as above, by a Grébner basis over the integers. Indeed it is

convenient shorthand for running the Euclidean algorithm under the assumption that no zero divisors art
tered along the way.

Proof. We are givenf =, 9% hO . Suppose the quadratically lifted equatiorfis , g, h, whereg, =p g, anc
P

h1 =p ho . The assumptions imply that the degreegoofandgl are equal (and likewise with the cofactors).

may writeg1 =g, tPt,. Then a simple computation shows tgflt(go -pt, )spz % 2 We see th.s(j;1 1 fanc

g, 19, > modulop? . Now lets= GCD[go 2, f]. Then we have, 1s. In order to show these are equal up to

multiples (which proves the theorem), it suffices to showcllagte@g1 ] > degreés].

Supposedegregs] > degre¢g, |. Thendegre¢s] > degregg, |. Sinces: f modulop? we haves: f modulo p. But
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alsosi 9% 2 so the strict degree inequality implies tisais not square free modulp. Hencef is not square fre
modulop, contradicting our assumption.

One may observe that a polynomial factorization code based on this result will have a probabilistic aspect.
inadvertently use an "unlucky" prime wherein at some step of the lifting process a GCD does not exist.
happen if a leading coefficient in the process becomes noninvertible because it is a prpditdsafot hard to s¢

that for a given polynomial there can only be finitely many such unlucky primes. Moreover provided on
random prime that is large compared to the degree of factors and degree of lifting required, the probabili
low that the prime is unlucky.

To give some indication of efficiency we now demonstrate on a more challenging example. It stems from a
tion example presented in [van Hoeij 2002]. We first set up the polynomial in question; its roots are all the
pairs of roots of a simpler polynomial.

polyl = x%* - 5x%8 + 864 x1> — 375 x1* — 2160 x*® + 1875 x*2 + 10800 x** + 186624 x1° — 54000 x° +
46875 x® + 270000 x” — 234375 x8 — 2700000 x® — 1953125 x? + 9765625;

rts= x /. Solve[polyl == 0, x];

sums = Flatten[Table[rts[i] + rts[ T, {i, 19}, {j, i + 1, 20}1I;

newpoly = Expand[Times @@ (x — N[sums, 200])];

newpoly = Chop[newpoly] /. a_Real - Roundla];

The end goal is to factor this over the integers. While it would take us too far afield to discuss the step
lattice reduction, we will show the Hensel lifting phase below. To this end we first factor modulo a prime.

mod = Prime[4000];

fax = FactorList[newpoly, Modulus -» mod];

fax = First /@ Rest[fax];
Next we wish to make the factors correct modulo a power of the prime. The specific power is dictater
considerations that arise in the factorization algorithm; for our example it wdbbEor reasons of efficiency it
better to iterate squarings rather than try to lift to the full power in one step, as the squaring method keeps
relatively small during the lifting process. We must then do more basis computations, but the improved :
computation more than compensates for this. Hence we are, as above, doing quadratic Hensel lifting.

liftfactor s[fax_, poly_, mod_, pow_] :=
M odule[{modpow = mod, top = Ceiling[L og[2, pow]], liftedfax = fax]},
Do[modpow = If[j ==top, mod” pow, modpow” 2];
liftedfax = Expand[liftedfax” 2, M odulus - modpow];
liftedfax =
Mapl[L ast[Groebner Basis[{modpow, poly, #}, CoefficientDomain — Integers]] &,
liftedfax], {j, top}l;
liftedfax]
Timing[liftedfax = liftfactor s[fax, newpoly, mod, 36];]

{5.51 Second , Null}
There are tactics to improve on this. One possibility, for example, might be to adapt the asymptotically fa
algorithm presented in chapter 8 of [Aho, Hopcroft, and Ullman 1974]. All the same we have attainec
comparable to what was presented in [van Hoeij 2002] for this step of the algorithm using but a few lines «
implement the Hensel lift. The rest of the factorization involves constructing and reducing a particular lat
takes under 2 seconds using the same machine and software as above. Note that prior to the advent of tt
algorithm this example was essentially intractable.

Some further remarks about this methodpefdic lifting are in order. First, clearly dedicated code will be f.
than a general purpose Grdbner basis program. We have such dddth@matica and for the example above i
about five times faster. Tests on more strenuous problems indicate that the dedicated code is quite comp
what seems to be the best Hensel lifting method in the literature to date, Shoup’s "tree-lift" (which is ¢
divide—and—-conquer algorithm) [von zur Gathen and Gerhard 1999, chapter 15, section 5]. Specifically, v
clear that the behavior of Shoup’s method is asymptotically better than that of the method presented aboy
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on computation of quotients and remainders rather than GCDs), our experience was that for practical pu
method in this section was actually faster for the knapsack factorization examples we tried at [Zimmerman
these typically required lifting to many digits, this is evidence of the practicality of the method above.

In the interest of full disclosure it should be remarked that some of the examples were quite near the cross
they reached the final lift stage. Moreover the issue of speed is of course tied to the quality of code, and it |
case that the code underlying our Shoup implementation was insufficiently optimized. Other noteworthy di
are that the Shoup method requires about twice as much code, but, once a prime is found for which the fe
is square free, it cannot fail whereas, as per theorem @;-taic GCD computation may fail at later stages. Fu
details regarding the factorization of these polynomials via the knapsack algorithm are presented in [Belab:
and Zimmerman 2001].

7 Application: Computation of matrix Her mite normal forms

Another nice application of Grébner bases over a Euclidean domain is in computing the Hermite normal
matrix with elements in that domain. As there is an efficathematicamplementation of integer Hermite norr
form based on [Storjohann 1994], we illustrate for the case of matrices of univariate polynomials.

Before we show an example we need code to generate a "random" polynomial matrix. For this example we
3x5 matrix of polynomials ix of degree at mo&

randomPolynomial[deg_Integer, var_] :=
Table[var/, {j, 0, deg}].Randomi nteger [{~10, 10}, deg + 1]
randomM atrix[degmax_, rows , cols , var_] := Module[{deg},
Table[deg = Randoml nteger [{0, degmax}]; randomPolynomial[deg, var], {rows}, {cols}]]
SeedRandom[1111] mat = randomM atrix[2, 3, 5, X];

To set this up we need to exte@dcbebner Basi s to handle modules, using a "position over term" ordering [A
and Loustaunau 1994]. We represent elements as vectors with respect to module basis variables. The in
of polynomials that are linear with respect to the module variables. We then augment with relations that
products of the module variables to be zero and find the Grébner basis. The code below is taken from
1996].

moduleGroebnerBasis[polys , vars , cvars , opts__ ]:=
Module[{newpoals, rels, len = Length[cvars], gb, j, k, ruls},
rels= Flatten[Table[cvar S[[ j]] xcvarS[[K]1, {], len}, {k, j, len}]];
newpols = Join[polys, rels];
gb = GroebnerBasis[newpols, Join[cvars, vars], opts];
rul =Map[#H - {}) &, res];
gb = Flatten[gb /. rul];
Collect[gb, cvars]]

As the Hermite form is obtained by row operations over the base ring (that is, division is forbidden), it is e
to a module Grobner basis in the case where our polynomial ring is just the base ring (that is, there are r
mial variables). We convert each row of the matrix to a polynomial vector representation by making eac
into a new "variable". At this point we can use the module Grébner basis routine above. We then convert
back to matrix form.

groebnerHNF[mat_?MatrixQ, domain_, mod_: 0] := Module[
{len = Length[First[mat]], newvars, generators, mgb},
newvars= Array[v, len];
generators= mat.newvars,
mgb = moduleGr oebner Basis[gener ators,
{}, newvars, CoefficientDomain -» domain, Modulus— mod];
Outer[D, Reverselmgb], newvars]]

16



Now we obtain our module basis OVE[ .. [x]. We work over a prime field in order to restrict the size o
coefficients.

hnf = groebner HNF[mat, Polynomials[x], 8933]
2 3
{{1 , 0, 4832 +3665 x+3652 x + 3695 x ,

2 3 4 5
8283 +8735 x+74 x +3405 x +6787 x +7042 x ,

2 3 4
3056 +4811 x+3887 x +7902 x +174 X }
2 3
{0 , 1, 4183 +7075 x+5100 x +4074 x ,

2 3 4 5
505 +155 x+3912 x +3307 x +8617 x +5441 x ,

2 3 4

7548 + 1222 x+947 x +2787 x +5820 X }
2 3 4
{O, 0, 2434 +3140 x+1796 x +2494 x +x ,

2 3 4 5 6
1761 + 2265 x+2999 x +2492 x +7414 x +123 X + 7656 x

2 3 4 5
2127 +6380 x+8631 x +221 x +6177 x +5106 x }}

Note that it is here where the coefficient ring is specified. We could instead generate a random integer r
work over the integers to find the Hermite form, although as mentioned above that is not a terribly efficiet
obtain it.

m2 = Randoml nteger [{—100, 100}, {10, 15}];
Timing[hnf2 = groebner HNF[m2, I ntegers];]

{0.23 Second , Null}
Indeed, what we did above is by no means the most efficient way to obtain the Hermite form of a matrix of |
als. Several tactics for obtaining good computational efficiency are discussed in [Storjohann 1994]. At the
of a fair amount of code one could adapt some of them to work in this Grébner basis method. Some exper
indicates that coefficient swell can be a serious problem when working with polynomials over the rationa
the above method appears to be much more effective when working with polynomials over a prime field.

We adapt the technology in the previous example to solve linear polynomial diophantine systems. To so
system we transpose the matrix, prepend the right hand side vector, augment on the right with an identity r
take the Hermite normal form. We find the row corresponding to the right hand side, check that it was mul
at all, by a unit. When this is the case the solution vector can be taken from the rest of that row (which cc
to multiples of columns of the original matrix that were needed to zero the right hand side) multiplied by tl
tive reciprocal of that unit. Null vectors come from later rows in the Hermite normal form and we return
well. Note that this is readily adapted to handle a system of modular congruences. We simply treat the r
each congruence as something to be multiplied by a new variable, hence each gets a new row. As we ar
ested in the specific multiple, we do not enlarge the identity matrix by which we augment, but instead add
to join to the new rows necessitated by these moduli.

This method of diophantine solving may be found e.g. in [Blankenship 1966]. While a recent method works
fraction field [Mulders and Storjohann 1999; Malaschonok 2001] and tends to be more efficient, this appli
the Hermite normal form is all the same quite nice and very simple to code.
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The tactic of augmenting with an identity matrix, well known e.g. for matrix inversion, is a form of "tag ve
manipulation in Grobner basis technology. It can be used, for example, to record syzygies or conversiol
using nothing beyond a standa®doebner Basi s function. The method appears in [Caboara and Traverso
and was also discussed in [Lichtblau 1998] (the relevant conferences were indeed only days apart).

systemSolve[mat_?MatrixQ, rhs_?VectorQ, dom_, mod_: O, moduli_: {}]/;
Length[rhs] == Length[mat] :=
Module[{newmat, modrows, hnf, j =1, len = Length[mat], zeros, solvec, nullvecs},
newmat = Prepend[Transpose[mat], rhs];
newmat = Transpose[Join[Transpose[newmat], |dentityMatrix[L ength[newmat]]]];
If[moduli # {},
modrows =
Table[If[j == k, moduli[[j]], O1, {j, Length[modulil}, {k, Length[newmat[[1]11}];
newmat = Join[hnewmat, modrows]];
hnf = groebner HNF[newmat, dom, mod];
zeros= Table[0, {len}];
While[j < Length[hnf] & & Take[hnf[[j]], len] =!=zeros, j++];
solvec = Drop[hnf[[ 11, len + 1]/-hnf[[j, len + 1]];
nullvecs = Map[Drop[#, len + 1] &, Drop[hnf, j11;
{solvec, nullvecs}]

For this example we use a 3x5 matrix of polynomials @f degree at mogt Again we will work modul@93:.

randomSystem[degmax_, rows , cols , var_] :=
{randomM atrix[degmax, rows, cols, var], Table[randomPolynomial[degmax, var], {rows}]}
SeedRandom[11111];
mod = 8933;
{mat, rhs} = randomSystem([3, 4, 6, x];
Timing[{sol, nulls} = systemSolve[mat, rhs, Polynomials[x], mod];]

{0.057991 Second , Nul}

We check the result. The matrix times the solution vector must give the right hand side, and the matrix time
vectors must give zeroes.

zeroTensor[t_]:= Max[Absg[t]] ==0
{zeroTensor [Expand[mat.sol — rhs, Modulus - mod]],
zer oT ensor [Expand[mat.Transpose[nulls], Modulus -» mod]]}

{True , True}
We now show an example for the integer case that comes from [Dolzmann and Sturm 2001]. We have a
six modular congruences in six variables that we wish to satisfy, with coefficient matrix, right hand side, an
as below.

mat = {{70, 0, 6, 89, 0, 7}, {87, 93, 78, 73, 0, 0}, {0, 87, 0, 0, 41, 0},
{0, 12, 37, 69, 0, 15}, {75, O, 90, 65, 14, 0}, {0, 0, 0, 0, 91, 96}};

rhs={-30, -53, -3, —53, —41, -55};

moduli = {280, 5665, 110, 1545, 3125, 1925};

Timing[{soln, nulls} = systemSolve[mat, rhs, Integers, 0, moduli]]

{0.13 Second , {{0, -2, 4, 12802, -29779 , 34696},
{5, 0, 0, -18165, 4400, 333025,
{0, -5, 0, -16135, 26475, 445025 {0, O, 15, 17755,
-26950 , 540925, {0, 0, O, 39655, 4950 ,-594825}

{o, o, o, o, 68750, @, {0, 0, 0O, O, O, -1586200}}}}
We check that the solution indeed satisfies the congruences, and that matrix times null vectors gives z¢
modulo the congruence moduli.
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{zeroTensor [M od[mat.soln — rhs, moduli]],
zeroT ensor [Mod[mat.Transpose[nulls], moduli]]}

{True , True}

In addition to being faster (though slow in comparison to what one can do with specialized Hermite nor
algorithm over the integers as in [Storjohann 1994]), the Hermite form method we use has the advantage t
a smaller solution, with components of 5 digits as compared to 12 in [Dolzmann and Sturm 2001]. Mc
provides the null vectors, and we can attempt to add multiples of them to the solution in order to obtain .
that is smaller still. We do this by forming a matrix comprised of the solution and null vectors. We aug
prepending one column containing zeroes in the null vector rows and a suitably chosen integer to act as ¢
in the row containing the original solution vector. We then apply fast lattice reduction [Lenstra, Lenstra, an
1982]. The purpose of the anchor is to prevent the solution vector from being multiplied by anything oth
unit, and we check after reduction whether this succeeded. If so, the new solution is obtained from the
entries in the row containing the anchor (there may be more than one such, in which case the first will be
The code below does all this, returning the original solution if it fails in the attempt to find something that
only a unit multiple of that original solution vector.

smallSolution[sol_?VectorQ, nulls_?MatrixQ] :=
Module[{max, dim = Length[nulls] + 1, weight, auglat, lat, k, soln},
lat = Prepend[nulls, sol];
max = Max[Flatten[Abs[lat]]];
weight = dim max?;
auglat = Map[Prepend[#, 0] &, lat];
auglat[[1, 1]] = weight;
lat = LatticeReduce[auglat];
For[k =1, lat[k, 1] == 0, k++];

soln = lat[k];

Which[
soln[1]) == weight, Drop[soln, 1],
soln[1] == —weight, —Drop[soln, 1],
True, sol]]

We obtain our new solution and again check that it satisfies the desired congruences.

Timing[newsol = smallSolution[soln, nulls]]
zeroTensor [Mod[mat.newsol — rhs, moduli]]

{0.01 Second , {565 , 358, -326 , 227, 21, -221}}

True
This method, when used with more powerful technology for computing the Hermite form, will readily hand

larger problems, and moreover works well over the Gaussian integers. In the example below we us
systenBol ve2 that is substantially identical to that shown above dystentolve. We us
Devel oper‘ Herni t eNor mal Forn{ [ 2]] (extracting the second element because the first is the transfor
matrix) instead ofjroebnerHNI as the former is specialized for working over (rational or Gaussian) integers.

SeedRandom[1111];
mat = Randoml nteger [{—100, 100}, {20, 25}] + i RandomI nteger [{—100, 100}, {20, 25}];
rhs = Randoml nteger [{—100, 100}, 20] + ¢ RandomI nteger [{—100, 100}, 20];

Timing[{soln, nulls} = systemSolve2[mat, rhs];]
{zeroTensor[mat.soln — rhs], zeroTensor[mat.Transpose[nulls]]}

{0.475928 Second , Null
{True , True}
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Timing[smallsoln = smallSolution[soln, nulls];]
zeroTensor [mat.smallsoln — rhs]

{0.308954 Second , Null

True
We check that the new solution is indeed much smaller than the original.

{Max[Abs[N[soln]]], Max[Abs[N[smallsoln]]]}

47 9
{3.98003 x10 , 3.91379x10 }
So the initial solution had elements with up to 48 digits whereas those in the small solution do not exceed 1

We remark that a related method for finding a small solution is presented in [Matthews 2001]. It also use
normal form computation to obtain a solution vector as part of the transformation matrix, but attempts t
small size in that matrix via an implementation based on lattice reduction. A simpler form of what we show
(anchor set tdl) has been referred to as the "embedding” technique in [Nguyen 1999]. It is not clear
originated (the version shown above was first coded in 1995) and it seems to have been independently
multiple times. It should also be noted that the code shown above can be improved. In the Hermite solver
need to augment with an identity matrix because the transformation matrix will contain the necessary inf
In finding small solutions, one will typically want to iterate the above method, reducing the size of the weig
solution vectors get progressively smaller. Moreover it often works better if the null vectors are first reduced

8 Application: Reduction of polynomial lattices

In this section we take leave of Grébner bases over Euclidean domains and instead work in the more fan
tory of computations over fields. The reason is that the Hermite normal form algorithm shown above, with t
alteration, gives us a means of finding reduced lattices for univariate polynomial matrices; reduction here
sense of [Lenstra 1985]. The idea is to use the polynomial variable as an ideal variable (as opposed to re
the coefficient structure), and compute a degree—based basis for the module. The code below will do exact

polynomialL atticeReduce[mat_?MatrixQ, mod_: 0] := Module[
{len = Length[First[mat]], newvars, generators, mgb},
newvars= Arrayl[v, len];
generators= mat.newvars,
mgb = moduleGr oebner Basis[gener ators, Variablesimat], newvars, CoefficientDomain »
Rationals, Modulus—- mod, MonomialOrder - DegreeRever sel exicogr aphic];
Outer[D, Reverselmgb], newvars]]

We will again generate a random matrix, this time will all entries of fixed degree.
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randomMatrix[degmax_, rows , cols_, var_] := Table[
randomPolynomial[degmax, var], {rows}, {cols}]

SeedRandom[1111]

mat = randomM atrix[4, 3, 5, X]

2 3 4
{{7 +9 X+8 x +8 x -4 x

l

2 3 4 2 3 4
-10 -4 Xx+x +4 x -9x, -9 -10 x-7 x -10 x -10 x ,
3

2 4 2 3 4
-2 X-9X +6 X -4 x, -7 +7 x-7 X +3 X +10x},

2 4 2 3 4 2 3 4
{7—6x+4x,3+x—4x—8x—x,8—2x+8x—5x+5x,

2 3 4 2 3 4
-5 -6 x+5x +4x -8x, -6 -4 x+2 X +3x—6x},

2 3 4 2 3 4
{—10 +9 X+7 X +x +4 x, -7 -9 x-x -5 x -8 x

1

2 3 4 2 3 4 3 4
7 +5x -x +6 x, 5 -6 x+8x +2 x -10 x , 7+3x—4x—6x}}

We begin by computing the Hermite form, as this is in some sense as "far" as possible from "reduced"
mined by orthogonality defect from [Lenstra 1985]).
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Timing[hnf = groebnerHNF[mat, Polynomials[x], 8933]]

{0.03 Second ,

2 3 4 5 6
{{1, 0, 6315+2935 x+8883 x +5385 x +4550 x +808 x +2173 x +

7 8 9 10 11
7678 x +6828 x +6950 x +7034 x +5482 x ,

2 3 4 5 6
4265 +3896 x+ 7717 x +8361 x +5693 x +456 x +1435 x +
7 8 9 10 11
1512 x +735 x +2310 x +4026 x +5613 x ,
2 3 4 5 6
1823 +6912 x+ 1669 x + 7758 x +6345 x +5105 x +5740 x +

7 8 9 10 11
3596 x +4251 x +697 x +6128 x +5919 x }
2 3 4 5
{O , 1, 7877 +2252 x+8201 x +6977 x +2172 x +5467 x +

6 7 8 9 10 11
600 x +5158 x +1063 x +6803 x +3165 x +4686 x
2 3 4 5 6
7076 +5399 x+3436 x +1847 x +2955 x +8048 x +7613 x +
7 8 9 10 11
3262 x +4634 x +2128 x +3772 x +6069 x ,
2 3 4 5 6
8016 +5639 x+590 X +1676 x +8248 x +2610 x +5491 x +

7 8 9 10 11
4410 x +5683 x +7750 x +7900 x +1253 X }

2 3 4 5
{0, 0, 6959 +1101 x+957 x +7105 x +2752 x +3926 x +

0 1 12

6 7 8 9 1 1
448 x +5348 x +3571 x +2178 x +8427 x +7895 x +Xx ,

2 3 4 5 6
6450 + 3168 x+ 5859 x +4822 x +1719 x +8668 x +3480 x +

0 1 12

7 8 9 1 1
1789 x +4848 x +6061 x +2487 x +8928 x +1391 x

2 3 4 5 6
3374 +5261 x+6349 x +1682 x +8563 x +7676 x +4861 x +

7 8 9 10 11 12
8733 x +245 x +2641 x +5566 x +4165 x +2183 x }}}

22



Timing[redlat = polynomialL atticeReduce[hnf, 8933]]

{0.04 Second ,
2 3 4 2 3
{{2888 + 7592 x+8382 x +7495 x +x , 7000 +6901 x+ 1933 x +840 x |,

2 3 2
151 + 6746 x+4817 x +7687 x , 2228 +4662 x+ 7543 x +

3 4 2 3 4
4470 x +7242 x , 935 +3521 x+ 1489 x +8540 x +8833 X },
2 3 2 3 4
{7545 +3572 x+8733 x +5161 x , 4170 +5758 x+4764 x +4367 X +X ,

2 3 2 4
6551 +8139 x+3375 x +1985 x , 8932 +5757 x+4367 x +199 x ,

2 3 4

2778 + 6153 x+ 2978 x +6353 x + 1588 x }
2 3 2 3
{8133 + 7147 x+7546 x +396 x , 2381 +4564 x+6552 x +3773 X ,

2 3 4 2
1191 +3377 x+5756 x +4966 x +Xx , 3 +4567 x+3773 x +

3 4 2 3 4
8931 x +1391 x , 1593 +7346 x+2978 x +8732 x +2183 x }}}

Notice that we have a sort of reversal of roles from [Basiri and Faugere 2003]. In that paper they use red
polynomial matrix to compute a Grobner basis whereas we do quite the opposite. These are not mutually
however, and in principle the method of reduction above could lie beneath their algorithm (in other word:
bootstrapping rather than coding in circles).

It should also be noted that, as was shown with the integer case above, this lattice reduction might be pt
find "small" (that is, low degree) solutions to diophantine polynomial systems with nontrivial null spaces.

9 Application: Bivariate modular polynomial factorization

We now put together techniques from the preceding applications sections for the purpose of factoring ¢
polynomial modulo a prime. We will generate a pair of random polynomials such that there are terms of hic
degree in each variable separately; this convenience involves no actual loss of generality, as one can al
this for one variable by a linear change of coordinates. We make a few other useful choices so as notto r
necessary conditions e.g. degree changing on substitution of a value for one variable. Again, these are
niences insofar as one can work in an extension field in one variable, in essence performing a substitt
algebraic element outside the base field. The purpose of this section is not to derive a foolproof algorithm
to illustrate the method on a relatively simple albeit nontrivial example.
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randpoly[deg_, mod_, x_, y_]:=

deg deg—i o
> > Randominteger [{If[i + j = deg && i j =0, 1, 0], mod — 1}] x' y!
i=0 j=0

totdeg
2

mod = 19; SeedRandom[1111]; totdeg = 6; polyl = randpoly[ , mod, X, y];

totdeg
2

poly2 = randpoly[ , mod, X, y]; poly = Expand[poly1 poly2, Modulus —» mod]

2 3 4 5 6 2 3
18 x+6 x +18 x +16 x +12 x +8 x +13 y+12 xy+17 x y+11 x y+
4 5 2 2 2 2 3 2 4 2 3
7 X y+16 x y+16y +17 xy +6 x y +2x vy +14 x vy +14y +
3 2 3 3 3 4 4 2 4 5 5 6
18 xy +5 X y +2 x y +y +4 xy +16 x y +18y +18 xy +7 y
We will evaluate ak = 11 and factor, removing the constant term.

fax = Map[First, Drop[FactorList[poly /. x = 11, Modulus - mod], 1]]

2 2 3
{8 +y, 14 +3 y+y , 14 +13 y+9 y +y}

As in the Hensel lifting section we will lift a factor modulo a power of the iealll) that is sufficient to reclai
factors of degree 3 in

subst = (x — 11);

pow = 12;

substpower = subst” pow;

liftedfactor = Last[Groebner Basis[{poly, substpower, fax[[1]]" pow},
y, Modulus -» mod, CoefficientDomain — Polynomials[x]]]

2 3 4 5
3 +14 x+2 x +15x +2 x +15 x +

6 7 8 9 10 11
18 x +18 x +18 x +13 x +5 X +X +Yy

We remark that one must exercise care at this last step, insofar as a minor reformulation may accidentally |
entire factor, thus rendering moot the rest of the example. To wit;

liftedfactor 2 = First[Groebner Basis[{poly, (x — 11)" 10, fax[[1]]" 10},
{X, vy}, Modulus -» mod, MonomialOrder — DegreeRever sel exicographic]]

2 3 2 2 3
12 x+4 x +x +15y+2 xy+11 x y+5 Xy +5vy
PolynomialM od[5x poly2, mod] == liftedfactor2

True
This, however, is another method and will not be discussed further in the present paper. It at least serves
the goal for the method at hand.

As in [Lenstra 1985] we now set up a lattice in univariate polynomiads in
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deg = Exponent[liftedfactor, y];

latticel = Table[lf[i == j, substpower, 0], {i, deg}, {]j, totdeg — 2}1;
coeffs = PadRight[CoefficientList[liftedfactor, y], totdeg — 2];
lattice2 = Table[RotateRight[coeffs, |1, {j, O, totdeg — 3 — deg}l;
lattice = Join[latticel, lattice?]

{{(-11 +x)12, 0, 0, 0},

2 3 4 5 6 7
{3 +14 x+2 x +15x +2 x +15 x +18 x +18 x +

8 9 10 11
18 x +13 x +5x +x , 1, 0, 0},

2 3 4 5 6
{0, 3+14 x+2 x +15x +2 x +15 x +18 x +
7 8 9 10 11
18 x +18 x +13 x +5 x +x , 1, 0},
2 3 4 5 6
{0,0,3+14x+2x+15x+2x+15x+18x+

7 8 9 10 11
18 x +18 x +13 x +5 x +x , l}}

First[redlat = polynomialL atticeReduce[lattice, mod]].y”* Range[O, totdeg/2]

2 3 2 2 3
12 x+4 X +X +(15 +2 x+11 x )y+5 Xy +5vy

We recognize from this that we have recovered one of the true modular factors of our original polynomial.

10 Application: Computing small generatorsof idealsin quadratic number rings

A ring of integers extended by a square root is an important object in number theodysasiafiesd® = D, where
D is a squarefree integer. Two elements of the quadratic integeZfijgsayx=r + sdandy=u+ v d, comprisi
the basis of an ideal. We will compute small generators for that ideal. We can moreover recover Bezout
That is, we find a pair of multipliefsn, n} € Z[d] such thatn x+ ny= g for each such generatgr

Here we use code from previous sections to provide multipliers for the Bezout relations. We compute a ma
with first column comprised of our givenandy, and a2x 2 identity matrix to the right of that column. We furth
more have 8x 3 matrix beneath this, comprised of the reducing quadratic on the diagonal and zero elsew
Hermite form of this matrix, computed vig oebner HNF, will have as first row the greatest common divisor

the Bezout relation multipliers. For full generality, we handle the case \nﬁeﬁa 1 by instead using the defini

polynomial ((2d -1? - D)/4; this allows us the full range of elements in the corresponding quadratic rir

division by 4, which would be superfluous were our coefficient domain a field, is necessary for attaining
defining polynomial.

There is an added wrinkle. The Bezout relation multipliers computed as above can be quite large. But we
smaller set, exactly as we found small integer solutions to diophantine systems. We simply treat the
integers as integer pairs, flatten our vectors of these, and isvaldd Sol uti on. Then we translate consecu
pairs of the resulting integer vector back to quadratic integers. Code for this is below.
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quadraticl nteger Tol nteger Vector [n1_Integer, alg_]:={n1, O}
quadraticl nteger TolntegerVector[nl . + n2_.xalg_, alg_] :={nl, n2}
quadr aticVector Tol nteger Vector[vec , alg ]:=

Flatten[M ap[quadr aticl nteger T ol nteger Vector [#, alg] &, vec]]

smallSolutionQuadratic[vec_, nulls_, alg_]:= Module[
{soln, nulls2},
soln = quadraticVector Tol nteger Vector [vec, alg];
nulls2 = Map[quadraticVector Tol nteger Vector [#, alg] &, nulls];
soln = smallSolution[soln, nulls2];
Partition[soln, 2] /. {a_Integer, b_Integer}:> a+ algxb
1

Here is the Bezout relation code.

bezout[d_, m1_Integer, m2_. + n2_.xd_, tsqr_] :=
Module[{theta, polys}, polys={m1, m2 + n2xtheta};
polyBezout[polys, theta, d, tsqr]]
bezout[d_, m2_. + n2_.xd_, m1_Integer, tsgr_] :=
Moduleff{theta, polys}, polys={m2 + n2xtheta, m1};
polyBezout[polys, theta, d, tsgr]]
bezout[d , m1 .+nl .d_, m2 .+n2 .xd_, tsgr_]:=
Module[{theta, polys}, polys={m1 + nlxtheta, m2 + n2xtheta};
polyBezout[polys, theta, d, tsqr]]

polyBezout[polys , theta , d_, tsgr_] :=
Module[{defpoly, mat, gb, gcd, solns, soln, nulls, relations, subs},
defpoly = If[Mod[tsgr, 4] == 1, subs=theta— (1 + Sgrt[tsqr])/2;

Expand[((2«theta — 1) 2 — tsqr) /4], subs=theta » Sgrt[tsgr]; theta® 2 — tsgr];
mat = Join[Transpose[Join[{polys}, |dentityM atrix[2]]], defpoly x| dentityM atrix[3]];
gb = groebnerHNF[mat, Integers];
relations = Select[gh, H#[[1]] =!'=0& & FreeQ[#[[1]], theta” _]1&];
solns= M ap[Rest, relations];
nulls= Map[Rest, Cases[gb, {0, _ }11;
nulls = DeleteCases[nulls, vec_/; ! FreeQ[vec, theta™ _]1;
solns = Map[smallSolutionQuadr atic[#, nulls, theta] &, solns];

Partition[Riffle[M ap[First, relations], solns] /. subs, 2]]

We show a quick example. We'll work ové|[v-19] (so d=(1+V-19)/2, with inputs 51 + 43d anc
26 — 55d.

bezrels= bezout[d, 51 + 43d, 26 — 55d, —19]

{{l, {115 -2 (l +iJT), 101 -17 (l +L\/F)}}}

We now check that result by expanding to see we recover the claimed gcd.

Expand|bezrdls{[1, 2]1{51 + 43(1 + \/—_19)/2, 26 - 55(1 + \/-_19)/2} — bezrels[1, 1]]]

0
We now show a larger example.
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n = 50;

randsgrt = \/ RandomlInteger[10"] /.a_Integer \/ b - \/?
randgints = {Randomlnteger [10", 2].{1, d}, RandomlInteger[10", 2].{1, d}}

\/ 76645210216 068 275341252449 427 250942 042565641503
{41 230119139644 742056 691832704 420484 800325317 0974349

66637694 434 836 005939093652 315806 699696521 110 83 163!
29376606 053454810686 236077 314995219 308578 051470644
68102540162537581922579541 354979200541 266074 0571$4!

Timing[bezrels = bezout[d, Sequence @@ randqints, randsgrt” 2]]

{0.013998 , {{3 + \/ 76645210216 068 275 341252449427 250942 042565641503899 ,

{62 910542074600312551 765960503 628 547 531 246 233 643 820 636 292 754 943253

066320117637426498520034683710
31136862355224409625896210047 184 165981 450 145 584 808 340 049 705 2459
582352889642233951439580078105

\/ 76645210216068275341252449427250942042565641503899 ,
—-55848984 550900338117 246 064 954 825208 020230922 492 945275734518 3024
813449754151001095645110160958
30467126 693584 986 302978558 640228 8341916417120442903487300282253
677987057268 184 365890 747 403850

\/ 76645210216068275341252449427 250942 042565641 503}3%9 {30 ,

{—60 305611400261823127930569882412860470856519992038292070000 96525

473959556 066 003160 005410829435
298475813352707319047426438825763864271479363740194275189035391
045332043535642926 090923373923

\/ 76645210216 068275341 252449427250942 042 565641503899 ,
53536451099594 498510472658 242785071456 611736 153058 906 900507 26301
342307 286854677 383630536 832643
292055773527930319929302358279334444888539792412347646250051275
830800303475548423181673182794

\/ 76645210216068 275341 252449427 250942042565 641 503}8%%}

In the special case where the idealls (e.g.{X, y} generates the entire ring), then we actually have obtair

extended gcd.More generally it is easy to show that when there is a gcd and it is a rational integer, or else
rational integer in the ideal, then the above code finds that gcd and the corresponding Bezout relation. In
one would need to do further work to either recover a gcd or else (in the case where the class number of th
ring is not 1) show that no gcd exists. See [Weilert 2005] or [Miled andOuertani 2010] for further details. \

below a simple approach that works in many situations. We workowitly 53 719.

sgrt = Sqrt[53719];
gints= {73609 + 15577 d, 2991 + 6417 d};
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bezrels = bezout[d, Sequence @@ qints, sqrt” 2]

{{1 V53719 |
{14462 895 - 3265382 \ 53719 , 1344274 + 7923502 \ 53719 }}
{6 , {1 128711 — 254907 \ 53719 , —104180 + 618536 \ 53719 }}}

We have reduced the ideal sum to one generate{d bw 53719 , () There is in fact a gcd, though, because¢
ring Z|V'53719] is a principal ideal domain (this follows from the fact thé3719 has class number of

Checking norms shows that any common factor of 6land 53 719will have a norm of 6 or —6. So we have a

type of equation to solve: find integeis b} such thai6a+b)?> —53719° =+6. Well known facts about su
equations tell us that any solution will hagga + b)/b as a convergent to the continued fraction expansi

v 53719. We remark that for this method to work, we require that the right handtsda, this case, have absol
value less thay 53719.

cf = ContinuedFraction[\j 53719 ];

frax = Conver gents[cf];

solnsl = Table[Solve[{(6xa+ b)* 2 -53719xb"2==6, (6xa+ b)/b=="frax[[]]1]}, {a, b}],
{j, Length[frax]}];

solns2 = Table[Solve[{(6xa + b)" 2 - 53719xb" 2== -6, (6xa+ b)/b=="frax[[ 11}, {a, b}],
{], Lengthlfrax]}];

Cases[Flatten[{a, b} /. solnsl, 1], {x_Integer, y_Integer}]
Cases[Flatten[{a, b} /. solns2, 1], {x_Integer, y_Integer}]

{}

“—3428948410941086922003618340136587439827999302403486984497710688926£
684288776613161602832 ,
—-89150972140308509 130356 945221982374 902 233 029 263 834 884 2552415209375
87095468433885052824?
{34289484109410869220036183401365874398279993024034869844977106889265
684288776613161602832 ,
89150972140308509 130356 945221 982374902 233029 263 834 884 255241 520937-58.

870954 684 338850528 24}?
We have found a gcd.

ged = Expand[

{3428948410941 086 922 003 618 340 136 587 439 827 999 302 403 486 984 497 710688 926 584 "
615684 288 776 613 161 602 832,
89150972 140 308 509 130 356 945 221 982 374 902 233 029 263 834 884 255 241 520937582 .

267870954 684 338850528 243}.{6, 1+ 53719 }]

20662841437786830041 152066986 041507 013870228 843684 756 791 241505 654 497.08
976687 344017 820145235
89150972140308509 130356 945221982 374902233029 263 834 884 255241 520937582

954684 338850528243y 53719
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We confirm that the norm is indeed -6.

Expand[gcd*(gcd /. 53719 —> -/ 53719 ]]

-6

11 Summary

We have presented an algorithm for computing a strong Grobner basis over a Euclidean domain that is
identical to Buchberger's method for the case where the base ring is a field. In particular we have retain
polynomial reduction approach as well as the Buchberger criteria for elimination of redundant S—poly
Several basic examples were presented to illustrate diverse applications of this technology e.g. working ov
rings, solving nonlinear systems over rings. As more specialized applications, we showed how to use the:
compute Hensel lifts in a univariate polynomial ring and find matrix Hermite normal forms; closely relat
gives us reduction of univariate polynomial lattices. While these last applications are quite specialized in
that efficient methods are available that do not require the full power of Grobner bases, it is all the same ni
the methods shown above for computing them. One reason is that the code is simple and fairly flexik
modifications be desired. Another is that these methods, while not as fast as the best known, perform reas
on many problems that are of practical size. Perhaps most interesting is that several fundamental ideas
puter algebra, such as Hensel lifting, matrix canonical forms, and lattice reduction, as well as interplay
these, may be cast as computations involving Grébner bases over Euclidean domains or close relatives the
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