
Revisiting strong Gröbner bases over Euclidean domains
Daniel Lichtblau
August 22, 2003

Wolfram Research, Inc.
100 Trade Centre Dr
Champaign, IL 61820
danl@wolfram.com

Abstract: Buchberger and Kandri−Rody and Kapur defined a strong Gröbner basis for a polynomial
ideal over a Euclidean domain in a way that gives rise to canonical reductions. This retains what is
perhaps the most important property of Gröbner bases over fields. A difficulty is that these can be
substantially harder to compute than their field counterparts. We extend their results for computing
these bases to give an algorithm that is effective in practice. In particular we show how to use S−
polynomials (rather than "critical pairs") so that the algorithm becomes quite similar to that for fields,
and thus known strategies for the latter may be employed. We also show how Buchberger’s important
criteria for detection of unneeded S−polynomials can be extended to work over a Euclidean domain.
We then provide simple examples as well as applications to solving equations in quotient rings,
Hensel lifting, Hermite normal form computations, and reduction of univariate polynomial lattices.
These serve to demonstrate why Gröbner basis computations over such rings are indeed worthy of
consideration.

Keywords and phrases: Gröbner basis, Euclidean domain, Hensel lifting, Hermite normal form, linear
diophantine systems, lattice reduction.

1 Introduction

Since their introduction by Bruno Buchberger in the 1960’s, the theory and application of Gröbner bases has been
developed extensively. While the original version worked with polynomial rings defined over fields, this has been
extended in different ways to other types of base ring such as Euclidean domains or principal ideal domains. Text−
book expositions for this may be found in [Becker, Weispfenning, and Kredel 1993] and [Adams and Loustaunau
1994]. As might be expected, the less structured the base ring, the more problematic becomes the theory behind
and/or computation of such bases. Moreover while the definitions for the field case are common throughout the
literature, one encounters variations when working over other rings, motivated by the wish (or decreasing ability) to
preserve various aspects of the field case. One particular variant, proposed independently in [Kandri−Rody and
Kapur 1984], and [Buchberger 1985, section 8], defines what is termed a "strong" Gröbner basis over the integers.
As demonstrated in [Kandri−Rody and Kapur 1988] this extends more generally to polynomial rings over Euclidean
domains. Their motivation was to define these bases in such a way that canonical reductions to normal form are
essentially unchanged from the field case. A by−product was that one also retains similarity to the field case in the
algorithm for computing these. As a generalization, [Pan 1989] developed similar ideas but in the setting of polyno−
mial rings over effectively computable principal ideal domains. In this paper we restrict attention to Euclidean
domains firstly because that is the setting wherein one may preserve the notion of canonical forms, and secondly in
order to avoid questions of computability.

There are at least two reasons to want a strong Gröbner basis over a Euclidean domain. One is that as noted above
we obtain canonical forms, and these are very useful in computations modulo polynomial ideals. The second is that
reduction is now cheap; with a weak Gröbner basis one must compute greatest−common−divisors in the base ring in
order to perform reduction (see [Becker, Weispfenning, and Kredel 1993]), whereas with a strong basis one only
needs use a division algorithm (the price of course is that the basis computation itself may be more costly).

The theory behind strong bases was largely resolved by the early 1990’s but details regarding efficient computation
and preservation of the simplicity of Buchberger’s algorithm are scattered through the references. The intent of this
paper is to gather this under one roof, so to speak, and to make explicit mention of any improvements and simplifica−
tions of which we are aware. For example, a straightforward reduction algorithm can be slow as it essentially
emulates the extended GCD algorithm but with coefficient arithmetic carried over to polynomials. To remedy this
[Kandri−Rody and Kapur 1984; Kandri−Rody and Kapur 1988] use the extended GCD explicitly on coefficients, but

emulates the extended GCD algorithm but with coefficient arithmetic carried over to polynomials. To remedy this
[Kandri−Rody and Kapur 1984; Kandri−Rody and Kapur 1988] use the extended GCD explicitly on coefficients, but
make use of two types of S−polynomial and require a restriction on how reduction may be performed. Another issue
is that with the notable exception of [Möller 1988] the literature says relatively little about extending the Buchberger
criteria for eliminating redundant S−polynomials ([Adams and Loustaunau 1994] also considered these criteria in
some exercises, but in the context of what appears to be a very different algorithm for working over a PID). We give
a form that is very much in the spirit of the field case in [Buchberger 1985]. We also give several useful applications
of special cases of such bases.

It will turn out that our basis is identical to the D−Gröbner basis discussed in chapter 10 of [Becker, Weispfenning,
and Kredel 1993] (they refer to the two types of polynomial as S−polynomials and G−polynomials). But we will
have a cheaper way to compute this basis because of more general reduction and the availability of redundancy
criteria, as well as fewer S−polynomials to consider. Thus we believe this algorithm demonstrates a reasonable blend
of ease of implementation and runtime efficiency. The algorithm we will discuss is implemented in the kernel of
Mathematica [Wolfram 1999] (Mathematica (TM) is a registered trademark of Wolfram Research, Incorporated).
General information about Gröbner bases in Mathematica may be found in [Lichtblau 1996].

The outline of this paper is as follows. First we cover the basic definitions, when working in a polynomial ideal over
the integers, of term ordering, canonical rewriting, S−polynomials, and Gröbner bases. We then extend the theory
presented in [Buchberger 1985] and [Kandri−Rody and Kapur 1988] so that it is more like the case where one works
over a field. We next extend the well−known Buchberger criteria for detecting unnecessary S−polynomials in
advance of performing actual (and often time consuming) reductions. We follow with several general examples. We
then show some specialized applications that, among other things, connect these bases to important areas elsewhere
in computational mathematics.

In the sequel we restrict our attention almost exclusively to the integers for clarity of exposition. It should be noted
that definitions and theorems in this paper extend readily to all Euclidean domains over which one can perform
effective computation, provided one can canonically select elements in a way that will be made precise for the
integer case below. It is then straightforward to adapt the ideas behind this case to the other common Euclidean rings
e.g. Gaussian integers or univariate polynomials.

2 Notation and definitions

First we establish notation. We work in the polynomial ring of n indeterminates over the integers, ZAx
1

, ..., xnE. A
power product is a product of the form Û

j=1

n IxjMej . A term, or monomial, is a power product times an integer coeffi−

cient (note that some authors define one or the other of these to be what we call a power product). We will typically
denote monomials as cj t j where cj is an integer coefficient and t j is a power product. One sees immediately that any

polynomial in our ring can be written as a sum of terms with distinct power products; this is the usual definition of a
polynomial in expanded form. Our typical usage of letters (possibly subscripted or otherwise annotated) in the sequel
will be as follows: 8a, b, c, d, e< are coefficients in our ring, 8 f , g, h, p, q, r< are polynomials, 8i, j, k, m, n< are
integers, and 8s, t, u, v< are power products.

As in the field case we define well−founded orderings on the power products. Let 9 j
1

, ... jn= denote the (ordered)

exponent vector of nonnegative integers for a given power product (that is, j
1

 is the exponent of x
1

, etc.). Suppose

u, v, and w are any three such exponent vectors, 0 is the exponent vector consisting of all zeros, and sums of expo−
nent vectors are of course performed element−wise and correspond to products of power products.

Definition 1: A total ordering among such exponent vectors (and hence among power products) is well founded
provided

(i) 0 < u for non−zero u
(ii) u £ v� u+w £ v+w

For example we have the oft−used "pure lexicographic" ordering wherein 9 j
1

, ... jn= > 9m1
, ...mn= whenever

m £ n T

2

9
1

= 9
1

=
j i =mi for all 1£ i < k£ n and jk >mk. For naming purposes we will sometimes call a term ordering T. In the sequel
when power products are compared it is always assumed that this is done with respect to a well founded order.

Definition 2: We will regard our polynomials as sums of terms in descending term order. That is, if
p= c

1
t
1
+ ...+ cn tn then we have t

1
> t

2
> ...> tn (of course this depends on the particular choice of term order).

The term c
1

t
1

 is denoted the "head" term. In the language of rewriting rules one says that the head term "reduces"

to minus the sum of the remaining terms. For a pair of power products v= 9k
1

, ...kn= and w= 9m
1

, ...mn= we say

that w divides v if mj £ kj for all 1£ j £ n. For abbreviation purposes we will write HPP@pD = t
1

, ("PP" for "power

product"), HCoeff@pD = c
1

, and HMonom@pD = c
1

t
1

.

We will assume the reader is familiar with the basic ideas of Gröbner bases in polynomial rings over fields. Good
references for this include [Buchberger 1985; Cox, Little, and O’Shea 1992; Becker, Weispfenning, and Kredel
1993; Adams and Loustaunau 1994]. Recall that one of several equivalent definitions is that one obtains a canonical
form when reducing a given polynomial by such a basis. The various definitions are no longer equivalent when one
works over a more general ring, and it is this particular one that gives rise to strong Gröbner bases when the base
ring is a Euclidean domain. Before this can be described we must first see what is meant by reduction, as this is
altered from the field case.

First we will impose an ordering on elements in the coefficient ring. For our later purposes this too will be a total
ordering, which we will denote by <<. In particular, suppose our Euclidean norm on an element c in the ring is

denoted by c . Then whenever c
1
< c

2
 we require that c

1
<< c

2
. For integers we could for example use

absolute values with ties broken by sign. So, following [Kandri−Rody and Kapur 1984; Buchberger 1985, section 8],
we may take for our ordering

0<< 1<< |1<< 2<< |2<< ...

As will become clear, what we really require is a way to obtain unique minimal remainders in the division algorithm.
This extra ordering suffices for that task.

Definition 3: Given a monomial m= c t and a polynomial p = Úcj t j with t
1

 the leading power product we say that

p reduces m provided

(i) t
1
ý t (that is, we have t = s

1
t
1

).

(ii) Using the division algorithm to write c = a c
1
+ d, we have a¹ 0 (or, equivalently, d¤ < c¤). In this case we

write m®m- a s
1

p. More generally we may allow any multiplier a such that the remainder satisfies d¤ < c¤, but

the quotient a from the division algorithm is the only one we use in actual practice.

Similarly if q and p are polynomials we say p reduces q provided it reduces some monomial m of q. Note that
reduction depends on term order in general. We make this explicit in a shorthand notation: if the resulting polyno−

mial is r we write q
:p, T>

r. Generally we will be interested in head term reductions, but for purposes of obtaining
canonical forms we will reduce lower terms as well. Note that it is in reductions that minimal remainders become
important: we require that the reduced polynomial be "smaller" either in head power product or coefficient. There is
a small subtlety that should be made explicit. Our division algorithm must work in such a way that the quotient of 2
and 3 is 1, with a remainder of |1 (because |1 is smaller than 2 in the Euclidean norm).

Definition 4: Given a polynomial q and a set of polynomials F we say that q is reducible by F if there is a polyno−

mial p in F that reduces q. There may be many such, and one may get different reductions. The point of a Gröbner
basis is that we will get a unique result once no further reductions can be applied, regardless of choices for reducing
polynomials that were made along the way. If some chain of reductions from q leads to a polynomial r (regardless

of whether it might be further reduced by F), we write q
:F, T>

r.

3

We now mention why this form of reduction is useful. As we will see, one can obtain a basis computation algorithm
that is quite similar to that for fields. This is quite important if one is to write (almost) generic code that is at the
same time optimized for different coefficient domains. Indeed, we want to use heuristics that are borrowed from the
field case to the greatest extent possible, and the fewer departures from that case the more readily we are able to do
this. This may also be carried beyond the Buchberger algorithm. Specifically we note that there has been much work
over the years to do Gröbner basis conversion. One such method in particular, the Gröbner walk [Collart, Kalkbren−
ner, and Mall 1997], appears to be extendable to Euclidean domain base rings. Yet another reason to have this form
of reduction is that it is fast; weak bases rely on slower GCD computations rather than division.

We define two types of S−polynomial. Recall that the idea behind these in the field case is to combine head terms
using the LCM of the lead power products, and then kill off the lead coefficient. In the Euclidean domain case we
can do this only if one lead coefficient divides the other, or if we will allow coefficient multipliers that are both
nonunits. Moreover we must allow for reducing rather than entirely removing head coefficients. For example, the
pair 82 x, 3y< will, in contrast to the field case, give rise to the S−polynomial x y. While two flavors of S−polynomial
marks a departure from the field case, we will see later how these may be used in an algorithm that is virtually
identical to Buchberger’s.

Definition 5 (S−polynomials): We are given polynomials pj = cj t j + r j where t j =HPPApjE for j Î 81, 2<. Without

loss of generality we may assume c
1
£ c

2
 . Let

9c, 9a
1

, a
2
== =ExtendedGCDAc

1
, c

2
E

(that is, c is the GCD with c= a
1

c
1
+ a

2
c

2
). Let t =PolynomialLCMAt

1
, t

2
E with cofactors s

1
and s

2
 so that

t = s
1

t
1
= s

2
t
2

. Finally take d= LCMAc
1

, c
2
E with cofactors b

1
and b

2
 so that d= b

1
c

1
= b

2
c

2
. With this

we define two types of S−polynomial:

Spoly
1
Ap

1
, p

2
E = a

1
s
1

p
1
+ a

2
s
2

p
2

Spoly
2
Ap

1
, p

2
E = b

1
s
1

p
1
- b

2
s
2

p
2

Note that the head term of SPoly
1
Ap

1
, p

2
E had coefficient c and power product t, and in SPoly

2
Ap

1
, p

2
E we

have killed off that power product. Also note that when c
1

 divides c
2

 then SPoly
1
Ap

1
, p

2
E is simply a power

product multiple of p
1

 (because a
1
= 1 and a

2
= 0). In this case it will obviously reduce to zero, and only

SPoly
2
Ap

1
, p

2
E will be of interest. Finally note that due to choices of cofactor, SPoly

1
is not uniquely defined; this

will not matter for our purposes and we merely require that an extended gcd algorithm exist. Anticipating later
results, we now define, for each pair, a unique S−polynomial.

Definition 6: Again given polynomials pj = cj t j + r j with t j =HPPApjE for j Î 81, 2< and c
1
£ c

2
 . If c

1

divides c
2

 then SPolyAp
1

, p
2
E =SPoly

2
Ap

1
, p

2
E , otherwise SPolyAp

1
, p

2
E =SPoly

1
Ap

1
, p

2
E . We remark

that this is in essence "definition CP3" in [Kandri−Rody and Kapur 1984]. It is also the efficient generalization of the
definition from [Buchberger 1985]. In that case one uses quotient and remainder to remove as much of the leading
coefficient as possible from the lead term of the S−polynomial. When one lead coefficient divides the other it may be
entirely removed and we have SPoly

2
. When this does not happen, iterating the process emulates the Euclidean

algorithm so after some number of steps we would obtain SPoly
1

.

We are now ready to define precisely a strong Gröbner basis.

Definition 7: A set of polynomials G in ZAx
1

, ..., xnE is called a strong Gröbner basis over (the base ring) Z and

with respect to a given term ordering T if, given any polynomial pÎZAx
1

, ..., xnE, it has a canonical reduction by

8G, T<. What this means is that no matter what polynomials from G we use at any given step in the process, when we

> >

F
4

E
E

<
can no longer reduce it we have a unique form. Restated, if p

:G, T>
r
1

 and p
:G, T>

r
2

 and neither r
1

 nor r
2

 can be

further reduced by F, then r
1
= r

2
.

Last we will need a notion from the theory of Gröbner bases over principal ideal rings.

Definition 8: Given a set of polynomials G= 9g
1

, ..., gn= ÌZAx1
, ..., xnE and a polynomial f with f =Úhj gj .

We call this a strong standard representation of f with respect to G provided HMonom@ f D =HMonomAhj gjE for

some j and HPP@hk gkD <HPP@ f D for all k¹ j (obviously this is with respect to some given term order).

We see that in a strong standard representation one kills off the head term with exactly one summand. There is also a
notion of a weak standard representation, wherein we allow multiple terms with the same head power product, that is
useful in construction of what are called "weak" Gröbner bases. These in turn may be used to construct strong
Gröbner bases as in [Möller 1989; Adams and Loustaunau 1994]. We do not pursue that approach here. Instead we
will work directly with strong standard representations. These in fact give rise to strong Gröbner bases over principal
ideal rings. The characterization in that case is that all elements of the ideal have a strong standard representation; we
lose canonical forms of arbitrary polynomials. Is is easy to see that existence of such representations is equivalent to
one of the common characterizing features from the field case: G is a strong Gröbner basis for the ideal I provided

that for any f Î I there is some gÎG with HMonom@gD ýHMonom@ f D (we require now that both lead coefficient and

power product of f be divisible by those of g).

3 Main results

We want to establish a type of Buchberger result connecting Gröbner bases to reduction of S−polynomials. We will
do this in steps.

Theorem 1: Given a set of polynomials G= 9g
1

, ..., gn= in A=ZAx
1

, ..., xiE and a term order T. Let I be the ideal

generated by G. Then following are equivalent.

(i) Every gÎG has a strong standard representation.

(ii) Every f Î A has a canonical reduction by 8G, T< (in other words, G is a Gröbner basis with respect to order T).

Proof: (i)�(ii) is similar to 10.22 and 10.23 in [Becker, Weispfenning, and Kredel 1993]. Suppose we have

f
:G, T>

h
1

 and f
:G, T>

h
2

 with h
1

 and h
2

 both fully reduced. We need to show that h
1
= h

2
. Since h

1
- h

2
Î I

it has a strong standard representation. Let HMonomAh
1
- h

2
E = c t and h

1
- h

2
=Úqj gj be a strong standard

representation with HPP@qk gkD = c t. Let c
1

 respectively c
2

 be the coefficient of t in h
1

 respectively h
2

. First

suppose c
1
= 0. Then HMonomAh

2
E = c t and hence h

2
 is not fully reduced, contradicting our assumption. Thus

c
1
¹ 0 and similarly we see that c

2
¹ 0. Hence Ic

1
- c

2
M t reduces but neither c

1
t nor c

2
t reduces by G. Thus

bk =HCoeff@gkD divides Ic
1
- c

2
M. Moreover

QuotientAc
1

, bkE =QuotientAc
2

, bkE = 0

for otherwise at least one of h
1

 and h
2

 could not be fully reduced. Thus c
1

 and c
2

 are in the same residue class

modulo bk and so they are equal. This shows that the head term of h
1
- h

2
 is zero, in other words h

1
= h

2
 as

desired.

5

(ii)�(i) is similar in style to 10.8 of [Becker, Weispfenning, and Kredel 1993]. Suppose f Î I , f = c t+ r where

t =HPP@ f D. By assumption of canonical reduction we have f
:G, T>

0. Thus we may write f =Úhj gj where

Max
j
AHPPAhj gjEE = t (we remark that this is already a weak standard representation of f). Let J= 9 j : HPPAhj gjE = t=.

Assume for a contradiction that m=ð J> 1, that t is minimal among all power products (with respect to T) for
which this happens, and that c¤ is minimal among coefficients for which there is no strong standard representation
involving this head power product t. These assumptions are tenable because we work with well ordered monomials
over a totally ordered Euclidean domain.

For notational convenience assume without loss of generality that J= 81, ...,m<. Now let

9c�, 9s
1

, ..., sm== =ExtendedGCDAHCoeffAg
1
E, ... HCoeff@gmDE

and uj = t �HPP@gmD for 1£ j £m.

We next define g= u
1

s
1

g
1
+ ...+ um sm gm. Then by construction HMonom@gD = c� t. If c�¤ = c¤ then m= 1because

we use Euclidean reduction that forces ¡HCoeffAhj gjE¥ £ c¤ for 1£ j £m, yet by construction as a GCD we have

 c�¤ £ ¡HCoeffAhj gjE¥ for 1£ j £m. Thus c�¤ < c¤.
By minimality of c¤ there is a strong standard representation g=Úqj gj with HPP@qk gkD = t and HPPAqj gjE < t for

all j ¹ k. As c=HCoeffAh
1

g
1
E + ...+Hcoeff@hm gmDand c� =GCDAHCoeffAg

1
E, ... HCoeff@gmDE we see that c� ý c,

so we have c= d c� for some d. Finally let f
�
= f - d g. Then HPP@ f�D < t and hence f

�
 has a strong standard representa−

tion by our minimality hypothesis which we write as f
�
=Úpj gj . But then dÚqj gj +Úpj gj is seen to be a strong

standard representation of f . á

Theorem 2: Given a set of polynomials G in ZAx
1

, ..., xnE and a term order T, the following are equivalent.

(i) G is a Gröbner basis with respect to term order T.

(ii) For every pair of polynomials 9p
1

, p
2
= ÌG we have SPoly

1
Ap

1
, p

2
E :G, T>

0 and SPoly
2
Ap

1
, p

2
E :G, T>

0.

(iii) For every pair of polynomials 9p
1

, p
2
= ÌG we have SPolyAp

1
, p

2
E :G, T>

0.

We use both types of S−polynomial in the second equivalent statement because it is a bit easier to show that this
yields a Gröbner basis. We then show that the third statement is equivalent to the second. This is useful among other
reasons because one wants to retain the original Buchberger algorithm intact to the extent possible, and certainly
having one rather than two S−polynomials for a given pair furthers this goal.

Proof: (i)�(ii) is from the definition of a Gröbner basis. We now show (ii)�(i) (this is similar to 10.11 in [Becker,
Weispfenning, and Kredel 1993]).

Suppose G= 9g
1

, ..., gn= and f is in the ideal generated by G. We may write f =Úhj gj . Let t =Max
j
AHPPAhj gjEE,

J= 9 j : HPPAhj gjE� t=, and t
�
=HPP@ f D. We may assume �t is minimal among such representations. Let m=ð J. If

m= 1 and t = t
�
 then we have a strong standard representation, so we assume otherwise. If t = t

�
 then obviously m> 1.

On the other hand, if t > t
�
 then we require at least two terms in the representation to have power product of t in order

to kill off that term. Hence m> 1. Reordering if necessary, without loss of generality we may assume J= 81, ...,m<.
We now set up some notation. Write gj = cj t j + r j and hj = bj sj + qj where t j =HPPAgjE and sj =HPPAhjE. Note

that sj t j = t for 1£ j £m. Let t
1 , 2

=PolynomialLCMAt
1

, t
2
E, v= t� t

1 , 2
, u

1
= t

1 , 2
� t

1
, and u

2
= t

1 , 2
� t

2
.

v v

¤ f t

6

A E A E
1 , 2

A
1 2

E �
1 , 2 1 1 , 2

�
1 2 1 , 2

�
2

From this we see at once that s
1
= u

1
v and s

2
= u

2
v. We will assume for a contradiction that

¡b
1

c
1
¥ + ...+ bm cm¤ is minimal among all representations of f that have a largest power product of t. Again, such a

representation must exist for well ordered monomials over a totally ordered Euclidean domain.

Let 9c, 9d
1

, d
2
== =ExtendedGCDAc

1
, c

2
E, e

1
= LCMAc

1
, c

2
E�c

1
, e

2
= -LCMAc

1
, c

2
E�c

2
. So e

1
 and e

2
 are

minimal in norm such that e
1

c
1
+ e

2
c

2
= 0.

In terms of these definitions we have

Spoly
1
Ag

1
, g

2
E = d

1
u

1
g

1
+ d

2
u

2
g

2

Spoly
2
Ag

1
, g

2
E = e

1
u

1
g

1
+ e

2
u

2
g

2

Now b
1

c
1
+ b

2
c

2
= d c for some d; moreover there exists e such that b

1
= d d

1
+ e e

1
 and b

2
= d d

2
+ e e

2
.

Since b
1
¹ 0 and b

2
¹ 0 by construction, and c=GCDAc

1
, c

2
E, it follows that ¡b

1
c

1
¥ + ¡b

2
c

2
¥ > d c¤.

We now have

h
1

g
1
+ h

2
g

2
= Id d

1
+ e e

1
M u

1
v g

1
+ q

1
g

1
+ Id d

2
+ e e

2
M u

2
v g

2
+ q

2
g

2
=

d vSPoly
1
Ag

1
, g

2
E + e vSPoly

2
Ag

1
, g

2
E + Iq

1
g

1
+ q

2
g

2
M

By hypothesis the S−polynomials reduce to zero. Now vHPPASPoly
2
Ag

1
, g

2
EE < t, HPPAq

1
g

1
E < t, and

HPPAq
2

g
2
E < t. Moreover HCoeffAd vSPoly

1
Ag

1
, g

2
E E = d c. We thus have a representation of h

1
g

1
+ h

2
g

2

as a sum Úpk gk whereby, letting K = 8k : HPP@pk gkD = t<, we obtain

â
kÎK

 HCoeff@pk gkD¤ = d c¤ < ¡b
1

c
1
¥ + ¡b

2
c

2
¥

But then we may use this representation to replace h
1

g
1
+ h

2
g

2
 in the representation of f , and this contradicts

minimality of ¡b
1

c
1
¥ + ...+ bm cm¤.

Since (ii) is stronger than (iii) it is clear that (ii)�(iii). We show (iii)�(ii).

Let pj = cj t j + r j with HPPApjE = t j for j Î 81, 2<. Assume without loss of generality that ¡c
1
¥ £ ¡c

2
¥. If c

1
ý c

2

then SPoly
1
Ap

1
, p

2
E is trivially a product of p

2
and hence known to reduce, and thus we need only use

SPoly
2
Ap

1
, p

2
E. So we may suppose that c

1
I c

2
. Let 9c, 9a

1
, a

2
== =ExtendedGCDAc

1
, c

2
E with c

1
= d

1
c and

c
2
= d

2
c. Note that a

1
d

1
+ a

2
d

2
= 1and in particular a

1
 and a

2
 are relatively prime. Let

t =PolynomialLCMAt
1

, t
2
E with s

1
= t� t

1
 and s

2
= t� t

2
. Then

q=SPoly
1
Ap

1
, p

2
E = a

1
c

1
s
1

t
1
+ a

1
s
1

r
1
+a

2
c

2
s
2

t
2
+ a

2
s
2

r
2
= c t+a

1
s
1

r
1
+a

2
s
2

r
2

SPoly
2
Ap

1
, p

2
E = Id

2
c

1
s
1

t
1
+ d

2
s
1

r
1
M-Id

1
c

2
s
2

t
2
+ d

1
s
2

r
2
M= d

2
s
1

r
1
-d

1
s
2

r
2

Thus

h
1
=SPoly

2
Ap

1
, qE = c

1
s
1

t
1
+ s

1
r
1
-d

1
Ic t+a

1
s
1

r
1
+a

2
s
2

r
2
M

= I1-d
1

a
1
M s

1
r
1
-d

1
a

2
s
2

r
2
= a

2
d

2
s
1

r
1
-a

2
d

1
s
2

r
2
= a

2
SPoly

2
Ap

1
, p

2
E

and similarly h
2
=SPoly

2
Ap

2
, qE = a

1
SPoly

2
Ap

1
, p

2
E.

7

Also by definition 6 it is clear that SPoly
2
Apj , qE =SPolyApj , qE for j Î 81, 2<.

Since a
1

and a
2

are relatively prime we obtain SPoly
1
Ah

1
, h

2
E =SPoly

2
Ap

1
, p

2
E. This shows that provided

SPoly
1
Ap

1
, p

2
E is not trivial we will eventually obtain SPoly

2
Ap

1
, p

2
E by iterating SPoly. Hence for any pair

9p
1

, p
2
= we need only use SPolyAp

1
, p

2
E as given in definition 6. á

From the theorems above it is now not hard to see that our bases are the same as the D−bases of [Pan 1989; Becker,
Weispfenning, and Kredel 1993]. What is different is the mode of computation insofar as we allow Euclidean
reduction of lead coefficients rather than insist on divisibility. This will tend to make them smaller sooner, and thus
could offer an advantage in efficiency. Note that this only applies when working over a Euclidean domain, and so the
algorithm in the above references has the advantage of greater generality, albeit ours has greater flexibility in choices
of reducing polynomial.

There are other ways to improve computational efficiency. It is known from long experience that the common
bottleneck to the algorithm is the reduction of S−polynomials. Buchberger himself was the first to give criteria under
which certain S−polynomials could be ignored (see [Buchberger 1985] and references therein). We recover in part
his criteria from the field case.

Theorem 3 (Buchberger’s criterion 1): Suppose pj = cj t j + r j with HPPApjE = t j for j Î 81, 2< and c
1
ý c

2
. Suppose

further that the lead power products t
1

 and t
2

 are coprime, that is, PolynomialLCMAt
1

, t
2
E = t

1
t
2

. Then

SPolyAp
1

, p
2
E will reduce to zero and hence is superfluous.

Note that we are using SPoly
2
Ap

1
, p

2
E in this case. While the divisibility requirement for lead coefficients might

seem unduly strong, one will observe that the algorithm proceeds in such a way as to make coefficients small with
respect to Euclidean norm. Thus in practice this requirement may not be terribly restrictive.

Proof: SPolyAp
1

, p
2
E = c

1
t
1

p
2
- c

2
t
2

p
1
= Ip

1
- r

1
M p

2
- Ip

2
- r

2
M p

1
= r

2
p

1
- r

1
p

2
. As t

1
 divides

the head term of r
2

p
1

 while t
2

 does not, and t
2

 divides the head term of r
1

p
2

 while t
1

 does not, these do not

collapse further. But clearly r
2

p
1
�
p1

0 and r
1

p
2
�
p2

0, so SPolyAp
1

, p
2
E�0. á

Theorem 4 (Buchberger’s criterion 2): Given pj = cj t j + r j with HPPApjE = t j for j Î 81, 2, 3< with

PolynomialLCMAt
1

, t
2
E divisible by t

3
. Suppose SPolyAp

1
, p

3
E and SPolyAp

2
, p

3
E have strong standard represen−

tations (thus far these are the conditions for criterion 2 to be in effect in the field case). If either c
1
ý c

3
ý c

2
 or

c
3
ý c

1
ý c

2
 then SPolyAp

1
, p

2
E will have a strong standard representation and hence is superfluous.

Note that again we are working with SPoly
2
Ap

1
, p

2
E. Obviously the roles of p

1
 and p

2
 can be interchanged.

Moreover, while the divisibility conditions again appear to be restrictive, in general one obtains alot of polynomials
with lead coefficient a unit and these make the conditions not so uncommon.

Proof: Let t =PolynomialLCMAt
1

, t
2
E. Assume inductively that if f and g have strong standard representations, and

HPP@ f D < t, HPP@gD < t, then so does f + g.

Define power product multipliers u
j, k
=PolynomialLCMAt j , tkE� t j . Then

SPolyAp
1

, p
2
E = c2

c1

u
1 , 2

p
1
- u

2 , 1
p

2

8

First we assume c
3
ý c

1
ý c

2
. Then SPolyAp

1
, p

3
E = u

1 , 3
p

1
-

c1

c3

u
3 , 1

p
3

 and

SPolyAp
2

, p
3
E = u

2 , 3
p

1
-

c2

c3

u
3 , 2

p
3

.

Since t
3
ýPolynomialLCMAt

1
, t

2
E we know that u

1 , 3
ý u

1 , 2
 and similarly u

2 , 3
ý u

2 , 1
. We thus may write

c
2

c
1

u
1 , 2

u
1 , 3

SPolyAp
1

, p
3
E -

u
2 , 1

u
2 , 3

SPolyAp
2

, p
3
E =

c
2

c
1

u
1 , 2

p
1
-

c
2

c
3

u
1 , 2

u
1 , 3

u
3 , 1

p
3
- u

1 , 2
p

1
-

c
2

c
3

u
2 , 1

u
2 , 3

u
3 , 2

p
3
=

SPolyAp
1

, p
2
E -

c
2

c
3

p
3

u
1 , 2

u
1 , 3

u
3 , 1

-

u
2 , 1

u
2 , 3

u
3 , 2

Now u
1 , 2

t
1
= u

2 , 1
t
2

, u
1 , 3

t
1
= u

3 , 1
t
3

, and u
2 , 3

t
2
= u

3 , 2
t
3

. This implies

u1 , 2

u1 , 3

u
3 , 1

=
u2 , 1 t2

u3 , 1 t3

u
3 , 1

=
u2 , 1 t2

t3

 and similarly
u2 , 1

u2 , 3

u
3 , 2

=
u2 , 1 t2

t3

. Hence the parenthesized term van−

ishes, and so

SPolyAp
1

, p
2
E =

c
2

c
1

u
1 , 2

u
1 , 3

SPolyAp
1

, p
3
E -

u
2 , 1

u
2 , 3

SPolyAp
2

, p
3
E

Now use the hypothesis that each summand has a strong standard representation with head power product smaller
than t. Then so does the sum.

The case where c
1
ý c

3
ý c

2
 is similar. For the first step, one instead shows

SPolyAp
1

, p
2
E =

c
2

c
3

u
1 , 2

u
1 , 3

SPolyAp
1

, p
3
E -

u
2 , 1

u
3 , 2

SPolyAp
2

, p
3
E . á

A more general treatment of this criterion may be found in [Möller 1985], based on generating sets of homogeneous
syzygy modules. We use this version because it is simple to code; as it is in essence the usual Buchberger criterion 2
one can adapt "standard" code for the field case with only minor modification (as indeed is done in the Mathematica
implementation).

One will note that the criteria above pertain to the second type of S−polynomial, and naturally it would be nice to
have a criterion for eliminating as redundant an S−polynomial of the first type. There is such a criterion implicit in
theorem 10.11 of [Becker, Weispfenning, and Kredel 1993].

Theorem 5: Given pj = cj t j + r j with HPPApjE = t j for j Î 81, 2, 3< with t
i, j
=PolynomialLCMAti , t jE. Suppose

t
3
ý t

1 , 2
. Let 9c, 9a

1
, a

2
== =ExtendedGCDAc

1
, c

2
E and further suppose c

3
ý c. In other words, the head mono−

mial of p
3

 divides the head monomial of SPolyAp
1

, p
2
E (the latter is top−D−reducible, in the terminology of

[Becker, Weispfenning, and Kredel 1993]). Then SPolyAp
1

, p
2
E is redundant.

Proof: Let u
i, j
= t

i, j
� ti for j Î 81, 2, 3<. Let c�c

3
= d and t

1 , 2
� t

3
= v. Then

SPolyAp
1

, p
2
E = a

1
u

1 , 2
p

1
+ a

2
u

2 , 1
p

2
= c t

1 , 2
+ a

1
u

1 , 2
r
1
+a

2
u

2 , 1
r
2

Also

9

SPolyAp
1

, p
3
E =SPoly

2
Ap

1
, p

3
E =

Ic
1

t
1
+ r

1
M u

1 , 3
- Ic

1
�c

3
M Ic

3
t
3
+ r

3
M u

3 , 1
= u

1 , 3
r
1
-Ic

1
�c

3
M u

3 , 1
r
3

and similarly SPolyAp
2

, p
3
E = u

2 , 3
r
2
-Ic

2
�c

3
M u

3 , 2
r
3

.

Now

u
1 , 2

u
3 , 1

u
1 , 3

=

It
1 , 2

� t
1
M It

1 , 3
� t

3
M

t
1 , 3

� t
1

= t
1 , 2

� t
3
= v

and a similar computation shows that
u2 , 1 u3 , 2

u2 , 3

= v. Also

a
1

c
1

c
3

+ a
2

c
2

c
3

- d=
1

c
3

Ia
1

c
1
+ a

2
c

2
M - d=

c

c
3

- d= 0

Hence

SPolyAp
1

, p
2
E - d v p

3
- a

1

u
1 , 2

u
1 , 3

SPolyAp
1

, p
3
E - a

2

u
2 , 1

u
2 , 3

SPolyAp
2

, p
3
E =

c t
1 , 2

+ a
1

u
1 , 2

r
1
+a

2
u

2 , 1
r
2
-Ic t

1 ,2
+d v r

3
M

- a
1

u
1 , 2

r
1
-a

1

c
1

c
3

u
1 , 2

u
3 , 1

u
1 , 3

r
3
- a

2
u

2 , 1
r
2
-a

2

c
2

c
3

u
2 , 1

u
3 , 2

u
2 , 3

r
3

= a
1

c
1

c
3

u
1 , 2

u
3 , 1

u
1 , 3

+ a
2

c
2

c
3

u
2 , 1

u
3 , 2

u
2 , 3

- d v r
3
= 0

We have thus a strong standard representation of SPolyAp
1

, p
2
E and this suffices to show that it is redundant. á

We now have our algorithm, essentially the same as the Buchberger algorithm for polynomial rings over fields. We
list all pairs of polynomials, marking as processed all those that the criteria warrant. We now iteratively select a pair
whose S−polynomial is not yet marked, reduce it, and if the result is not zero, we form new pairs. Again use the
criteria to mark redundant pairs. We continue this iteration until we have no more pairs to process, at which point all
S−polynomials can be reduced to zero. Termination in a finite number of steps is proven e.g. in [Kandri−Rody and

Kapur 1988] by noting that ZAx
1

, ..., xnE is Noetherian and hence an ascending chain condition applies to its ideals.

One will note that our algorithm puts a certain emphasis on SPoly
1

, wherein the lead coefficient is the GCD of the

leading coefficients of the critical pair. This is in contrast to algorithms in [Möller 1988; Pan 1989; Weispfenning,
and Kredel 1993; Adams and Loustaunau 1994] where the emphasis is more on SPoly

2
 in which, as with the field

case, one entirely kills off a leading coefficient. Given the dearth of available implementations, it is an open question
as to which approach is computationally more effective in general.

10

4 Some special cases

Before proceeding to examples we will discuss an important special class of Euclidean domains. While one can
show that the theory developed above carries over in a general way, for the specific and very important case where
our base ring is the set of univariate polynomials in x over a (computable) field F one can do better. Suppose we are

given a set of polynomials in some set of indeterminates over F@xD. One augments the indeterminates with x, extend−
ing the term order so that every power of x is smaller than all power products containing other variables. One next
computes a Gröbner basis for the input in this setting of polynomials in one more variable over F. Theorem 4.5.12
in [Adams and Loustaunau 1994] shows that this is in fact a strong Gröbner basis for the ideal over the original base
ring F@xD (this fact had also been mentioned in [Kandri−Rody and Kapur 1988]). Our experience is that the benefits
of computing a basis over a field outweigh any efficiencies developed for working over a Euclidean domain, hence
we use this tactic in Mathematica. We show applications to working over such polynomial rings in the examples.

If our base ring as Z
p

n and we work with univariate polynomials over this ring then we have an example of a finite−

chain ring. For working with polynomials over such a ring we could use the results presented in [Norton and
S+l+gean 2001] . They show, among other things, that weak and strong Gröbner bases for ideals over such rings are
equivalent. They also present a structure theorem for the univariate case and apply it to cyclic codes. As will be seen
in the examples below, one can instead regard the ring as a quotient of Z@xD and use the computational methods of
this paper. We will return to this special case below, in the context of Hensel lifting. In a sense this is the analog of
the way that Gröbner bases for polynomial ideals over fields generalize the Euclidean algorithm for the univariate
case.

The other well known direction in which Gröbner bases generalize an older concept is that of row reduction. Hence
another special case for bases over Euclidean domains is when all the polynomials are linear. We also show an
application of this case to matrix normal forms in the sequel. A minor modification will moreover yield a polynomial
lattice reduction.

5 Examples

In this and later sections we show several examples. We omit most proofs that the algorithms do as we state. Such
proofs would use arguments based on term ordering and integer sizes, and are generally straightforward.

We first show some simple examples adapted from [Adams and Loustaunau 1994]. For purposes of assessing speed,
we note that all timings were done with version 5 of Mathematica running on a 1.5 GHz Intel processor under the
Linux operating system.

For the first example we wish to compute a basis for an ideal in the polynomial ring ZC -5 F @x, yD. Note that our

base ring, ZC -5 G, is not a Euclidean domain (or even a unique factorization domain). In such cases one may

resort to a common tactic of adding a new variable and defining polynomial so that in effect we work over a quotient

ring; in this example it will be Z @x, y, ΑD�:Α2 + 5>. So our base ring will be the integers and we have added a

variable and a polynomial relation equating that variable to -5 (up to a conjugate, as these are indistinguishable
to this method without further variables and defining polynomials). For this to work as desired we must have the new
variable ordered lexicographically lower than all others. We then remove the first polynomial from the basis, which,
due to this ordering, is exactly the defining polynomial for that algebraic extension element.

11

RestA
GroebnerBasisA92 x y - Α y, H1 + ΑL x2

- x y, Α2
+ 5=, 8x, y, Α<, CoefficientDomain® IntegersEE

;25 y+ 10 y
2
- 5 yΑ, 15 y+ 5 y

2
+ y

2
Α, -25 y+ x y+ 5 y

3
+ 12 yΑ,

6 x
2
+ 10 y+ 5 y

2
- 3 yΑ, x

2
- 25 y+ 5 y

3
+ x

2
Α + 12 yΑ?

The basis in that reference is a bit different due to different notions of coefficient handling, but the one above serves
the same purposes.

As a second example, we will find a basis for the ideal intersection 83 x- 2, 5y- 3< Ý 8x y- 6< in Z @x, yD. This may
be done as below. Note that we again use and subsequently eliminate an auxiliary variable, this time ordered lexico−
graphically greater than the others (specifying it as the third argument tells GroebnerBasis it is to be eliminated).

GroebnerBasis@Flatten@8w 83 x - 2, 5 y - 3<, H1 - wL 8x y - 6<<D, 8x, y<,
w, CoefficientDomain® Integers, MonomialOrder® EliminationOrderD

;18 - 30 y- 3 x y+ 5 x y
2

, 12 - 18 x- 2 x y+ 3 x
2

y, 6 - 6 y- 7 x y+ x y
2
+ x

2
y

2 ?
Again, we do not obtain the identical basis due to differences in basis definition. Specifically, theirs does not have
our third polynomial. This is because they find a weak Gröbner basis and that requires fewer polynomials. The
disadvantage to that, as noted earlier, is that one now must work harder to reduce with these, and moreover one
cannot readily obtain canonical forms.

To get some idea of algorithm speed, we now show a more strenuous computation.

polys = 97 x2 y2
+ 8 x y2

+ 3 x z - 11, 11 y2 z + 4 x2 y + x y z2
+ 2,

5 x2 y z + x2
+ 2 z2

+ 5 z, 7 x y z + 3 x y + 5 x + 4 y + 7=;
Timing@gbdlex =GroebnerBasis@polys, 8x, y, z<, CoefficientDomain® Integers,

MonomialOrder® DegreeLexicographicDD
91.05 Second , 934 475 640 417 355 562 336 236 396 270 436 281 195 926 ,

10 898 452 513 151 823 962 606 330 508 750 762 670 219+ z,

6 355 322 887 725 405 337 810 105 619 887 333 184 234- y,

-14 760 987 199 637 601 090 452 154 096 210 512 593 721+ x==
A similar basis computed over the field of rationals is about 70 times faster using the same hardware and software
(the result, as might be expected, is 81< because we started with more polynomials than variables). So the fact that
the Euclidean domain case takes almost two orders of magnitude longer is not entirely a surprise insofar as the
eventual result contains much more information. If we remove the first polynomial then the tasks are in some sense
more similar and correspondingly the relative time ratio of computing over the rationals vs. the integers drops to
under one order of magnitude.

An application of finding bases over the integers was pointed out to the author by Dan Grayson [Grayson 1995], and
in fact was implemented by him in Mathematica around 1988 (using the Gröbner basis over integers algorithm from
[Kandri−Rody and Kapur 1984]). Given a system of n+ 1 polynomials in n unknowns, find a modulus m such that

the system is exactly determined modulo m, and return all solutions (which lie in HZmLn). With reference to the
previous example, the above system is seen to be exactly determined in the quotient ring
Z

34 475 640 417 355 562 336 236 396 270 436 281 195 926
.

A related application is to do computations involving ideals defined over quotient rings that may contain zero
divisors. As an example we will find all solutions in the ring Z

5 072 012 170 009
 to a system below.

12

gb =GroebnerBasisA
95 072 012 170 009, -4 984 359 602 099 + x2

- 3 y2
- 9 x z, -1 780 431 462 965 + 7 x y + 5 y3

+ z2,

-4 585 397 367 278 + x3
- 3 y2

+ z - 12 z3=, 8x, y, z<, CoefficientDomain® IntegersE

;5 072 012 170 009 , 1 174 872 829 454+ 12 173 501 962z- 1 363 165 624 472z
2
+

1 654 998 137 452z
3
+ 928 181 308 002z

4
- 239 795 324 199z

5
- 1 646 238 538 583z

6
-

982 686 930 325z
7
- 1 734 356 432 441z

8
- 1 928 316 724 538z

9
+ 2 384 106 829 761z

10
-

2 266 219 400 230z
11
- 139 245 405 743z

12
+ 895 384 068 341z

13
+ 161 928 956 428z

14
+

2 194 204 640 034z
15
- 1 243 172 466 690z

16
- 1 196 909 984 892z

17
+ z

18
,

2 247 545 052 503+ y+ 788 535 951 374z+ 2 214 230 166 342z
2
+ 955 710 141 543z

3
+

2 160 238 766 386z
4
- 2 474 194 692 542z

5
- 1 684 716 364 278z

6
+ 2 157 370 757 916z

7
-

1 072 725 791 722z
8
+ 1 173 330 106 507z

9
- 1 057 647 942 280z

10
-

1 511 353 993 603z
11
+ 1 327 624 312 048z

12
- 581 007 814 126z

13
+

1 772 345 363 132z
14
- 185 000 519 654z

15
- 1 538 648 034 589z

16
- 456 160 565 195z

17
,

-899 617 339 822+ x+ 2 209 081 769 554z- 509 675 450 156z
2
+ 566 438 534 091z

3
+

1 828 943 883 971z
4
- 1 778 487 828 359z

5
- 1 120 529 181 700z

6
+ 1 238 816 552 216z

7
-

1 898 793 743 218z
8
+ 1 286 010 808 749z

9
+ 893 019 914 153z

10
+ 172 896 055 599z

11
+

1 872 411 543 380z
12
+ 1 420 313 673 322z

13
- 880 454 763 764z

14
-

1 202 867 057 825z
15
- 1 977 589 465 047z

16
- 2 210 999 439 349z

17 ?
To obtain solutions one would proceed exactly as if working over a field. Specifically, we first find roots of the
univariate polynomial, then back substitute each solution to solve for the remaining variables. We show the first step
explicitly. This involves root finding in a quotient ring of the integers. The principles behind this are well known
(factor the modulus, find roots modulo each prime factor, lift to accomodate powers of primes, use Chinese Remain−
der Algorithm to combine roots modulo powers of primes). The "hard" step, computationally speaking, is often the
factorization of the modulus.

Roots@gb@@2DD� 0, z, Modulus® gb@@1DDD
z� 99 999 ÈÈ z� 1 848 935 269 876ÈÈ z� 3 102 255 902 823

This functionality is now built into Mathematica, in the function Reduce:

TimingAReduceA9-4 984 359 602 099 + x2
- 3 y2

- 9 x z, -1 780 431 462 965 + 7 x y + 5 y3
+ z2,

-4 585 397 367 278 + x3
- 3 y2

+ z - 12 z3=� 0, 8x, y, z<, Modulus® 5 072 012 170 009EE
90.22 Second , Ix� 77 777 && y� 88 888 && z� 99 999 M ÈÈ
Ix� 1 712 760 123 092 &&y� 3 989 577 716 979 &&z� 1 848 935 269 876M ÈÈ
Ix� 2 127 801 384 642 &&y� 3 379 908 964 470 &&z� 3 102 255 902 823M=

Another area of application for Gröbner bases over the integers is in computations with finitely presented groups, as
discussed in chapter 10 of [Sims 1994]. Among other tools one requires a module Gröbner basis. This is something
we show in section 7 below.

13

6 Application: Hensel lifting of univariate polynomials

We now show an application that uses the special case of polynomials in one variable over the integers modulo a
power n of a prime p. We begin with a simple example rigged so that the correct result is obvious.

poly = ExpandAIx5
+ 18 x4

+ 34 x3
+ 5 x2

+ 21 x + 30M Ix4
+ 24 x3

+ 22 x2
+ 17 x + 15ME;

We will first factor the polynomial modulo a small prime, removing the (possibly trivial) constant factor.

mod = 11;
fax = FactorList@poly, Modulus®modD;
fax = First �� Rest@faxD

;4 + 6 x+ 2 x
3
+ x

4
, 8 + 10 x+ 5 x

2
+ x

3
+ 7 x

4
+ x

5 ?
Next we wish to make the factors correct modulo a power of the prime. This correction step is referred to as Hensel
lifting [von zur Gathen and Gerhard 1999, chapter 15] and is used in most algorithms for factoring polynomials over
the rationals. It is typically done by iterations of Newton’s method in a p−adic setting, but Gröbner bases may
instead be used to advantage. In effect we take p−adic gcds of our polynomial and each factor raised to the indicated
power, and these gcds are the lifted factors. For this particular example we will take the factors, square them,
compute Gröbner bases over the integers of the set 8poly, squaredfactor, squaredmodulus<, and extract the last
elements of these bases. This will correspond to quadratic Hensel lifting, insofar as a factor that is correct modulo

some value p becomes correct modulo p2 . We will in so doing recover the original factors up to sign.

ILastAGroebnerBasisA9mod2, poly, ð1=, CoefficientDomain® IntegersEE&M �� fax2

;-15 - 17 x- 22 x
2
- 24 x

3
- x

4
, 30 + 21 x+ 5 x

2
+ 34 x

3
+ 18 x

4
+ x

5 ?
This recovered the actual factors because we arranged an example for which the modular factors each corresponded
to an actual factor, and moreover the factors were monic, had coefficients of the same sign, and these were all less
than half the prime squared. Hence they are recovered exactly from one quadratic Hensel lift. The question to be
answered is why these Gröbner basis computations gave the quadratic Hensel lifts of the modular factors. We
address this next.

Theorem 6: Given a square free univariate polynomial f over the rationals, and an integer p such that the leading

coefficient of f is not divisible by p, f is square free modulo p, and f ºp g
0

h
0

. Assume s=GCDBg
0

2 , f F exists

modulo p2 . Then s is the Hensel lift of g
0

 modulo p2 .

Note that this p−adic gcd may be computed, as above, by a Gröbner basis over the integers. Indeed it is simply a
convenient shorthand for running the Euclidean algorithm under the assumption that no zero divisors are encoun−
tered along the way.

Proof: We are given f ºp g
0

h
0

. Suppose the quadratically lifted equation is f º
p

2 g
1

h
1

 where g
1
ºp g

0
 and

h
1
ºp h

0
. The assumptions imply that the degrees of g

0
 and g

1
 are equal (and likewise with the cofactors). We

may write g
1
= g

0
+ p t

0
. Then a simple computation shows that g

1
Ig

0
- p t

0
M º

p
2 g

0
2 . We see that g

1
ý f and

g
1
ý g

0
2 modulo p2 . Now let s=GCDBg

0
2 , f F. Then we have g

1
ý s. In order to show these are equal up to unit

multiples (which proves the theorem), it suffices to show that degreeAg
1
E ³ degree@sD.

Suppose degree@sD > degreeAg
1
E. Then degree@sD > degreeAg

0
E. Since s ý f modulo p2 we have s ý f modulo p. But

ý s p f

p

14

@ D A
1
E @ D A

0
E ý ý

also s ý g
0

2 so the strict degree inequality implies that s is not square free modulo p. Hence f is not square free

modulo p, contradicting our assumption. á

One may observe that a polynomial factorization code based on this result will have a probabilistic aspect. We might
inadvertently use an "unlucky" prime wherein at some step of the lifting process a GCD does not exist. This can
happen if a leading coefficient in the process becomes noninvertible because it is a product of p. It is not hard to see
that for a given polynomial there can only be finitely many such unlucky primes. Moreover provided one uses a
random prime that is large compared to the degree of factors and degree of lifting required, the probability will be
low that the prime is unlucky.

To give some indication of efficiency we now demonstrate on a more challenging example. It stems from a factoriza−
tion example presented in [van Hoeij 2002]. We first set up the polynomial in question; its roots are all the sums of
pairs of roots of a simpler polynomial.

poly1 = x20
- 5 x18

+ 864 x15
- 375 x14

- 2160 x13
+ 1875 x12

+ 10 800 x11
+ 186 624 x10

- 54 000 x9
+

46 875 x8
+ 270 000 x7

- 234 375 x6
- 2 700 000 x5

- 1 953 125 x2
+ 9 765 625;

rts = x �. Solve@poly1 == 0, xD;
sums = Flatten@Table@rtsPiT + rtsP jT, 8i, 19<, 8 j, i + 1, 20<DD;
newpoly = Expand@Times�� Hx - N@sums, 200DLD;
newpoly = Chop@newpolyD �. a_Real® Round@aD;

The end goal is to factor this over the integers. While it would take us too far afield to discuss the steps that use
lattice reduction, we will show the Hensel lifting phase below. To this end we first factor modulo a prime.

mod = Prime@4000D;
fax = FactorList@newpoly, Modulus®modD;
fax = First �� Rest@faxD;

Next we wish to make the factors correct modulo a power of the prime. The specific power is dictated by size
considerations that arise in the factorization algorithm; for our example it will be 36. For reasons of efficiency it is
better to iterate squarings rather than try to lift to the full power in one step, as the squaring method keeps the degree
relatively small during the lifting process. We must then do more basis computations, but the improved speed per
computation more than compensates for this. Hence we are, as above, doing quadratic Hensel lifting.

liftfactors@fax_, poly_, mod_, pow_D :=
Module@8modpow =mod, top = Ceiling@Log@2, powDD, liftedfax = fax<,

Do@modpow = If@ j� top, mod^pow, modpow^2D;
liftedfax = Expand@liftedfax^2, Modulus®modpowD;
liftedfax =

Map@Last@GroebnerBasis@8modpow, poly, ð<, CoefficientDomain® IntegersDD&,
liftedfaxD, 8 j, top<D;

liftedfaxD
Timing@liftedfax = liftfactors@fax, newpoly, mod, 36D;D
95.51 Second , Null=

There are tactics to improve on this. One possibility, for example, might be to adapt the asymptotically fast HGCD
algorithm presented in chapter 8 of [Aho, Hopcroft, and Ullman 1974]. All the same we have attained timings
comparable to what was presented in [van Hoeij 2002] for this step of the algorithm using but a few lines of code to
implement the Hensel lift. The rest of the factorization involves constructing and reducing a particular lattice, and
takes under 2 seconds using the same machine and software as above. Note that prior to the advent of the van Hoeij
algorithm this example was essentially intractable.

Some further remarks about this method of p−adic lifting are in order. First, clearly dedicated code will be faster
than a general purpose Gröbner basis program. We have such code in Mathematica, and for the example above it is
about five times faster. Tests on more strenuous problems indicate that the dedicated code is quite competitive with
what seems to be the best Hensel lifting method in the literature to date, Shoup’s "tree−lift" (which is a form of
divide−and−conquer algorithm) [von zur Gathen and Gerhard 1999, chapter 15, section 5]. Specifically, while it is
clear that the behavior of Shoup’s method is asymptotically better than that of the method presented above (it relies
on computation of quotients and remainders rather than GCDs), our experience was that for practical purposes the

15

clear that the behavior of Shoup’s method is asymptotically better than that of the method presented above (it relies
on computation of quotients and remainders rather than GCDs), our experience was that for practical purposes the
method in this section was actually faster for the knapsack factorization examples we tried at [Zimmerman 2003]. As
these typically required lifting to many digits, this is evidence of the practicality of the method above.

In the interest of full disclosure it should be remarked that some of the examples were quite near the crossover when
they reached the final lift stage. Moreover the issue of speed is of course tied to the quality of code, and it may be the
case that the code underlying our Shoup implementation was insufficiently optimized. Other noteworthy differences
are that the Shoup method requires about twice as much code, but, once a prime is found for which the factorization
is square free, it cannot fail whereas, as per theorem 6, the p−adic GCD computation may fail at later stages. Further
details regarding the factorization of these polynomials via the knapsack algorithm are presented in [Belabas, Hanrot,
and Zimmerman 2001].

7 Application: Computation of matrix Hermite normal forms

Another nice application of Gröbner bases over a Euclidean domain is in computing the Hermite normal form of a
matrix with elements in that domain. As there is an efficient Mathematica implementation of integer Hermite normal
form based on [Storjohann 1994], we illustrate for the case of matrices of univariate polynomials.

Before we show an example we need code to generate a "random" polynomial matrix. For this example we will use a
3x5 matrix of polynomials in x of degree at most 2.

randomPolynomial@deg_Integer, var_D :=

TableAvar j, 8 j, 0, deg<E.RandomInteger@8-10, 10<, deg + 1D
randomMatrix@degmax_, rows_, cols_, var_D :=Module@8deg<,

Table@deg = RandomInteger@80, degmax<D; randomPolynomial@deg, varD, 8rows<, 8cols<DD
SeedRandom@1111Dmat = randomMatrix@2, 3, 5, xD;

To set this up we need to extend GroebnerBasis to handle modules, using a "position over term" ordering [Adams
and Loustaunau 1994]. We represent elements as vectors with respect to module basis variables. The input consists
of polynomials that are linear with respect to the module variables. We then augment with relations that force all
products of the module variables to be zero and find the Gröbner basis. The code below is taken from [Lichtblau
1996].

moduleGroebnerBasis@polys_, vars_, cvars_, opts___D :=
Module@8newpols, rels, len = Length@cvarsD, gb, j, k, ruls<,

rels = Flatten@Table@cvars@@ jDD*cvars@@kDD, 8 j, len<, 8k, j, len<DD;
newpols = Join@polys, relsD;
gb =GroebnerBasis@newpols, Join@cvars, varsD, optsD;
rul =Map@Hð® 8<L&, relsD;
gb = Flatten@gb �. rulD;
Collect@gb, cvarsDD

As the Hermite form is obtained by row operations over the base ring (that is, division is forbidden), it is equivalent
to a module Gröbner basis in the case where our polynomial ring is just the base ring (that is, there are no polyno−
mial variables). We convert each row of the matrix to a polynomial vector representation by making each column
into a new "variable". At this point we can use the module Gröbner basis routine above. We then convert the result
back to matrix form.

groebnerHNF@mat_?MatrixQ, domain_, mod_: 0D :=Module@
8len = Length@First@matDD, newvars, generators, mgb<,
newvars = Array@v, lenD;
generators =mat.newvars;
mgb =moduleGroebnerBasis@generators,
8<, newvars, CoefficientDomain® domain, Modulus®modD;

Outer@D, Reverse@mgbD, newvarsDD

16

Now we obtain our module basis over Z
8933
@xD. We work over a prime field in order to restrict the size of the

coefficients.

hnf = groebnerHNF@mat, Polynomials@xD, 8933D

;;1 , 0 , 4832 + 3665 x+ 3652 x
2
+ 3695 x

3
,

8283 + 8735 x+ 74 x
2
+ 3405 x

3
+ 6787 x

4
+ 7042 x

5
,

3056 + 4811 x+ 3887 x
2
+ 7902 x

3
+ 174 x

4 ?,

;0 , 1 , 4183 + 7075 x+ 5100 x
2
+ 4074 x

3
,

505 + 155 x+ 3912 x
2
+ 3307 x

3
+ 8617 x

4
+ 5441 x

5
,

7548 + 1222 x+ 947 x
2
+ 2787 x

3
+ 5820 x

4 ?,

;0 , 0 , 2434 + 3140 x+ 1796 x
2
+ 2494 x

3
+ x

4
,

1761 + 2265 x+ 2999 x
2
+ 2492 x

3
+ 7414 x

4
+ 123 x

5
+ 7656 x

6
,

2127 + 6380 x+ 8631 x
2
+ 221 x

3
+ 6177 x

4
+ 5106 x

5 ??
Note that it is here where the coefficient ring is specified. We could instead generate a random integer matrix and
work over the integers to find the Hermite form, although as mentioned above that is not a terribly efficient way to
obtain it.

m2 = RandomInteger@8-100, 100<, 810, 15<D;
Timing@hnf2 = groebnerHNF@m2, IntegersD;D
90.23 Second , Null=

Indeed, what we did above is by no means the most efficient way to obtain the Hermite form of a matrix of polynomi−
als. Several tactics for obtaining good computational efficiency are discussed in [Storjohann 1994]. At the expense
of a fair amount of code one could adapt some of them to work in this Gröbner basis method. Some experimentation
indicates that coefficient swell can be a serious problem when working with polynomials over the rationals and so
the above method appears to be much more effective when working with polynomials over a prime field.

We adapt the technology in the previous example to solve linear polynomial diophantine systems. To solve such a
system we transpose the matrix, prepend the right hand side vector, augment on the right with an identity matrix, and
take the Hermite normal form. We find the row corresponding to the right hand side, check that it was multiplied, if
at all, by a unit. When this is the case the solution vector can be taken from the rest of that row (which corresponds
to multiples of columns of the original matrix that were needed to zero the right hand side) multiplied by the nega−
tive reciprocal of that unit. Null vectors come from later rows in the Hermite normal form and we return those as
well. Note that this is readily adapted to handle a system of modular congruences. We simply treat the modulus in
each congruence as something to be multiplied by a new variable, hence each gets a new row. As we are not inter−
ested in the specific multiple, we do not enlarge the identity matrix by which we augment, but instead add zero rows
to join to the new rows necessitated by these moduli.

This method of diophantine solving may be found e.g. in [Blankenship 1966]. While a recent method works over the
fraction field [Mulders and Storjohann 1999; Malaschonok 2001] and tends to be more efficient, this application of
the Hermite normal form is all the same quite nice and very simple to code.

17

The tactic of augmenting with an identity matrix, well known e.g. for matrix inversion, is a form of "tag variable"
manipulation in Gröbner basis technology. It can be used, for example, to record syzygies or conversion matrices
using nothing beyond a standard GroebnerBasis function. The method appears in [Caboara and Traverso 1998]
and was also discussed in [Lichtblau 1998] (the relevant conferences were indeed only days apart).

systemSolve@mat_?MatrixQ, rhs_?VectorQ, dom_, mod_: 0, moduli_: 8<D �;
Length@rhsD� Length@matD :=

Module@8newmat, modrows, hnf, j = 1, len = Length@matD, zeros, solvec, nullvecs<,
newmat = Prepend@Transpose@matD, rhsD;
newmat = Transpose@Join@Transpose@newmatD, IdentityMatrix@Length@newmatDDDD;
If@moduli ¹ 8<,

modrows =
Table@If@ j� k, moduli@@ jDD, 0D, 8 j, Length@moduliD<, 8k, Length@newmat@@1DDD<D;

newmat = Join@newmat, modrowsDD;
hnf = groebnerHNF@newmat, dom, modD;
zeros = Table@0, 8len<D;
While@ j £ Length@hnfD&& Take@hnf@@ jDD, lenD =!= zeros, j++D;
solvec = Drop@hnf@@ jDD, len + 1D �-hnf@@ j, len + 1DD;
nullvecs =Map@Drop@ð, len + 1D&, Drop@hnf, jDD;
8solvec, nullvecs<D

For this example we use a 3x5 matrix of polynomials in x of degree at most 3. Again we will work modulo 8933.

randomSystem@degmax_, rows_, cols_, var_D :=
8randomMatrix@degmax, rows, cols, varD, Table@randomPolynomial@degmax, varD, 8rows<D<

SeedRandom@11 111D;
mod = 8933;
8mat, rhs< = randomSystem@3, 4, 6, xD;
Timing@8sol, nulls< = systemSolve@mat, rhs, Polynomials@xD, modD;D
90.057991 Second , Null=

We check the result. The matrix times the solution vector must give the right hand side, and the matrix times the null
vectors must give zeroes.

zeroTensor@t_D :=Max@Abs@tDD� 0
8zeroTensor@Expand@mat.sol - rhs, Modulus®modDD,
zeroTensor@Expand@mat.Transpose@nullsD, Modulus®modDD<
9True , True =

We now show an example for the integer case that comes from [Dolzmann and Sturm 2001]. We have a system of
six modular congruences in six variables that we wish to satisfy, with coefficient matrix, right hand side, and moduli
as below.

mat = 8870, 0, 6, 89, 0, 7<, 887, 93, 78, 73, 0, 0<, 80, 87, 0, 0, 41, 0<,
80, 12, 37, 69, 0, 15<, 875, 0, 90, 65, 14, 0<, 80, 0, 0, 0, 91, 96<<;

rhs = 8-30, -53, -3, -53, -41, -55<;
moduli = 8280, 5665, 110, 1545, 3125, 1925<;
Timing@8soln, nulls< = systemSolve@mat, rhs, Integers, 0, moduliDD
90.13 Second , 990 , -2 , 4 , 12 802 , -29 779 , -34 696 =,
995 , 0 , 0 , -18 165 , 4400 , 333 025=,
90 , -5 , 0 , -16 135 , 26 475 , 445 025=, 90 , 0 , 15 , 17 755 ,

-26 950 , 540 925=, 90 , 0 , 0 , 39 655 , 4950 , -594 825 =,
90 , 0 , 0 , 0 , 68 750 , 0=, 90 , 0 , 0 , 0 , 0 , -1 586 200====

We check that the solution indeed satisfies the congruences, and that matrix times null vectors gives zero vectors
modulo the congruence moduli.

18

8zeroTensor@Mod@mat.soln - rhs, moduliDD,
zeroTensor@Mod@mat.Transpose@nullsD, moduliDD<
9True , True =

In addition to being faster (though slow in comparison to what one can do with specialized Hermite normal form
algorithm over the integers as in [Storjohann 1994]), the Hermite form method we use has the advantage that it gives
a smaller solution, with components of 5 digits as compared to 12 in [Dolzmann and Sturm 2001]. Moreover it
provides the null vectors, and we can attempt to add multiples of them to the solution in order to obtain a solution
that is smaller still. We do this by forming a matrix comprised of the solution and null vectors. We augment by
prepending one column containing zeroes in the null vector rows and a suitably chosen integer to act as an "anchor"
in the row containing the original solution vector. We then apply fast lattice reduction [Lenstra, Lenstra, and Lovácz
1982]. The purpose of the anchor is to prevent the solution vector from being multiplied by anything other than a
unit, and we check after reduction whether this succeeded. If so, the new solution is obtained from the remaining
entries in the row containing the anchor (there may be more than one such, in which case the first will be smallest).
The code below does all this, returning the original solution if it fails in the attempt to find something that involves
only a unit multiple of that original solution vector.

smallSolution@sol_?VectorQ, nulls_?MatrixQD :=
ModuleA8max, dim = Length@nullsD + 1, weight, auglat, lat, k, soln<,

lat = Prepend@nulls, solD;
max =Max@Flatten@Abs@latDDD;
weight = dim max2;
auglat =Map@Prepend@ð, 0D&, latD ;
auglat@@1, 1DD = weight;
lat = LatticeReduce@auglatD;
For@k = 1, latPk, 1T == 0, k++D;
soln = latPkT;
Which@

solnP1T == weight, Drop@soln, 1D,
solnP1T == -weight, -Drop@soln, 1D,
True, solDE

We obtain our new solution and again check that it satisfies the desired congruences.

Timing@newsol = smallSolution@soln, nullsDD
zeroTensor@Mod@mat.newsol - rhs, moduliDD
90.01 Second , 9565 , 358 , -326 , 227 , 21 , -221 ==
True

This method, when used with more powerful technology for computing the Hermite form, will readily handle much
larger problems, and moreover works well over the Gaussian integers. In the example below we use code in
systemSolve2 that is substantially identical to that shown above in systemSolve. We use
Developer‘HermiteNormalForm[[2]] (extracting the second element because the first is the transformation
matrix) instead of groebnerHNF as the former is specialized for working over (rational or Gaussian) integers.

SeedRandom@1111D;
mat = RandomInteger@8-100, 100<, 820, 25<D + äRandomInteger@8-100, 100<, 820, 25<D;
rhs = RandomInteger@8-100, 100<, 20D + äRandomInteger@8-100, 100<, 20D;
Timing@8soln, nulls< = systemSolve2@mat, rhsD;D
8zeroTensor@mat.soln - rhsD, zeroTensor@mat.Transpose@nullsDD<
90.475928 Second , Null=
9True , True =

19

Timing@smallsoln = smallSolution@soln, nullsD;D
zeroTensor@mat.smallsoln - rhsD
90.308954 Second , Null=
True

We check that the new solution is indeed much smaller than the original.

8Max@Abs@N@solnDDD, Max@Abs@N@smallsolnDDD<

;3.98003 ´10
47

, 3.91379 ´10
9 ?

So the initial solution had elements with up to 48 digits whereas those in the small solution do not exceed 10 digits.

We remark that a related method for finding a small solution is presented in [Matthews 2001]. It also uses Hermite
normal form computation to obtain a solution vector as part of the transformation matrix, but attempts to enforce
small size in that matrix via an implementation based on lattice reduction. A simpler form of what we showed above
(anchor set to 1) has been referred to as the "embedding" technique in [Nguyen 1999]. It is not clear where it
originated (the version shown above was first coded in 1995) and it seems to have been independently discovered
multiple times. It should also be noted that the code shown above can be improved. In the Hermite solver there is no
need to augment with an identity matrix because the transformation matrix will contain the necessary information.
In finding small solutions, one will typically want to iterate the above method, reducing the size of the weight as the
solution vectors get progressively smaller. Moreover it often works better if the null vectors are first reduced.

8 Application: Reduction of polynomial lattices

In this section we take leave of Gröbner bases over Euclidean domains and instead work in the more familiar terri−
tory of computations over fields. The reason is that the Hermite normal form algorithm shown above, with but minor
alteration, gives us a means of finding reduced lattices for univariate polynomial matrices; reduction here is in the
sense of [Lenstra 1985]. The idea is to use the polynomial variable as an ideal variable (as opposed to retaining it in
the coefficient structure), and compute a degree−based basis for the module. The code below will do exactly this.

polynomialLatticeReduce@mat_?MatrixQ, mod_: 0D :=Module@
8len = Length@First@matDD, newvars, generators, mgb<,
newvars = Array@v, lenD;
generators =mat.newvars;
mgb =moduleGroebnerBasis@generators, Variables@matD, newvars, CoefficientDomain®

Rationals, Modulus®mod, MonomialOrder® DegreeReverseLexicographicD;
Outer@D, Reverse@mgbD, newvarsDD

We will again generate a random matrix, this time will all entries of fixed degree.

20

randomMatrix@degmax_, rows_, cols_, var_D := Table@
randomPolynomial@degmax, varD, 8rows<, 8cols<D

SeedRandom@1111D
mat = randomMatrix@4, 3, 5, xD

;;7 + 9 x+ 8 x
2
+ 8 x

3
- 4 x

4
,

-10 - 4 x+ x
2
+ 4 x

3
- 9 x

4
, -9 - 10 x- 7 x

2
- 10 x

3
- 10 x

4
,

-2 x- 9 x
2
+ 6 x

3
- 4 x

4
, -7 + 7 x- 7 x

2
+ 3 x

3
+ 10 x

4 ?,

;7 - 6 x
2
+ 4 x

4
, 3 + x- 4 x

2
- 8 x

3
- x

4
, 8 - 2 x+ 8 x

2
- 5 x

3
+ 5 x

4
,

-5 - 6 x+ 5 x
2
+ 4 x

3
- 8 x

4
, -6 - 4 x+ 2 x

2
+ 3 x

3
- 6 x

4 ?,

;-10 + 9 x+ 7 x
2
+ x

3
+ 4 x

4
, -7 - 9 x- x

2
- 5 x

3
- 8 x

4
,

7 + 5 x
2
- x

3
+ 6 x

4
, 5 - 6 x+ 8 x

2
+ 2 x

3
- 10 x

4
, 7 + 3 x- 4 x

3
- 6 x

4 ??
We begin by computing the Hermite form, as this is in some sense as "far" as possible from "reduced" (as deter−
mined by orthogonality defect from [Lenstra 1985]).

21

Timing@hnf = groebnerHNF@mat, Polynomials@xD, 8933DD

;0.03 Second ,

;;1 , 0 , 6315 + 2935 x+ 8883 x
2
+ 5385 x

3
+ 4550 x

4
+ 808 x

5
+ 2173 x

6
+

7678 x
7
+ 6828 x

8
+ 6950 x

9
+ 7034 x

10
+ 5482 x

11
,

4265 + 3896 x+ 7717 x
2
+ 8361 x

3
+ 5693 x

4
+ 456 x

5
+ 1435 x

6
+

1512 x
7
+ 735 x

8
+ 2310 x

9
+ 4026 x

10
+ 5613 x

11
,

1823 + 6912 x+ 1669 x
2
+ 7758 x

3
+ 6345 x

4
+ 5105 x

5
+ 5740 x

6
+

3596 x
7
+ 4251 x

8
+ 697 x

9
+ 6128 x

10
+ 5919 x

11 ?,

;0 , 1 , 7877 + 2252 x+ 8201 x
2
+ 6977 x

3
+ 2172 x

4
+ 5467 x

5
+

600 x
6
+ 5158 x

7
+ 1063 x

8
+ 6803 x

9
+ 3165 x

10
+ 4686 x

11
,

7076 + 5399 x+ 3436 x
2
+ 1847 x

3
+ 2955 x

4
+ 8048 x

5
+ 7613 x

6
+

3262 x
7
+ 4634 x

8
+ 2128 x

9
+ 3772 x

10
+ 6069 x

11
,

8016 + 5639 x+ 590 x
2
+ 1676 x

3
+ 8248 x

4
+ 2610 x

5
+ 5491 x

6
+

4410 x
7
+ 5683 x

8
+ 7750 x

9
+ 7900 x

10
+ 1253 x

11 ?,

;0 , 0 , 6959 + 1101 x+ 957 x
2
+ 7105 x

3
+ 2752 x

4
+ 3926 x

5
+

448 x
6
+ 5348 x

7
+ 3571 x

8
+ 2178 x

9
+ 8427 x

10
+ 7895 x

11
+ x

12
,

6450 + 3168 x+ 5859 x
2
+ 4822 x

3
+ 1719 x

4
+ 8668 x

5
+ 3480 x

6
+

1789 x
7
+ 4848 x

8
+ 6061 x

9
+ 2487 x

10
+ 8928 x

11
+ 1391 x

12
,

3374 + 5261 x+ 6349 x
2
+ 1682 x

3
+ 8563 x

4
+ 7676 x

5
+ 4861 x

6
+

8733 x
7
+ 245 x

8
+ 2641 x

9
+ 5566 x

10
+ 4165 x

11
+ 2183 x

12 ???

22

Timing@redlat = polynomialLatticeReduce@hnf, 8933DD

;0.04 Second ,

;;2888 + 7592 x+ 8382 x
2
+ 7495 x

3
+ x

4
, 7000 + 6901 x+ 1933 x

2
+ 840 x

3
,

151 + 6746 x+ 4817 x
2
+ 7687 x

3
, 2228 + 4662 x+ 7543 x

2
+

4470 x
3
+ 7242 x

4
, 935 + 3521 x+ 1489 x

2
+ 8540 x

3
+ 8833 x

4 ?,

;7545 + 3572 x+ 8733 x
2
+ 5161 x

3
, 4170 + 5758 x+ 4764 x

2
+ 4367 x

3
+ x

4
,

6551 + 8139 x+ 3375 x
2
+ 1985 x

3
, 8932 + 5757 x+ 4367 x

2
+ 199 x

4
,

2778 + 6153 x+ 2978 x
2
+ 6353 x

3
+ 1588 x

4 ?,

;8133 + 7147 x+ 7546 x
2
+ 396 x

3
, 2381 + 4564 x+ 6552 x

2
+ 3773 x

3
,

1191 + 3377 x+ 5756 x
2
+ 4966 x

3
+ x

4
, 3 + 4567 x+ 3773 x

2
+

8931 x
3
+ 1391 x

4
, 1593 + 7346 x+ 2978 x

2
+ 8732 x

3
+ 2183 x

4 ???
Notice that we have a sort of reversal of roles from [Basiri and Faugere 2003]. In that paper they use reduction of a
polynomial matrix to compute a Gröbner basis whereas we do quite the opposite. These are not mutually exclusive,
however, and in principle the method of reduction above could lie beneath their algorithm (in other words, we are
bootstrapping rather than coding in circles).

It should also be noted that, as was shown with the integer case above, this lattice reduction might be put to use to
find "small" (that is, low degree) solutions to diophantine polynomial systems with nontrivial null spaces.

9 Application: Bivariate modular polynomial factorization

We now put together techniques from the preceding applications sections for the purpose of factoring a bivariate
polynomial modulo a prime. We will generate a pair of random polynomials such that there are terms of highest total
degree in each variable separately; this convenience involves no actual loss of generality, as one can always attain
this for one variable by a linear change of coordinates. We make a few other useful choices so as not to run afoul of
necessary conditions e.g. degree changing on substitution of a value for one variable. Again, these are all conve−
niences insofar as one can work in an extension field in one variable, in essence performing a substitution of an
algebraic element outside the base field. The purpose of this section is not to derive a foolproof algorithm but rather
to illustrate the method on a relatively simple albeit nontrivial example.

23

randpoly@deg_, mod_, x_, y_D :=

â
i=0

deg

â
j=0

deg-i

RandomInteger@8If@i + j� deg && i j� 0, 1, 0D, mod - 1<D xi y j

mod = 19; SeedRandom@1111D; totdeg = 6; poly1 = randpolyB totdeg

2
, mod, x, yF;

poly2 = randpolyB totdeg

2
, mod, x, yF; poly = Expand@poly1 poly2, Modulus®modD

18 x+ 6 x
2
+ 18 x

3
+ 16 x

4
+ 12 x

5
+ 8 x

6
+ 13 y+ 12 x y+ 17 x

2
y+ 11 x

3
y+

7 x
4

y+ 16 x
5

y+ 16 y
2
+ 17 x y

2
+ 6 x

2
y

2
+ 2 x

3
y

2
+ 14 x

4
y

2
+ 14 y

3
+

18 x y
3
+ 5 x

2
y

3
+ 2 x

3
y

3
+ y

4
+ 4 x y

4
+ 16 x

2
y

4
+ 18 y

5
+ 18 x y

5
+ 7 y

6

We will evaluate at x= 11 and factor, removing the constant term.

fax =Map@First, Drop@FactorList@poly �. x® 11, Modulus®modD, 1DD

;8 + y, 14 + 3 y+ y
2

, 14 + 13 y+ 9 y
2
+ y

3 ?
As in the Hensel lifting section we will lift a factor modulo a power of the ideal Hx- 11L that is sufficient to reclaim
factors of degree 3 in x.

subst = Hx - 11L;
pow = 12;
substpower = subst^pow;
liftedfactor = Last@GroebnerBasis@8poly, substpower, fax@@1DD^pow<,

y, Modulus®mod, CoefficientDomain® Polynomials@xDDD

3 + 14 x+ 2 x
2
+ 15 x

3
+ 2 x

4
+ 15 x

5
+

18 x
6
+ 18 x

7
+ 18 x

8
+ 13 x

9
+ 5 x

10
+ x

11
+ y

We remark that one must exercise care at this last step, insofar as a minor reformulation may accidentally recover the
entire factor, thus rendering moot the rest of the example. To wit:

liftedfactor2 = First@GroebnerBasis@8poly, Hx - 11L^10, fax@@1DD^10<,
8x, y<, Modulus®mod, MonomialOrder® DegreeReverseLexicographicDD

12 x+ 4 x
2
+ x

3
+ 15 y+ 2 x y+ 11 x

2
y+ 5 x y

2
+ 5 y

3

PolynomialMod@5*poly2, modD == liftedfactor2

True
This, however, is another method and will not be discussed further in the present paper. It at least serves to show us
the goal for the method at hand.

As in [Lenstra 1985] we now set up a lattice in univariate polynomials in x.

24

deg = Exponent@liftedfactor, yD;
lattice1 = Table@If@i� j, substpower, 0D, 8i, deg<, 8 j, totdeg - 2<D;
coeffs = PadRight@CoefficientList@liftedfactor, yD, totdeg - 2D;
lattice2 = Table@RotateRight@coeffs, jD, 8 j, 0, totdeg - 3 - deg<D;
lattice = Join@lattice1, lattice2D

;;I-11 + xM12
, 0 , 0 , 0 ?,

;3 + 14 x+ 2 x
2
+ 15 x

3
+ 2 x

4
+ 15 x

5
+ 18 x

6
+ 18 x

7
+

18 x
8
+ 13 x

9
+ 5 x

10
+ x

11
, 1 , 0 , 0 ?,

;0 , 3 + 14 x+ 2 x
2
+ 15 x

3
+ 2 x

4
+ 15 x

5
+ 18 x

6
+

18 x
7
+ 18 x

8
+ 13 x

9
+ 5 x

10
+ x

11
, 1 , 0 ?,

;0 , 0 , 3 + 14 x+ 2 x
2
+ 15 x

3
+ 2 x

4
+ 15 x

5
+ 18 x

6
+

18 x
7
+ 18 x

8
+ 13 x

9
+ 5 x

10
+ x

11
, 1 ??

First@redlat = polynomialLatticeReduce@lattice, modDD.y^Range@0, totdeg �2D

12 x+ 4 x
2
+ x

3
+ 15 + 2 x+ 11 x

2
y+ 5 x y

2
+ 5 y

3

We recognize from this that we have recovered one of the true modular factors of our original polynomial.

10 Application: Computing small generators of ideals in quadratic number rings

A ring of integers extended by a square root is an important object in number theory. Say d satisfies d2 =D, where

D is a squarefree integer. Two elements of the quadratic integer ring Z@dD, say x= r + s d and y= u+ v d, comprise
the basis of an ideal. We will compute small generators for that ideal. We can moreover recover Bezout relations.
That is, we find a pair of multipliers 8m, n< ÎZ@dD such that m x+ n y= g for each such generator g.

Here we use code from previous sections to provide multipliers for the Bezout relations. We compute a module basis
with first column comprised of our given x and y, and a 2´2 identity matrix to the right of that column. We further−

more have a 3´3 matrix beneath this, comprised of the reducing quadratic on the diagonal and zero elsewhere. The
Hermite form of this matrix, computed via groebnerHNF, will have as first row the greatest common divisor and

the Bezout relation multipliers. For full generality, we handle the case where d2 º
4

1 by instead using the defining

polynomial JH2d- 1L2 -DN�4; this allows us the full range of elements in the corresponding quadratic ring. The

division by 4, which would be superfluous were our coefficient domain a field, is necessary for attaining a monic
defining polynomial.

There is an added wrinkle. The Bezout relation multipliers computed as above can be quite large. But we can find a
smaller set, exactly as we found small integer solutions to diophantine systems. We simply treat the quadratic
integers as integer pairs, flatten our vectors of these, and invoke smallSolution. Then we translate consecutive
pairs of the resulting integer vector back to quadratic integers. Code for this is below.

25

quadraticIntegerToIntegerVector@n1_Integer, alg_D := 8n1, 0<
quadraticIntegerToIntegerVector@n1_. + n2_.*alg_, alg_D := 8n1, n2<
quadraticVectorToIntegerVector@vec_, alg_D :=

Flatten@Map@quadraticIntegerToIntegerVector@ð, algD&, vecDD
smallSolutionQuadratic@vec_, nulls_, alg_D :=Module@
8soln, nulls2<,
soln = quadraticVectorToIntegerVector@vec, algD;
nulls2 =Map@quadraticVectorToIntegerVector@ð, algD&, nullsD;
soln = smallSolution@soln, nulls2D;
Partition@soln, 2D �. 8a_Integer, b_Integer< :> a + alg*b
D

Here is the Bezout relation code.

bezout@d_, m1_Integer, m2_. + n2_.*d_, tsqr_D :=
Module@8theta, polys<, polys = 8m1, m2 + n2* theta<;

polyBezout@polys, theta, d, tsqrDD
bezout@d_, m2_. + n2_.*d_, m1_Integer, tsqr_D :=

Module@8theta, polys<, polys = 8m2 + n2* theta, m1<;
polyBezout@polys, theta, d, tsqrDD

bezout@d_, m1_. + n1_. d_, m2_. + n2_.*d_, tsqr_D :=
Module@8theta, polys<, polys = 8m1 + n1* theta, m2 + n2* theta<;

polyBezout@polys, theta, d, tsqrDD
polyBezout@polys_, theta_, d_, tsqr_D :=

Module@8defpoly, mat, gb, gcd, solns, soln, nulls, relations, subs<,
defpoly = If@Mod@tsqr, 4D� 1, subs = theta® H1 + Sqrt@tsqrDL �2;

Expand@HH2* theta - 1L^2 - tsqrL �4D, subs = theta® Sqrt@tsqrD; theta^2 - tsqrD;
mat = Join@Transpose@Join@8polys<, IdentityMatrix@2DDD, defpoly*IdentityMatrix@3DD;
gb = groebnerHNF@mat, IntegersD;
relations = Select@gb, ð@@1DD =!= 0 && FreeQ@ð@@1DD, theta^_D&D;
solns =Map@Rest, relationsD;
nulls =Map@Rest, Cases@gb, 80, __<DD;
nulls = DeleteCases@nulls, vec_ �; ! FreeQ@vec, theta^_DD;
solns =Map@smallSolutionQuadratic@ð, nulls, thetaD&, solnsD;
Partition@Riffle@Map@First, relationsD, solnsD �. subs, 2DD

We show a quick example. We’ll work over ZA -19 E (so d= I1+ -19 M�2, with inputs 51 + 43d and

26 - 55d.

bezrels = bezout@d, 51 + 43 d, 26 - 55 d, -19D

;;1 , ;115 - 2 1 + ä 19 , 101 - 17 1 + ä 19 ???
We now check that result by expanding to see we recover the claimed gcd.

ExpandBbezrels@@1, 2DD.:51 + 43 1 + -19 �2, 26 - 55 1 + -19 �2> - bezrels@@1, 1DDF

0
We now show a larger example.

26

n = 50;

randsqrt = RandomInteger@10nD �. a_Integer b_ ® b

randqints = 8RandomInteger@10n, 2D.81, d<, RandomInteger@10n, 2D.81, d<<

76 645 210 216 068 275 341 252 449 427 250 942 042 565 641 503 899

941 230 119 139 644 742 056 691 832 704 420 484 800 325 317 097 349+

66 637 694 434 836 005 939 093 652 315 806 699 696 521 110 837 633d,

29 376 606 053 454 810 686 236 077 314 995 219 308 578 051 470 644+

68 102 540 162 537 581 922 579 541 354 979 200 541 266 074 057 948d=
Timing@bezrels = bezout@d, Sequence�� randqints, randsqrt^2DD

;0.013998 , ;;3 + 76 645 210 216 068 275 341 252 449 427 250 942 042 565 641 503 899 ,

;62 910 542 074 600 312 551 765 960 503 628 547 531 246 233 643 820 636 292 754 943 253 400�

066 320 117 637 426 498 520 034 683 710-

31 136 862 355 224 409 625 896 210 047 184 165 981 450 145 584 808 340 049 705 245 902 612�

582 352 889 642 233 951 439 580 078 105

76 645 210 216 068 275 341 252 449 427 250 942 042 565 641 503 899 ,

-55 848 984 550 900 338 117 246 064 954 825 208 020 230 922 492 945 275 734 518 302 470 297�

813 449 754 151 001 095 645 110 160 958+

30 467 126 693 584 986 302 978 558 640 228 834 191 641 712 044 290 348 730 028 225 317 883�

677 987 057 268 184 365 890 747 403 850

76 645 210 216 068 275 341 252 449 427 250 942 042 565 641 503 899??, ;30 ,

;-60 305 611 400 261 823 127 930 569 882 412 860 470 856 519 992 038 292 070 000 965 250 335�

473 959 556 066 003 160 005 410 829 435+

29 847 581 335 270 731 904 742 643 882 576 386 427 147 936 374 019 427 518 903 539 178 803�

045 332 043 535 642 926 090 923 373 923

76 645 210 216 068 275 341 252 449 427 250 942 042 565 641 503 899 ,

53 536 451 099 594 498 510 472 658 242 785 071 456 611 736 153 058 906 900 507 263 017 699�

342 307 286 854 677 383 630 536 832 643-

29 205 577 352 793 031 992 930 235 827 933 444 488 853 979 241 234 764 625 005 127 503 982�

830 800 303 475 548 423 181 673 182 794

76 645 210 216 068 275 341 252 449 427 250 942 042 565 641 503 899????
In the special case where the ideal is 81<, (e.g. 8x, y< generates the entire ring), then we actually have obtained an
extended gcd.More generally it is easy to show that when there is a gcd and it is a rational integer, or else there is no
rational integer in the ideal, then the above code finds that gcd and the corresponding Bezout relation. In other cases
one would need to do further work to either recover a gcd or else (in the case where the class number of the quadratic
ring is not 1) show that no gcd exists. See [Weilert 2005] or [Miled andOuertani 2010] for further details. We show

below a simple approach that works in many situations. We work with d= 53 719.

sqrt = Sqrt@53 719D;
qints = 873 609 + 15 577 d, 2991 + 6417 d<;

27

bezrels = bezout@d, Sequence�� qints, sqrt^2D

;;1 + 53 719 ,

;14 462 895 - 3 265 382 53 719 , -1 344 274 + 7 923 502 53 719 ??,

;6 , ;1 128 711 - 254 907 53 719 , -104 180 + 618 536 53 719 ???
We have reduced the ideal sum to one generated by I1+ 53 719 , 6M. There is in fact a gcd, though, because the

ring ZA 53 719E is a principal ideal domain (this follows from the fact that 53 719 has class number of 1).

Checking norms shows that any common factor of 6 and1+ 53 719will have a norm of 6 or −6. So we have a Pell

type of equation to solve: find integers 8a, b< such that H6a+ bL2 - 53 719b2 = ±6. Well known facts about such
equations tell us that any solution will have H6a + bL �b as a convergent to the continued fraction expansion of

53 719. We remark that for this method to work, we require that the right hand side, ±6 in this case, have absolute

value less than 53 719.

cf = ContinuedFractionB 53 719 F;
frax = Convergents@cfD;
solns1 = Table@Solve@8H6*a + bL^2 - 53 719*b^2� 6, H6*a + bL �b� frax@@ jDD<, 8a, b<D,

8 j, Length@fraxD<D;
solns2 = Table@Solve@8H6*a + bL^2 - 53 719*b^2�-6, H6*a + bL �b� frax@@ jDD<, 8a, b<D,

8 j, Length@fraxD<D;
Cases@Flatten@8a, b< �. solns1, 1D, 8x_Integer, y_Integer<D
Cases@Flatten@8a, b< �. solns2, 1D, 8x_Integer, y_Integer<D
8<
99-3 428 948 410 941 086 922 003 618 340 136 587 439 827 999 302 403 486 984 497 710 688 926 584 615�

684 288 776 613 161 602 832 ,

-89 150 972 140 308 509 130 356 945 221 982 374 902 233 029 263 834 884 255 241 520 937 582 267�

870 954 684 338 850 528 243=,
93 428 948 410 941 086 922 003 618 340 136 587 439 827 999 302 403 486 984 497 710 688 926 584 615�

684 288 776 613 161 602 832 ,

89 150 972 140 308 509 130 356 945 221 982 374 902 233 029 263 834 884 255 241 520 937 582 267�

870 954 684 338 850 528 243==
We have found a gcd.

gcd = ExpandB
83 428 948 410 941 086 922 003 618 340 136 587 439 827 999 302 403 486 984 497 710 688 926 584�

615 684 288 776 613 161 602 832,
89 150 972 140 308 509 130 356 945 221 982 374 902 233 029 263 834 884 255 241 520 937 582�

267 870 954 684 338 850 528 243<.:6, 1 + 53 719 >F

20 662 841 437 786 830 041 152 066 986 041 507 013 870 228 843 684 756 791 241 505 654 497 089 961�

976 687 344 017 820 145 235+

89 150 972 140 308 509 130 356 945 221 982 374 902 233 029 263 834 884 255 241 520 937 582 267 870�

954 684 338 850 528 243 53 719

28

We confirm that the norm is indeed −6.

ExpandBgcd* gcd �. 53 719 -> - 53 719 F

-6

11 Summary
We have presented an algorithm for computing a strong Gröbner basis over a Euclidean domain that is essentially
identical to Buchberger’s method for the case where the base ring is a field. In particular we have retained the S−
polynomial reduction approach as well as the Buchberger criteria for elimination of redundant S−polynomials.
Several basic examples were presented to illustrate diverse applications of this technology e.g. working over quotient
rings, solving nonlinear systems over rings. As more specialized applications, we showed how to use these bases to
compute Hensel lifts in a univariate polynomial ring and find matrix Hermite normal forms; closely related code
gives us reduction of univariate polynomial lattices. While these last applications are quite specialized in the sense
that efficient methods are available that do not require the full power of Gröbner bases, it is all the same nice to have
the methods shown above for computing them. One reason is that the code is simple and fairly flexible should
modifications be desired. Another is that these methods, while not as fast as the best known, perform reasonably well
on many problems that are of practical size. Perhaps most interesting is that several fundamental ideas from com−
puter algebra, such as Hensel lifting, matrix canonical forms, and lattice reduction, as well as interplay between
these, may be cast as computations involving Gröbner bases over Euclidean domains or close relatives thereof.

12 Acknowledgements
I thank one anonymous refereee for pointing out several typographical errors in an earlier draft of this paper, another
for drawing my attention to the related work by Norton and S+l+gean, Ana S+l+gean for providing a preprint of their
work, and Michael Trott for drawing my attention to the preprint by Dolzmann and Sturm.

13 References

[1] W. Adams and P. Loustaunau (1994). An Introduction to Gröbner Bases. Graduate Studies in Mathematics 3.

American Mathematical Society.

[2] A. Aho, J. Hopcroft, and J. Ullman (1974). The Design and Analysis of Computer Algorithms. Addison−Wesley

Publishing Company.

[3] A. Basiri and J−C Faugère (2003). Changing the ordering of Gröbner bases with LLL: case of two variables. In:

Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation. J. R. Sendra, ed.

23−29. ACM Press.

[4] T. Becker, W. Weispfenning, and H. Kredel (1993). Gröbner Bases: A Computational Approach to Computer

Algebra. Graduate Texts in Mathematics 141. Springer−Verlag.
[5] K. Belabas, G. Hanrot, and P. Zimmerman (2001). Tuning and generalizing van Hoeij’s algorithm. INRIA

Research report 4124, February 2001. Available in electronic form at:
http://www.loria.fr/~zimmerma/papers/

[6] W. Blankenship (1965). Algorithm 288: Solution of simultaneous linear diophantine equations. Communications
of the ACM 9(7):514.

[7] B. Buchberger (1985). Gröbner bases: An algorithmic method in polynomial ideal theory. In Multidimensional

Systems Theory, chap 6. N. K. Bose, ed. D. Reidel Publishing Company.

[8] M. Caboaro and C. Traverso (1998). Efficient algorithms for ideal operations (extended abstract). In: Proceedings

of the 1998 International Symposium on Symbolic and Algebraic Computation. O. Gloor, ed. 147−152. ACM

Press.

[9] S. Collart, M. Kalkbrenner, and D. Mall (1997). Converting bases with the Gröbner walk.. Journal of Symbolic

Computation 24(3−4):465−469.

]

29

]

D. Cox, J. Little, and D. O’Shea (1992). Ideals, Varieties, and Algorithms: An Introduction to Computational

Algebraic Geometry and Computer Algebra. Undergraduate Texts in Mathematics. Springer−Verlag.

[11] A. Dolzmann and T. Sturm (2001). Solving Systems of Linear Congruences. Technical Report MIP−0101, FMI,

Universität Passau, D−94030 Passau, Germany, February 2001. Available in electronic form at:

http://www.fmi.uni−passau.de/~sturm/publications/techreports/
[12] J. von zur Gathen and J. Gerhard (1999). Modern Computer Algebra. Cambridge University Press.

[13] D. Grayson (1996). Private communication.

[14] M. van Hoeij (2002). Factoring polynomials and the knapsack problem. Journal of Number Theory 95:167−181.

[15] A. Kandri−Rody and D. Kapur (1984). Computing the Gröbner basis of polynomial ideals over the integers.

Proceedings of the Third MACSYMA Users’ Conference, Schenectady, NY. 436−451.

[16] A. Kandri−Rody and D. Kapur (1988). Computing a Gröbner basis of a polynomial ideal over a Euclidean

domain. Journal of Symbolic Computation 7:55−69.

[17] A. Lenstra(1985). Factoring multivariate polynomials over finite fields. Journal of Computer and System

Sciences 30:235−248.

[18] A. Lenstra, H. Lenstra, and L. Lovácz (1982). Factoring polynomials with rational coefficients. Mathematische

Annalen 261:515−534.

[19] D. Lichtblau (1996). Gröbner bases in Mathematica 3.0. The Mathematica Journal 6(4): 81−88.

[20] D. Lichtblau (1998). Talk title: "Practical computations with Gröbner bases". IMACS−ACA 1998, Prague.

Abstract available in electronic form at:

http://www.math.unm.edu/ACA/1998/sessions.html
[21] G. Malaschonok (2001). Fast methods of a linear system solving in commutative domains. Preprint.

[22] K. R. Matthews (2001). Short solutions of A X= B using a LLL−based Hermite normal form algorithm. Preprint.

[23] A. Miled and A. Ouertani (2010). Extended gcd of quadratic integers. arXiv:1002.4487v1 [cs.DM]. Also see:

http://demonstrations.wolfram.com/ExtendedGCDOfQuadraticIntegers/

[24] H. M. Möller (1988). On the construction of Gröbner bases using syzygies. Journal of Symbolic Computation 6:

345−359.

[25] T. Mulders and A. Storjohann (1999). Diophantine linear system solving. In: Proceedings of the 1999

International Symposium on Symbolic and Algebraic Computation. Sam Dooley, ed. 181−188. ACM Press.

[26] P. Nguyen (1999). Cryptanalysis of the Goldreich−Goldwasser−Halevi cryptosystem from Crypto ’97. Advances

in Cryptology, Proceedings of CRYPTO 1999, Santa Barbara, CA. Available in electronic form at:

http://www.di.ens.fr/~pnguyen/pub.html#Ng99

[27] G. Norton and A. S+l+gean (2001). Strong Gröbner bases and cyclic codes over a finite−chain ring. Workshop on

Coding and Cryptography, Paris 2001. Preprint.

[28] L. Pan (1989). On the D−bases of polynomial ideals over principal ideal domains. Journal of Symbolic

Computation 7: 81−88.
[29] C. Sims (1994). Computations with Finitely Presented Groups. Cambridge University Press.

[30] A. Storjohann (1994). Computation of Hermite and Smith Normal Forms of Matrices. Master’s thesis,
Department of Computer Science, University of Waterloo.

[31] A. Weilert (2005). Two efficient algorithms for the computation of ideal sums in quadratic orders. Mathematics

of Computation 75(254):941−981.
[32] S. Wolfram (1999). The Mathematica Book (4th edition). Wolfram Media/Cambridge University Press.

[33] P. Zimmerman (2003). Polynomial Factorization Challenges: a collection of polynomials difficult to factor.
Available in electronic form at:

http://www.loria.fr/~zimmerma/mupad/

30

