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Abstract: Buchberger and Kandri−Rody and Kapur defined a strong Gröbner basis for a polynomial 
ideal over a Euclidean domain in a way that gives rise to canonical reductions. This retains what is 
perhaps the most important property of Gröbner bases over fields. A difficulty is that these can be 
substantially harder to compute than their field counterparts. We extend their results for computing 
these bases to give an algorithm that is effective in practice. In particular we show how to use S−
polynomials (rather than "critical pairs") so that the algorithm becomes quite similar to that for fields, 
and thus known strategies for the latter may be employed. We also show how Buchberger’s important 
criteria for detection of unneeded S−polynomials can be extended to work over a Euclidean domain. 
We then provide simple examples as well as applications to solving equations in quotient rings, 
Hensel lifting, Hermite normal form computations, and reduction of univariate polynomial lattices. 
These serve to demonstrate why Gröbner basis computations over such rings are indeed worthy of 
consideration.
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1 Introduction

Since their introduction by Bruno Buchberger in the 1960’s,  the theory and application of  Gröbner bases has been
developed extensively.  While the original version worked with polynomial  rings defined over fields,  this  has been
extended in different ways to other types of base ring such as Euclidean domains or principal ideal domains. Text−
book expositions for  this  may be found in  [Becker,  Weispfenning,  and Kredel  1993]  and [Adams and Loustaunau
1994].  As  might  be  expected,  the  less  structured  the  base  ring,  the  more  problematic  becomes  the  theory  behind
and/or  computation  of  such  bases.  Moreover  while  the  definitions  for  the  field  case  are  common  throughout  the
literature, one encounters variations when working over other rings, motivated by the wish (or decreasing ability) to
preserve  various  aspects  of  the  field  case.  One  particular  variant,  proposed  independently  in  [Kandri−Rody  and
Kapur 1984], and [Buchberger 1985, section 8], defines what is termed a "strong" Gröbner basis over the integers.
As demonstrated in [Kandri−Rody and Kapur 1988] this extends more generally to polynomial rings over Euclidean
domains.  Their  motivation  was  to  define  these  bases  in  such  a  way  that  canonical  reductions  to  normal  form are
essentially unchanged from the field case. A by−product was that one also retains similarity to the field case in the
algorithm for computing these. As a generalization, [Pan 1989] developed similar ideas but in the setting of polyno−
mial  rings  over  effectively  computable  principal  ideal  domains.  In  this  paper  we  restrict  attention  to  Euclidean
domains firstly because that is the setting wherein one may preserve the notion of canonical forms, and secondly in
order to avoid questions of computability.

There are at least two reasons to want a strong Gröbner basis over a Euclidean domain. One is that as noted above
we obtain canonical forms, and these are very useful in computations modulo polynomial ideals. The second is that
reduction is now cheap; with a weak Gröbner basis one must compute greatest−common−divisors in the base ring in
order  to  perform reduction  (see  [Becker,  Weispfenning,  and  Kredel  1993]),  whereas  with  a  strong  basis  one  only
needs use a division algorithm (the price of course is that the basis computation itself may be more costly).

The theory behind strong bases was largely resolved by the early 1990’s but details regarding efficient computation
and preservation of the simplicity of Buchberger’s algorithm are scattered through the references. The intent of this
paper is to gather this under one roof, so to speak, and to make explicit mention of any improvements and simplifica−
tions  of  which  we  are  aware.  For  example,  a  straightforward  reduction  algorithm  can  be  slow  as  it  essentially
emulates the extended GCD algorithm but  with coefficient  arithmetic carried over to  polynomials.  To remedy this
[Kandri−Rody and Kapur 1984; Kandri−Rody and Kapur 1988] use the extended GCD explicitly on coefficients, but



emulates the extended GCD algorithm but  with coefficient  arithmetic carried over to  polynomials.  To remedy this
[Kandri−Rody and Kapur 1984; Kandri−Rody and Kapur 1988] use the extended GCD explicitly on coefficients, but
make use of two types of S−polynomial and require a restriction on how reduction may be performed. Another issue
is that with the notable exception of [Möller 1988] the literature says relatively little about extending the Buchberger
criteria  for  eliminating  redundant  S−polynomials  ([Adams  and  Loustaunau  1994]  also  considered  these  criteria  in
some exercises, but in the context of what appears to be a very different algorithm for working over a PID). We give
a form that is very much in the spirit of the field case in [Buchberger 1985]. We also give several useful applications
of special cases of such bases.

It will turn out that our basis is identical to the D−Gröbner basis discussed in chapter 10 of [Becker, Weispfenning,
and  Kredel  1993]  (they  refer  to  the  two  types  of  polynomial  as  S−polynomials  and  G−polynomials).  But  we  will
have  a  cheaper  way  to  compute  this  basis  because  of  more  general  reduction  and  the  availability  of  redundancy
criteria, as well as fewer S−polynomials to consider. Thus we believe this algorithm demonstrates a reasonable blend
of  ease  of  implementation  and  runtime efficiency.  The  algorithm we  will  discuss  is  implemented  in  the  kernel  of
Mathematica [Wolfram 1999]  (Mathematica (TM)  is  a  registered  trademark  of  Wolfram Research,  Incorporated).
General information about Gröbner bases  in Mathematica may be found in [Lichtblau 1996].

The outline of this paper is as follows. First we cover the basic definitions, when working in a polynomial ideal over
the integers,  of  term ordering, canonical  rewriting, S−polynomials,  and Gröbner bases.  We then extend the theory
presented in [Buchberger 1985] and [Kandri−Rody and Kapur 1988] so that it is more like the case where one works
over  a  field.  We  next  extend  the  well−known  Buchberger  criteria  for  detecting  unnecessary  S−polynomials  in
advance of performing actual (and often time consuming) reductions. We follow with several general examples. We
then show some specialized applications that, among other things, connect these bases to important areas elsewhere
in computational mathematics.

In the sequel we restrict our attention almost exclusively to the integers for clarity of exposition. It should be noted
that  definitions  and  theorems  in  this  paper  extend  readily  to  all  Euclidean  domains  over  which  one  can  perform
effective  computation,  provided  one  can  canonically  select  elements  in  a  way  that  will  be  made  precise  for  the
integer case below. It is then straightforward to adapt the ideas behind this case to the other common Euclidean rings
e.g. Gaussian integers or univariate polynomials.

2 Notation and definitions

First we establish notation. We work in the polynomial ring of n indeterminates over the integers, ZAx
1

, ..., xnE. A
power product is a product of the form Û

j=1

n IxjMej .  A term, or monomial, is a power product times an integer coeffi−

cient (note that some authors define one or the other of these to be what we call a power product). We will typically
denote monomials as cj t j  where cj  is an integer coefficient and t j  is a power product. One sees immediately that any

polynomial in our ring can be written as a sum of terms with distinct power products; this is the usual definition of a
polynomial in expanded form. Our typical usage of letters (possibly subscripted or otherwise annotated) in the sequel
will  be  as  follows:  8a, b, c, d, e<  are  coefficients  in  our  ring,  8 f , g, h, p, q, r<  are  polynomials,  8i, j, k, m, n<  are
integers, and 8s, t, u, v< are power products.

As in the field case we define well−founded orderings on the power products. Let 9 j
1

, ... jn=  denote the (ordered)

exponent vector of nonnegative integers for a given power product (that is, j
1

 is the exponent of x
1

, etc.). Suppose

u, v, and w are any three such exponent vectors, 0 is the exponent vector consisting of all zeros, and sums of expo−
nent vectors are of course performed element−wise and correspond to products of power products.

Definition  1:  A  total  ordering  among  such  exponent  vectors  (and  hence  among  power  products)  is  well  founded
provided

(i) 0 < u for non−zero u
(ii) u £ v� u+w £ v+w

For  example  we  have  the  oft−used  "pure  lexicographic"  ordering  wherein   9 j
1

, ... jn= > 9m1
, ...mn=  whenever

m £ n T

2



9
1

= 9
1

=
j i =mi  for all 1£ i < k£ n and jk >mk. For naming purposes we will sometimes call a term ordering T. In the sequel
when power products are compared it is always assumed that this is done with respect to a well founded order.

Definition  2:  We  will  regard  our  polynomials  as  sums  of  terms  in  descending  term  order.  That  is,  if
p= c

1
t
1
+ ...+ cn tn then we have t

1
> t

2
> ...> tn (of course this depends on the particular choice of term order).

The term c
1

t
1

 is denoted the "head" term. In the language of  rewriting rules one says that the head term "reduces"

to minus the sum of the remaining terms. For a pair of power products v= 9k
1

, ...kn= and w= 9m
1

, ...mn= we say

that w divides v if mj £ kj  for all  1£ j £ n. For abbreviation purposes we will write HPP@pD = t
1

, ("PP" for "power

product"), HCoeff@pD = c
1

, and HMonom@pD = c
1

t
1

.

We will  assume the reader is familiar with the basic ideas of Gröbner bases in polynomial rings over fields. Good
references  for  this  include  [Buchberger  1985;  Cox,  Little,  and  O’Shea  1992;  Becker,  Weispfenning,  and  Kredel
1993; Adams and Loustaunau 1994]. Recall that one of several equivalent definitions is that one obtains a canonical
form when reducing a given polynomial by such a basis. The various definitions are no longer equivalent when one
works over a more general ring, and it  is this particular one that gives rise to strong Gröbner bases when the base
ring is  a  Euclidean  domain.  Before  this  can  be  described we  must  first  see  what  is  meant  by  reduction,  as  this  is
altered from the field case.

First we will  impose an ordering on elements in the coefficient ring. For our later purposes this too will  be a total
ordering,  which  we  will  denote  by  <<.  In  particular,  suppose  our  Euclidean  norm on  an  element  c  in  the  ring  is

denoted by c .  Then whenever c
1
< c

2
 we require that c

1
<< c

2
.  For integers we could for example use

absolute values with ties broken by sign. So, following [Kandri−Rody and Kapur 1984; Buchberger 1985, section 8],
we may take for our ordering

0<< 1<< |1<< 2<< |2<< ...

As will become clear, what we really require is a way to obtain unique minimal remainders in the division algorithm.
This extra ordering suffices for that task.

Definition 3: Given a monomial m= c t and a polynomial p = Úcj t j  with t
1

 the leading power product we say that

p reduces m provided

(i) t
1
ý t (that is, we have t = s

1
t
1

).

(ii)  Using  the  division  algorithm to  write  c = a c
1
+ d,  we  have  a¹ 0 (or,  equivalently,   d¤ <  c¤).  In  this  case  we

write m®m- a s
1

p.  More generally we may allow any multiplier a such that the remainder satisfies  d¤ <  c¤,  but

the quotient a from the division algorithm is the only one we use in actual practice.

Similarly  if  q  and  p  are  polynomials  we  say  p  reduces  q  provided  it  reduces  some  monomial  m of  q.  Note  that
reduction depends on term order in general. We make this explicit in a shorthand notation: if the resulting polyno−

mial is r  we write q
:p, T>

r.  Generally we will  be interested in head term reductions, but for purposes of obtaining
canonical  forms we will  reduce lower terms as well.  Note that  it  is  in reductions that  minimal  remainders become
important: we require that the reduced polynomial be "smaller" either in head power product or coefficient. There is
a small subtlety that should be made explicit. Our division algorithm must work in such a way that the quotient of 2
and 3 is 1, with a remainder of |1 (because |1 is smaller than 2 in the Euclidean norm).

Definition 4: Given a polynomial q and a set of polynomials F  we say that q is reducible by F  if there is a polyno−

mial p in F  that reduces q. There may be many such, and one may get different reductions. The point of a Gröbner
basis is that we will get a unique result once no further reductions can be applied, regardless of choices for reducing
polynomials that were made along the way. If some chain of reductions from q leads to a polynomial r  (regardless

of whether it might be further reduced by F), we write q
:F, T>

r.
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We now mention why this form of reduction is useful. As we will see, one can obtain a basis computation algorithm
that  is  quite similar to that  for fields.  This is  quite important if  one is  to write (almost)  generic code that  is  at  the
same time optimized for different coefficient domains. Indeed, we want to use heuristics that are borrowed from the
field case to the greatest extent possible, and the fewer departures from that case the more readily we are able to do
this. This may also be carried beyond the Buchberger algorithm. Specifically we note that there has been much work
over the years to do Gröbner basis conversion. One such method in particular, the Gröbner walk [Collart, Kalkbren−
ner, and Mall 1997], appears to be extendable to Euclidean domain base rings. Yet another reason to have this form
of reduction is that it is fast; weak bases rely on slower GCD computations rather than division.

We define two types of S−polynomial. Recall  that the idea behind these in the field case is to combine head terms
using the LCM of the lead power products, and then kill  off the lead coefficient. In the Euclidean domain case we
can  do  this  only  if  one  lead  coefficient  divides  the  other,  or  if  we  will  allow  coefficient  multipliers  that  are  both
nonunits.  Moreover we must  allow for  reducing rather than  entirely  removing head coefficients.  For  example,  the
pair 82 x, 3y< will, in contrast to the field case, give rise to the S−polynomial x y. While two flavors of S−polynomial
marks  a  departure  from the  field  case,  we  will  see  later  how  these  may  be  used  in  an  algorithm  that  is  virtually
identical to Buchberger’s.

Definition 5 (S−polynomials): We are given polynomials pj = cj t j + r j  where t j =HPPApjE for j Î 81, 2<. Without

loss of generality we may assume c
1
£ c

2
 . Let

9c, 9a
1

, a
2
== =ExtendedGCDAc

1
, c

2
E

(that  is,  c is  the  GCD with  c= a
1

c
1
+ a

2
c

2
).  Let  t =PolynomialLCMAt

1
, t

2
E  with  cofactors s

1
and s

2
 so  that

t = s
1

t
1
= s

2
t
2

.  Finally  take  d= LCMAc
1

, c
2
E  with  cofactors b

1
and b

2
 so  that  d= b

1
c

1
= b

2
c

2
.  With  this

we define two types of S−polynomial:

Spoly
1
Ap

1
, p

2
E = a

1
s
1

p
1
+ a

2
s
2

p
2

Spoly
2
Ap

1
, p

2
E = b

1
s
1

p
1
- b

2
s
2

p
2

Note  that  the  head term of  SPoly
1
Ap

1
, p

2
E  had coefficient  c and power product  t,  and in  SPoly

2
Ap

1
, p

2
E   we

have  killed  off  that  power  product.  Also  note  that  when  c
1

 divides  c
2

 then  SPoly
1
Ap

1
, p

2
E  is  simply  a  power

product  multiple  of  p
1

 (because  a
1
= 1  and  a

2
= 0).  In  this  case  it  will  obviously  reduce  to  zero,  and  only

SPoly
2
Ap

1
, p

2
E  will be of interest. Finally note that due to choices of cofactor, SPoly

1
is not uniquely defined; this

will  not  matter  for  our  purposes  and  we   merely  require  that  an  extended  gcd  algorithm  exist.  Anticipating  later
results, we now define, for each pair, a unique S−polynomial.

Definition  6:  Again  given  polynomials  pj = cj t j + r j  with   t j =HPPApjE  for  j Î 81, 2<  and  c
1
£ c

2
 .  If  c

1

divides  c
2

 then  SPolyAp
1

, p
2
E =SPoly

2
Ap

1
, p

2
E ,  otherwise  SPolyAp

1
, p

2
E =SPoly

1
Ap

1
, p

2
E .  We  remark

that this is in essence "definition CP3" in [Kandri−Rody and Kapur 1984]. It is also the efficient generalization of the
definition from [Buchberger 1985]. In that case one uses quotient and remainder to remove as much of the leading
coefficient as possible from the lead term of the S−polynomial. When one lead coefficient divides the other it may be
entirely  removed  and  we  have  SPoly

2
.  When  this  does  not  happen,  iterating  the  process  emulates  the  Euclidean

algorithm so after some number of steps we would obtain SPoly
1

.

We are now ready to define precisely a strong Gröbner basis.

Definition 7:  A set  of  polynomials G in  ZAx
1

, ..., xnE  is  called a strong Gröbner basis over (the base ring) Z  and

with respect to a given term ordering T  if, given any polynomial pÎZAx
1

, ..., xnE, it has a canonical reduction by

8G, T<. What this means is that no matter what polynomials from G we use at any given step in the process, when we

> >

F
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E
E

<
can no longer reduce it we have a unique form. Restated, if p

:G, T>
r
1

 and p
:G, T>

r
2

 and neither r
1

 nor r
2

 can be

further reduced by F, then r
1
= r

2
.

Last we will need a notion from the theory of Gröbner bases over principal ideal rings.

Definition 8: Given a set of polynomials G= 9g
1

, ..., gn= ÌZAx1
, ..., xnE and a polynomial f  with f =Úhj gj .

We  call  this  a  strong  standard  representation  of  f  with  respect  to  G  provided  HMonom@ f D =HMonomAhj gjE  for

some j  and HPP@hk gkD <HPP@ f D for all k¹ j (obviously this is with respect to some given term order).

We see that in a strong standard representation one kills off the head term with exactly one summand. There is also a
notion of a weak standard representation, wherein we allow multiple terms with the same head power product, that is
useful  in  construction  of  what  are  called  "weak"  Gröbner  bases.  These  in  turn  may  be  used  to  construct  strong
Gröbner bases as in [Möller 1989; Adams and Loustaunau 1994]. We do not pursue that approach here. Instead we
will work directly with strong standard representations. These in fact give rise to strong Gröbner bases over principal
ideal rings. The characterization in that case is that all elements of the ideal have a strong standard representation; we
lose canonical forms of arbitrary polynomials. Is is easy to see that existence of such representations is equivalent to
one of the common characterizing features from the field case: G is a strong Gröbner basis for the ideal I  provided

that for any f Î I  there is some gÎG with HMonom@gD ýHMonom@ f D (we require now that both lead coefficient and

power product of f  be divisible by those of g).

3 Main results

We want to establish a type of Buchberger result connecting Gröbner bases to reduction of S−polynomials. We will
do this in steps.

Theorem 1:  Given a set of polynomials G= 9g
1

, ..., gn= in A=ZAx
1

, ..., xiE and a term order T. Let I  be the ideal

generated by G. Then following are equivalent.

(i) Every gÎG has a strong standard representation.

(ii) Every f Î A has a canonical reduction by 8G, T< (in other words, G is  a Gröbner basis with respect to order T).

Proof:  (i)�(ii)  is  similar  to  10.22  and  10.23  in  [Becker,  Weispfenning,  and  Kredel  1993].  Suppose  we  have

f
:G, T>

h
1

 and f
:G, T>

h
2

 with h
1

 and h
2

 both fully reduced. We need to show that h
1
= h

2
. Since h

1
- h

2
Î I

it  has  a  strong  standard  representation.  Let  HMonomAh
1
- h

2
E = c t  and  h

1
- h

2
=Úqj gj  be  a  strong  standard

representation with  HPP@qk gkD = c t.  Let  c
1

 respectively   c
2

 be  the  coefficient  of  t  in  h
1

 respectively  h
2

.  First

suppose  c
1
= 0.  Then  HMonomAh

2
E = c t  and  hence  h

2
 is  not  fully  reduced,  contradicting  our  assumption.  Thus

c
1
¹ 0 and similarly  we see that  c

2
¹ 0.  Hence  Ic

1
- c

2
M t  reduces but  neither  c

1
t  nor  c

2
t  reduces by  G.  Thus

bk =HCoeff@gkD divides Ic
1
- c

2
M. Moreover

QuotientAc
1

, bkE =QuotientAc
2

, bkE = 0

for otherwise at least one of h
1

 and h
2

 could not be fully reduced. Thus c
1

 and c
2

 are in the same residue class

modulo  bk  and  so  they  are  equal.  This  shows  that  the  head  term of  h
1
- h

2
 is  zero,  in  other  words  h

1
= h

2
 as

desired.
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(ii)�(i)  is  similar  in  style  to  10.8  of  [Becker,  Weispfenning,  and  Kredel  1993].  Suppose f Î I , f = c t+ r  where

t =HPP@ f D.  By  assumption  of  canonical  reduction  we  have  f
:G, T>

0.  Thus  we  may  write  f =Úhj gj  where

Max
j
AHPPAhj gjEE = t (we remark that this is already a weak standard representation of f ). Let J= 9 j : HPPAhj gjE = t=.

Assume  for  a  contradiction  that  m=ð J> 1,  that  t  is  minimal  among  all  power  products  (with  respect  to  T)  for
which this happens, and that  c¤  is minimal among coefficients for which there is no strong standard representation
involving this head power product t. These assumptions are tenable because we work with well ordered monomials
over a totally ordered Euclidean domain.

For notational convenience assume without loss of generality that J= 81, ...,m<. Now let

9c�, 9s
1

, ..., sm== =ExtendedGCDAHCoeffAg
1
E, ... HCoeff@gmDE

and uj = t �HPP@gmD for 1£ j £m.

We next define g= u
1

s
1

g
1
+ ...+ um sm gm. Then by construction HMonom@gD = c� t. If  c�¤ =  c¤ then m= 1because

we  use  Euclidean  reduction  that  forces  ¡HCoeffAhj gjE¥ £  c¤  for  1£ j £m,  yet  by  construction  as  a  GCD  we  have

 c�¤ £ ¡HCoeffAhj gjE¥ for 1£ j £m. Thus  c�¤ <  c¤.
By minimality of  c¤  there is a strong standard representation g=Úqj gj  with HPP@qk gkD = t  and HPPAqj gjE < t  for

all  j ¹ k.  As  c=HCoeffAh
1

g
1
E + ...+Hcoeff@hm gmDand  c� =GCDAHCoeffAg

1
E, ... HCoeff@gmDE  we  see  that  c� ý c,

so we have c= d c� for some d. Finally let f
�
= f - d g. Then HPP@ f�D < t and hence f

�
 has a strong standard representa−

tion by our minimality hypothesis which we write as f
�
=Úpj gj .  But then dÚqj gj +Úpj gj  is seen to be a strong

standard representation of f . á

Theorem 2:  Given a set of polynomials G in ZAx
1

, ..., xnE and a term order T, the following are equivalent.

(i) G is a Gröbner basis with respect to term order T.

(ii) For every pair of polynomials 9p
1

, p
2
= ÌG we have SPoly

1
Ap

1
, p

2
E :G, T>

0 and SPoly
2
Ap

1
, p

2
E :G, T>

0.

(iii) For every pair of polynomials 9p
1

, p
2
= ÌG we have SPolyAp

1
, p

2
E :G, T>

0.

We use both  types of  S−polynomial  in  the second equivalent  statement  because it  is  a  bit  easier  to  show that  this
yields a Gröbner basis. We then show that the third statement is equivalent to the second. This is useful among other
reasons  because  one  wants  to  retain  the  original  Buchberger  algorithm intact  to  the  extent  possible,  and  certainly
having one rather than two S−polynomials for a given pair furthers this goal.

Proof: (i)�(ii) is from the definition of a Gröbner basis. We now show (ii)�(i) (this is similar to 10.11 in [Becker,
Weispfenning, and Kredel 1993]).

Suppose G= 9g
1

, ..., gn= and f  is in the ideal generated by G. We may  write f =Úhj gj . Let t =Max
j
AHPPAhj gjEE,

J= 9 j : HPPAhj gjE� t=,  and t
�
=HPP@ f D.  We may assume �t  is  minimal  among such representations. Let  m=ð J.  If

m= 1 and t = t
�
 then we have a strong standard representation, so we assume otherwise. If t = t

�
 then obviously m> 1.

On the other hand, if  t > t
�
 then we require at least two terms in the representation to have power product of t in order

to kill off that term. Hence m> 1. Reordering if necessary, without loss of generality we may assume J= 81, ...,m<.
We now set up some notation. Write gj = cj t j + r j  and hj = bj sj + qj  where t j =HPPAgjE and sj =HPPAhjE. Note

that sj t j = t for 1£ j £m. Let t
1 , 2

=PolynomialLCMAt
1

, t
2
E, v= t� t

1 , 2
, u

1
= t

1 , 2
� t

1
, and u

2
= t

1 , 2
� t

2
.

v v

¤ f t
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A E A E
1 , 2

A
1 2

E �
1 , 2 1 1 , 2

�
1 2 1 , 2

�
2

From  this  we  see  at  once  that  s
1
= u

1
v  and  s

2
= u

2
v.  We  will  assume  for  a  contradiction  that

¡b
1

c
1
¥ + ...+  bm cm¤ is minimal among all representations of f  that have a largest power product of t. Again, such a

representation must exist for well ordered monomials over a totally ordered Euclidean domain.

Let 9c, 9d
1

, d
2
== =ExtendedGCDAc

1
, c

2
E, e

1
= LCMAc

1
, c

2
E�c

1
, e

2
= -LCMAc

1
, c

2
E�c

2
. So e

1
 and e

2
 are

minimal in norm such that e
1

c
1
+ e

2
c

2
= 0.

In terms of these definitions we have

Spoly
1
Ag

1
, g

2
E = d

1
u

1
g

1
+ d

2
u

2
g

2

Spoly
2
Ag

1
, g

2
E = e

1
u

1
g

1
+ e

2
u

2
g

2

Now b
1

c
1
+ b

2
c

2
= d c for  some d;  moreover there exists  e such that  b

1
= d d

1
+ e e

1
 and b

2
= d d

2
+ e e

2
.

Since b
1
¹ 0 and b

2
¹ 0 by construction, and c=GCDAc

1
, c

2
E, it follows that ¡b

1
c

1
¥ + ¡b

2
c

2
¥ >  d c¤.

We now have

h
1

g
1
+ h

2
g

2
= Id d

1
+ e e

1
M u

1
v g

1
+ q

1
g

1
+ Id d

2
+ e e

2
M u

2
v g

2
+ q

2
g

2
=

d vSPoly
1
Ag

1
, g

2
E + e vSPoly

2
Ag

1
, g

2
E + Iq

1
g

1
+ q

2
g

2
M

By  hypothesis  the  S−polynomials  reduce  to  zero.  Now  vHPPASPoly
2
Ag

1
, g

2
EE < t,  HPPAq

1
g

1
E < t,  and

HPPAq
2

g
2
E < t.  Moreover  HCoeffAd vSPoly

1
Ag

1
, g

2
E E = d c.  We  thus  have  a  representation  of  h

1
g

1
+ h

2
g

2

as a sum Úpk gk whereby, letting K = 8k : HPP@pk gkD = t<, we obtain

â
kÎK

 HCoeff@pk gkD¤ =  d c¤ < ¡b
1

c
1
¥ + ¡b

2
c

2
¥

But  then we may use this representation to replace h
1

g
1
+ h

2
g

2
 in  the representation of  f ,  and this  contradicts

minimality of ¡b
1

c
1
¥ + ...+  bm cm¤.

Since (ii) is stronger than (iii) it is clear that (ii)�(iii). We show (iii)�(ii).

Let  pj = cj t j + r j  with  HPPApjE = t j  for  j Î 81, 2<.  Assume without  loss  of  generality  that  ¡c
1
¥ £ ¡c

2
¥.  If  c

1
ý c

2

then  SPoly
1
Ap

1
, p

2
E  is  trivially  a  product  of  p

2
and  hence  known  to  reduce,  and  thus  we  need  only  use

SPoly
2
Ap

1
, p

2
E. So we may suppose that c

1
I c

2
. Let 9c, 9a

1
, a

2
== =ExtendedGCDAc

1
, c

2
E with c

1
= d

1
c and

c
2
= d

2
c.  Note  that  a

1
d

1
+ a

2
d

2
= 1and  in  particular  a

1
 and  a

2
 are  relatively  prime.  Let

t =PolynomialLCMAt
1

, t
2
E with s

1
= t� t

1
 and s

2
= t� t

2
. Then

q=SPoly
1
Ap

1
, p

2
E = a

1
c

1
s
1

t
1
+ a

1
s
1

r
1
+a

2
c

2
s
2

t
2
+ a

2
s
2

r
2
= c t+a

1
s
1

r
1
+a

2
s
2

r
2

SPoly
2
Ap

1
, p

2
E = Id

2
c

1
s
1

t
1
+ d

2
s
1

r
1
M-Id

1
c

2
s
2

t
2
+ d

1
s
2

r
2
M= d

2
s
1

r
1
-d

1
s
2

r
2

Thus

h
1
=SPoly

2
Ap

1
, qE = c

1
s
1

t
1
+ s

1
r
1
-d

1
Ic t+a

1
s
1

r
1
+a

2
s
2

r
2
M

= I1-d
1

a
1
M s

1
r
1
-d

1
a

2
s
2

r
2
= a

2
d

2
s
1

r
1
-a

2
d

1
s
2

r
2
= a

2
SPoly

2
Ap

1
, p

2
E

and similarly h
2
=SPoly

2
Ap

2
, qE = a

1
SPoly

2
Ap

1
, p

2
E.
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Also by definition 6 it is clear that SPoly
2
Apj , qE =SPolyApj , qE for j Î 81, 2<.

Since  a
1

and  a
2

are  relatively  prime  we  obtain  SPoly
1
Ah

1
, h

2
E =SPoly

2
Ap

1
, p

2
E.  This  shows  that  provided

SPoly
1
Ap

1
, p

2
E  is  not  trivial  we  will  eventually  obtain  SPoly

2
Ap

1
, p

2
E  by  iterating  SPoly.  Hence  for  any  pair

9p
1

, p
2
= we need only use SPolyAp

1
, p

2
E as given in definition 6.  á

From the theorems above it is now not hard to see that our bases are the same as the D−bases of [Pan 1989; Becker,
Weispfenning,  and  Kredel  1993].  What  is  different  is  the  mode  of  computation  insofar  as  we  allow  Euclidean
reduction of lead coefficients rather than insist on divisibility. This will tend to make them smaller sooner, and thus
could offer an advantage in efficiency. Note that this only applies when working over a Euclidean domain, and so the
algorithm in the above references has the advantage of greater generality, albeit ours has greater flexibility in choices
of reducing polynomial.

There  are  other  ways  to  improve  computational  efficiency.  It  is  known  from  long  experience  that  the  common
bottleneck to the algorithm is the reduction of S−polynomials. Buchberger himself was the first to give criteria under
which certain S−polynomials could be ignored (see [Buchberger 1985] and references therein). We recover in part
his criteria from the field case.

Theorem 3 (Buchberger’s criterion 1): Suppose pj = cj t j + r j  with HPPApjE = t j  for j Î 81, 2< and c
1
ý c

2
. Suppose

further  that  the  lead  power  products  t
1

 and  t
2

 are  coprime,  that  is,  PolynomialLCMAt
1

, t
2
E = t

1
t
2

.  Then

SPolyAp
1

, p
2
E will reduce to zero and hence is superfluous.

Note that we are using SPoly
2
Ap

1
, p

2
E in this case. While the divisibility requirement for lead coefficients might

seem unduly strong, one will observe that the algorithm proceeds in such a way as to make coefficients small with
respect to Euclidean norm. Thus in practice this requirement may not be terribly restrictive.

Proof:  SPolyAp
1

, p
2
E = c

1
t
1

p
2
- c

2
t
2

p
1
= Ip

1
- r

1
M p

2
- Ip

2
- r

2
M p

1
= r

2
p

1
- r

1
p

2
.  As  t

1
 divides

the head term of r
2

p
1

 while t
2

 does not, and t
2

 divides the head term of r
1

p
2

 while t
1

 does not, these do not

collapse further. But clearly r
2

p
1
�
p1

0 and r
1

p
2
�
p2

0, so SPolyAp
1

, p
2
E�0.  á

Theorem  4  (Buchberger’s  criterion  2):  Given  pj = cj t j + r j  with  HPPApjE = t j  for  j Î 81, 2, 3<  with

PolynomialLCMAt
1

, t
2
E divisible by t

3
. Suppose SPolyAp

1
, p

3
E and SPolyAp

2
, p

3
E have strong standard represen−

tations  (thus  far  these  are  the  conditions  for  criterion 2  to  be  in  effect  in  the  field  case).  If  either  c
1
ý c

3
ý c

2
 or

c
3
ý c

1
ý c

2
 then SPolyAp

1
, p

2
E will have a strong standard representation and hence is superfluous.

Note  that  again  we  are  working  with  SPoly
2
Ap

1
, p

2
E.  Obviously  the  roles  of  p

1
 and  p

2
 can  be  interchanged.

Moreover, while the divisibility conditions again appear to be restrictive, in general one obtains alot of polynomials
with lead coefficient a unit and these make the conditions not so uncommon.

Proof: Let t =PolynomialLCMAt
1

, t
2
E. Assume inductively that if f  and g have strong standard representations, and

HPP@ f D < t, HPP@gD < t, then so does f + g.

Define  power  product  multipliers  u
j, k
=PolynomialLCMAt j , tkE� t j .  Then

SPolyAp
1

, p
2
E = c2

c1

u
1 , 2

p
1
- u

2 , 1
p

2
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First  we  assume  c
3
ý c

1
ý c

2
.  Then  SPolyAp

1
, p

3
E = u

1 , 3
p

1
-

c1

c3

u
3 , 1

p
3

 and

SPolyAp
2

, p
3
E = u

2 , 3
p

1
-

c2

c3

u
3 , 2

p
3

.

Since t
3
ýPolynomialLCMAt

1
, t

2
E we know that u

1 , 3
ý u

1 , 2
 and similarly u

2 , 3
ý u

2 , 1
. We thus may write

c
2

c
1

u
1 , 2

u
1 , 3

SPolyAp
1

, p
3
E -

u
2 , 1

u
2 , 3

SPolyAp
2

, p
3
E =

c
2

c
1

u
1 , 2

p
1
-

c
2

c
3

u
1 , 2

u
1 , 3

u
3 , 1

p
3
- u

1 , 2
p

1
-

c
2

c
3

u
2 , 1

u
2 , 3

u
3 , 2

p
3
=

SPolyAp
1

, p
2
E -

c
2

c
3

p
3

u
1 , 2

u
1 , 3

u
3 , 1

-

u
2 , 1

u
2 , 3

u
3 , 2

Now  u
1 , 2

t
1
= u

2 , 1
t
2

,  u
1 , 3

t
1
= u

3 , 1
t
3

,  and  u
2 , 3

t
2
= u

3 , 2
t
3

.  This  implies

u1 , 2

u1 , 3

u
3 , 1

=
u2 , 1 t2

u3 , 1 t3

u
3 , 1

=
u2 , 1 t2

t3

 and  similarly  
u2 , 1

u2 , 3

u
3 , 2

=
u2 , 1 t2

t3

.  Hence  the  parenthesized  term  van−

ishes, and so

SPolyAp
1

, p
2
E =

c
2

c
1

u
1 , 2

u
1 , 3

SPolyAp
1

, p
3
E -

u
2 , 1

u
2 , 3

SPolyAp
2

, p
3
E

Now use the hypothesis  that  each summand has a strong standard representation with head power product smaller
than t. Then so does the sum.

The case where c
1
ý c

3
ý c

2
 is similar. For the first step, one instead shows

SPolyAp
1

, p
2
E =

c
2

c
3

u
1 , 2

u
1 , 3

SPolyAp
1

, p
3
E -

u
2 , 1

u
3 , 2

SPolyAp
2

, p
3
E . á

A more general treatment of this criterion may be found in [Möller 1985], based on generating sets of homogeneous
syzygy modules. We use this version because it is simple to code; as it is in essence the usual Buchberger criterion 2
one can adapt "standard" code for the field case with only minor modification (as indeed is done in the Mathematica
implementation).

One will  note that the criteria above pertain to the second type of S−polynomial,  and naturally it  would be nice to
have a criterion for eliminating as redundant an S−polynomial of the first type. There is such a criterion implicit in
theorem 10.11 of [Becker, Weispfenning, and Kredel 1993].

Theorem  5:  Given  pj = cj t j + r j  with  HPPApjE = t j  for  j Î 81, 2, 3<  with  t
i, j
=PolynomialLCMAti , t jE.  Suppose

t
3
ý t

1 , 2
.  Let 9c, 9a

1
, a

2
== =ExtendedGCDAc

1
, c

2
E and further suppose c

3
ý c. In other words, the head mono−

mial  of  p
3

 divides  the  head  monomial  of  SPolyAp
1

, p
2
E  (the  latter  is  top−D−reducible,  in  the  terminology  of

[Becker, Weispfenning, and Kredel 1993]). Then SPolyAp
1

, p
2
E is redundant.

Proof: Let u
i, j
= t

i, j
� ti  for j Î 81, 2, 3<. Let c�c

3
= d and t

1 , 2
� t

3
= v. Then

SPolyAp
1

, p
2
E = a

1
u

1 , 2
p

1
+ a

2
u

2 , 1
p

2
= c t

1 , 2
+ a

1
u

1 , 2
r
1
+a

2
u

2 , 1
r
2

Also
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SPolyAp
1

, p
3
E =SPoly

2
Ap

1
, p

3
E =

Ic
1

t
1
+ r

1
M u

1 , 3
- Ic

1
�c

3
M Ic

3
t
3
+ r

3
M u

3 , 1
= u

1 , 3
r
1
-Ic

1
�c

3
M u

3 , 1
r
3

and similarly SPolyAp
2

, p
3
E = u

2 , 3
r
2
-Ic

2
�c

3
M u

3 , 2
r
3

.

Now

u
1 , 2

u
3 , 1

u
1 , 3

=

It
1 , 2

� t
1
M It

1 , 3
� t

3
M

t
1 , 3

� t
1

= t
1 , 2

� t
3
= v

and a similar computation shows that  
u2 , 1 u3 , 2

u2 , 3

= v. Also

a
1

c
1

c
3

+ a
2

c
2

c
3

- d=
1

c
3

Ia
1

c
1
+ a

2
c

2
M - d=

c

c
3

- d= 0

Hence

SPolyAp
1

, p
2
E - d v p

3
- a

1

u
1 , 2

u
1 , 3

SPolyAp
1

, p
3
E - a

2

u
2 , 1

u
2 , 3

SPolyAp
2

, p
3
E =

c t
1 , 2

+ a
1

u
1 , 2

r
1
+a

2
u

2 , 1
r
2
-Ic t

1 ,2
+d v r

3
M

- a
1

u
1 , 2

r
1
-a

1

c
1

c
3

u
1 , 2

u
3 , 1

u
1 , 3

r
3
- a

2
u

2 , 1
r
2
-a

2

c
2

c
3

u
2 , 1

u
3 , 2

u
2 , 3

r
3

= a
1

c
1

c
3

u
1 , 2

u
3 , 1

u
1 , 3

+ a
2

c
2

c
3

u
2 , 1

u
3 , 2

u
2 , 3

- d v r
3
= 0

We have thus a strong standard representation of SPolyAp
1

, p
2
E and this suffices to show that it is redundant. á

We now have our algorithm, essentially the same as the Buchberger algorithm for polynomial rings over fields. We
list all pairs of polynomials, marking as processed all those that the criteria warrant. We now iteratively select a pair
whose S−polynomial  is  not  yet  marked,  reduce it,  and if  the  result  is  not  zero,  we form new pairs.  Again  use the
criteria to mark redundant pairs. We continue this iteration until we have no more pairs to process, at which point all
S−polynomials can be reduced to zero. Termination in a finite number of steps is proven e.g. in [Kandri−Rody and

Kapur 1988] by noting that ZAx
1

, ..., xnE is Noetherian and hence an ascending chain condition applies to its ideals.

One will note that our algorithm puts a certain emphasis on SPoly
1

, wherein the lead coefficient is the GCD of the

leading coefficients of the critical pair. This is in contrast to algorithms in [Möller 1988; Pan 1989; Weispfenning,
and Kredel 1993; Adams and Loustaunau 1994] where the emphasis is more on SPoly

2
 in which, as with the field

case, one entirely kills off a leading coefficient. Given the dearth of available implementations, it is an open question
as to which approach is computationally more effective in general.
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4 Some special cases

Before  proceeding  to  examples  we  will  discuss  an  important  special  class  of  Euclidean  domains.  While  one  can
show that the theory developed above carries over in a general way, for the specific and very important case where
our base ring is the set of univariate polynomials in x over a (computable) field F one can do better. Suppose we are

given a set of polynomials in some set of indeterminates over F@xD. One augments the indeterminates with x, extend−
ing the term order so that every power of x is smaller than all power products containing other variables. One next
computes a Gröbner basis for the input in this setting of polynomials in one more variable over F. Theorem 4.5.12
in [Adams and Loustaunau 1994] shows that this is in fact a strong Gröbner basis for the ideal over the original base
ring F@xD (this fact had also been mentioned in [Kandri−Rody and Kapur 1988]). Our experience is that the benefits
of computing a basis over a field outweigh any efficiencies developed for working over a Euclidean domain, hence
we use this tactic in Mathematica. We show applications to working over such polynomial rings in the examples.

If our base ring as Z
p

n  and we work with univariate polynomials over this ring then we have an example of a finite−

chain  ring.  For  working  with  polynomials  over  such  a  ring  we  could  use  the  results  presented  in  [Norton  and
S+l+gean 2001] . They show, among other things, that weak and strong Gröbner bases for ideals over such rings are
equivalent. They also present a structure theorem for the univariate case and apply it to cyclic codes. As will be seen
in the examples below, one can instead regard the ring as a quotient of Z@xD and use the computational methods of
this paper. We will return to this special case below, in the context of Hensel lifting. In a sense this is the analog of
the way that  Gröbner bases for polynomial  ideals over fields generalize the Euclidean algorithm for the univariate
case.

The other well known direction in which Gröbner bases generalize an older concept is that of row reduction. Hence
another  special  case  for  bases  over  Euclidean  domains  is  when  all  the  polynomials  are  linear.  We  also  show  an
application of this case to matrix normal forms in the sequel. A minor modification will moreover yield a polynomial
lattice reduction.

5 Examples

In this and later sections we show several examples. We omit most proofs that the algorithms do as we state. Such
proofs would use arguments based on term ordering and integer sizes, and are generally straightforward.

We first show some simple examples adapted from [Adams and Loustaunau 1994]. For purposes of assessing speed,
we note that all  timings were done with version 5 of Mathematica running on a 1.5 GHz Intel processor under the
Linux operating system.

For the first example we wish to compute a basis for an ideal in the polynomial ring ZC -5 F @x, yD. Note that our

base  ring,  ZC -5 G,  is  not  a  Euclidean  domain  (or  even  a  unique  factorization  domain).  In  such  cases  one  may

resort to a common tactic of adding a new variable and defining polynomial so that in effect we work over a quotient

ring;  in  this  example  it  will  be  Z @x, y, ΑD�:Α2 + 5>.  So  our  base  ring  will  be  the  integers  and  we  have  added  a

variable and a polynomial relation equating that variable to -5  (up to a conjugate, as these are indistinguishable
to this method without further variables and defining polynomials). For this to work as desired we must have the new
variable ordered lexicographically lower than all others. We then remove the first polynomial from the basis, which,
due to this ordering, is exactly the defining polynomial for that algebraic extension element.
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RestA
GroebnerBasisA92 x y - Α y, H1 + ΑL x2

- x y, Α2
+ 5=, 8x, y, Α<, CoefficientDomain® IntegersEE

;25 y+ 10 y
2
- 5 yΑ, 15 y+ 5 y

2
+ y

2
Α, -25 y+ x y+ 5 y

3
+ 12 yΑ,

6 x
2
+ 10 y+ 5 y

2
- 3 yΑ, x

2
- 25 y+ 5 y

3
+ x

2
Α + 12 yΑ?

The basis in that reference is a bit different due to different notions of coefficient handling, but the one above serves
the same purposes.

As a second example, we will find a basis for the ideal intersection 83 x- 2, 5y- 3< Ý 8x y- 6< in Z @x, yD. This may
be done as below. Note that we again use and subsequently eliminate an auxiliary variable, this time ordered lexico−
graphically greater than the others (specifying it as the third argument tells GroebnerBasis it is to be eliminated).

GroebnerBasis@Flatten@8w 83 x - 2, 5 y - 3<, H1 - wL 8x y - 6<<D, 8x, y<,
w, CoefficientDomain® Integers, MonomialOrder® EliminationOrderD

;18 - 30 y- 3 x y+ 5 x y
2

, 12 - 18 x- 2 x y+ 3 x
2

y, 6 - 6 y- 7 x y+ x y
2
+ x

2
y

2 ?
Again, we do not obtain the identical basis due to differences in basis definition. Specifically, theirs does not have
our  third  polynomial.  This  is  because  they  find  a  weak  Gröbner  basis  and  that  requires  fewer  polynomials.  The
disadvantage  to  that,  as  noted  earlier,  is  that  one  now  must  work  harder  to  reduce  with  these,  and  moreover  one
cannot readily obtain canonical forms.

To get some idea of algorithm speed, we now show a more strenuous computation.

polys = 97 x2 y2
+ 8 x y2

+ 3 x z - 11, 11 y2 z + 4 x2 y + x y z2
+ 2,

5 x2 y z + x2
+ 2 z2

+ 5 z, 7 x y z + 3 x y + 5 x + 4 y + 7=;
Timing@gbdlex =GroebnerBasis@polys, 8x, y, z<, CoefficientDomain® Integers,

MonomialOrder® DegreeLexicographicDD
91.05 Second , 934 475 640 417 355 562 336 236 396 270 436 281 195 926 ,

10 898 452 513 151 823 962 606 330 508 750 762 670 219+ z,

6 355 322 887 725 405 337 810 105 619 887 333 184 234- y,

-14 760 987 199 637 601 090 452 154 096 210 512 593 721+ x==
A similar basis computed over the field of rationals is about 70 times faster using the same hardware and software
(the result, as might be expected, is 81< because we started with more polynomials than variables). So the fact that
the  Euclidean  domain  case  takes  almost  two  orders  of  magnitude  longer  is  not  entirely  a  surprise  insofar  as  the
eventual result contains much more information. If we remove the first polynomial then the tasks are in some sense
more  similar  and  correspondingly  the  relative  time  ratio  of  computing  over  the  rationals  vs.  the  integers  drops  to
under one order of magnitude.

An application of finding bases over the integers was pointed out to the author by Dan Grayson [Grayson 1995], and
in fact was implemented by him in Mathematica around 1988 (using the Gröbner basis over integers algorithm from
[Kandri−Rody and Kapur 1984]). Given a system of n+ 1  polynomials in n unknowns, find a modulus m such that

the  system  is  exactly  determined  modulo  m,  and  return  all  solutions  (which  lie  in  HZmLn).  With  reference  to  the
previous  example,  the  above  system  is  seen  to  be  exactly  determined  in  the  quotient  ring
Z

34 475 640 417 355 562 336 236 396 270 436 281 195 926
.

A  related  application  is  to  do  computations  involving  ideals  defined  over  quotient  rings  that  may  contain  zero
divisors. As an example we will find all solutions in the ring Z

5 072 012 170 009
 to a system below.
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gb =GroebnerBasisA
95 072 012 170 009, -4 984 359 602 099 + x2

- 3 y2
- 9 x z, -1 780 431 462 965 + 7 x y + 5 y3

+ z2,

-4 585 397 367 278 + x3
- 3 y2

+ z - 12 z3=, 8x, y, z<, CoefficientDomain® IntegersE

;5 072 012 170 009 , 1 174 872 829 454+ 12 173 501 962z- 1 363 165 624 472z
2
+

1 654 998 137 452z
3
+ 928 181 308 002z

4
- 239 795 324 199z

5
- 1 646 238 538 583z

6
-

982 686 930 325z
7
- 1 734 356 432 441z

8
- 1 928 316 724 538z

9
+ 2 384 106 829 761z

10
-

2 266 219 400 230z
11
- 139 245 405 743z

12
+ 895 384 068 341z

13
+ 161 928 956 428z

14
+

2 194 204 640 034z
15
- 1 243 172 466 690z

16
- 1 196 909 984 892z

17
+ z

18
,

2 247 545 052 503+ y+ 788 535 951 374z+ 2 214 230 166 342z
2
+ 955 710 141 543z

3
+

2 160 238 766 386z
4
- 2 474 194 692 542z

5
- 1 684 716 364 278z

6
+ 2 157 370 757 916z

7
-

1 072 725 791 722z
8
+ 1 173 330 106 507z

9
- 1 057 647 942 280z

10
-

1 511 353 993 603z
11
+ 1 327 624 312 048z

12
- 581 007 814 126z

13
+

1 772 345 363 132z
14
- 185 000 519 654z

15
- 1 538 648 034 589z

16
- 456 160 565 195z

17
,

-899 617 339 822+ x+ 2 209 081 769 554z- 509 675 450 156z
2
+ 566 438 534 091z

3
+

1 828 943 883 971z
4
- 1 778 487 828 359z

5
- 1 120 529 181 700z

6
+ 1 238 816 552 216z

7
-

1 898 793 743 218z
8
+ 1 286 010 808 749z

9
+ 893 019 914 153z

10
+ 172 896 055 599z

11
+

1 872 411 543 380z
12
+ 1 420 313 673 322z

13
- 880 454 763 764z

14
-

1 202 867 057 825z
15
- 1 977 589 465 047z

16
- 2 210 999 439 349z

17 ?
To  obtain  solutions  one  would  proceed  exactly  as  if  working  over  a  field.  Specifically,  we  first  find  roots  of  the
univariate polynomial,  then back substitute each solution to solve for the remaining variables. We show the first step
explicitly.  This  involves  root  finding in  a  quotient  ring of  the  integers.  The principles behind this  are well  known
(factor the modulus, find roots modulo each prime factor, lift to accomodate powers of primes, use Chinese Remain−
der Algorithm to combine roots modulo powers of primes). The "hard" step, computationally speaking, is often the
factorization of the modulus.

Roots@gb@@2DD� 0, z, Modulus® gb@@1DDD
z� 99 999 ÈÈ z� 1 848 935 269 876ÈÈ z� 3 102 255 902 823

This functionality is now built into Mathematica, in the function Reduce:

TimingAReduceA9-4 984 359 602 099 + x2
- 3 y2

- 9 x z, -1 780 431 462 965 + 7 x y + 5 y3
+ z2,

-4 585 397 367 278 + x3
- 3 y2

+ z - 12 z3=� 0, 8x, y, z<, Modulus® 5 072 012 170 009EE
90.22 Second , Ix� 77 777 && y� 88 888 && z� 99 999 M ÈÈ
Ix� 1 712 760 123 092 &&y� 3 989 577 716 979 &&z� 1 848 935 269 876M ÈÈ
Ix� 2 127 801 384 642 &&y� 3 379 908 964 470 &&z� 3 102 255 902 823M=

Another area of application for Gröbner bases over the integers is in computations with finitely presented groups, as
discussed in chapter 10 of [Sims 1994]. Among other tools one requires a module Gröbner basis. This is something
we show in section 7 below.
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6 Application: Hensel lifting of univariate polynomials

We now show an application that  uses the special  case of  polynomials  in  one variable over the integers modulo a
power n of a prime p. We begin with a simple example rigged so that the correct result is obvious.

poly = ExpandAIx5
+ 18 x4

+ 34 x3
+ 5 x2

+ 21 x + 30M Ix4
+ 24 x3

+ 22 x2
+ 17 x + 15ME;

We will first factor the polynomial modulo a small prime, removing the (possibly trivial) constant factor.

mod = 11;
fax = FactorList@poly, Modulus®modD;
fax = First �� Rest@faxD

;4 + 6 x+ 2 x
3
+ x

4
, 8 + 10 x+ 5 x

2
+ x

3
+ 7 x

4
+ x

5 ?
Next we wish to make the factors correct modulo a power of the prime. This correction step is referred to as Hensel
lifting [von zur Gathen and Gerhard 1999, chapter 15] and is used in most algorithms for factoring polynomials over
the  rationals.  It  is  typically  done  by  iterations  of  Newton’s  method  in  a  p−adic  setting,  but  Gröbner  bases  may
instead be used to advantage. In effect we take p−adic gcds of our polynomial and each factor raised to the indicated
power,  and  these  gcds  are  the  lifted  factors.  For  this  particular  example  we  will   take  the  factors,  square  them,
compute  Gröbner  bases  over  the  integers  of  the  set  8poly, squaredfactor, squaredmodulus<,  and  extract  the  last
elements of these bases. This will  correspond to quadratic Hensel  lifting, insofar as a factor that is correct modulo

some value p becomes correct modulo p2 . We will in so doing recover the original factors up to sign.

ILastAGroebnerBasisA9mod2, poly, ð1=, CoefficientDomain® IntegersEE&M �� fax2

;-15 - 17 x- 22 x
2
- 24 x

3
- x

4
, 30 + 21 x+ 5 x

2
+ 34 x

3
+ 18 x

4
+ x

5 ?
This recovered the actual factors because we arranged an example for which the modular factors each corresponded
to an actual factor, and moreover the factors were monic, had coefficients of the same sign, and these were all less
than  half  the  prime squared.  Hence  they  are recovered exactly  from one  quadratic  Hensel  lift.  The  question  to  be
answered  is  why  these  Gröbner  basis  computations  gave  the  quadratic  Hensel  lifts  of  the  modular  factors.  We
address this next.

Theorem 6:  Given a square free univariate polynomial  f  over the rationals,  and an integer p such that  the leading

coefficient of f  is not divisible by  p, f  is square free modulo p, and f ºp g
0

h
0

. Assume  s=GCDBg
0

2 , f F exists

modulo p2 . Then s is the Hensel lift of g
0

 modulo p2 .

Note that  this  p−adic gcd may be computed,  as above,  by a Gröbner basis over the integers. Indeed it  is  simply a
convenient  shorthand for running the Euclidean algorithm under the assumption that  no zero divisors are encoun−
tered along the way.

Proof:  We are given f ºp g
0

h
0

.  Suppose the quadratically lifted equation is  f º
p

2 g
1

h
1

 where g
1
ºp g

0
 and

h
1
ºp h

0
.  The assumptions imply that the degrees of g

0
 and g

1
 are equal (and likewise with the cofactors). We

may write g
1
= g

0
+ p t

0
. Then a simple computation shows that g

1
Ig

0
- p t

0
M º

p
2 g

0
2 . We see that g

1
ý f  and

g
1
ý g

0
2  modulo p2 . Now let s=GCDBg

0
2 , f F. Then we have g

1
ý s. In order to show these are equal up to unit

multiples (which proves the theorem), it suffices to show that degreeAg
1
E ³ degree@sD.

Suppose degree@sD > degreeAg
1
E.  Then degree@sD > degreeAg

0
E.  Since s ý f  modulo p2  we have s ý f  modulo p.  But

ý s p f

p
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@ D A
1
E @ D A

0
E ý ý

also  s ý g
0

2 so  the  strict  degree  inequality  implies  that  s is  not  square  free  modulo  p.  Hence  f  is  not  square  free

modulo p, contradicting our assumption. á

One may observe that a polynomial factorization code based on this result will have a probabilistic aspect. We might
inadvertently  use  an  "unlucky"  prime wherein  at  some step  of  the  lifting  process a  GCD does  not  exist.  This  can
happen if a leading coefficient in the process becomes noninvertible because it is a product of p. It is not hard to see
that  for  a  given  polynomial  there  can  only  be  finitely  many  such  unlucky  primes.  Moreover  provided  one  uses  a
random prime that is large compared to the degree of factors and degree of lifting required, the probability will  be
low that the prime is unlucky.

To give some indication of efficiency we now demonstrate on a more challenging example. It stems from a factoriza−
tion example presented in [van Hoeij 2002]. We first set up the polynomial in question; its roots are all the sums of
pairs of roots of a simpler polynomial.

poly1 = x20
- 5 x18

+ 864 x15
- 375 x14

- 2160 x13
+ 1875 x12

+ 10 800 x11
+ 186 624 x10

- 54 000 x9
+

46 875 x8
+ 270 000 x7

- 234 375 x6
- 2 700 000 x5

- 1 953 125 x2
+ 9 765 625;

rts = x �. Solve@poly1 == 0, xD;
sums = Flatten@Table@rtsPiT + rtsP jT, 8i, 19<, 8 j, i + 1, 20<DD;
newpoly = Expand@Times�� Hx - N@sums, 200DLD;
newpoly = Chop@newpolyD �. a_Real® Round@aD;

The end goal  is  to  factor  this  over the integers.  While  it  would  take us  too far  afield  to  discuss the steps that  use
lattice reduction, we will show the Hensel lifting phase below. To this end we first factor modulo a prime.

mod = Prime@4000D;
fax = FactorList@newpoly, Modulus®modD;
fax = First �� Rest@faxD;

Next  we  wish  to  make  the  factors  correct  modulo  a  power  of  the  prime.  The  specific  power  is  dictated  by  size
considerations that arise in the factorization algorithm; for our example it will be 36. For reasons of efficiency it is
better to iterate squarings rather than try to lift to the full power in one step, as the squaring method keeps the degree
relatively small  during the lifting process. We must  then do more basis  computations,  but  the improved speed per
computation more than compensates for this. Hence we are, as above, doing quadratic Hensel lifting.

liftfactors@fax_, poly_, mod_, pow_D :=
Module@8modpow =mod, top = Ceiling@Log@2, powDD, liftedfax = fax<,

Do@modpow = If@ j� top, mod^pow, modpow^2D;
liftedfax = Expand@liftedfax^2, Modulus®modpowD;
liftedfax =

Map@Last@GroebnerBasis@8modpow, poly, ð<, CoefficientDomain® IntegersDD&,
liftedfaxD, 8 j, top<D;

liftedfaxD
Timing@liftedfax = liftfactors@fax, newpoly, mod, 36D;D
95.51 Second , Null=

There are tactics to improve on this. One possibility, for example, might be to adapt the asymptotically fast HGCD
algorithm  presented  in  chapter  8  of  [Aho,  Hopcroft,  and  Ullman  1974].  All  the  same  we  have  attained  timings
comparable to what was presented in [van Hoeij 2002] for this step of the algorithm using but a few lines of code to
implement  the Hensel  lift.  The rest of  the factorization involves constructing and reducing a particular lattice,  and
takes under 2 seconds using the same machine and software as above. Note that prior to the advent of the van Hoeij
algorithm this example was essentially intractable.

Some further remarks about  this  method  of  p−adic  lifting  are in  order.  First,  clearly  dedicated  code  will  be  faster
than a general purpose Gröbner basis program. We have such code in Mathematica, and for the example above it is
about five times faster. Tests on more strenuous problems indicate that the dedicated code is quite competitive with
what  seems  to  be  the  best  Hensel  lifting  method  in  the  literature  to  date,  Shoup’s  "tree−lift"  (which  is  a  form of
divide−and−conquer algorithm) [von zur Gathen and Gerhard 1999, chapter 15, section 5].  Specifically,  while it  is
clear that the behavior of Shoup’s method is asymptotically better than that of the method presented above (it relies
on computation of  quotients and remainders rather than GCDs),  our experience was that for practical purposes the
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clear that the behavior of Shoup’s method is asymptotically better than that of the method presented above (it relies
on computation of  quotients and remainders rather than GCDs),  our experience was that for practical purposes the
method in this section was actually faster for the knapsack factorization examples we tried at [Zimmerman 2003]. As
these typically required lifting to many digits, this is evidence of the practicality of the method above.

In the interest of full disclosure it should be remarked that some of the examples were quite near the crossover when
they reached the final lift stage. Moreover the issue of speed is of course tied to the quality of code, and it may be the
case that the code underlying our Shoup implementation was insufficiently optimized. Other noteworthy differences
are that the Shoup method requires about twice as much code, but, once a prime is found for which the factorization
is square free, it cannot fail whereas, as per theorem 6, the p−adic GCD computation may fail at later stages. Further
details regarding the factorization of these polynomials via the knapsack algorithm are presented in [Belabas, Hanrot,
and Zimmerman 2001].

7 Application: Computation of matrix Hermite normal forms

Another nice application of Gröbner bases over a Euclidean domain is in computing the Hermite normal form of a
matrix with elements in that domain. As there is an efficient Mathematica implementation of integer Hermite normal
form based on [Storjohann 1994], we illustrate for the case of matrices of univariate polynomials. 

Before we show an example we need code to generate a "random" polynomial matrix. For this example we will use a
3x5 matrix of polynomials in x of degree at most 2.

randomPolynomial@deg_Integer, var_D :=

TableAvar j, 8 j, 0, deg<E.RandomInteger@8-10, 10<, deg + 1D
randomMatrix@degmax_, rows_, cols_, var_D :=Module@8deg<,

Table@deg = RandomInteger@80, degmax<D; randomPolynomial@deg, varD, 8rows<, 8cols<DD
SeedRandom@1111Dmat = randomMatrix@2, 3, 5, xD;

To set this up we need to extend GroebnerBasis to handle modules, using a "position over term" ordering [Adams
and Loustaunau 1994]. We represent elements as vectors with respect to module basis variables. The input consists
of  polynomials  that  are linear  with  respect  to  the  module  variables.  We then augment  with  relations that  force all
products of  the  module  variables to  be zero and find  the  Gröbner basis.  The code below is  taken from [Lichtblau
1996].

moduleGroebnerBasis@polys_, vars_, cvars_, opts___D :=
Module@8newpols, rels, len = Length@cvarsD, gb, j, k, ruls<,

rels = Flatten@Table@cvars@@ jDD*cvars@@kDD, 8 j, len<, 8k, j, len<DD;
newpols = Join@polys, relsD;
gb =GroebnerBasis@newpols, Join@cvars, varsD, optsD;
rul =Map@Hð® 8<L&, relsD;
gb = Flatten@gb �. rulD;
Collect@gb, cvarsDD

As the Hermite form is obtained by row operations over the base ring (that is, division is forbidden), it is equivalent
to a module Gröbner basis in the case where our polynomial ring is just the base ring (that is, there are no polyno−
mial variables).  We convert each row of the matrix to a polynomial vector representation by making each column
into a new "variable". At this point we can use the module Gröbner basis routine above. We then convert the result
back to matrix form.

groebnerHNF@mat_?MatrixQ, domain_, mod_: 0D :=Module@
8len = Length@First@matDD, newvars, generators, mgb<,
newvars = Array@v, lenD;
generators =mat.newvars;
mgb =moduleGroebnerBasis@generators,
8<, newvars, CoefficientDomain® domain, Modulus®modD;

Outer@D, Reverse@mgbD, newvarsDD
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Now  we  obtain  our  module  basis  over  Z
8933
@xD.  We  work  over  a  prime  field  in  order  to  restrict  the  size  of  the

coefficients.

hnf = groebnerHNF@mat, Polynomials@xD, 8933D

;;1 , 0 , 4832 + 3665 x+ 3652 x
2
+ 3695 x

3
,

8283 + 8735 x+ 74 x
2
+ 3405 x

3
+ 6787 x

4
+ 7042 x

5
,

3056 + 4811 x+ 3887 x
2
+ 7902 x

3
+ 174 x

4 ?,

;0 , 1 , 4183 + 7075 x+ 5100 x
2
+ 4074 x

3
,

505 + 155 x+ 3912 x
2
+ 3307 x

3
+ 8617 x

4
+ 5441 x

5
,

7548 + 1222 x+ 947 x
2
+ 2787 x

3
+ 5820 x

4 ?,

;0 , 0 , 2434 + 3140 x+ 1796 x
2
+ 2494 x

3
+ x

4
,

1761 + 2265 x+ 2999 x
2
+ 2492 x

3
+ 7414 x

4
+ 123 x

5
+ 7656 x

6
,

2127 + 6380 x+ 8631 x
2
+ 221 x

3
+ 6177 x

4
+ 5106 x

5 ??
Note that it  is here where the coefficient ring is specified. We could instead generate a random integer matrix and
work over the integers to find the Hermite form, although as mentioned above that is not a terribly efficient way to
obtain it.

m2 = RandomInteger@8-100, 100<, 810, 15<D;
Timing@hnf2 = groebnerHNF@m2, IntegersD;D
90.23 Second , Null=

Indeed, what we did above is by no means the most efficient way to obtain the Hermite form of a matrix of polynomi−
als. Several tactics for obtaining good computational efficiency are discussed in [Storjohann 1994]. At the expense
of a fair amount of code one could adapt some of them to work in this Gröbner basis method. Some experimentation
indicates that coefficient swell  can be a serious problem when working with polynomials over the rationals and so
the above method appears to be much more effective when working with polynomials over a prime field.

We adapt the technology in the previous example to solve linear polynomial diophantine systems. To solve such a
system we transpose the matrix, prepend the right hand side vector, augment on the right with an identity matrix, and
take the Hermite normal form. We find the row corresponding to the right hand side, check that it was multiplied, if
at all, by a unit. When this is the case the solution vector can be taken from the rest of that row (which corresponds
to multiples of columns of the original matrix that were needed to zero the right hand side) multiplied by the nega−
tive reciprocal of  that  unit.  Null  vectors come from later rows in the Hermite normal form and we return those as
well.  Note that this is readily adapted to handle a system of modular congruences. We simply treat the modulus in
each congruence as something to be multiplied by a new variable, hence each gets a new row. As we are not inter−
ested in the specific multiple, we do not enlarge the identity matrix by which we augment, but instead add zero rows
to join to the new rows necessitated by these moduli.

This method of diophantine solving may be found e.g. in [Blankenship 1966]. While a recent method works over the
fraction field [Mulders and Storjohann 1999; Malaschonok 2001] and tends to be more efficient, this application of
the Hermite normal form is all the same quite nice and very simple to code.
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The tactic of augmenting with an identity matrix, well  known e.g. for matrix inversion, is a form of "tag variable"
manipulation  in  Gröbner  basis  technology.  It  can  be  used,  for  example,  to  record syzygies  or  conversion matrices
using  nothing  beyond a  standard GroebnerBasis  function.  The  method  appears  in  [Caboara and  Traverso 1998]
and was also discussed in [Lichtblau 1998] (the relevant conferences were indeed only days apart). 

systemSolve@mat_?MatrixQ, rhs_?VectorQ, dom_, mod_: 0, moduli_: 8<D �;
Length@rhsD� Length@matD :=

Module@8newmat, modrows, hnf, j = 1, len = Length@matD, zeros, solvec, nullvecs<,
newmat = Prepend@Transpose@matD, rhsD;
newmat = Transpose@Join@Transpose@newmatD, IdentityMatrix@Length@newmatDDDD;
If@moduli ¹ 8<,

modrows =
Table@If@ j� k, moduli@@ jDD, 0D, 8 j, Length@moduliD<, 8k, Length@newmat@@1DDD<D;

newmat = Join@newmat, modrowsDD;
hnf = groebnerHNF@newmat, dom, modD;
zeros = Table@0, 8len<D;
While@ j £ Length@hnfD&& Take@hnf@@ jDD, lenD =!= zeros, j++D;
solvec = Drop@hnf@@ jDD, len + 1D �-hnf@@ j, len + 1DD;
nullvecs =Map@Drop@ð, len + 1D&, Drop@hnf, jDD;
8solvec, nullvecs<D

For this example we use a 3x5 matrix of polynomials in x of degree at most 3. Again we will work modulo 8933.

randomSystem@degmax_, rows_, cols_, var_D :=
8randomMatrix@degmax, rows, cols, varD, Table@randomPolynomial@degmax, varD, 8rows<D<

SeedRandom@11 111D;
mod = 8933;
8mat, rhs< = randomSystem@3, 4, 6, xD;
Timing@8sol, nulls< = systemSolve@mat, rhs, Polynomials@xD, modD;D
90.057991 Second , Null=

We check the result. The matrix times the solution vector must give the right hand side, and the matrix times the null
vectors must give zeroes.

zeroTensor@t_D :=Max@Abs@tDD� 0
8zeroTensor@Expand@mat.sol - rhs, Modulus®modDD,
zeroTensor@Expand@mat.Transpose@nullsD, Modulus®modDD<
9True , True =

We now show an example for the integer case that comes from [Dolzmann and Sturm 2001]. We have a system of
six modular congruences in six variables that we wish to satisfy, with coefficient matrix, right hand side, and moduli
as below.

mat = 8870, 0, 6, 89, 0, 7<, 887, 93, 78, 73, 0, 0<, 80, 87, 0, 0, 41, 0<,
80, 12, 37, 69, 0, 15<, 875, 0, 90, 65, 14, 0<, 80, 0, 0, 0, 91, 96<<;

rhs = 8-30, -53, -3, -53, -41, -55<;
moduli = 8280, 5665, 110, 1545, 3125, 1925<;
Timing@8soln, nulls< = systemSolve@mat, rhs, Integers, 0, moduliDD
90.13 Second , 990 , -2 , 4 , 12 802 , -29 779 , -34 696 =,
995 , 0 , 0 , -18 165 , 4400 , 333 025=,
90 , -5 , 0 , -16 135 , 26 475 , 445 025=, 90 , 0 , 15 , 17 755 ,

-26 950 , 540 925=, 90 , 0 , 0 , 39 655 , 4950 , -594 825 =,
90 , 0 , 0 , 0 , 68 750 , 0=, 90 , 0 , 0 , 0 , 0 , -1 586 200====

We check  that  the  solution  indeed satisfies  the  congruences,  and that  matrix  times  null  vectors  gives  zero vectors
modulo the congruence moduli.
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8zeroTensor@Mod@mat.soln - rhs, moduliDD,
zeroTensor@Mod@mat.Transpose@nullsD, moduliDD<
9True , True =

In  addition  to  being faster  (though slow in  comparison to  what  one can do with  specialized Hermite  normal  form
algorithm over the integers as in [Storjohann 1994]), the Hermite form method we use has the advantage that it gives
a  smaller  solution,  with  components  of  5  digits  as  compared  to  12  in  [Dolzmann  and  Sturm  2001].  Moreover  it
provides the null vectors, and we can attempt to add multiples of them to the solution in order to obtain a solution
that  is  smaller  still.  We  do  this  by  forming  a  matrix  comprised  of  the  solution  and  null  vectors.  We  augment  by
prepending one column containing zeroes in the null vector rows and a suitably chosen integer to act as an "anchor"
in the row containing the original solution vector. We then apply fast lattice reduction [Lenstra, Lenstra, and Lovácz
1982].  The purpose of  the anchor is  to prevent the solution vector from being multiplied by anything other than a
unit,  and we check after  reduction whether this  succeeded.  If  so,  the  new solution  is  obtained from the remaining
entries in the row containing the anchor (there may be more than one such, in which case the first will be smallest).
The code below does all this, returning the original solution if it fails in the attempt to find something that involves
only a unit multiple of that original solution vector.

smallSolution@sol_?VectorQ, nulls_?MatrixQD :=
ModuleA8max, dim = Length@nullsD + 1, weight, auglat, lat, k, soln<,

lat = Prepend@nulls, solD;
max =Max@Flatten@Abs@latDDD;
weight = dim max2;
auglat =Map@Prepend@ð, 0D&, latD ;
auglat@@1, 1DD = weight;
lat = LatticeReduce@auglatD;
For@k = 1, latPk, 1T == 0, k++D;
soln = latPkT;
Which@

solnP1T == weight, Drop@soln, 1D,
solnP1T == -weight, -Drop@soln, 1D,
True, solDE

We obtain our new solution and again check that it satisfies the desired congruences.

Timing@newsol = smallSolution@soln, nullsDD
zeroTensor@Mod@mat.newsol - rhs, moduliDD
90.01 Second , 9565 , 358 , -326 , 227 , 21 , -221 ==
True

This method, when used with more powerful technology for computing the Hermite form, will readily handle much
larger  problems,  and  moreover  works  well  over  the  Gaussian  integers.  In  the  example  below  we  use  code  in
systemSolve2  that  is  substantially  identical  to  that  shown  above  in  systemSolve.  We  use
Developer‘HermiteNormalForm[[2]]  (extracting  the  second  element  because  the  first  is  the  transformation
matrix) instead of groebnerHNF as the former is specialized for working over (rational or Gaussian) integers.

SeedRandom@1111D;
mat = RandomInteger@8-100, 100<, 820, 25<D + äRandomInteger@8-100, 100<, 820, 25<D;
rhs = RandomInteger@8-100, 100<, 20D + äRandomInteger@8-100, 100<, 20D;
Timing@8soln, nulls< = systemSolve2@mat, rhsD;D
8zeroTensor@mat.soln - rhsD, zeroTensor@mat.Transpose@nullsDD<
90.475928 Second , Null=
9True , True =
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Timing@smallsoln = smallSolution@soln, nullsD;D
zeroTensor@mat.smallsoln - rhsD
90.308954 Second , Null=
True

We check that the new solution is indeed much smaller than the original.

8Max@Abs@N@solnDDD, Max@Abs@N@smallsolnDDD<

;3.98003 ´10
47

, 3.91379 ´10
9 ?

So the initial solution had elements with up to 48 digits whereas those in the small solution do not exceed 10 digits.

We remark that a related method for finding a small solution is presented in [Matthews 2001]. It also uses Hermite
normal  form computation  to  obtain  a  solution  vector  as  part  of  the  transformation matrix,  but  attempts  to  enforce
small size in that matrix via an implementation based on lattice reduction. A simpler form of what we showed above
(anchor  set  to  1)   has  been  referred  to  as  the  "embedding"  technique  in  [Nguyen  1999].  It  is  not  clear  where  it
originated (the version shown above was first coded in 1995) and it  seems to have been independently discovered
multiple times. It should also be noted that the code shown above can be improved. In the Hermite solver there is no
need to augment with an identity matrix because  the transformation matrix will contain the necessary information.
In finding small solutions, one will typically want to iterate the above method, reducing the size of the weight as the
solution vectors get progressively smaller. Moreover it often works better if the null vectors are first reduced.

8 Application: Reduction of polynomial lattices

In this section we take leave of Gröbner bases over Euclidean domains and instead work in the more familiar terri−
tory of computations over fields. The reason is that the Hermite normal form algorithm shown above, with but minor
alteration, gives us a means of finding reduced lattices for univariate polynomial  matrices; reduction here is in the
sense of [Lenstra 1985]. The idea is to use the polynomial variable as an ideal variable (as opposed to retaining it in
the coefficient structure), and compute a degree−based basis for the module. The code below will do exactly this.

polynomialLatticeReduce@mat_?MatrixQ, mod_: 0D :=Module@
8len = Length@First@matDD, newvars, generators, mgb<,
newvars = Array@v, lenD;
generators =mat.newvars;
mgb =moduleGroebnerBasis@generators, Variables@matD, newvars, CoefficientDomain®

Rationals, Modulus®mod, MonomialOrder® DegreeReverseLexicographicD;
Outer@D, Reverse@mgbD, newvarsDD

We will again generate a random matrix, this time will all entries of fixed degree.
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randomMatrix@degmax_, rows_, cols_, var_D := Table@
randomPolynomial@degmax, varD, 8rows<, 8cols<D

SeedRandom@1111D
mat = randomMatrix@4, 3, 5, xD

;;7 + 9 x+ 8 x
2
+ 8 x

3
- 4 x

4
,

-10 - 4 x+ x
2
+ 4 x

3
- 9 x

4
, -9 - 10 x- 7 x

2
- 10 x

3
- 10 x

4
,

-2 x- 9 x
2
+ 6 x

3
- 4 x

4
, -7 + 7 x- 7 x

2
+ 3 x

3
+ 10 x

4 ?,

;7 - 6 x
2
+ 4 x

4
, 3 + x- 4 x

2
- 8 x

3
- x

4
, 8 - 2 x+ 8 x

2
- 5 x

3
+ 5 x

4
,

-5 - 6 x+ 5 x
2
+ 4 x

3
- 8 x

4
, -6 - 4 x+ 2 x

2
+ 3 x

3
- 6 x

4 ?,

;-10 + 9 x+ 7 x
2
+ x

3
+ 4 x

4
, -7 - 9 x- x

2
- 5 x

3
- 8 x

4
,

7 + 5 x
2
- x

3
+ 6 x

4
, 5 - 6 x+ 8 x

2
+ 2 x

3
- 10 x

4
, 7 + 3 x- 4 x

3
- 6 x

4 ??
We begin by computing the Hermite form, as this  is  in  some sense as "far" as possible from "reduced" (as deter−
mined by orthogonality defect from [Lenstra 1985]).
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Timing@hnf = groebnerHNF@mat, Polynomials@xD, 8933DD

;0.03 Second ,

;;1 , 0 , 6315 + 2935 x+ 8883 x
2
+ 5385 x

3
+ 4550 x

4
+ 808 x

5
+ 2173 x

6
+

7678 x
7
+ 6828 x

8
+ 6950 x

9
+ 7034 x

10
+ 5482 x

11
,

4265 + 3896 x+ 7717 x
2
+ 8361 x

3
+ 5693 x

4
+ 456 x

5
+ 1435 x

6
+

1512 x
7
+ 735 x

8
+ 2310 x

9
+ 4026 x

10
+ 5613 x

11
,

1823 + 6912 x+ 1669 x
2
+ 7758 x

3
+ 6345 x

4
+ 5105 x

5
+ 5740 x

6
+

3596 x
7
+ 4251 x

8
+ 697 x

9
+ 6128 x

10
+ 5919 x

11 ?,

;0 , 1 , 7877 + 2252 x+ 8201 x
2
+ 6977 x

3
+ 2172 x

4
+ 5467 x

5
+

600 x
6
+ 5158 x

7
+ 1063 x

8
+ 6803 x

9
+ 3165 x

10
+ 4686 x

11
,

7076 + 5399 x+ 3436 x
2
+ 1847 x

3
+ 2955 x

4
+ 8048 x

5
+ 7613 x

6
+

3262 x
7
+ 4634 x

8
+ 2128 x

9
+ 3772 x

10
+ 6069 x

11
,

8016 + 5639 x+ 590 x
2
+ 1676 x

3
+ 8248 x

4
+ 2610 x

5
+ 5491 x

6
+

4410 x
7
+ 5683 x

8
+ 7750 x

9
+ 7900 x

10
+ 1253 x

11 ?,

;0 , 0 , 6959 + 1101 x+ 957 x
2
+ 7105 x

3
+ 2752 x

4
+ 3926 x

5
+

448 x
6
+ 5348 x

7
+ 3571 x

8
+ 2178 x

9
+ 8427 x

10
+ 7895 x

11
+ x

12
,

6450 + 3168 x+ 5859 x
2
+ 4822 x

3
+ 1719 x

4
+ 8668 x

5
+ 3480 x

6
+

1789 x
7
+ 4848 x

8
+ 6061 x

9
+ 2487 x

10
+ 8928 x

11
+ 1391 x

12
,

3374 + 5261 x+ 6349 x
2
+ 1682 x

3
+ 8563 x

4
+ 7676 x

5
+ 4861 x

6
+

8733 x
7
+ 245 x

8
+ 2641 x

9
+ 5566 x

10
+ 4165 x

11
+ 2183 x

12 ???
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Timing@redlat = polynomialLatticeReduce@hnf, 8933DD

;0.04 Second ,

;;2888 + 7592 x+ 8382 x
2
+ 7495 x

3
+ x

4
, 7000 + 6901 x+ 1933 x

2
+ 840 x

3
,

151 + 6746 x+ 4817 x
2
+ 7687 x

3
, 2228 + 4662 x+ 7543 x

2
+

4470 x
3
+ 7242 x

4
, 935 + 3521 x+ 1489 x

2
+ 8540 x

3
+ 8833 x

4 ?,

;7545 + 3572 x+ 8733 x
2
+ 5161 x

3
, 4170 + 5758 x+ 4764 x

2
+ 4367 x

3
+ x

4
,

6551 + 8139 x+ 3375 x
2
+ 1985 x

3
, 8932 + 5757 x+ 4367 x

2
+ 199 x

4
,

2778 + 6153 x+ 2978 x
2
+ 6353 x

3
+ 1588 x

4 ?,

;8133 + 7147 x+ 7546 x
2
+ 396 x

3
, 2381 + 4564 x+ 6552 x

2
+ 3773 x

3
,

1191 + 3377 x+ 5756 x
2
+ 4966 x

3
+ x

4
, 3 + 4567 x+ 3773 x

2
+

8931 x
3
+ 1391 x

4
, 1593 + 7346 x+ 2978 x

2
+ 8732 x

3
+ 2183 x

4 ???
Notice that we have a sort of reversal of roles from [Basiri and Faugere 2003]. In that paper they use reduction of a
polynomial matrix to compute a Gröbner basis whereas we do quite the opposite. These are not mutually exclusive,
however, and in principle the method of reduction above could lie beneath their algorithm (in other words, we are
bootstrapping rather than coding in circles).

It should also be noted that, as was shown with the integer case above, this lattice reduction might be put to use to
find "small" (that is, low degree) solutions to diophantine polynomial systems with nontrivial null spaces.

9 Application: Bivariate modular polynomial factorization

We now put  together  techniques  from the  preceding  applications  sections  for  the  purpose  of  factoring  a  bivariate
polynomial modulo a prime. We will generate a pair of random polynomials such that there are terms of highest total
degree in each variable separately; this convenience involves no actual loss of generality, as one can always attain
this for one variable by a linear change of coordinates. We make a few other useful choices so as not to run afoul of
necessary conditions  e.g.  degree changing  on substitution  of  a  value  for  one variable.  Again,  these are all  conve−
niences  insofar  as  one  can  work  in  an  extension  field  in  one  variable,  in  essence  performing a  substitution  of  an
algebraic element outside the base field. The purpose of this section is not to derive a foolproof algorithm but rather
to illustrate the method on a relatively simple albeit nontrivial example.
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randpoly@deg_, mod_, x_, y_D :=

â
i=0

deg

â
j=0

deg-i

RandomInteger@8If@i + j� deg && i j� 0, 1, 0D, mod - 1<D xi y j

mod = 19; SeedRandom@1111D; totdeg = 6; poly1 = randpolyB totdeg

2
, mod, x, yF;

poly2 = randpolyB totdeg

2
, mod, x, yF; poly = Expand@poly1 poly2, Modulus®modD

18 x+ 6 x
2
+ 18 x

3
+ 16 x

4
+ 12 x

5
+ 8 x

6
+ 13 y+ 12 x y+ 17 x

2
y+ 11 x

3
y+

7 x
4

y+ 16 x
5

y+ 16 y
2
+ 17 x y

2
+ 6 x

2
y

2
+ 2 x

3
y

2
+ 14 x

4
y

2
+ 14 y

3
+

18 x y
3
+ 5 x

2
y

3
+ 2 x

3
y

3
+ y

4
+ 4 x y

4
+ 16 x

2
y

4
+ 18 y

5
+ 18 x y

5
+ 7 y

6

We will evaluate at x= 11 and factor, removing the constant term.

fax =Map@First, Drop@FactorList@poly �. x® 11, Modulus®modD, 1DD

;8 + y, 14 + 3 y+ y
2

, 14 + 13 y+ 9 y
2
+ y

3 ?
As in the Hensel lifting section we will lift a factor modulo a power of the ideal Hx- 11L that is sufficient to reclaim
factors of degree 3 in x.

subst = Hx - 11L;
pow = 12;
substpower = subst^pow;
liftedfactor = Last@GroebnerBasis@8poly, substpower, fax@@1DD^pow<,

y, Modulus®mod, CoefficientDomain® Polynomials@xDDD

3 + 14 x+ 2 x
2
+ 15 x

3
+ 2 x

4
+ 15 x

5
+

18 x
6
+ 18 x

7
+ 18 x

8
+ 13 x

9
+ 5 x

10
+ x

11
+ y

We remark that one must exercise care at this last step, insofar as a minor reformulation may accidentally recover the
entire factor, thus rendering moot the rest of the example. To wit:

liftedfactor2 = First@GroebnerBasis@8poly, Hx - 11L^10, fax@@1DD^10<,
8x, y<, Modulus®mod, MonomialOrder® DegreeReverseLexicographicDD

12 x+ 4 x
2
+ x

3
+ 15 y+ 2 x y+ 11 x

2
y+ 5 x y

2
+ 5 y

3

PolynomialMod@5*poly2, modD == liftedfactor2

True
This, however, is another method and will not be discussed further in the present paper. It at least serves to show us
the goal for the method at hand.

As in [Lenstra 1985] we now set up a lattice in univariate polynomials in x.
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deg = Exponent@liftedfactor, yD;
lattice1 = Table@If@i� j, substpower, 0D, 8i, deg<, 8 j, totdeg - 2<D;
coeffs = PadRight@CoefficientList@liftedfactor, yD, totdeg - 2D;
lattice2 = Table@RotateRight@coeffs, jD, 8 j, 0, totdeg - 3 - deg<D;
lattice = Join@lattice1, lattice2D

;;I-11 + xM12
, 0 , 0 , 0 ?,

;3 + 14 x+ 2 x
2
+ 15 x

3
+ 2 x

4
+ 15 x

5
+ 18 x

6
+ 18 x

7
+

18 x
8
+ 13 x

9
+ 5 x

10
+ x

11
, 1 , 0 , 0 ?,

;0 , 3 + 14 x+ 2 x
2
+ 15 x

3
+ 2 x

4
+ 15 x

5
+ 18 x

6
+

18 x
7
+ 18 x

8
+ 13 x

9
+ 5 x

10
+ x

11
, 1 , 0 ?,

;0 , 0 , 3 + 14 x+ 2 x
2
+ 15 x

3
+ 2 x

4
+ 15 x

5
+ 18 x

6
+

18 x
7
+ 18 x

8
+ 13 x

9
+ 5 x

10
+ x

11
, 1 ??

First@redlat = polynomialLatticeReduce@lattice, modDD.y^Range@0, totdeg �2D

12 x+ 4 x
2
+ x

3
+ 15 + 2 x+ 11 x

2
y+ 5 x y

2
+ 5 y

3

We recognize from this that we have recovered one of the true modular factors of our original polynomial.

10 Application: Computing small generators of ideals in quadratic number rings

A ring of integers extended by a square root is an important object in number theory. Say d satisfies d2 =D, where

D is a squarefree integer. Two elements of the quadratic integer ring Z@dD, say x= r + s d and y= u+ v d, comprise
the basis of  an ideal.  We will  compute small  generators for that  ideal.  We can moreover recover Bezout  relations.
That is, we find a pair of multipliers 8m, n< ÎZ@dD such that m x+ n y= g for each such generator g.

Here we use code from previous sections to provide multipliers for the Bezout relations. We compute a module basis
with first column comprised of our given x and y, and a 2´2 identity matrix to the right of that column. We further−

more have a 3´3 matrix beneath this, comprised of the reducing quadratic on the diagonal and zero elsewhere. The
Hermite form of this matrix, computed via groebnerHNF,  will  have as first row the greatest common divisor and

the Bezout relation multipliers. For full generality, we handle the case where d2 º
4

1 by instead using the defining

polynomial  JH2d- 1L2 -DN�4;  this  allows us the full  range of  elements  in  the corresponding quadratic  ring.  The

division by 4,  which would be superfluous were our coefficient  domain a field,  is  necessary for attaining a monic
defining polynomial.

There is an added wrinkle. The Bezout relation multipliers computed as above can be quite large. But we can find a
smaller  set,  exactly  as  we  found  small  integer  solutions  to  diophantine  systems.  We  simply  treat  the  quadratic
integers as integer pairs, flatten our vectors of these, and invoke smallSolution.  Then we translate consecutive
pairs of the resulting integer vector back to quadratic integers. Code for this is below.
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quadraticIntegerToIntegerVector@n1_Integer, alg_D := 8n1, 0<
quadraticIntegerToIntegerVector@n1_. + n2_.*alg_, alg_D := 8n1, n2<
quadraticVectorToIntegerVector@vec_, alg_D :=

Flatten@Map@quadraticIntegerToIntegerVector@ð, algD&, vecDD
smallSolutionQuadratic@vec_, nulls_, alg_D :=Module@
8soln, nulls2<,
soln = quadraticVectorToIntegerVector@vec, algD;
nulls2 =Map@quadraticVectorToIntegerVector@ð, algD&, nullsD;
soln = smallSolution@soln, nulls2D;
Partition@soln, 2D �. 8a_Integer, b_Integer< :> a + alg*b
D

Here is the Bezout relation code.

bezout@d_, m1_Integer, m2_. + n2_.*d_, tsqr_D :=
Module@8theta, polys<, polys = 8m1, m2 + n2* theta<;

polyBezout@polys, theta, d, tsqrDD
bezout@d_, m2_. + n2_.*d_, m1_Integer, tsqr_D :=

Module@8theta, polys<, polys = 8m2 + n2* theta, m1<;
polyBezout@polys, theta, d, tsqrDD

bezout@d_, m1_. + n1_. d_, m2_. + n2_.*d_, tsqr_D :=
Module@8theta, polys<, polys = 8m1 + n1* theta, m2 + n2* theta<;

polyBezout@polys, theta, d, tsqrDD
polyBezout@polys_, theta_, d_, tsqr_D :=

Module@8defpoly, mat, gb, gcd, solns, soln, nulls, relations, subs<,
defpoly = If@Mod@tsqr, 4D� 1, subs = theta® H1 + Sqrt@tsqrDL �2;

Expand@HH2* theta - 1L^2 - tsqrL �4D, subs = theta® Sqrt@tsqrD; theta^2 - tsqrD;
mat = Join@Transpose@Join@8polys<, IdentityMatrix@2DDD, defpoly*IdentityMatrix@3DD;
gb = groebnerHNF@mat, IntegersD;
relations = Select@gb, ð@@1DD =!= 0 && FreeQ@ð@@1DD, theta^_D&D;
solns =Map@Rest, relationsD;
nulls =Map@Rest, Cases@gb, 80, __<DD;
nulls = DeleteCases@nulls, vec_ �; ! FreeQ@vec, theta^_DD;
solns =Map@smallSolutionQuadratic@ð, nulls, thetaD&, solnsD;
Partition@Riffle@Map@First, relationsD, solnsD �. subs, 2DD

We  show  a  quick  example.  We’ll  work  over  ZA -19 E  (so  d= I1+ -19 M�2,  with  inputs  51 + 43d  and

26 - 55d.

bezrels = bezout@d, 51 + 43 d, 26 - 55 d, -19D

;;1 , ;115 - 2 1 + ä 19 , 101 - 17 1 + ä 19 ???
We now check that result by expanding to see we recover the claimed gcd.

ExpandBbezrels@@1, 2DD.:51 + 43 1 + -19 �2, 26 - 55 1 + -19 �2> - bezrels@@1, 1DDF

0
We now show a larger example.
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n = 50;

randsqrt = RandomInteger@10nD �. a_Integer b_ ® b

randqints = 8RandomInteger@10n, 2D.81, d<, RandomInteger@10n, 2D.81, d<<

76 645 210 216 068 275 341 252 449 427 250 942 042 565 641 503 899

941 230 119 139 644 742 056 691 832 704 420 484 800 325 317 097 349+

66 637 694 434 836 005 939 093 652 315 806 699 696 521 110 837 633d,

29 376 606 053 454 810 686 236 077 314 995 219 308 578 051 470 644+

68 102 540 162 537 581 922 579 541 354 979 200 541 266 074 057 948d=
Timing@bezrels = bezout@d, Sequence�� randqints, randsqrt^2DD

;0.013998 , ;;3 + 76 645 210 216 068 275 341 252 449 427 250 942 042 565 641 503 899 ,

;62 910 542 074 600 312 551 765 960 503 628 547 531 246 233 643 820 636 292 754 943 253 400�

066 320 117 637 426 498 520 034 683 710-

31 136 862 355 224 409 625 896 210 047 184 165 981 450 145 584 808 340 049 705 245 902 612�

582 352 889 642 233 951 439 580 078 105

76 645 210 216 068 275 341 252 449 427 250 942 042 565 641 503 899 ,

-55 848 984 550 900 338 117 246 064 954 825 208 020 230 922 492 945 275 734 518 302 470 297�

813 449 754 151 001 095 645 110 160 958+

30 467 126 693 584 986 302 978 558 640 228 834 191 641 712 044 290 348 730 028 225 317 883�

677 987 057 268 184 365 890 747 403 850

76 645 210 216 068 275 341 252 449 427 250 942 042 565 641 503 899??, ;30 ,

;-60 305 611 400 261 823 127 930 569 882 412 860 470 856 519 992 038 292 070 000 965 250 335�

473 959 556 066 003 160 005 410 829 435+

29 847 581 335 270 731 904 742 643 882 576 386 427 147 936 374 019 427 518 903 539 178 803�

045 332 043 535 642 926 090 923 373 923

76 645 210 216 068 275 341 252 449 427 250 942 042 565 641 503 899 ,

53 536 451 099 594 498 510 472 658 242 785 071 456 611 736 153 058 906 900 507 263 017 699�

342 307 286 854 677 383 630 536 832 643-

29 205 577 352 793 031 992 930 235 827 933 444 488 853 979 241 234 764 625 005 127 503 982�

830 800 303 475 548 423 181 673 182 794

76 645 210 216 068 275 341 252 449 427 250 942 042 565 641 503 899????
In  the special  case where the ideal  is  81<,  (e.g.  8x, y<  generates the entire ring),  then we actually  have obtained an
extended gcd.More generally it is easy to show that when there is a gcd and it is a rational integer, or else there is no
rational integer in the ideal, then the above code finds that gcd and the corresponding Bezout relation. In other cases
one would need to do further work to either recover a gcd or else (in the case where the class number of the quadratic
ring is not 1) show that no gcd exists. See [Weilert 2005] or [Miled andOuertani 2010] for further details. We show

below a simple approach that works in many situations. We work with d= 53 719.

sqrt = Sqrt@53 719D;
qints = 873 609 + 15 577 d, 2991 + 6417 d<;
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bezrels = bezout@d, Sequence�� qints, sqrt^2D

;;1 + 53 719 ,

;14 462 895 - 3 265 382 53 719 , -1 344 274 + 7 923 502 53 719 ??,

;6 , ;1 128 711 - 254 907 53 719 , -104 180 + 618 536 53 719 ???
We have reduced the ideal  sum to one generated by I1+ 53 719 , 6M.  There is in fact  a gcd, though, because the

ring  ZA 53 719E  is  a  principal  ideal  domain  (this  follows  from  the  fact  that  53 719  has  class  number  of  1).

Checking norms shows that any common factor of 6 and1+ 53 719will have a norm of 6 or −6. So we have a Pell

type of equation to solve: find integers 8a, b<  such that H6a+ bL2 - 53 719b2 = ±6. Well  known facts about such
equations  tell  us  that  any  solution  will  have  H6a + bL �b  as  a  convergent  to  the  continued  fraction  expansion  of

53 719. We remark that for this method to work, we require that the right hand side, ±6 in this case, have absolute

value less than 53 719.

cf = ContinuedFractionB 53 719 F;
frax = Convergents@cfD;
solns1 = Table@Solve@8H6*a + bL^2 - 53 719*b^2� 6, H6*a + bL �b� frax@@ jDD<, 8a, b<D,

8 j, Length@fraxD<D;
solns2 = Table@Solve@8H6*a + bL^2 - 53 719*b^2�-6, H6*a + bL �b� frax@@ jDD<, 8a, b<D,

8 j, Length@fraxD<D;
Cases@Flatten@8a, b< �. solns1, 1D, 8x_Integer, y_Integer<D
Cases@Flatten@8a, b< �. solns2, 1D, 8x_Integer, y_Integer<D
8<
99-3 428 948 410 941 086 922 003 618 340 136 587 439 827 999 302 403 486 984 497 710 688 926 584 615�

684 288 776 613 161 602 832 ,

-89 150 972 140 308 509 130 356 945 221 982 374 902 233 029 263 834 884 255 241 520 937 582 267�

870 954 684 338 850 528 243=,
93 428 948 410 941 086 922 003 618 340 136 587 439 827 999 302 403 486 984 497 710 688 926 584 615�

684 288 776 613 161 602 832 ,

89 150 972 140 308 509 130 356 945 221 982 374 902 233 029 263 834 884 255 241 520 937 582 267�

870 954 684 338 850 528 243==
We have found a gcd.

gcd = ExpandB
83 428 948 410 941 086 922 003 618 340 136 587 439 827 999 302 403 486 984 497 710 688 926 584�

615 684 288 776 613 161 602 832,
89 150 972 140 308 509 130 356 945 221 982 374 902 233 029 263 834 884 255 241 520 937 582�

267 870 954 684 338 850 528 243<.:6, 1 + 53 719 >F

20 662 841 437 786 830 041 152 066 986 041 507 013 870 228 843 684 756 791 241 505 654 497 089 961�

976 687 344 017 820 145 235+

89 150 972 140 308 509 130 356 945 221 982 374 902 233 029 263 834 884 255 241 520 937 582 267 870�

954 684 338 850 528 243 53 719
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We confirm that the norm is indeed −6.

ExpandBgcd* gcd �. 53 719 -> - 53 719 F

-6

11 Summary
We have presented an algorithm for computing a strong Gröbner basis over a Euclidean domain that is essentially
identical  to Buchberger’s method for the case where the base ring is a field.  In particular we have retained the S−
polynomial  reduction  approach  as  well  as  the  Buchberger  criteria  for  elimination  of  redundant  S−polynomials.
Several basic examples were presented to illustrate diverse applications of this technology e.g. working over quotient
rings, solving nonlinear systems over rings. As more specialized applications, we showed how to use these bases to
compute  Hensel  lifts  in  a  univariate  polynomial  ring  and  find  matrix  Hermite  normal  forms;  closely  related  code
gives us reduction of univariate polynomial lattices. While these last applications are quite specialized in the sense
that efficient methods are available that do not require the full power of Gröbner bases, it is all the same nice to have
the  methods  shown  above  for  computing  them.  One  reason  is  that  the  code  is  simple  and  fairly  flexible  should
modifications be desired. Another is that these methods, while not as fast as the best known, perform reasonably well
on many problems that are of practical size. Perhaps most interesting is that several fundamental ideas from com−
puter  algebra,  such  as  Hensel  lifting,  matrix  canonical  forms,  and  lattice  reduction,  as  well  as  interplay  between
these, may be cast as computations involving Gröbner bases over Euclidean domains or close relatives thereof.
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