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Abstract

We address the following question: Given 
five points in R3, determine a right circu−
lar cylinder containing those points. We 
obtain algebraic equations for the axial 
line and radius parameters and show that 
these give six solutions in the generic 
case. An even number (0, 2, 4, or 6) will  
be real valued and hence correspond to 
actual cylinders in R3. We will  investigate 
computational and theoretical matters 
related to this problem. In particular we 
will  show how exact and numeric Gröb−
ner bases, equation solving, and related 
symbolic−numeric methods may be used 
to advantage. We will  also discuss some 
applications.
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Outline of the Problem
Given five points in R3, we are to determine all right circular cylin−
ders containing those points.

à Questions of importance:
§ How do we know there are finitely  many in  generic case? How

many are there? (Depends...Are we working in  real or complex
space?)

¨ How do we find the axial line and radius parameters?
© Given the cylinder parameters, how do  we obtain its  implicit

equation?
ª Reversing this, how can one obtain parameters from the implicit

form?
§ How might we display them graphically?
¨ Given six or more points, how do we find  the coordinates of  a

cylinder in R3 that "best" fits those points?
© Given five  points chosen with  random uniform distribution in  a

cube, what is the expected probability that one lies inside the con−
vex hull  of  the other four. Related to "no real cylinder" case .
Also to an old recently solved problem in integral geometry.

ª To what extent can computational methods be used to prove enu−
merative geometry or  other  types of  results related to  this
problem?
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Basics
à Terminology

We say "cylinder" for  any solution, and "real cylinder" for  the
real valued solutions.
We call configurations "generic" if they do not have multiple solu−
tions and if  all sufficiently small perturbations give same number
of solutions. Usually we assume this of our configurations.

à Easy to show
There are finitely  many solutions (plausible, because we get one
equation for  each data point  and  require five  parameters to
describe a cylinder).
If  points are real valued then complex solutions pair off.
One expects six  solutions. Reason: Take five  "random" points.
Solve for  cylinder parameters. You  "always" get six  solutions.
This is the Shape Lemma at work for you.

4



Related Work
à Already known

Number of  solutions in  generic case is  indeed six. First shown
1977 (Bottema and Veldkamp). Various other proofs appearing in
recent years. We will  show two simple computational proofs at
end of this report.

à Related to this presentation
This is a companion to "Cylinders Through Five Points: Complex
and Real Enumerative Geometry", which is really part 2 but was
presented already at ADG 2006. The focus here is more on compu−
tational methods and related problems.
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Computing cylinders through five 
points

à Our set up
Parametrize the axis line as 8y = a x + b, z = c x + d< . So we need
to solve for a,  b,  c,  d,  and a radius r.  One might argue that this
only  captures "generic" cases. But  it  avoids issues with  double
counting if  we  allow  most  general form  of  direction vector
(because its negative gives same cylinder).

Project points onto axis. For jth  point Ixj , yj, zjM  we need length
of orthogonal projection perp j. 

Work with equation  ±perpjµ2
= r2.

After some minor algebra, we have five polynomials of form

b2 + b2 c2 - 2 a b c d + d2 + a2 d2 - r2 - a2 r2 - c2 r2 +

2 a b xj + 2 c d xj + a2 xj
2 + c2 xj

2 - 2 b yj - 2 b c2 yj +

2 a c d yj - 2 a xj yj + yj
2 + c2 yj

2 + 2 a b c zj - 2 d zj -

2 a2 d zj - 2 c xj zj - 2 a c yj zj + zj
2 + a2 zj

2 = 0
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6



Computing cylinders through five 
points

à An example
Points:  H7, 9, 8L,  H8, -4, -10L,  H-4, 1, 4L,  H-9, -9, -10L,  andH-7, -10, -10L.
This has two real valued solutions:8a ® 0.151635, b ® -1.25748, c ® 1.58897,

d ® -6.45046, rsqr ® 83.0554<,8a ® 30.9362, b ® 93.172, c ® 37.1186,
d ® 92.7034, rsqr ® 198.258<

How  to  find  these solutions? Find  all  six  using  a  (perhaps
numeric) polynomial solver. Can be done e.g. by homotopy contin−
uation or reduction to an eigensystem. In Mathematica  NSolve  uses
the latter approach. The actual code for finding cylinder parame−
ters is quite simple. As I need it later I show it below.

perp@vec1_, vec_, offset_D :=
vec1 - offset -
Projection@vec1 - offset, vec, DotD
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solveCylinders@pts_List, vec_,
offset_, prec_ : AutomaticD :=
Module@8exprs, k, perps<, perps = Table@

perp@ptsPkT, vec, offsetD, 8k, 5<D;
exprs = HNumerator@Together@

ð1.ð1 - rsqrDD &L �� perps;
NSolve@exprs, 8a, b, c, d, rsqr<,
WorkingPrecision ® precDD
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The implicit equation
à The orthodox way

We start with  a parametrization: Find two unit vectors pairwise
orthogonal and orthogonal to the direction of the axis. Say P is on
the axis, v is a direction vector, w1 and w2 are the perps. A point
on  the  cylinder  is  parametrized  by  Ht, ΘL  as
P + t v + w1 cosHΘL + w2 sinHΘL . To make it  algebraic we consider
the sine and cosine terms as algebraic variables with the usual trig
identity linking them. Use a Gröbner basis computation to elimi−
nate these parameters, obtaining an implicit  relation satisfied by
the cylinder parameters Ha, b, c, d, rL.
Result:

b2 + b2 c2 - 2 a b c d + d2 + a2 d2 - r2 -
a2 r2 - c2 r2 + H2 a b + 2 c dL x + Ia2 + c2M x2 +I-2 b - 2 b c2 + 2 a c dM y - 2 a x y + I1 + c2M y2 +I2 a b c - 2 d - 2 a2 dM z - 2 c x z - 2 a c y z + I1 + a2M z2

à The smart way
Step 1. Use the formulation we described for finding the distance

from a point to the axial line:  ±perpjµ2
- r2 gives exactly the poly−

nomial we seek (that is, the same as the one above).
Step 2. Feel foolish.
Applies only to those of us, like myself, who did it  the hard way
first.
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à An example
We take cylinder with parameters:

a = 3, b = 2, c = 4, d = -1, r =
�!!!!!!

21
Implicit polynomial defining the cylinder:

-420 + 4 x + 25 x2 - 92 y - 6 x y +

17 y2 + 68 z - 8 x z - 24 y z + 10 z2
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Parameters from implicit form
à The easiest way

Step 1. Take general implicit equation and specific one for cylin−
der at hand. Equate coefficients.
Step 2. This gives equations in the parameters. Solve them.

à Our example
In  Mathematica  one might use SolveAlways  to automatically equate
coefficients and solve. But pretty much any symbolic math pro−
gram can do this in some way.

SolveAlwaysA
b2 + b2 c2 - 2 a b c d + d2 + a2 d2 - r2 - a2 r2 -

c2 r2 + H2 a b + 2 c dL x + Ia2 + c2M x2 +I-2 b - 2 b c2 + 2 a c dM y - 2 a x y +I1 + c2M y2 + I2 a b c - 2 d - 2 a2 dM z -

2 c x z - 2 a c y z + I1 + a2M z2 �

-420 + 4 x + 25 x2 - 92 y - 6 x y +
17 y2 + 68 z - 8 x z - 24 y z + 10 z2 �.

r2 ® rsqr, 8x, y, z<E88rsqr ® 21, b ® 2, d ® -1, a ® 3, c ® 4<<
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Best fit to overdetermined cylinders
à General idea

Step 1. Pick five points,
Step 2. Solve for cylinder parameters, obtain candidate solutions.
Discard complex ones.
Step 3.  Form sum of  squares of  distances of  all  points to  the
remaining candidates. Take the one with  the smallest sum of
squares.
Step 4. Do a (nonlinear) least squares minimization, using the can−
didate’s values as start points.

à Refinements
Might try several sets of five, use the most promising candidate.
Might  make effort to choose five  points not too "close" to one
another, in attempt to reduce ill  conditioning.

à Applications
Geometric tolerancing (metrology)
Ftting object to point cloud in scene reconstruction
First  step to  fitting  peptides and other biomacromolecules to  a
helix
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Graphing cylinders through five 
points

à Goals
Good view of the cylinder
See how it hits the points

à An example with considerable symmetry
We work with  two regular tetrahedra glued along a face in  the
horizontal plane.

dpoints = :81, 0, 0<, :-1�2, �!!!!
3 � 2, 0>,:-1�2, -

�!!!!
3 � 2, 0>,:0, 0,

�!!!!
2>, :0, 0, -

�!!!!
2>>;

vec = 8a, c, 1<; offset = 8b, d, 0<;
First we solve for the parameter values. This configuration gives
six real cylinders, all with radius 9� 10.
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solns = solveCylinders@
dpoints, vec, offset, InfinityD;

FullSimplify@8a, b, c, d, rsqr< �. solnsD
::0, ������
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Graphing cylinders ...
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Graphing cylinders ...
Here we shrink the radius considerably and change the orientation
in  order to  better see how  the  axis  cuts through the  double
tetrahedra.
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Graphing cylinders ...
Another sort of plot as a parametrized surface:
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Significance of the double 
tetrahedra configuration example
Related to  problem of  finding  cylinders of  given fixed  radius
through four given points. There are 12 solutions to the equations
that result from this problem. All  solutions can be real. In  the
example above all  cylinders had the same radius of  9/10. Con−
sider the top tetrahedron to give the four points. Gluing another
onto each face gives six  cylinders that go  through those four
points and all  have radius of  9/10. Seems like  24 cylinders, but
they pair off for a total of 12.
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Numbers of real cylinders that arise
à Basics
§ Already saw number is even.
¨ Already saw it can be as large as 6.
© Using pseudorandom sets of  five  points in  unit cube will  show

the other possibilities all arise.
ª Obvious on reflection: We get no real cylinders whenever one

point is in the (tetrahedral) hull of the other four. Reason: All  pro−
jections onto planes keep it inside the hull of the projected quadri−
lateral, hence planar quadratic through the five  projected points
cannot be elliptical, hence not a circle.
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Numbers of real cylinders...
à Interesting to study
è How often do such random examples have one point enclosed by

the other four? Related to expected volume of a tetrahedron with
points picked randomly in unit cube (generalization of a problem
of  Sylvester). Only  recently solved, using  symbolic  calculus
among other things. It is 3977� 216000- Π2 � 2160.

è How do other cases of no real cylinders arise. This is discussed in
the companion to this talk.

è More  generally, can we  (either algebraically or  geometrically)
classify the cases of 0, 2, 4, or 6 real solutions? Little seems to be
known about this.
Suggested by referee: look at discriminant varieties.
Me: Good idea. What’s a discriminat variety?
Okay, that wasn’t quite my response. But I will  say the computa−
tions appear to be daunting. One problem is that it takes extra poly−
nomials and variables just to enforce the condition that no pair of
points coincides.
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Proving the generic number of 
cylinders is six
To simplify  the computations we reformulate so as to have two
equations in two variables. Idea:
Without  loss of  generality we  have one point  at  the  origin,
another at H1, 0, 0L, and a third in the x y coordinate plane.
Project these onto the set of  planes through the origin, parame−
trized generically by a normal vector Ha, b, 1L.
In  each such plane these three points determine a circle, and we
get one equation for  each of  the remaining two points in  order
that they project onto the same circle (which is the condition that
the five be cocylindrical).
So our points are H0, 0, 0L,  H1, 0, 0L,  Hx2, y2, 0L,  Hx3, y3, z3L,  andHx4, y4, z4L  and our variables are Ha, bL  where direction vector isHa, b, 1L.  After  some linear algebra we obtain the polynomials
below.
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I-x3 y2 - b2 x3 y2 + x3
2 y2 + b2 x3

2 y2 + x2 y3 + b2 x2 y3 - x2
2 y3 -

b2 x2
2 y3 + 2 a b x2 y2 y3 - 2 a b x3 y2 y3 - y2

2 y3 - a2 y2
2 y3 +

y2 y3
2 + a2 y2 y3

2 - b x2 z3 - b3 x2 z3 + b x2
2 z3 + b3 x2

2 z3 +

a y2 z3 + a b2 y2 z3 - 2 a b2 x2 y2 z3 - 2 a x3 y2 z3 +

b y2
2 z3 + a2 b y2

2 z3 - 2 b y2 y3 z3 + a2 y2 z3
2 + b2 y2 z3

2,

-x4 y2 - b2 x4 y2 + x4
2 y2 + b2 x4

2 y2 + x2 y4 + b2 x2 y4 - x2
2 y4 -

b2 x2
2 y4 + 2 a b x2 y2 y4 - 2 a b x4 y2 y4 - y2

2 y4 - a2 y2
2 y4 +

y2 y4
2 + a2 y2 y4

2 - b x2 z4 - b3 x2 z4 + b x2
2 z4 + b3 x2

2 z4 +

a y2 z4 + a b2 y2 z4 - 2 a b2 x2 y2 z4 - 2 a x4 y2 z4 +

b y2
2 z4 + a2 b y2

2 z4 - 2 b y2 y4 z4 + a2 y2 z4
2 + b2 y2 z4

2M
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The generic number...
Now we must count solutions to this system.
PROOF 1.  We form  a Gröbner basis with  respect to  a degree
based term ordering for  the polynomials. Looking at  the head
terms we find  that there are 6  monomials in  Ha, bL  that are not
reducible with  respect to this basis and hence 6 solutions to the
system.
PROOF 2. We compute the resultant of  the pair of  polynomials
with respect to one of the two variables. We obtain a polynomial
of  degree 6 in  the other (with  large symbolic coefficients). This
means there are at most 6 solutions. As we already know there are
at least that many, this suffices to show that there are generically
six solutions.
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The generic number...
Remarks about these proofs.

ó Both rely on having a fairly simple formulation of the problem.
õ With  more than two equations, a "standard" resultant would not

likely suffice unless used in iterated fashion.
ó For even slightly  more complicated problems, a Gröbner basis

computation involving  symbolic  coefficients is  likely  to  bog
down.

õ A related Gröbner basis approach is to use the Bezout bound and
subtract off the count of solutions at infinity. Works for this prob−
lem  but  often  fails  because of  presence of  dimensional
component(s) at infinity.

ó Another Gröbner basis approach that seems promising is to work
in  a mixed algebra with symbolic perturbation variables. Idea is
to show we have six solutions not just at a given configuration,
but at all configurations in a neighborhood thereof. This gives the
generic count.
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Summary and open questions
à What we did thus far
Î Discussed computational methods for finding cylinders through a

given set of five points in R3.
Í Covered several related problems and computational approaches

thereto.
Ì Combined geometric reasoning with  Gröbner bases and other

tools  to  study problems from  enumerative and computational
geometry.
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Summary and open questions
à Open questions
§ Describe the  configuration space variety  for  which  we  have

multiplicity.
¨ Related: Describe the configuration space variety on which the

number of real solutions changes.
ª Easy to show: if  five points are coplanar then generic number of

(complex) solutions is 4. Of these either 0 or 2 are real (depends
on whether the quadratic containing the five is a hyperbola or an
ellipse). (Picture below for case of 2 real solutions).
Is coplanarity a necessary condition that we have fewer than six
solutions?

© Easy to show: If  points are collinear or lie on two parallel lines,
then there are infinitely many solutions.
Are these necessary conditions or are there other configurations
wherein we have an infinite solution set?
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©

Easy to show: If  points are collinear or lie on two parallel lines,
then there are infinitely many solutions.
Are these necessary conditions or are there other configurations
wherein we have an infinite solution set?
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