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Abstract

We begin with a function expressed as a certain infinite product. It is a twice-mutated variation of another |
that has its origins in counting irreducible factors of univariate polynomials over Galois fields. Knopfmacher
is taken as we approaghfrom below in this product. We derive and execute an algorithm that finds a good a|
mation to this limit using moderate computational resources. We also investigate the coefficients of the pow
for the logarithm of this product; these will be shown to exhibit size fluctuations that render the straightforw
power series inadequate for the purpose of estimating the limit in question.

Statement of the problem

The problem was posed by Arnold Knopfmacher in a note to the Usenet news group comp.soft-sys.math.mathematic
1999 [Knopfmacher 1999a] (herein we make small changes in notation). We wish to obtain a numerical esti@atec{sa
digits) of the limit asx tends tal from below of the function

(-2
p[x] = —k’z(l_xm)

wherem[k] =k — d[k—k] andd[K] is the smallest prime factor kf

There are similar formulas in [Knopfmacher and Warlimont 1995] analyzing probabilities related to nhumbers of irreducit
of distinct degrees in univariate polynomials over Galois fields. According to [Knopfmacher 1999b] his coauthor studied
case of such a formula. It gave rise to a limit seemingly harder than the one above. Knopfmacher extracted the present
simpler case to try first, and subsequently posted it to the news group. Thus this example might be described as a doublt
a problem that is of independent interest elsewhere in the realm of number theory. It later turned out that the original p
the more tractable but by then the mutation had acquired a life of its own. In this report we show how to compute a good
tion to the above limit using a blend of theory and the computational capabilifiéstteimatica [Wolfram 1999] Mathematica
(TM) is a registered trademark of Wolfram Research, Incorporated).

In Mathematica this function may be written as
dik_1 := Divisors[k][[2]]

k k K
m = k- ——
[k_1 TR

IE- (1- %)
1-x

pIx_]:=

Crude bounds
First we deduce crude bounds for the limit. Among other things this will demonstrate the existelee mfandlim sup.
Proposition 1:
(@) Aliminf for p[x] asx — 1is given byeFuecamma,
(o) Alimsup is given by2 gFulerGamma,

Proof: For0 < x < 1 note that

i
o0 xl2
s
k=2
1-x < p[X] < 1-x

Everything is positive so the inequalities are preserved on taking logarithms:




3]

—Log[1 - Log|1- L
ogl x]+k§og[ | < Logipixl] <

—Log[1-x] + ZLog[l— ill]

We tackle the second inequality in order to prove (b).

oglplx]] <-Log[1-x]+ » Log|l—- —|= ) — - = -
P ’ k=2 T i K G kK +2k (HiEik+2)

The first sum in the limit ag - 1 is readily computed to &y 2.

We evaluate this second sunmxat 1 (justification of the interchange of sum and limit will be deferred to the next section). V
reverse the order of summation.

i nnersum = Expand[Sum[l/ (j *k”]j), {k, 3, Infinity}]]
1 24 Zetalj]
U
J J J
We now sum this.

ful l sum= Sum[i nnersum, {j, 2, Infinity}]
approx = N[ful | sum]

1
E (3-2EulerGamma -2Log[2])

0. 229637

| ogupbnd =3/2-fullsum
upbnd = N[Exp[l ogupbnd]]

Eul er Ganma + Log [2]
3.56214
So we see that an upper bound ] asx - 1 is about3.56.

We now prove (a). To get a lower bound we now minorize the exponents.

7]

Log[p[x]] > —Log[1 - x]+ZLog[1— ]:ix—_ii =
k=2 k+1' ok @i
2x =01 1 i3] i
?+Z(E_ﬂ_2k+l) ;;J(k+l)]_

T e
k=2 k2j2 ) (K+1)

We will evaluate this ak=1 to obtainEulerGamma. Note that the single summation can readily be done by hand usin

calculus methods (one obtairs/ 6 — Log[2]; we omit the details). So the limiting value of the first two tern®/ B— Log[2]. As it

is important for the actual limit estimate later we indicate how to do the double summation without recourse to softwar

also show how it may be evaluated uditgthematica. We evaluate at= 1 so we want to find



3= Mo

j=2J

M=

Lim‘t[
k

n
o.)

3
E - Eul er Gamma - Log [2]

Now rewrite this as

]y, 5 - 2w

k=3j=1
Evaluating the inner sum gives

Limit[:Z;[—Log[l— E] - %) M - oo]

which in turn is

M 1
Limit[[(Log[3] —Log[2]) + ...+ (Log[M] — Log[M —1]) - ZE , M- oo]
k=3

Telescoping and simplification gives

M 1 3
Limit[Log[M] - ZE M - oo] - Log[2] + E = —EulerGamma- Log[2] + 3/2
k=1

Negating this and adding the result for the other terms gives a lower boHatbddamma for our sum. We exponentiate to obi
a lower bound fop[1] that is nead.78, or half of our upper bound.

N[eEU| erGarma]

1.78107

Approximating the actual limit
Here | will discuss a nice analysis and resulting estimate worked out by Jurgen Tischer of Universidad del Valle, Columb
1999]. First I will mention a method | had previously tried that is not terribly promising. In brief we truncate the serie
logarithm, evaluate using exact or high precision arithmetic=at, and that gives an estimate for the limit. Using this appro
is not difficult to approximate the result to four places without excessive computational effort. One legrfi§ that292. There
are some problems with this method. First, it appears to require significant work to get even one more decimal place ¢
Moreover for truncation afteéd terms it is not clear how we might get a bound on the error. Fok agdget terms that are roug

i in the series and this alone makes an error bound for this approximation appear to be less than promising. We will ret

matters in the next section.
To proceed with the approximation we will look at the logarithm in more detail. It may be written as

Xk/2 X2 k/3

Loglp[x]] = -Log[1 - X] +ZLog 1- —|+ Z Log|l- ——|+..=
P [ k+1] 23k [ k+1]
[ Xk Xk/2 oo Jk/2 X2k/3 [ X(2/3)]k
—Z—+ — Y — e > Y —— .
T k+1 i (k+ 1) T k+1 akakjz ) (K+ 1)



If we truncate the power series at degkkesay, it can be shown that error from dropping terms from the double sums  {vzh2y

is O(%) But it turns out that we need not rely on this error bound; Tischer derived a rather nice exact formula for the

summed to infinity. After showing his derivation we will then approximate the sum of the "main" terms, which are tt
summations in the formula above.

We begin by rewritind-og[p[x]] (we will call thislp[x] from now on) as

X2 ) Xk+1 Xm[k] © © (] Xm[k] j
Ip[x] = X + — —-—|- - 1
Plx] =x+ 2+Z[k+1 k+l) ZZ(])[k+1) (1)

k=2 k=2j=2
. K+ k|
Proposition 2: Ip[x] — EulerGamma + Log[2] + Zj;‘;z(% - %) asx - 1 from below.

Proof: The limiting value of first two terms ifl) is obvious so we focus on the last sum. We showed above how to evalua

hand atx = 1, now we will do so using/lathematica. It is not hard to see that far< 1 everything in sight converges nicely anc
we can switch summation order to obtain

Sk

j=2

Fix j and look at the inner sum. Singa m[k] < k and we approach from< 1 we have
o0 kK N oo fymIkIN oo [ yk/2 N\
X X X
Z(k 1] SZ[k 1) SZ[k 1)
ke2\ K+ ke2\ K+ k=2\ K+
Simple limit arguments and Abel’'s theorem [Rudin 1976 p. 174] demonstrate thaththe middle sum is squeezed to
i( : ]j
o\k+1

We must justify the interchange of limit with the outer sum. This may be done using the Weierstrass M—test [Rudin 197
First note that for atk € [0, 1] we have

1) Dk 1y R ]
(5) 2(e) =(5) 2 )
and all the summands are nonnegative. Therefore if we know that the right hand side summetmovenges then we have ¢
justified the interchange of limit and outer sum. Alternatively we might overestimate the tail of the outer sum with an int
show that it goes to zero as the lower bound increases.

Oursumatx=11is

Z(_) Z[_) = — — EulerGamma- Log[2]
k+1 2

2\ k=2
as was demonstrated in the previous section. This finishes the proof of proposition 2.

Now we must work with that remaining sum. As all summands are negative we may reorder them; we have

0 Xk+1 Xm[k]

k=2
24 ax (2)
o Xk+l X(;) o Xk+l X(?) o Xk+l X(?)
—— — + — — — —_—— —
diki=2 k+1 k+1 dikI=3 k+1 k+1 dikI=5 k+1 k+1

We are in effect sieving our sum over smallest prime divisors. It will turn out that we can evaluate these subsums and
truncate in a way that gives a very accurate result. To start out, we want to evaluate



((ane[J]A)k)
) Xk+l X\ Primdj]
dkj=Prime] k+1 k+1

We will need some simple functions below.

i
qlj _1:= nPrime[k]
k=1

i-1
rG_1:=]](Primerk]-1)

k=1
ril
alj ]
The termsk for whichPrime[j] is the smallest divisor larger tharfall into finitely many congruence sets.

frac[j _1:=

For example, when the prime in questiorbithe applicable values férare{5, 25, 35, 55, 65, 85, 95, ...}. This may be partitione
as{5, 35, 65, 95, ...} and{25, 55, 85, ...}. In each case, the step siz&Qs

Proposition 3: For Prime[j] the step size in each congruence class will be

j
alj1 = | [Primem
m=1
Proof: This is perhaps well known but we provide a proof for sake of completeness. Cléailyef|] is the smallest divisor a

then it is also the smallest divisor bf q[j], t + 2q[j], .... Suppose there is some smaljgi with this property. Then for sor
k < j we havePrime[k] » a[j]. HencePrime[K] is relatively prime to bothanda[j].
Supposeg andz are distinct members of the set

{t, t+qljl, t+ 24l ... t+ (Primgk] - 1) a[j]}
with z>y. Then

z-y = (k1 — ko) qj]
where

k]_ - k2 < Prlme[k]
Hence

Primgk]rz-y

soy andz occupy distinct congruence classes modRrione[k]. Thus a pigeonhole argument shows #rate[k] must divide one ¢
these, contradicting the assumption tRatne]j] is the smallest prime divisor.

We will also need to know the number of congruence classes for g j].
Proposition 4: The number of congruence classesHiome|j] is

-1

rlj] = [ [(Primek] - 1)

k=1



Proof: This too is known but will likewise be proven for sake of completeness. First a chegk: EoPrime[j] is 2, the number ¢
congruence classesisFor j =2, Prime[j] is 3, the number of congruence classes is atjakor j = 3, Prime[j] is 5 and there ai
two congruence classes. Fpe 4, Prime[j] is 7 and there aré congruence classes. The general assertion is that in 1
1=<n<([j] there arer[j] elements whose smallest prime divisoPisme[j]. We checked this explicitly above for the first 1
primes. A general proof will be obtained working directly withc[j] =r[j]/q[j]. It suffices to show that

~ (Primdj-1]-1) )
frac(j] = — fradj — 1]
Primdj]
This in essence defines the sieving process. At jstap fraction of integers with smallest prime divisor equdPttione[j] will be
1

i times the fraction not already removed for having smaller divisors. In other words, we have

Prime|
j-1
1- Y fradk]
. k=1
fradj] = ————
Primdj]
Thus
j-2 =
- 1- Y fradk] | Primgj—1]
1- > fradk]|-fradj -1 [ - ] .
frad] [ kgl d ]) a-1 : 1Prime{j_l] —fracj - 1] Primdj — 1] frac[j — 1] — frad[j — 1]
racj] = = =

Primgj] Primdj] Primdj]

which completes the proof.

Now that we have determined the number of congruence classes for each prime we will need to show that the releva

each prime are independent of these classes. So we must find the limits of these sums for all congruence class rmenit
First we form such a sub-subsum as below.

(Primdj]-1) k
Xk+1 X Primdj]
Sum —— - ——, {k, init, oo, step]
k+1 k+1

Next we find the limit of this sum as— 1.

(Primef[j1-1) k
Xk+l X Primef(j 1

sl = Sum - , {k, init, o, step}

[k+1 k+1 ]
1+init ; 1+init 1+ini t step
X Hyper geonet ri c2F1 | step 1 1t e X ]

1+init

1 init (APrimeli)) 1+init 1+init  stepctprimyy
———— |x Pmil Hypergeometric2Fl[————, 1, 1+ —, X Pimil |
l1+init step step

While this may look awkward we see that it has a tractable limit.

limsl = Limt[sl, x-1]

1+init
[—Gamra[1+} Log[-step] +
step
l+init step (-1+Prinefj]) 1+init
Gamma[l+ ——— | Log |- E— ]]/[(1+init>Gamm[
step Primel[j ] step

Actually this can be simplified considerably.



limsl = Ful | Sinplifyf[limsl]

~Log[-step] +Log[step (71+ ! )]

Primel[j]
step
We next use an improper high—school simplification because we know it holds on our domain:
limsl = linmsl /. Log[r_]-Log[s_] - Log[r /s]
LOQ [1 TP nefj] }
step

In addition to simplicity this limit has the virtue of being independent of congruence class. That is, it is does not depe
parametefinit. This significantly simplifies the problem of evaluating the full sums.

In terms of the functiorrac, we have shown

Proposition 5:
. ((Prime{j]—l)k)
0 X +1 X Primdj | 1
Limit[ " - x> 1| = fradj] Log|1 - ———| (3)
dik=Prime] k+1 k+1 Primej]
We now return to the full sum if2). Pulling the limit inside the fird¥l terms of the right hand side gives
o kil ymik]
lelt[z — = —— |, X> 1] =
io\k+1 k+1
(dlk]-Dk ( 4)
M 1 xk+1 X( Akl )
> fradjlLog|1 - ———| + Limit| - ——— | x>1]
i=1 Prime]j] dkg=primam-yy| K+1  K+1

We now want to show the tail gets arbitrarily smalMas> co in order to interchange limit with infinite sum, as this will yield

Theorem 1:
oo Xk+l Xm[k] oo
Limit[Z e ' 1] = Zfrac[j] Log[l— 7]
o\k+1  k+1 = Primdj]
Proof: The tail is bounded in absolute value by
(dlk]-1) k
00 X( dIk] ) Xk+l
Lim't[ > ———,xﬁl]
diki=primam+1y| K+1 k+1
and we have
(dk]-1) k (PrimgM]-1) k (PrimgM]-1) k
oo X( dik] ) xk+1 00 X( PrimaM] ) xk+1 X( PrimaM] ) xk+1

—_ < u—
k+1 k+1 Z k+1 k+1

k+1 k+1 o

d[k]=PrimgM+1] dik]=PrimgM+1]
The sum on the right is a special cas€3phbove. It has a fairly simple closed form.

(Prinme[M-1) k
xk"‘l X Prime[M

tail sums= Sum[ , {k, 0O, 00}]

k+l_ k+1

1 -1+Prinme[M

X Log[1-X] - xPimm Log[l-x Pimm

X



We compute the limit as— 1 from below.
Limt[tailsum, x-1, Direction- 1]

1
Log[l- —— ]
Prime[M]

As this goes t@ for M - co we have shown that the error tern(4ih can be made arbitrarity small. This suffices to prove theore

Now we need to estimate our sum. We have

Corallary: p[x] —» 2.2921736953 asx — 1 from below.

Proof: We will do a careful computation of our estimate and bounded error. Define

n 1
estimte[n_] :=Zfrac[j ] Log[l—f]
= Primelj ]
error[n_]:= i frac[j] Log[l—;]
Primelj]

j=n+1

We will bound the magnitude of the error term and explicitly compute the estimate for soma. l[dg®ound this error, fir

observe that the productsac[j] are conveniently bounded b&’%; this follows from a simple telescoping argument s

successive factors are of the foﬁ%. We will get a reasonable value famstant as part of the computation that estim
the value. For this we require a faster numeric version of the algorithfnait}ij] andestimate[j]. This will allow us to avoid tF
incessant recomputation implicit in the definitionesfimate[n]; moreover in using numeric approximation we avoid gener
large rationals. This will introduce some error but as weMathematica’s significance arithmetic [Keiper 1992] at sufficier
high precision it will be small compared to the bounds that we also compute. We will overestimate those bounds so

correct to20 digits will more than suffice for our purposes.

numestimate[n_, prec_] : =
I\/bdule[{sum:—l/z*Log[Z], frac=1/2, pl=Prine[l], p2},

Do
p2 =Prinmel[j1;
N[pl -1, prec]
frac x= [ ];
p2
sum += frac*Log[N[l—i, prec”;
p2
pl = p2,
i, 2, m];

{frac % p2, sum}]
Tim ng[{nfact, est} = nunestimate[2*10"7+1, 25]]
{14 470. 91 Second, {0.0284446218701220421, -0.4408622662100870964715674}}
Settingn to be2x 10’ + 1, an upper bound on the magnitudewbr[n] is given by
& 1 1
Primdgj] Primdj]

j=n+1

This in turn is bounded by

1 ad 1
mfact(l + — ]
Prime(n] )£, j2 Loglj®




Here we have overestimated the error by using the asymptoticjteogjj] from the prime number theorem to underestir

Prime[j] [Ribenboim 1996 p. 249], and we use the basic calculus result(matpririe[n]) overestimates the ratio
—Log[l— %mem] to Pri:ﬁ{” for j > n. We will now ignore this factor because we more than compensate when we round up

value ofmfact in the fourth decimal place. Thus we have as a bound:

i2mm1 12 Loglj]

Using simple calculus we overestimate this sum by an integral:

1
errormax = (57 /2000) — dj
2x10° (j Log[j 1)

1
20000 000 Log [20 000 000

57 (Expl ntegral Ei [-Log[20000000]7 +

2000
N[error max]
4.52951 x 10712
Now we adohﬁimale[Z x 10" + 1] to the exact terms given in proposition 2. Then we will exponentiate the sum to get an apy

tion of p[x] asx — 1 from below. We also multiply this bgf"®"™* — 1 to get a bound on the error in our estimate of the limit.
pl = Exp[Eul er Ganma + Log[2] + est ]
2.292173695255538837116078
errbound = N[Exp[errormax] -1] %pl

1.03824 x 1071
So we have obtained a result that is correct to about the eleventh decimal place, demonstrating the corollary. In [Tische

computations are done with aroutef terms. This can achieve a result with approximately one more decimal place of acct
actual fact it was presented as being slightly less accurate because the error bound was looser.

Further remarks about the truncated power series

We will use theMathematica Series function to work with the truncated power series. First we note a curiousity in the sign
of the coefficients.

2%n Xm[k]
logp[Xx_, n_] := Nornal [Seri es[—Log[l—x] + ZLog[l—
k=2

o]

terns100 = | ogp[x, 1007;

coef fs100 = CoefficientList[ternmsl00, X];
signs100 = Map[Si gn, coeffs100];
Map[{#[[1]], Length[#]} & Split [signsl100]]

{{Ov 1}1 {11 1}1 {711 1}1 {11 1}1 {71‘ 1}‘ {1‘ 1}‘ {711 1}1 {11 3}1 {711 1}1
{1! 1}! {_11 1}1 {11 1}1 {_11 1}1 {11 1}1 {_1! 1}! {1! 1}! {_11 1}1 {11 1}1
{_11 1}, {11 1}, {_11 1}1 {11 3}1 {_l! 1}! {l! 1}! {_11 1}, {11 1}, {_11 1}1
{11 3}1 {711 1}! {11 1}! {71‘ 1}‘ {1‘ 1}‘ {711 l}v {11 l}v {711 1}! {11 1}1

{_11 1}1 {11 1}1 {_11 1}1 {11 1}1 {_1! 1}! {1! 3}! {_11 1}1 {11 1}1 {_11 1}1
{l! 1}! {_11 1}, {11 3}1 {_11 1}1 {11 1}1 {_l! 1}! {l! 1}! {_11 l}x
{11 3}1 {711 1}! {11 1}! {71‘ 1}‘ {1‘ 1}‘ {711 l}v {11 l}v {711 1}1
{1! 1}! {_11 1}1 {11 1}1 {_11 1}1 {11 1}1 {_1! 1}! {1! 3}! {_11 1}1
{l! 3}! {_11 1}, {11 1}, {_11 1}1 {11 1}1 {_l! 1}! {l! 1}! {_11 l}x
{11 l}v {711 1}! {11 1}! {71‘ 1}‘ {1‘ 1}‘ {711 l}v {11 l}v {711 1}}

We see an unusual phenomenon wherein signs by—and-large alternate except for sporadic runs of three consect
coefficients. This holds at least for the fi2Z800 coefficients. It is an open question as to whether or why this persists.



In attempting to get a numerical approximation from this not—quite—alternating series, at first glance it appeared that one
n terms and hope to obtain1®) convergence. Further work makes it clear that this cannot be the case, at least not for all ne
Convergence is slow (though it does in fact seem to converge) for good reason; some of the terms are asymptotically

1 . . .. . . log [log[ n]]
O(E)' As we will see, one can bound from above the magnitudes of the coefficients that arise in the power s(e?ﬂ-:‘sngéy’—())for

n bigger tharB. Further work will reveal that this bound is the best we can do, and indeed the coefficients that approach it
too scarce.

In order to obtain results more readily we will now work with only the main terms. Specifically, we discard higher—orc
from all but the main logarithmic term (the one that is singular=at). The series in question is now

00 Xk o) Xm[k]

logpmaintermpx_] := —_ -y —
® é k ok+1

where the first sum is forLog[1 — x] and the second is for the main terms from the remaining logarithms.

Thus the remarks below actually apply to a slightly altered problem, but one that is not different in significant aspect:
original (and in particular, with a bit of work one can show that the derivations of coefficient size bounds will still apply).

the series fofogpmainterms in the symbolic formZ;:":l(c[k] xk), thus implicitly defining a "coefficient function¢[k]. Let us se

explicitly how one would describe a general coefficient. Contributions to the tedfraiise from theE coefficient in the first sun
as well as from coefficients of the forﬂ% for all j for whichm[j] = k.
Proposition 6: For oddk we have

1 1 k+1
clk]=-- =
k 2k+1 2K +k
Proof: This follows from the following simple observations.

(i) d[2K] = 2, hencam[2k] = k.
(i) For j even and = 2k, m[j] = '5 £k

(iii) For j odd, fﬂ is odd, hencen[j] is even. Son[j] % k.

We conclude that for odklthere are exactly two contributionsdi] and they are as in the statement of the proposition.

Corallary: Proposition 6 shows (as previously noted) that the coefficients are in general no smalle(r%t)nd%u()they can in fa

be bigger. The next result gives an indication of how large they can be.

Theorem 2:

(a) An upper bound on size din] is M.

(b) There are coefficients that approach bound to within a fact®f%fWe construct one such explicitly. From the method one
see how to approach the upper bound within any factor les4.than

Proof: We now investigate coefficients of those terms of even degree. Let us suppogg]tedt for somej. Letd[j] = p. Then we

know thatj — JE = (pfpl)j =kand thugpk=(p-1) j. Immediately we see that

() p-11k
(i) prj

(this is in any case obvious becaysis given as the smallest prime divisorjpf

Lk
i) — ==
(i) ===
and hencepf—1 has no prime divisor smaller thanagain becausp is the smallest prime divisor ¢.

Now we suppose we have all possipfer whichm[j] = k. Specifically, suppose

10



k_pl_l_pZ_l ps—1

jl ]2 - - js

whered[j;] = p; for all 1 <r < sand we moreover have ordered these so that
2=p1<pPr<..<ps<k+1

and

2k=j1>j2>..>js=k+1
As we saw,p; —likforeachl<r <s.
Claim1: p, — 1 contains all divisors df that are smaller thap, .

Proof: If not then the equality; k= (pr — 1) j, implies thatj, has a divisor (and hence a prime divisor) strictly smaller fha
This would contradict the fact thpt = d[j;].

Claim2: ForeachL<r <s—1we havep, —1ip,,; - 1.

Proof: p; — 1 contains all divisors df that are smaller thap,. It cannot contain any other factors; there is no room left over ¢
itself smaller tharp;. A similar statement holds for the divisors @f.; — 1 with respect top,,;. Thus the divisors of, — 1 are ¢
proper subset of those pf,; — 1.

We obtain the chaip, — 11 p3 —11...1 ps— 1 of lengths— 1 (we do not bother witlp; because it i®, sop; — 1 is 1), and more:
over we have inequalities concerning the quotients. Specificallyl, for< s- 1 we may write

Pri1— 1= Or (pr -1
whereq; = p;. Hence

Por = Pr(pr—D+1

Now using the fact that, — 1> g pr we obtain

2 2s-2
[g) )pgsz > 22&2

We now take logarithms to ba2éo sed_og,[k + 1] > 25-2. Again taking logarithms to bagewe get

k+1>ps>

Log,[Log,[k +1]] +2=s
Thus

1 1 Log,|Log,[k +1]|+ 1
|C[k]|= E_ Z < 2[ 2k ]

ik t1

where we use the fact that the denominators in the sum all lie bektwerand2 k. This completes the proof of part (a).

Now that we have this upper bound for coefficients in the power series, it is natural to ask whether one can derive an as
smaller bound. As stated in part (b), this is not possible. We outline why this is so. First we investigate numerically: we \
for coefficients that approach this bound in ratio. Within the first few thousand terms we can find several that come close.

n Xk 2xn Xm[k]

approxlogp[x_, n_] : = Nornal [Seri es[ —-

oy k 2 k+1

X, 0, my]]
Tim ng[ternsdk = approxlogp[x, 2"12]; ]
coef fs4k = CoefficientlList [ternsdk, X];
{20. 82 Second, Nul |}
Now we look at the sizes of the coefficients. While as we know none can be Iargé%#ﬁM (for n> 3, that is), it appea

that some come near to this. For example, in the 4086 coefficients one is abo66 of this maximum and it is roughly thr
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times larger tharir.

nor nedcoeffs = Drop[Abs[coeffs4k], 4] =
Table[n/ (Log[2, Log[2, N[n]]]1+1), {n, 5, Length[coeffs4k]}];

Max [nor nedcoef fs]

0. 661706

Let us investigate more closely that large normalized coefficient.

Posi ti on[nor medcoef fs, Max[nor nedcoeffs]]

{{3063}}
We dropped four coefficients (corresponding to terms of degree zero through three), so we want to Id@d6atHtweefficient ir
the list, which goes with the term of degB&66.

(Log[2, Log[2, 3067]] +1) /3067 // N

0. 00126164
Abs [coef fs4k[[3067]1]] // N

0. 000978188
Abs [coef fs4k [[3067]] »3067] // N
3. 0001

. . . - . log]l .
It is claimed above that the best bound we can attain on these coefficients is |(19?Aé:‘M) To see how to approach this bot

it is instuctive to see how we obtain the coefficientd@#e.
Fact or I nt eger [3066]

({2, 1}, {3, 1}, {7, 1}, {73, 1}}
We have a chain of primes

{1+1,2+1,2«3+1, 2«37 +1, 2+3%x7x73+ 1}
wherein all factors in the indicated products are themselves prime, and each last factor is at least as large as the previol

the list (note that3 is the smallest prime greater than or equalthat works). In general we will look for valueslothat have a
increasing chain of prime factogs such that

Pr1—1=0(pr—1)
for some ascending set of primgs For example, to find a term after tB@66th that makes the ratio larger, we look for the sme
primeq larger tharB066 such thaB066 g + 1 is also prime. This happens e 3137, giving k = 9618042. The ratio

Log[2, Log2, n]] +1

n

to the size of the coefficient of%18%2 turns out to be ned.72. Carrying this construction yet another step gives the ge
9618361, so the value fok is 9618361+9618042 or 92509800069 162. The ratio now is aboud.765. This finishes the proof
part (b) and moreover demonstrates how one might search for coefficients closer in ratio to the upper bound of part (a).
Note that one can get more terms near the upper bound simply by taking for our next prime dagt@rime slightly larger thi
the smallest one that works, as some of these may also work. For example, ifA@eaiker tharv3 as a factor above (noting tl
2x3x7x79+ 1= 3319 is prime), we get a coefficient with ratio just undé8. One thus sees a general means by which to «
coefficients not far in ratio below the upper bound given above.

As a final remark, let us recall that a straightforward computation with the truncated power seriess takiggve a result corre

to about4 digits of precision. We know they are correct because they agree with the result of Tischer's method, which
above to give a correct result to several more places. Also at the beginning of this report welfoumi andlim sup for the

power series sum as— 1. That notwithstanding, we do not have a stand—alone proof that the power series itself convert
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limit. An indirect proof is that Tischer's method converges, and one observes that the truncated power series only ¢
Tischer's truncated sum terms of the same sign, hence it too must converge. Of course the construction of terms with co

. log [l . . . . . .
size Cé@) forces one to conclude that estimation of the limit by truncation of the power series will be problem
nonetheless an independent proof of convergence would be of interest in its own right.
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