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Abstract

We begin with a function expressed as a certain infinite product. It is a  twice−mutated  variation of another product 
that has its origins in counting  irreducible factors of univariate polynomials over Galois fields.  Knopfmacher’s limit 
is taken as we approach 1 from below in this product. We derive and execute an algorithm that finds  a good approxi−
mation to this limit using moderate computational resources. We  also investigate the coefficients of the power series 
for the logarithm of  this product; these will be shown to exhibit size fluctuations that render  the straightforward 
power series inadequate for the purpose of estimating the  limit in question.

Statement of the problem

The problem was posed by Arnold Knopfmacher  in  a  note  to  the Usenet  news  group comp.soft−sys.math.mathematica,   January

1999 [Knopfmacher  1999a]  (herein we make  small  changes in notation).  We wish to obtain a numerical estimate (say 8  decimal

digits) of the limit as x tends to 1 from below of the function 

p@xD =
Û
k=2

¥ K1- xm@kD
k+1
O

1-x

 where m@kD = k -
k

d@kD  and d@kD is the smallest prime factor of k.

There are similar formulas in [Knopfmacher and Warlimont 1995] analyzing  probabilities related to numbers of irreducible factors
of distinct degrees  in univariate polynomials over Galois fields. According to [Knopfmacher 1999b] his coauthor studied a limiting
case of such a formula. It gave rise  to a limit seemingly harder than the one above. Knopfmacher extracted the  present problem as a
simpler case to try first, and subsequently posted it to  the news group. Thus this example might be described as a double mutation of
a problem that is of independent interest elsewhere in the realm of number  theory. It later turned out that the original problem was
the more tractable but by then the mutation had acquired a life of its own. In this report we  show how to compute a good approxima−
tion to the above limit  using a blend of  theory and the computational capabilities of Mathematica  [Wolfram 1999] (Mathematica
(TM) is a registered trademark of Wolfram Research, Incorporated).

In Mathematica this function may be written as

d@k_D := Divisors@kD@@2DD
m@k_D := k - k

d@kD

p@x_D :=
Ûk=2¥ J1 - xm@kD

k+1
N

1 - x

Crude bounds

First we deduce crude bounds for the limit. Among other things this will  demonstrate the existence of a lim inf and lim sup.

Proposition 1:

(a) A lim inf for p@xD as x® 1 is given by ãEulerGamma.

(b) A lim sup is given by 2 ãEulerGamma.

Proof: For 0 < x < 1 note that

Û
k=2

¥

1-
x

k

2

k+1

1-x
< p@xD <

Û
k=2

¥ K1- xk-1

k+1
O

1-x

Everything is positive so the inequalities are preserved on taking logarithms:
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-Log@1- xD +â
k=2

¥

LogB1- xb
k

2
r

k + 1
F < Log@p@xDD <

-Log@1- xD +â
k=2

¥

LogB1- xk-1

k + 1
F

We tackle the second inequality in order to prove (b).

Log@p@xDD < -Log@1- xD +â
k=2

¥

LogB1- xk-1

k + 1
F =â

k=1

¥ xk

k
-â

k=1

¥

â
j=1

¥ J xk

k+2
N j

j
=â

k=1

¥ 2 xk

k2
+ 2 k

-â
k=1

¥

â
j=2

¥ x j k

j Hk + 2L j
The first sum in the limit as x® 1 is readily computed to be 3 �2.

We evaluate this second sum at x = 1 (justification of the interchange of sum and limit will be deferred to  the next section). We first
reverse the order of summation.

innersum = Expand@Sum@1 � Hj * k^jL, 8k, 3, Infinity<DD

-

1

j
-

2-j

j
+

Zeta@jD
j

We now sum this.

fullsum = Sum@innersum , 8j, 2, Infinity<D
approx = N@fullsumD
1

2
H3 - 2 EulerGamma - 2 Log@2DL

0.229637

logupbnd = 3 � 2 - fullsum
upbnd = N@Exp@logupbndDD
EulerGamma + Log@2D
3.56214

So we see that an upper bound for p@xD as x® 1 is about 3.56.

We now prove (a). To get a lower bound we now minorize the exponents.

Log@p@xDD > -Log@1- xD +â
k=2

¥

LogB1- xb
k

2
r

k + 1
F =â

k=1

¥ xk

k
-â

k=2

¥

â
j=1

¥

x
k

2

k+2

j

j
=

2 x

3
+â

k=2

¥ 1

k
-

1

2 k
-

1

2 k+ 1
xk
-â

k=2

¥

â
j=2

¥ x j b k

2
r

j Hk + 1L j =

2 x

3
+â

k=2

¥ xk

4 k2
+ 2 k

-â
k=2

¥

â
j=2

¥ x j b k

2
r

j Hk + 1L j
We will  evaluate  this  at  x = 1  to  obtain  EulerGamma.  Note  that  the  single  summation  can  readily  be  done   by  hand  using  basic

calculus methods (one obtains 5 �6 - Log@2D; we omit the details). So the limiting value of the first two terms is 3 �2 - Log@2D. As it
is important for the actual limit estimate later we indicate how  to do the double summation without recourse to software; we will

also show  how it may be evaluated using Mathematica. We evaluate at x = 1 so we want to find
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LimitBâ
k=3

M

â
j=2

¥ 1

j kj
, M ® ¥F

3

2
- EulerGamma - Log@2D

Limit Bâ
k=3

M

â
j=2

¥ 1

j k j
, M®¥F

Now rewrite this as 

Limit Bâ
k=3

M

â
j=1

¥ 1

j k j
-

1

k
, M®¥F

 Evaluating the inner sum gives

Limit Bâ
k=3

M

-LogB1- 1

k
F - 1

k
, M®¥F

which in turn is

Limit B HLog@3D - Log@2DL + ...+ HLog@MD - Log@M - 1DL -â
k=3

M 1

k
, M®¥F

Telescoping and simplification gives

Limit BLog@MD -â
k=1

M 1

k
, M®¥F - Log@2D + 3

2
= -EulerGamma- Log@2D + 3�2

Negating this and adding the result for the other terms gives a lower  bound of EulerGamma for our sum. We exponentiate to obtain

a lower bound for p@1D that is near 1.78, or half of our upper bound.

NAãEulerGammaE
1.78107

Approximating the actual limit

Here I will discuss a nice analysis and resulting estimate worked out by Jurgen Tischer of Universidad del Valle, Columbia [Tischer
1999].  First  I   will  mention a method I  had previously tried that  is  not  terribly promising.  In  brief  we truncate the series for the

logarithm, evaluate using exact or  high precision arithmetic at x = 1, and that gives an estimate for the limit. Using this approach it

is not  difficult to approximate the result to four places without excessive  computational effort. One learns that p@1D » 2.292. There
are some problems with this method. First, it appears to require  significant work to get even one more decimal place of precision.

Moreover  for truncation after N terms it is not clear how we might get a bound on the error. For odd k we get terms that are roughly
1

2 k
 in the series and this alone makes an error bound for this approximation  appear to be less than promising. We will return to these

matters in the next  section.

To proceed with the approximation we will look at the logarithm in more detail. It may be written as

Log@p@xDD = -Log@1- xD +â
2 k

LogB1- xk�2

k + 1
F + â

2Ik,3 k

LogB1- x2 k�3

k + 1
F + ...=

-â
k=1

¥ xk

k
+â

2 k

xk�2

k + 1
+â

2 k

â
j=2

¥ x j k�2

j Hk + 1L j + â2Ik,3 k

x2 k�3

k + 1
+ â

2Ik,3 k

â
j=2

¥ xH2�3L j k

j Hk + 1L j + ...
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If we truncate the power series at degree N, say, it can be shown that error from dropping terms from the double sums  (where j ³ 2)

is  OJ 1

N
N.  But  it  turns  out  that  we  need  not  rely  on  this  error bound;  Tischer  derived  a  rather  nice  exact  formula  for  these  terms,

summed  to   infinity.  After  showing  his  derivation  we  will  then  approximate  the  sum of   the  "main"  terms,  which  are  the  single
summations in the formula above.

We begin by rewriting Log@p@xDD (we will call this lp@xD from now on) as

(1)lp@xD = x +
x2

2
+â

k=2

¥ xk+1

k + 1
-

xm@kD

k + 1
-â

k=2

¥

â
j=2

¥ 1

j

xm@kD

k + 1

j

Proposition 2:  lp@xD® EulerGamma + Log@2D +Úk=2
¥ K xk+1

k+1
-

xmAkE

k+1
O as x® 1 from below.

Proof: The limiting value of first two terms in H1L is obvious so we focus on the last sum. We showed above how to evaluate  it by

hand at x = 1, now we will do so using Mathematica. It is not hard to see that for x < 1 everything in sight converges nicely and so
we can switch summation order  to obtain

â
j=2

¥ 1

j
â
k=2

¥ xm@kD

k + 1

j

Fix j and look at the inner sum. Since 
k

2
£ m@kD £ k and we approach from x < 1 we have

â
k=2

¥ xk

k + 1

j

£â
k=2

¥ xm@kD

k + 1

j

£â
k=2

¥ xk�2

k + 1

j

Simple limit arguments and Abel’s theorem [Rudin 1976 p. 174] demonstrate  that as x® 1 the middle sum is squeezed to

â
k=2

¥ 1

k + 1

j

We must justify the interchange of limit with the outer sum. This may be done using the Weierstrass M−test [Rudin 1976 p. 148].

First note that for all x Î @0, 1D we have

J 1
j
N Ú

k=2

¥ J xm@kD
k+1
N j £ J 1

j
N Ú

k=2

¥ I 1

k+1
M j

and all the summands are nonnegative. Therefore if we know that the right hand side summed over j converges then we  have also
justified the interchange of limit and outer sum. Alternatively we might overestimate the tail of the outer sum with an  integral and
show that it goes to zero as the lower bound increases. 

Our sum at  x = 1 is 

â
j=2

¥ 1

j
â
k=2

¥ 1

k + 1

j

=

3

2
-EulerGamma- Log@2D

as was demonstrated in the previous section. This finishes the proof of proposition 2.

Now we must work with that remaining sum. As all summands are negative we may reorder them; we have

(2)

â
k=2

¥ xk+1

k + 1
-

xm@kD

k + 1
=

â
d@kD=2

¥ xk+1

k + 1
-

xJ
k

2
N

k + 1
+ â

d@kD=3

¥ xk+1

k + 1
-

x
J 2 k

3
N

k + 1
+ â

d@kD=5

¥ xk+1

k + 1
-

x
J 4 k

5
N

k + 1
+ ...

We are in effect sieving our sum over smallest prime divisors. It  will  turn out that we can evaluate these subsums and eventually
truncate in a way that gives a very accurate result. To start out, we want to evaluate
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â
d@kD=Prime@ jD

¥ xk+1

k + 1
-

x
K IPrimeA jE-1M k

PrimeA jE O

k + 1

We will need some simple functions below.

q@j_D := ä
k=1

j

Prime@kD

r@j_D := ä
k=1

j-1

HPrime@kD - 1L

frac@j_D := r@jD
q@jD

The terms k for which Prime@ jD is the smallest divisor larger than 1 fall into finitely many congruence sets. 

For example, when the prime in question is 5, the applicable values for k are 85, 25, 35, 55, 65, 85, 95, ...<. This may be partitioned

as 85, 35, 65, 95, ...< and 825, 55, 85, ...<. In each case, the step size is 30.

Proposition 3: For Prime@ jD the step size in each congruence class will be

q@ jD =ä
m=1

j

Prime@mD
Proof: This is perhaps well known but we provide a proof for sake of completeness. Clearly if Prime@ jD is the smallest divisor of t

then it  is  also the smallest  divisor of  t + q@ jD,  t + 2 q@ jD,  ....  Suppose there is  some smaller q
~@ jD  with  this  property. Then for some

k < j we have Prime@kD I q
~@ jD. Hence Prime@kD is relatively prime to both t and q

~@ jD.
Suppose y and z are distinct members of the set

:t, t+ q
~@ jD, t+ 2 q

~@ jD, ..., t+ HPrime@kD - 1L q~@ jD>
with z > y. Then

z- y = Hk1 - k2L q~@ jD
where

k1 - k2 <Prime@kD
Hence

Prime@kD I z- y

so y and z occupy distinct congruence classes modulo Prime@kD. Thus a pigeonhole argument shows that Prime@kD must divide one of
these, contradicting the assumption that Prime@ jD is the smallest prime divisor.

We will also need to know the number of congruence classes for given Prime@ jD.
Proposition 4: The number of congruence classes for Prime@ jD is

r@ jD =ä
k=1

j-1

HPrime@kD - 1L
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Proof: This too is known but will likewise be proven for sake of completeness.  First a check: For j = 1, Prime@ jD is 2, the number of

congruence classes is 1. For j = 2, Prime@ jD is 3, the number of congruence classes is again 1. For j = 3, Prime@ jD is 5 and there are

two  congruence  classes.  For  j = 4,  Prime@ jD  is  7  and  there  are  8  congruence  classes.  The  general  assertion  is  that  in  the  set

1 £ n £ q@ jD  there  are  r@ jD  elements  whose  smallest  prime  divisor  is  Prime@ jD.  We  checked  this  explicitly  above  for  the  first  few

primes. A general proof will be obtained working directly with frac@ jD = r@ jD �q@ jD. It suffices to show that

frac@ jD = HPrime@ j - 1D - 1L
Prime@ jD frac@ j - 1D

This in essence defines the sieving process. At step j the fraction of integers with smallest prime divisor equal to Prime@ jD will be
1

Prime@ jD  times the fraction not already removed for having smaller divisors. In  other words, we have

frac@ jD =
1- Ú

k=1

j-1

frac@kD
Prime@ jD

Thus

frac@ jD =
1- Ú

k=1

j-2

frac@kD - frac@ j - 1D
Prime@ jD =

1- Ú
k=1

j-2

frac@kD Prime@ j-1D
Prime@ j-1D - frac@ j - 1D

Prime@ jD =

Prime@ j - 1D frac@ j - 1D - frac@ j - 1D
Prime@ jD

which completes the proof.

Now that we have determined the number of congruence classes for each  prime we will  need to show that the relevant limits for

each prime are independent of these classes. So we must find the limits of these sums for all  congruence class members as x® 1.
First we form such a sub−subsum as below.

SumB xk+1

k + 1
-

x
IPrimeA jE-1M k

PrimeA jE

k + 1
, 8k, init, ¥, step<F

Next we find the limit of this sum as x® 1.

s1 = SumB x
k+1

k + 1
-

x
HPrime@jD-1L k

Prime@jD

k + 1
, 8k, init,¥, step<F

x1+init Hypergeometric2F1A 1+init
step

, 1, 1 +
1+init

step
, xstepE

1 + init
-

1

1 + init
x

init H-1+Prime@jDL
Prime@jD Hypergeometric2F1A 1 + init

step
, 1, 1 +

1 + init

step
, x

step H-1+Prime@jDL
Prime@jD E

While this may look awkward we see that it has a tractable limit.

lims1 = Limit@s1, x ® 1D

-GammaA1 + 1 + init

step
E Log@-stepD +

GammaA1 + 1 + init

step
E LogA- step H-1 + Prime@jDL

Prime@jD E � H1 + initL GammaA1 + init
step

E
Actually this can be simplified considerably.
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lims1 = FullSimplify@lims1D
-Log@-stepD + LogAstep J-1 + 1

Prime@jDNE
step

We next use an improper high−school simplification because we know it holds on our domain:

lims1 = lims1 �. Log@r_D - Log@s_D ® Log@r � sD
LogA1 - 1

Prime@jDE
step

In  addition to  simplicity  this  limit  has the virtue of  being independent   of  congruence class.  That  is,  it  is  does not  depend on the
parameter init. This significantly simplifies the problem of evaluating the full sums.

In terms of the function frac, we have shown

Proposition 5:

(3)Limit B â
d@kD=Prime@ jD

¥ xk+1

k + 1
-

x
K IPrimeA jE-1M k

PrimeA jE O

k + 1
, x® 1F = frac@ jD LogB1- 1

Prime@ jD F

We now return to the full sum in H2L. Pulling the limit inside the first M terms of the right hand side gives

(4)

Limit Bâ
k=2

¥ xk+1

k + 1
-

xm@kD

k + 1
, x® 1F =

â
j=1

M

frac@ jD LogB1- 1

Prime@ jD F + Limit B â
d@kD³Prime@M+1D

¥ xk+1

k + 1
-

x
J Hd@kD-1L k

d@kD N

k + 1
, x® 1F

We now want to show the tail gets arbitrarily small as M ®¥ in order to interchange limit with infinite sum, as this will yield

Theorem 1:

Limit Bâ
k=2

¥ xk+1

k + 1
-

xm@kD

k + 1
, x® 1F =â

j=1

¥

frac@ jD LogB1- 1

Prime@ jD F

Proof: The tail is bounded in absolute value by

LimitB â
d@kD³Prime@M+1D

¥ x
J Hd@kD-1L k

d@kD N

k + 1
-

xk+1

k + 1
, x® 1F

and we have

â
d@kD³Prime@M+1D

¥ x
J Hd@kD-1L k

d@kD N

k + 1
-

xk+1

k + 1
< â

d@kD³Prime@M+1D

¥ x
J HPrime@MD-1L k

Prime@MD N

k + 1
-

xk+1

k + 1
<â

k=0

¥ x
J HPrime@MD-1L k

Prime@MD N

k + 1
-

xk+1

k + 1

The sum on the right is a special case of H3L above. It has a fairly simple closed form.

tailsum = SumB x
k+1

k + 1
-

x
HPrime@MD-1L k

Prime@MD

k + 1
, 8k, 0, ¥<F

-

x Log@1 - xD - x
1

Prime@MD LogA1 - x
-1+Prime@MD
Prime@MD E

x
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We compute the limit as x® 1 from below.

Limit@tailsum , x® 1, Direction ® 1D

LogA1 - 1

Prime@MDE
As this goes to 0 for M ®¥ we have shown that the error term in H4L can be made arbitrarity small. This suffices to prove theorem 1.

Now we need to estimate our sum. We have

Corollary: p@xD® 2.2921736953 as x® 1 from below.

Proof: We will do a careful computation of our estimate and bounded error.  Define

estimate@n_D := â
j=1

n

frac@jD LogB1 - 1

Prime@jD F

error@n_D := â
j=n+1

¥

frac@jD LogB1 - 1

Prime@jD F

We will  bound  the  magnitude  of  the  error term and  explicitly  compute  the   estimate  for  some large n.  To  bound  this  error,  first

observe  that  the  products  frac@ jD  are  conveniently  bounded  by  
constant

Prime@ jD ;  this  follows  from  a  simple  telescoping  argument  since

successive factors  are of the form 
Prime@k-1D-1

Prime@kD . We will get a reasonable value for constant as part of the computation that estimates

the value. For this we require  a faster numeric version of the algorithm for frac@ jD and estimate@ jD. This will allow us to avoid the
incessant  recomputation implicit  in  the   definition  of  estimate@nD;  moreover in  using  numeric  approximation we avoid  generating
large  rationals.  This  will  introduce some error but  as  we use Mathematica’s  significance arithmetic [Keiper  1992]  at  sufficiently
high  precision  it   will  be  small  compared  to  the  bounds  that  we  also  compute.  We  will  overestimate  those  bounds  so  arithmetic

correct to 20 digits will more than suffice for our purposes.

numestimate@n_, prec_D :=
ModuleB8sum = -1 � 2 * Log@2D, frac = 1 � 2, p1 = Prime@1D, p2<,
DoB
p2 = Prime@jD;
frac *=

N@p1 - 1, precD
p2

;

sum += frac * LogBNB1 - 1

p2
, precFF;

p1 = p2,

8j, 2, n<F;
8frac * p2, sum<F

Timing@8mfact, est< = numestimate@2 * 10^7+ 1, 25DD
814470.91 Second, 80.0284446218701220421, -0.4408622662100870964715674<<

Setting n to be 2* 107
+ 1, an upper bound on the magnitude of error@nD is given by

mfact â
j=n+1

¥ 1

Prime@ jD LogB1- 1

Prime@ jD F

This in turn is bounded by

mfact 1+
1

Prime@nD âj=n+1

¥ 1

j2 Log@ jD2
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Here  we  have  overestimated  the  error  by  using  the  asymptotic  term  j Log@ jD  from  the  prime  number  theorem  to  underestimate

Prime@ jD  [Ribenboim  1996  p.  249],  and  we  use  the  basic  calculus  result  that  J1 + 1

Prime@nD N  overestimates  the  ratio  of

-LogB1 - 1

Prime@ jD F to 
1

Prime@ jD  for j > n. We will now ignore this factor because we more than compensate when we  round upward the

value of mfact in the fourth decimal place. Thus we have as a bound:

H.0285L â
j=n+1

¥ 1

j2 Log@ jD2

Using simple calculus we overestimate this sum by an integral:

errormax = H57 � 2000L à
2 ´ 108

¥ 1

Hj Log@jDL2 âj

57 JExpIntegralEi@-Log@20000 000DD + 1

20000000 Log@20000000DN
2000

N@errormaxD
4.52951 ´ 10-12

Now we add estimateA2 ´ 107
+ 1E to the exact terms given in proposition 2. Then we will exponentiate the sum to get an approxima−

tion of p@xD as x® 1 from below. We also multiply this by ãerrormax
- 1 to get a bound on the error in our estimate of the limit.

p1 = Exp@EulerGamma + Log@2D + estD
2.292173695255538837116078

errbound = N@Exp@errormaxD - 1D * p1
1.03824 ´ 10-11

So we have obtained a result that is correct to about the eleventh decimal place, demonstrating the corollary. In [Tischer 1999] the

computations are done with around 108  terms. This can achieve a result with approximately one more decimal place of accuracy. In
actual fact it was presented as being slightly less accurate because the error bound was looser.

Further remarks about the truncated power series

We will use the Mathematica Series function to work with the truncated power series. First we note a curiousity in the sign pattern
of the coefficients.

logp@x_, n_D := NormalBSeriesB-Log@1 - xD +â
k=2

2*n

LogB1 - xm@kD

k + 1
F, 8x, 0, n<FF

terms100 = logp@x, 100D;
coeffs100 = CoefficientList@terms100, xD;
signs100 = Map@Sign, coeffs100D;
Map@8ð@@1DD, Length@ðD< &, Split@signs100DD
880, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 3<, 8-1, 1<,
81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<,
8-1, 1<, 81, 1<, 8-1, 1<, 81, 3<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<,
81, 3<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<,
8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 3<, 8-1, 1<, 81, 1<, 8-1, 1<,
81, 1<, 8-1, 1<, 81, 3<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<,
81, 3<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<,
81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 3<, 8-1, 1<,
81, 3<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<,
81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<<

We  see  an  unusual  phenomenon  wherein  signs  by−and−large   alternate  except  for  sporadic  runs  of  three  consecutive  positive

coefficients. This holds at least for the first 2000 coefficients. It is an open question as to whether or why this persists.
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In attempting to get a numerical approximation from this not−quite−alternating series, at first glance it appeared that one could sum
n terms and hope to obtain OHnL convergence. Further work makes it clear that this cannot be the case, at least not for all values of n.
Convergence is  slow (though it  does in  fact  seem to converge) for good reason; some of  the terms are asymptotically  larger than

OJ 1

n
N. As we will see, one can bound from above the magnitudes of the coefficients that arise in the power series by OJ log @log@ nDD

n
N for

n bigger than 3. Further work will reveal that this bound is the best we can do, and indeed the coefficients that approach it will be not
too scarce.

In  order to  obtain  results more readily we will  now work with  only  the  main terms. Specifically,  we discard higher−order terms

from all but the main logarithmic term (the one that is singular at x = 1). The series in question is now

logpmainterms@x_D :=â
k=1

¥ xk

k
-â

k=2

¥ xm@kD

k + 1

where the first sum is for -Log@1 - xD and the second is for the main terms from the remaining logarithms.

Thus  the  remarks below  actually  apply  to  a  slightly  altered  problem,  but  one  that  is  not  different  in  significant  aspects  from the
original (and in  particular, with a bit of work one can show that the derivations of coefficient size bounds will still apply). We write

the  series for  logpmainterms  in  the  symbolic  form Úk=1
¥ Ic@kD xkM,  thus  implicitly  defining  a  "coefficient  function"  c@kD.  Let  us  see

explicitly how one would describe a general coefficient.  Contributions to the term in xk  arise from the 
1

k
 coefficient in the first sum,

as well as from coefficients of the form 
1

j+1
 for all j for which m@ jD = k.

Proposition 6: For odd k we have

c@kD = 1

k
-

1

2 k+ 1
=

k + 1

2 k2
+ k

Proof: This follows from the following simple observations.

(i) d@2 kD = 2, hence m@2 kD = k.

(ii) For j even and j ¹ 2 k, m@ jD = j

2
¹ k.

(iii) For j odd, 
j

d@ jD  is odd, hence m@ jD is even. So m@ jD ¹ k.

We conclude that for odd k there are exactly two contributions to c@kD and they are as in the statement of the proposition.

Corollary: Proposition 6 shows (as previously noted) that the coefficients are in general no smaller than OJ 1

k
N. But they can in fact

be bigger. The next result gives an indication of  how large they can be.

Theorem 2:

(a) An upper bound on size of c@nD is 
Log

2
ALog

2
@n+1DE+1

n
.

(b) There are coefficients that approach bound to within a factor of 3 �4. We construct one such explicitly. From the method one will

see how to approach the upper bound within any factor less than 1.

Proof: We now investigate coefficients of those terms of even degree. Let us suppose that m@ jD = k for some j. Let d@ jD = p. Then we

know that j -
j

p
=
Hp-1L j

p
= k and thus p k = Hp - 1L j. Immediately we see that

(i) p - 1 ý k
(ii) p ý j

(this is in any case obvious because p is given as the smallest prime divisor of j)

(iii) 
k

p-1
=

j

p

and hence 
k

p-1
 has no prime divisor smaller than p (again because p is the smallest prime divisor of j).

Now we suppose we have all possible j for which m@ jD = k. Specifically, suppose

10



k =
p1 - 1

j1
=

p2 - 1

j2
= . ..=

ps- 1

js

where d@ jrD = pr for all 1 £ r £ s and we moreover have ordered these so that

2= p1 < p2 < ...< ps£ k + 1

and

2 k= j1 > j2 > ...> js³ k + 1

As we saw,  pr - 1 ý k for each 1 £ r £ s .

Claim 1: pr - 1 contains all divisors of k that are smaller than pr .

Proof:  If  not  then the equality  pr k = Hpr - 1L jr  implies that  jr  has a divisor (and hence a prime divisor) strictly smaller than pr  .

This would contradict the fact that pr = d@ jrD.
Claim 2: For each 1 £ r £ s - 1 we have pr - 1 ý pr+1 - 1 .

Proof: pr - 1 contains all divisors of k that are smaller than pr. It cannot contain any other factors; there is no room left over as it is

itself smaller than pr.  A similar statement holds for the divisors of pr+1 - 1  with respect to pr+1.  Thus the divisors of pr - 1  are a

proper subset of those of pr+1 - 1.

We obtain the chain p2 - 1 ý p3 - 1 ý ... ý ps - 1 of length s - 1 (we do not bother with p1  because it is 2, so p1 - 1 is 1), and more−

over we have inequalities concerning the quotients.  Specifically,  for 1 £ r £ s - 1 we may write

pr+1 - 1= qr Hpr - 1L
where qr ³ pr. Hence

pr+1 ³ pr Hpr - 1L + 1

Now using the fact that pr - 1 ³
2

3
pr we obtain

k + 1³ ps³
2

3

2s-2

p2
2s-2
³ 22s-2

We now take logarithms to base 2 to see Log2@k + 1D > 2s-2. Again taking logarithms to base 2, we get

Log2ALog2@k + 1DE + 2³ s

Thus

c@kD = 1

k
- â

m@ jD=k

1

j + 1
<

Log2ALog2@k + 1DE + 1

k

where we use the fact that the denominators in the sum all lie between k + 1 and 2 k. This completes the proof of part (a).

Now that we have this upper bound for coefficients in the power series, it is natural to ask whether one can derive an asymptotically
smaller bound. As stated in part (b), this is not possible. We outline why this is so. First we investigate numerically: we will search
for coefficients that approach this bound in ratio. Within the first few thousand terms we can find several that come close.

approxlogp@x_, n_D := NormalBSeriesBâ
k=1

n xk

k
-â
k=2

2*n xm@kD

k + 1
, 8x, 0, n<FF

Timing@terms4k = approxlogp@x, 2^12D;D
coeffs4k = CoefficientList@terms4k, xD;
820.82 Second, Null<

Now we look at the sizes of the coefficients. While as we know none can be larger than 
Log@2,Log@2,nDD+1

n
 (for n > 3, that is), it appears

that some come near to this. For example, in the first 4096  coefficients one is about 0.66  of this maximum and it is roughly three
1
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DD

that some come near to this. For example, in the first 4096  coefficients one is about 0.66  of this maximum and it is roughly three

times larger than 
1

n
.

normedcoeffs = Drop@Abs@coeffs4kD, 4D *
Table@n � HLog@2, Log@2, N@nDDD + 1L, 8n, 5, Length@coeffs4kD<D;

Max@normedcoeffsD
0.661706

Let us investigate more closely that large normalized coefficient.

Position@normedcoeffs , Max@normedcoeffsDD
883063<<

We dropped four coefficients (corresponding to terms of degree zero  through three), so we want to look at the 3067th coefficient in

the list, which goes with the term of degree 3066.

HLog@2, Log@2, 3067DD + 1L � 3067 �� N

0.00126164

Abs@coeffs4k@@3067DDD �� N
0.000978188

Abs@coeffs4k@@3067DD * 3067D �� N
3.0001

It is claimed above that the best bound we can attain on these coefficients is in fact OJ log @log@ nDD
n

N. To see how to approach this bound,

it is instuctive to see how we obtain the coefficient for x3066.

FactorInteger@3066D
882, 1<, 83, 1<, 87, 1<, 873, 1<<

We have a chain of primes

81+ 1, 2+ 1, 2*3+ 1, 2*3*7+ 1, 2*3*7*73+ 1<
wherein all factors in the indicated products are themselves prime, and each last factor is at least as large as the previous element in

the list (note that 73 is the smallest prime greater than or equal to 43 that works). In general we will look for values of k that have an
increasing chain of prime factors qr such that

pr+1 - 1= qr Hpr - 1L
for some ascending set of primes pr. For example, to find a term after the 3066th that makes the ratio larger, we look for the smallest

prime q larger than 3066 such that 3066 q + 1 is also prime. This happens for q = 3137, giving k = 9 618 042. The ratio

Log@2, Log@2, nDD + 1

n

to  the size of  the coefficient  of  x9 618 042  turns out  to  be near 0.72.  Carrying this  construction yet  another step gives the next  q  as

9 618 361, so the value for k  is 9 618 361*9 618 042 or 92 509 800 069 162. The ratio now is about 0.765. This finishes the proof of
part (b) and moreover demonstrates how one  might search for coefficients closer in ratio to the upper bound of part (a).

Note that one can get more terms near the upper bound simply by taking for our next prime factor q any prime slightly larger than

the smallest one that works, as some of  these may also work. For example, if we use 79 rather than 73 as a factor above (noting that

2*3*7 *79 + 1 = 3319  is prime), we get a coefficient with ratio just under .66.  One thus sees a general means by which to obtain
coefficients not far  in ratio below the upper bound given above.

As a final remark, let us recall that a straightforward computation with the truncated power series, taking x = 1, gave a result correct

to about 4  digits of precision. We know they are correct because they agree with the  result of Tischer’s method, which we prove
above to give a correct result  to  several more places.  Also at  the beginning of  this report we found a lim inf  and lim sup  for the

power series sum as x® 1. That notwithstanding, we do not have a stand−alone proof that the power series itself converges to the
limit.  An  indirect  proof  is  that  Tischer’s  method  converges,  and  one  observes  that  the  truncated  power  series  only  omits  from
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power series sum as x® 1. That notwithstanding, we do not have a stand−alone proof that the power series itself converges to the
limit.  An  indirect  proof  is  that  Tischer’s  method  converges,  and  one  observes  that  the  truncated  power  series  only  omits  from
Tischer’s truncated sum terms of the same sign, hence it too must converge. Of course the construction of terms with coefficients of

size   OJ log @log@ nDD
n

N  forces  one  to  conclude  that  estimation  of  the  limit  by  truncation  of  the  power  series  will  be  problematic,  but

nonetheless an independent proof of  convergence would be of interest in its own right.
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