Computing Knopfmacher’s limit, or: My first
foray into computational mathematics, reprise

Daniel Lichtblau
danl@wolfram.com
Wolfram Research, Inc.
100 Trade Center Dr.
Champaign IL 61820

ACA 2009

Montreal, Canada

Session: Applications of Math Software to Mathematical
Research



ABSTRACT

| will discuss a problem | encountered over a decade
and worked on via internet with someone | ﬁalas) newvi
met. It involves a mix of number theory, real analysis,
hardEcore computation, and some slightly perplexing
results.

In brief, we begin with a function expressed as a certe
Infinite product; Arnold Knopfmacher encountered it ir
an attempt to approximate the number of irreducible
factors of univariate polynomials over Galois fields an
raised the question of how to obtain a certain limit to t
function. We derive and execute an effective algorithr
for the task at hand. We’ll also indicate why the most
"obvious" approach does not work well in practice, or
all in theory.

< >



The problem

As posed by Arnold Knopfmacher to the Usenet group
comp.soft—sys.math.mathematica in January 1999

Let d(k) denote the smallest prime factorkof
Definem(k) = k — k/d(k)
Define
xm(K)
[hZa\1- 1
p(X) = (Hk 3

We wish to compute numerically, to at least eight decimal places, the
following limit.

IimX—)l_ p(X)

That is to say, we compute the limityagapproaches 1 from the left
(lesser) side.
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Why do we care?

e There are similar formulas in a paper from 1995 by
Knopfmacher and Warlimont, analyzing probabilities relatec
numbers of irreducible factors of distinct degrees in univarie
polynomials over Galois fields

e [t's an interesting computation
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My history with this problem

| worked on it off and on for several days. Then someone else readir
forum contributed a similar result, but much more precise. His name
Jirgen Tischer, a math department faculty member of Universidad d
Valle, Columbia. We corresponded a bit over a period of months, an
wrote up the results. | lost contact with him a year or two later. | had
wanted to invite him to this conference. After getting nowhere with ar
internet search for a current contact address, | learned he had passe
in January of 2008. | felt it fitting to talk a bit about this problem, sinc:
used ideas of his and also was one of my first forays into computatio
mathematics.
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Candidate results

There were four responses, with two (mine and Tischer’s) giving rous
the same results. The proposed values were

e1.3397
e 2 (exactly)
©2.292

So which is correct?

More important: How do we even know the limit exists?
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Easy to show...
e A limsup andliminf both are readily computed.

e A liminf is given bye”(the exponential of the Euler gamma
constant). This is around 1.871, so...1.3397 will exit stage le
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Definitions in Mathematica

dik 1 := Dvisors[k][[2]]
Kk
K 1:i=k = ——
e TS
IT-2 (1'an1[;])
pIx_]:=
1-x

General idea: Start with

H
Hﬁo—z{l_ﬁ? 00 xk—1
[k
1-x < p[x] < 1-x

Now take logs to get summations. Expand logs at 1 as power series,
obtaining double summations. Switch order of summation (requires
justification), and we find that log oflansup isy + log(2). Finding a
liminf is similar though a bit more work.




What has changed in the past decade?

Ten years ago this computing took manual intervention. | had to do t
like split sums, and do further contortions to take limits. Today some
be done directly. Here is one such that arose in the process.

M o 1
k=3j =2 J

- Eul erGamma - Log [2]




A start at approximating the actual limit
e Truncate the series for the logarithm
e Evaluate using exact or high precision arithmetix-atl

e Exponentiate

/2
L = —Log[1l - Log|1l -
oglpIx]] = - Logl x]+ZZ|k] og1- —|+
2k/3
Z Log[l—:(( 1]+...:
21k, 3k *
0 Kk /2 i k2
D N
=1 2K k=2 1 (k+ 1)
Z x2 K/3 Z i (23 ik
2*k,3|k okakiz d (K+ 1)J

(The series that get truncated are the summatiop)sfmom this tactic |
was able to get 2.292 (so, as you may have guessed, exact 2 was n
correct result either).
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Troublesome aspects
There are serious problems with this approach.
e Difficult to get good precision

e (Related, but more serious) It is quite difficult to bound the
error. Indeed, it is not easy to show we have convergence.
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Tischer’s idea

Figure out exact forms for some of the infinite sums, so as to avoid
truncation. In parts we cannot compute exactly, show that error is mt
better than what we have from above approach.

Start by writinglog (p (X)) (after a bit of algebra) as

X2 €9 Xk+1 Xm[k]
X - — —
T +Zz(k+l k+1)

Xk+1 Xm(k)

ol m) asx - 1 from

Proposition: This approaches- log(2) + >3, (
below.
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Sketch of proof

Clearly we only need focus on the double summation. Switch summé
order and use

00 k \] mk]\J k/2 \J
Mira) = 2l) < 2655)
— k+1 — k+1 — k+1

Middle is squeezed to

>(icr1)
— k+1
So we can find:

% (3-2EulerGanma -2 Log[2])

Several steps require justification! We interchanged a summation ore
then a sum with a limit...
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That remaining summation

We now need to estimate the remaining part. We split by smallest di
o0 ( Xk+1 Xm[k] )

— k+1 k+1
i (Xkﬂ x(3) ] i (xk+1 X(?))
— i = i
e k+1 k+1 S k+1 k+1
0 Xk+l X(%k)
2. kil k+1] "
d[k]=5 T +

The reordering is fine: foD < x < 1 each term is negative so we can dc
this.

Now we need to compute

(Primgj]-1) k
i kil o Crimar)
k+1 k+1

d[k]=Primdj]
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Remaining summation...

We need some functions.

J
qrj _1:=]]Primerk]
k=1
i -1
ri ] :=H(Prime[k] ~1)
k=1

rl
afll ]
The termsk for whichprime(j) is the smallest divisor larger tharfall

into finitely many congruence sets. For example, when the prime in
guestion i, the applicable values férare

{5, 25, 35, 55, 65, 85, 95, }. This may be partitioned as
{5, 35, 65, 95, .} and{25, 55, 85, .}. In each case, the step siz8@s

frac[] ]:=
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Remaining summation...
In general we have the following lemmas.

e The step size of congruence classegpfone()) is q(j) as
defined above

e The number of congruence classeq |3

e \When we partition in this way, the limit for each subsum
depends only on the prime and is independent of congruenc

class
Upshot:
(Primgj]-1) k
s I N N
m Y - _
X—1 dKI—Pri] k+1 k+1

. 1
frad]] Log[l — We[j]]
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Remaining summation...

lim

o0 ( Xk+1 Xm[k] )

X—1" k+1 k+1
k=2
M
frac/j] Log[|l — ———— | +
I' i [ wktl (T )k))
Im —
XL K1=PrimeaM 1] k+1  k+1

We can readily bound that tail sum.

(Prime[M]-1) k
] Xk+1 X Prime [M]
taHsun‘ond:Sum[k T T
+ +

, {k, O, oo}]

1
_ = L 1_-X1 -
X X LOg [ X ]

1 1 1
X Prine[M Log [X Prime [M] (—X + X Prine[M ) ])

Limt [tailsunbnd, x -1, Direction- 1]
-]
Prinme[M

Log |1 -
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Computing our estimate

We can now put all this together.

]

Prime[] ]

]

n
estimate[n ] :=Zfrac[j ] Log[1 -
i =1

o]

error[n_J]:= Z frac[j ] Log[1 -

j =N+1

Prime[] ]

nunmestimate[n_, prec_]: =
Modul e [{sum=-1/2xLog[2], frac =1/2,
pl=Prinme[l], p2},

Do [
p2 =N[Prime[] ], prec];
frac = (pl—l);
p2

1
sum += frac«Log[l- —];

p2
pl = p2,
{i, 2 n};

{frac «p2, sumj]

Timng[{nfact, est} =
nunestimate[2%*1078+ 1, 25]]

{17524. 4, {0.025332454849260739,
-0. 4408622662133543648819837} }
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Computing...
Upper bound on error. Set= 2 x 10/ 8.

= q 1
mfact ), Prime[j] Log|1 - Prime[j]]| )

J=n+1
1 - 1
mfact(1+ —) . — <
Primgn] j;1]2 Log[j]?
1 .
57/2000F : —— d]
n (J loglj 1)
errormx =

(57 /2000) Integrate[l/ () Log[] 1) "2,

{j, 21078, Infinity}]
N[error max]

1 .
o 57 |Expl ntegral Ei [-Log[200000000]] +

1
200000000 Log 200000000}

3. 54571 x 1013
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Computing...
Finally we get our estimate and error bound.

pl = Exp[Eul erGamma + Log[2] + est ]
2.292173695248049690410395

errbound = N[Exp[errormax] -1] xpl
8.12817 x10°13
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Further items of interest

We can investigate the error term of the "naive" summation approaclt
looking at the series of the log of the product.

logp[x_, n_]:=Nornmal [

2% Xm[k]
Series[—Log[l—x]+Z'|Log[1—k 1],
k=2 ¥

{x, 0, n}]]

We can use this to get the signs of the terms. | show them in a run-I
form.

{{01 1}1 {1’ 1}1 {_11 1}! {1’ 1}1 {_11 1}’ {11 1}1 {_1! 1}’ {11 3}1
{_1’ 1}’ {11 1}’ {_1’ 1}1 {11 1}’ {_1’ 1}1 {1’ 1}’ {_11 1}1
{1! 1}1 {_11 1}1 {1! 1}1 {_11 1}! {11 1}1 {_11 1}! {11 3}!
{_11 1}1 {11 1}1 {_11 1}1 {11 1}1 {_11 1}1 {11 3}1 {_11 1}1
{11 1}1 {_17 1}’ {11 1}7 {_1’ 1}1 {11 1}’ {_1’ 1}1 {17 1}a
{_1’ l}’ {11 1}’ {_1’ 1}1 {1! 1}’ {_1’ 1}1 {1’ 3}’ {_11 1}1
{1! 1}1 {711 1}! {1! 1}1 {71! 1}! {11 3}1 {71! 1}! {11 1})
{_11 1}! {11 1}1 {_1! 1}1 {11 3}! {_1! 1}1 {11 1}! {_11 1}1
{1! 1}1 {_11 1}1 {1’ 1}1 {_11 1}! {11 1}1 {_11 1}’ {11 1}1
{_1’ 1}’ {11 1}’ {_1’ 1}1 {1a 3}’ {_1’ 1}1 {1’ 3}1 {_11 1}!
{1’ 1}1 {_11 1}’ {1’ 1}1 {_11 1}’ {11 1}1 {_1’ 1}’ {11 1}’
{_11 l}! {11 1}1 {_1! 1}1 {11 1}! {_1! 1}1 {11 l}! {_11 1}}

They seem to alternate, with sporadic runs of three positive terms.
Strange...
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Further items...

But stranger is the magnitudes of these coefficients. They are not ev
bounded by ©).

Can show:

e They are bounded by(@m)

n

e This bound is tight (we can show that infinitely many
coefficients will approach it closely).

e The ones that approach closely have interesting factorizatio
patterns (which is why they approach closely).

e Figuring this out was more math than computation (our jobs
not going to the machines just yet).

Upshot: a naive summation will clearly give very poor convergence.
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Some open problems
e Understand the sign patterns of error approximants.

e Find a more efficient way to compute the estimate to high
precision.

e Find an exact closed form for the limit.

e Automate more of the symbolic analysis: some still requires
manual intervention.

e Determine whether the error bound/estimate is tight. If not,
improve it (this would be a "cheap" way of getting more digit
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