
Polynomial Control Systems
MEHMET TURAN SÖYLEMEZ and İLKER ÜSTOĞLU

» P R O D U C T R E V I E W

124 IEEE CONTROL SYSTEMS MAGAZINE » AUGUST 2007 1066-033X/07/$25.00©2007IEEE

Polynomial Control Systems (PCS), a Mathematica-
based toolbox released in July 2006 by Wolfram
Research, Inc., expands the functionality of Wol-

fram's Control System Professional Suite (CSPS) in a vari-
ety of ways. CSPS, which now consists of Control System
Professional (CSP), Advanced Numerical Methods
(ANM), and the new Polynomial Control Systems, was
first released in the middle of 2003 [1] and is used by pro-
fessionals and academicians working on control systems.
PCS presents new tools for the modeling, analysis, and
design of linear control systems described by polynomial
matrix equations or matrices with rational polynomial
entries [2]. Like its counterparts CSP and ANM, PCS fol-
lows an object-oriented methodology for analyzing and
designing control systems.

In this product review, some of the new tools provided
by PCS are examined using tutorial examples and com-
pared to similar tools available in Matlab. Specifically, the
Control Systems Toolbox (version 6.1) [3] and Polynomial
Control System Toolbox (PolyX—version 2.5) [4] of Matlab
are used in comparisons. However, we point out that this
review should not be considered as a comprehensive com-
parative study of PCS since our focus is to introduce some
capabilities of PCS and, when feasible, contrast comparable
capabilities of Matlab with PCS.

Polynomial-based algorithms can provide useful
insights for the analysis and design of multivariable sys-
tems. In the first part of the review, we examine several
new system descriptions supported by PCS and the corre-
sponding analysis tools. In the second part of the review,
we focus on the design and synthesis of multivariable sys-
tems using PCS.

MODELING AND ANALYSIS OF LINEAR SYSTEMS
Like CSP, PCS deals with state-space and transfer-function
models of both continuous- and discrete-time systems.
Furthermore, PCS provides new models such as SystemMa-
trix, LeftMatrixFraction, and RightMatrixFraction. All of
these model objects can be converted from one form to
another. Recall that the Laplace transform of a system of
ordinary differential equations that describe the behavior
of a linear time-invariant (LTI) system can be written as

T(s)ξ = U(s)u ,

y =V(s)ξ + W(s)u, (1)

where s is the Laplace variable and ξ , u, and y are vectors
of Laplace-transformed state variables, inputs, and out-
puts, respectively. The terms T(s), U(s),V(s), and W(s) in
(1) are polynomial matrices of suitable dimensions that
define the system behavior. The system matrix corre-
sponding to (2) is defined as

P(s) =
[

T(s) U(s)
−V(s) W(s)

]
. (2)

It is important to note that the dimension of the matrix
T(s) must be adjusted so that it is greater than or equal to
the degree of its determinant. The system matrix repre-
sentation given in (2) can be thought as a generalization
of the usual state-space representation wherein T(s) takes
the special form T(s) = sI − A, and U(s),V(s), and W(s)
are constant matrices independent of the Laplace vari-
able s. As a result, using the system matrix representa-
tion of (2), it is possible to examine internal states and
associated characteristics of a system [5].

To illustrate the modeling and analysis capabilities of
PCS, we begin by loading the PCS toolbox. In addition, we
load Mathematica’s MatrixManipulation toolbox, which is
required for using some functions of PCS.

Next, we set up a two-input, two-output system of the
form (1).

The corresponding system matrix P(s) is obtained as
follows:

In[3]:= T = (s + 1) (s + 2) (s + 3) (s + 4)
(s + 1) (s + 3) (s + 4) (s + 1) (s + 4) (s + 5)

2(s + 1) (s + 2) (s + 4) ;

V = (s + 3) (s + 4)
5(s + 3) 2(s + 4)

2(s + 4) ;

U =

W = ZeroMatrix [2, 2] ;

s + 2 s + 2
s + 41

;

In[1]:=
<< PolynomialControlSystems'
<< LinearAlgebra 'MatrixManipulation'

AUGUST 2007 « IEEE CONTROL SYSTEMS MAGAZINE 125

Note that the upper case M at the upper right corner of
the matrix indicates that it is a system matrix object. Note
also that, since det(T(s)), where det(·) is the determinant
operator, is a seventh-order polynomial and T(s) is 2 × 2,
the SystemMatrix function introduces five dummy vari-
ables to adjust the sizes of T(s), U(s), and V(s). The internal
modes of the system are determined from the roots of
det(T(s)) = 0 as shown below.

It is possible to obtain the Smith form of a polynomial
matrix P(s) as follows:

The polynomials on the diagonal of the Smith form of the
system matrix are the invariant polynomials of the system.
The roots of the invariant polynomials give the invariant
zeros, that is, zeros that do not change under similarity
transformations or feedback. Invariant zeros of the system
matrix object can also be computed directly from a system
matrix description as shown below:

As with almost all commands of Mathematica, the
underlying calculations are kept exact when the input
arguments to PCS commands are exact (integer, rational,
or symbolic expressions). For example, it is possible to

obtain symbolic results for the Smith form or invariant
zeros of a system in terms of symbolic parameters. Since
some algorithms, such as the algorithm that calculates the
Smith form, can be sensitive to numerical errors, the ability
to use exact calculations is an advantage of PCS. If we use
a numerical version of the same system matrix, as shown
below, machine precision calculations result in a rather dif-
ferent Smith form.

To the best of our knowledge there is no standard Mat-
lab toolbox that supports the system matrix representation
given in (2). Using PolyX [4], however, it is possible to
obtain similar results. Specifically, using the following pro-
cedure the polynomial matrix representation of (2) can be
produced in Matlab.

Next, it is possible to calculate the internal modes of the
system as follows:

>> intmod=roots (det (T)) %internal modes

intmod =

 −4.0000
 −4.0000
 −3.0000
 −3.0000
 −2.0000
 −1.0000
 −1.0000

>> T=[24+50*s+35*s^2+10*s^3+s^4,16+28*s+14*s^2+2*s^3
 12+19*s+8*s^2+s^3,20+29*s+10*s^2+s^3];
U=[2+s,2+s
 1,4+s];
V=[12+7*s+s^2,8+2*s
 15+5*s,8+2*s];
W=zeros(2,2);
Te=[eye(5) zeros(5,2); zeros(2,5) T]; %T, U, V with
Ue=[zeros(5,2);U]; %dummy variables
Ve=[zeros(2,5) V]; %introduced
P=[Te,Ue;−Ve,W]; %system matrix in polynomial form

1.

0.

0.

0.

0.

0.

0.

0.

0.

0.

In[11]:=

Out[11]=

SmithForm [P // N]

1.

0.

0.

0.

0.

0.

0.

0.

0.

0.

1.

0.

0.

0.

0.

0.

0.

0.

0.

0.

1.

0.

0.

0.

0.

0.

0.

0.

0.

0.

1.

0.

0.

0.

0.

0.

0.

0.

0.

0.

1.

0.

0.

0.

0.

0.

0.

0.

0.

0.

1.

0.

0.

0.

0.

0.

0.

0.

0.

0.

1.

0.

0.

0.

0.

0.

0.

0.

0.

1. (s − 1.) (s + 2.) (s + 3.)2 (s + 4.)0.

InvariantZeros [P]In[1]:=

{−4, −3, −3, −2, 1}Out[10]=

SF = SmithForm [P]

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0s + 3

0 0 0 0 0 0 0 (s − 1) (s + 2) (s + 3) (s + 4)

In[9]:=

Out[9]=

In[8]:=

Out[8]=

s / . Solve[Det [T] == 0, s] (* Internal modes *)

{−4, −4, −3, −3, −2, −1, −1}

P = SystemMatrix[s, T, U, V, W]

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0

1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0

0
0
0
0
1
0
0
0
0 0

(s + 1) (s + 2) (s + 3) (s + 4)
(s + 1) (s + 3) (s + 4)

−(s + 3) (s + 4)
−5 (s + 3)

2(s + 1) (s + 2) (s + 4)
(s + 1) (s + 4) (s + 5)

−2(s + 4)
−2(s + 4)

s + 2

0
0
0
0
0

s + 4
0
0

s + 2

In[7]:=

Out[7]=

The corresponding Smith form is shown below:

Note that the same result is produced by PCS with a
numerical input. Unlike PCS, PolyX produces a warning
message to indicate a possible problem in calculations.
There is, however, no difference in the invariant zeros,
which are found from the roots of the determinant of the
system matrix P(s) or its Smith form.

Returning to PCS, by using the function LeftCoprime[], it
is possible to check whether T(s) and U(s) are coprime.

Since T(s) and U(s) are not left coprime they can be

expressed as

T(s) = L(s)T1(s),

U(s) = L(s)U1(s) ,

where L(s) is the left matrix greatest common divisor.
For this purpose the function LeftGCDDecomposition[]
is used.

The roots of the determinant of L(s), which are the input
decoupling zeros of the system, form a subset of the invari-
ant zeros and correspond to the uncontrollable modes of a
system arising from a state-space model. The input decou-
pling zeros of the system given above are −2 and −3. By
applying the function InputDecouplingZeros[] to the system
matrix object, the same result can be obtained.

It is possible to obtain the same result in Matlab as follows:

Similar commands are available in PCS for finding the
right greatest common divisor and the output decoupling
zeros, which correspond to unobservable modes of a state-
space system. See the following example.

The system matrix with input decoupling zeros
removed

In[16]:=

Out[16]=

OutputDecouplingZeros [P]

{−4, −3}

>> L=gld (Te,Ue); %left matrix GCD for T and U
idz=roots (L) %input decoupling zeros

idz =

−3.0000
−2.0000

In[15]:=

Out[15]=

InputDecouplingZeros [P]

{−3, −2}

In[13]:= {L, T1, U1} = LeftGCDDecomposition [T, U, s];

L = s + 2
s + 3

0
− s − 2Out[14]:=

LeftCoprime [T, U, s]In[12]:=

FalseOut[12]=

>> invz = roots (P) %invariant zeros

invz =
 1.0000
 −4.0000
 −3.0000
 −3.0000
 −2.0000

+ 0.00001
– 0.00001

>> SP=smith(P) %smith form of the system matrix
Warning: The relative residue of calculation is 23.0583
> In smith at 300

SP =

Columns 1 through 8
0
0
0
0
0
0
0
1
0

1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0

0
0
0
0
1
0
0
0
0

0
0
0
0
0
1
0
0
0

0
0
0
0
0
0
1
0
0

Column 9
0
0
0
0
0
0
0
0
−72 − 30s + 49s^2 + 41s ^3 + 11s^4 + s^5

126 IEEE CONTROL SYSTEMS MAGAZINE » AUGUST 2007

P1(s) =
[

T1(s) U1(s)
−V(s) W(s)

]
,

can be constructed by the command P1=SystemMatrix
[s, T1, U1,V1, W] . The same result can be achieved by
using the RemoveInputDecouplingZeros[P] function. The
least-order system can be obtained by successively
removing input and output decoupling zeros.

Note that the modes of the least-order system are the poles,
since there are no hidden modes in this representation.

The Matlab code for obtaining a least-order system is
given as follows:

The poles are obtained similarly as shown below.

Conversion of a system matrix object to another kind of
representation, such as transfer function or state space, is
straightforward in PCS. For example, the transfer function
corresponding to the system matrix description given in
(1) can be calculated as

G(s) = y(s)
u(s)

=V(s)T−1(s)U(s) + W(s).

A simple way to form this representation is to apply the
TransferFunction[] command to the model object.

The Matlab code for finding the same transfer function is
as follows:

We generally prefer to use the least-order system matrix
representation in deriving the transfer function in Mat-
lab since the original system results in a higher-order
transfer function due to inaccuracies introduced by
machine size precision calculations.

>> [adjT2, denG]=inv (T2); %adjoint and determinant of T2
numG=V2 *adjT2*U1+W; %numerator part of the transfer function
G=tf (numG, eye (2) *denG) %transfer function

Transfer function from input 1 to output...

 #1:

 #2:

Transfer function from input 2 to output...

1

s + 1

5

s^2 + 5s + 4

 #1:

 #2:

1

s + 1

2s + 4

s^2 + 5s + 4

In[20]:=

Out[20]=

G = TransferFunction [P]

1

s + 1

5

s2 + 5s + 4

1

s + 1

2s + 3

s2 + 5s + 4

>> poles=roots (T2) %poles of the system

poles =

−4.0000
−1.0000
−1.0000

>> T1=L\Te; %Te=L*T1
U1=L\Ue; %Ue=L*U1
P1=[T1, U1; −Ve, W]; %System with input decoupling

%zeros removed.
R2=grd (T1, Ve); %right matrix GCD for T1 and −Ve
T2=T1/R2; %T1=T2*R2
V2=Ve/R2; %Ve=V2*R2
PL=[T2, U1; −V2, W] %least order system

PL =

1 + s
2 + 2s
0
0
0
0
0

− 2
− 2

0
4 + 5s + s^2
0
0
0
0
0
− 4 − s
− 5

0
0
1
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0

0
0
0
0
1
0
0
0
0

0
0
0
0
0
1
0
0
0

0
0
0
0
0
0
1
0
0

0
1
0
0
0
0
0
0
0

1
1
0
0
0
0
0
0
0

In[18]:=

Out[19]=

TL = PL [s] [[1, 1]]; (*T for least order sys*)

ples = s / . Solve [Det [TL] = 0]

{−4, −1, −1}

PL = LeastOrderSystem [P]

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 s2 + 5s + 4 2(s + 1)

s2 + 5s + 4 3(s + 1)

− s − 4 − 2

− 5 − 2

0

0

0

1

1

0

0

1

2

0

0

In[17]:=

Out[17]=

AUGUST 2007 « IEEE CONTROL SYSTEMS MAGAZINE 127

128 IEEE CONTROL SYSTEMS MAGAZINE » AUGUST 2007

A canonical form related with rational matrices is
the McMillan form, which provides essential informa-
tion about the poles and transmission zeros of a sys-
tem. PCS calculates the McMillan form using the
McMillanForm[] function.

It is possible to check that the roots of the denominator
polynomials of the diagonal entries of the McMillan form
give the poles of the system. The roots of the numerator
polynomials of the diagonal entries, on the other hand,
give the transmission zeros of the system, which provide
vital information on the nature of the system, such as
insensitivity to certain input frequencies, or stability and
performance expectations from the closed-loop system
with high loop gains. Transmission zeros can also be found
directly from the original system matrix object P(s) or the
transfer function object G(s).

Although the Matlab toolboxes we consider in this
review do not support it directly, the McMillan form can
be deduced using the Smith form of the numerator part of
the transfer function.

Transmission zeros, on the other hand, can be calculated
from the roots of the determinant of the least-order sys-
tem matrix.

Linear time-invariant systems can also be described using
matrix fraction descriptions. A left matrix fraction description
is given by two polynomial matrices NL(s) and DL(s) such
that G(s) = D−1

L (s)NL(s), where G(s) is the transfer function
of the system. Similarly, a right matrix fraction description is
formulated as G(s) = NR(s)D−1

R (s). LeftMatrixFraction[] and
RightMatrixFraction[] commands construct left and right
matrix-fraction objects from two polynomial matrices or any
of the other system objects. The following command, for
instance, constructs a new left matrix fraction object.

The upper case L on the upper right corner of the object
denotes that it is a left matrix fraction. It is possible to con-
vert matrix fraction descriptions to other types of system
descriptions and vice versa. For example, transfer function
of the system described above can be found as

which is the same as the transfer function of the system
matrix P(s) given above. A right matrix fraction descrip-
tion for P(s) can be found as shown below.

In[26]:=

Out[26]=

TransferFunction [LMF]

1

s + 1

5

s2 + 5s + 4

2s + 3

s2 + 5s + 4

1

s + 1

In[23]:=

Out[25]:=

LMF = LeftMatrixFraction [s, DL, NL]

NL =
1
5

1
2s + 3 ;

DL=
0

(s + 1) (s + 4) ;
(s + 1)

0

1
2s + 3

1
5

s + 1
0

0
(s + 1)(s + 4)

−1

>> transz=roots (PL) %transmission zeros

transz =

1.0000

>> SG=smith (numG);
MG=tf (SG,eye (2)*denG) %McMillan form

Transfer function from input 1 to output...

#1:

#2: 0

Transfer function from input 2 to output...
#1: 0

 #2:

1

s^2 + 5s + 4

s − 1

s + 1

In[22]:=

Out[22]=

TransmissionZeros [P]

{1}

In[21]:=

Out[21]=

McMillanForm [G]

1
(s+1) (s+4)

s−1
s+1

0

0

AUGUST 2007 « IEEE CONTROL SYSTEMS MAGAZINE 129

The matrix fraction descriptions found as a result of these
conversions are not necessarily coprime.

PolyX toolbox of Matlab also provides various ways of
converting different system descriptions. To obtain a right
matrix fraction description of the system, for instance, the
following command can be used.

It is possible to use many of the commands introduced
above on matrix fraction descriptions directly. We also
note that the new system objects (system matrix and
matrix fraction description) are compatible with most of
the CSP and ANM commands. It is possible, for example,
to obtain the output response or extract the subsystems of
a system matrix object directly. We skip the details of such
compatibilities due to space considerations, and are con-
tented with just mentioning that PCS is integrated into
CSPS in a natural way.

CONTROLLER DESIGN
PCS provides several design and synthesis tools to help
the control design process, especially for multi-input,
multi-output (MIMO) systems. In the following, some con-
trol design functions of PCS are demonstrated through an
illustrative example.

State-Feedback Pole Assignment
Given the state-space matrices A ∈ Rn×n and B ∈ Rn×m ,
where n and m are the number of states and inputs,

respectively, the state-feedback pole assignment problem
is to find a constant state-feedback matrix Ks ∈ Rm×n such
that the eigenvalues of the closed-loop system matrix
Ac = A − BKs are at desired locations. To illustrate some
of the algorithms of PCS, we consider the state-space
description of an aircraft model from [6], which has three
inputs, namely, spoiler angle, forward acceleration, and
elevator degree, as well as five states, namely, altitude,
forward speed, pitch angle, pitch rate, and vertical speed.

Although it is not necessary to provide the state-space out-
put matrix Cs for calculations of the state-feedback matri-
ces, it is given in the above system description since this
information is used in later subsections when observer
design and output-feedback pole assignment are consid-
ered. Note that the first three states of the system are taken
as system outputs in this example.

For pole assignment, PCS requires that the system
description be given in state-space format. Assuming that
all of the states are available for measurement, it is possible
to design a constant state-feedback controller Ks that
places the closed-loop system poles as required if, and
only if, the system is controllable [7].

Next, the desired closed-loop system poles are specified as
follows:

In[32]:= desiredCLSPoles = {−1 −Π, −1 +Π, −5, −6, −7};

Controllable [aircraft]In[31]:=

TrueOut[31]=

In[29]:=

Out[30]=

As =

Bs =

Cs =

0 0 0
0
1

−11.132

−1.665
−0.0732

0 −0.0538

−0.2909

−0.12

−0.8556
−0.6859
−1.013

1.0532
0.0485

4.419
1.575

−0.1712 0.0705
0 0 0 0

0
0

0
0

0 0
1

0
0
00

0
0

1
0 1 0

10
0
0

0
00

0 0 0 0

0

;

; (∗input matrix∗)

; (∗output matrix∗)

aircraft = StateSpace [As, Bs, Cs,]

0 0

0

0

0

11

0.0485

0
0
0

0

0

1

1

−1

0 0

0 0 0

0

0

0

1

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 .

0

00

0

0

0

0

0

0

−0.0538

−0.8556

−0.68591.0532−0.2909

−0.1712

−1.013 −1.665
−0.0732

−0.12
1.132

0.0705

4.419

1.575

>> [NR, DR] = rat2rmf (numG, denG*ones (2, 2)) %RMF description

NR =

 0.44 + 0.11s 0.58
 0.55 0.58

DR =

 0.44 + 0.55s + 0.11s^2 0.29 + 0.29s
 0 0.29 + 0.29s

RightCoprime [RMF]In[28]:=

FalseOut[28]=

In[27]:=

Out[27]=

RMF = RightMatrixFraction [P]

s + 4
5

s + 4
2s + 3

−1

0
s2 + 5s + 4 0

(s + 1)(s + 4)
R

PCS extends the StateFeedbackGains[] command of
CSP by introducing new methods, namely, Mapping, Spec-
tral, and FullRank, for calculating the state-feedback matrix
that yields the desired closed-loop system poles. The Map-
ping and Spectral methods together with the Ackermann
method of CSP produce dyadic (that is, rank-one) state-
feedback matrices that can be decomposed as

Ks = f kT,

where the fan-out vector f ∈ Rn×1 determines the weights
of the control inputs, and kT ∈ R1×n is a row vector, which
is usually calculated as the state-feedback compensator for
the pseudosingle input system (A, Bf). Such a decomposi-
tion of the state-feedback matrix allows a simpler structure
in the realization stage and is therefore preferred in some
cases. Our experience tells us that the Spectral method usu-
ally produces more accurate results when numerical calcu-
lations are carried out, whereas the Mapping method
usually gives the unique result faster when the underlying
calculations are carried out symbolically [8].

Now we use the Rationalize[] command to provide an
exact description of the system and hence ensure that the
calculations are carried out symbolically.

Here, the fan-out vector is selected as f = [0 1 0]T using
the ControlInput option of StateFeedbackGains command.
Note that a symbolic fan-out vector such as f = [1 k1 k2]
results in a symbolic result, which can be used to address
additional design criteria. It is possible to validate that the
matrix Ks1 expressed in Out[35] indeed yields the desired
closed-loop system poles.

A similar result is achieved through the Matlab Control
Systems Toolbox using the following commands.

The resulting compensator is numerically the same as
the one found by PCS. When the order of the system
is small (say, less than ten), there is usually no signifi-
cant difference between numerical and exact calcula-
tions of PCS. However, for higher order systems,
numerical results can deviate from the exact results
significantly [9], while exact calculations are consider-
ably slower.

The FullRank method of StateFeedbackGains[] command
of PCS uses the Luenberger controllable canonical form
(LuenbergerControllableForm[]) to calculate a full-rank state-
feedback matrix, which usually has smaller gains com-
pared to dyadic state-feedback matrices. The method
offers an alternative to the KNVD method of CSP, which is
based on the Kautsky-Nichols-Van Dooren algorithm [10].
The advantage of the FullRank method over KNVD
method is that, unlike KNVD, FullRank allows exact and
symbolic calculations.

>> %Dyadic State-feedback compensation
f = [0 ; 1; 0]; %fan-out vector
k1 = place (A, B*f, desiredCLSPoles);
Ks1 = f*k1

Ks1 =
 1.0e + 003 *
 0 0 0 0 0
 1.1314 0.0184 1.0612 −0.0991 −0.4114
 0 0 0 0 0

>> A = [0, 0, 1.132, 0, −1; ...
 0, −0.0538, −0.1712, 0, 0.0705; ...
 0, 0, 0, 1, 0; ...
 0, 0.0485, 0, −0.8556, −1.013; ...
 0, −0.2909, 0, 1.0532, −0.6859];
B = [0, 0, 0; ...
 −0.12, 1, 0; ...
 0, 0, 0 ; ...
 4.419, 0, −1.665; ...
 1.575, 0, −0.0732];
C = [1, 0, 0, 0, 0; ...
 0, 1, 0, 0, 0; ...
 0, 0, 1, 0, 0];
desiredCLSPoles = [−1−i, −1+i, −5, −6, −7];

In[34]:=

Out[35]=

Ts1 = StateFeedbackConnect [aircraft, Ks1] ;
Eigenvalues [Ts1[[1]]]

{−7., −6., −5., −1. +1. i, −1. −1. i}

In[32]:=

In[33]:=

Out[33]=

desiredCLSPoles = {−1 −Π, −1 +Π, −5, −6, −7};

Ks1 = StateFeedbackGains [Rationalize[aircraft], desiredCLSPoles, Method → Mapping,
ControlInput → {0, 1, 0}]

700000000000 184047
618728277 10000

2691723766523502601477
2536382602204430625

86304549766413628495374418230769
870547973997074591128664812500

71631026519985956241425561933087
174109594799414918225732962500

0

0

0

0

0

0

0

0

0

0

− −

130 IEEE CONTROL SYSTEMS MAGAZINE » AUGUST 2007

If, however, calculations are to be carried out numerical-
ly, then the KNVD algorithm is more robust and therefore
preferred. Another potential disadvantage of the FullRank
method is that the desired complex-conjugate closed-loop
poles need to be partitioned compatibly with the controlla-
bility indices of the system. Fortunately, this requirement is
not a problem for the aircraft system under consideration.

Since the controllability indices are given as {2, 1, 2} it is
possible to assign up to two pairs of complex-conjugate
poles using the FullRank method, which happens to be
maximal possible number of complex conjugate poles for
the aircraft system. Alternatively, if the controllability
indices were, say, {3, 1, 1}, then it is possible to assign only
a single pair of complex conjugate poles due to the special
structure of the underlying Luenberger controllable canon-
ical form.

Although it allows symbolic calculations, the FullRank
method does not exploit all of the design freedom avail-
able in the pole-assignment problem. For the aircraft exam-
ple, the state-feedback matrix has 3 × 5 = 15 entries. Since
only five poles are required to be assigned, there are
15 − 5 = 10 degrees of freedom in the design. Hence, all
constant state-feedback controllers that assign the closed-
loop system poles to the required locations can be parame-
terized as a function of a vector kF ∈ R10 [11]. Five
components of the vector kF need to be fixed due to the
underlying algorithm used and the special
structure of the Luenberger controllable
canonical form. PCS fixes the remaining five
entries of kF as well to generate a numeric
compensator. This behavior is convenient
for novices since it minimizes the complexi-
ty of the program interface and avoids con-
fusion. However, we believe it is useful to
have options in the StateFeedbackGains[]
command that yield parameterized forms of
pole-assignment compensators. These
options can allow additional design criteria
such as robustness. A similar comment can
be made for ReducedOrderEstimator[] and

OutputFeedbackCompensator[] com-
mands, which are examined in the fol-
lowing sections.

None of the Matlab toolboxes we are
aware of use an algorithm such as Full-
Rank. The nearest match probably is the
place command of the Matlab Control
Systems Toolbox, which produces a full-

rank state-feedback pole assignment matrix using a numeri-
cally robust algorithm similar to the KNVD method of CSP.

\\\

Observer Design
Since all of the states of a system are typically not mea-
sured, state feedback is often not feasible. If the system is
observable, however, it is possible to reconstruct the states
using the knowledge of inputs and outputs of the system
(see Figure 1). PCS provides ReducedOrderEstimator[] com-
mand to find a reduced-order Luenberger observer. The
order of such observers depends on the number of states
and independent outputs of the system to be observed.
The internal dynamics of the observer can be determined
arbitrarily as long as the system is observable. An exact
reduced-order observer with two real poles at −5 is found
in the example below.

>> Ks2=place(A, B, desiredCLSPoles)
eig(A-B*Ks3)

Ks3 =

ans =

−1.0000 + 1.0000i
−1.0000 − 1.0000i
−5.0000
−6.0000
−7.0000

−2.7046

−0.6864

−10.4168

−0.1222

6.8830

−0.2709

−0.4699

−0.6432

−6.6626

0.4995

−0.1819

−2.5597

3.7182

0.6921

11.1755
In[37]:=

Out[37]=

ControllabilityIndices [aircraft]

{2, 1, 2}

In[36]:=

Out[36] =

Ks2 = StateFeedbackGains [Rationalize[aircraft], desiredCLSPoles,
Method → FullRank]

7540427
7663014

481697909
2554338000

8224981
2554338

477513423949
62708997900

86358369549277
313544989500000

−

1067556541
212861500

−

21391182071767
9237035390670

124033390047509
1847407078134000

1439371675
1254179958

−

1850000
1277169

−

74000
425723

−

4910000
1277169

−

97
8838

36438463
7365000

0

In[38]:=

Out[38]=

observer = ReducedOrderEstimator [Rationalize [aircraft], {−5, −5}]

0

−5

0
0
0

0

−1

−5

0

0
0
0

1

0

0

0

0
0
0

0

0

0
0
0

0

0

63
40

−

4419
1000

0
0
0

0

0

183
2500

− 333
200

0

0

0
1
0

97
2000

2909
10000

0
0
1

10361
2500
2633
2500 .

956097
2500000
5467179
250000

−

0
0
0

1013
1000

− 43141
10000

− 431820169
20000000
20273677
4000000

−

AUGUST 2007 « IEEE CONTROL SYSTEMS MAGAZINE 131

In the Matlab Control Systems toolbox, it is not possible
to obtain a reduced-order state estimator directly. A full-
order Luenberger observer, however, is found as follows.

Note that we provide additional observer poles at −10,
−15, and −25 since the full-order observer has 3 more
poles than the reduced-order observer.

Output-Feedback Pole Assignment
For a controllable and observable least-order system, it is possi-
ble to find an output-feedback compensator Ko(s) to place the
closed-loop system poles as desired (see Figure 2). The order of
the output-feedback compensator needed for arbitrary pole
assignment is usually less than the reduced-order observer
required for state reconstruction, and is found as follows.

Unless otherwise stated, a dyadic compensator is assumed
to be used. That is, the output-feedback compensator is
assumed to have the structure K0(s) = f0(s)ko(s)T, where
fo(s) and ko(s)T are transfer function vectors of suitable
dimensions. It is possible to find the compensator using Out-

putFeedbackCompensator[] command. Note that, since the order
of the dyadic output-feedback compensator is one, we must
specify an extra desired closed-loop system pole (say −10).

It is possible to check that the closed-loop system poles are
located as required.

Using a full-rank (that is, not dyadic) output-feedback
compensator, it is usually possible to decrease the order of
the compensator even further. For instance, static output
feedback is adequate for the aircraft model when a full-
rank compensator is to be used.

We leave the last desired pole p in symbolic format in the
following example to illustrate the symbolic capabilities
of PCS (see the bottom of the page).

OutputFeedbackCompensatorDegree [aircraft, Method → FullRank]In[43]:=

Out[43]= 0

To1 = FeedbackConnect [aircraft, Ko1];

Eigenvalues [To1[[1]]]
In[41]:=

Out[42]= {−10, −7, −6, −5, −1. + 1.i, −1.−1.i}

In [40]:=

Out [40]=

Ko1 = OutputFeedbackCompensator [Rationalize [aircraft],
 Join[desiredCLSPoles, {−10}], ControlInput → {0, 1, 0}] // N

−481.764 −2.31542×106

0.
1.
0.

0.
4829.61

0.

218685.

0.
−453.359

0.

140572.

0.
−278.615

0. .

OutputFeedbackCompensatorDegree [aircraft]In[39]:=

Out[39]= 1

>> sys=ss (A, B, C, zeros (3, 3));
L=place(A', C', [−5, −5, −10, −15, −25])';
observer=estim(sys, L);

FIGURE 1 Control structure with a state feedback con-
troller and observer. The observer uses the inputs
and outputs of the plant to estimate the internal
states. A constant state-feedback gain K is then used
to place the closed-loop system poles as required.

Aircraft
OutputInput

Observer

State
estimates

Ks

x̂

In[44]:= Ko2 = OutputFeedbackCompensator [aircraft], {−1 + I, −1−I, −5, −6, p},
Method → FullRank];

To2 = Simplify [FeedbackConnect [aircraft, Ko2]]

0 0 0

0

0 0 0 0

00 0

0

00

0

0

0

8.24937−2.11609 p

183.876−36.825 p

82.3956−13.125 p

77.9252 p−329.915

27.7737 p−135.271

40.1576 p−175.763

14.3128 p−72.9819

−0.8556 −1.013

−0.12

−1.665

−0.0732

−1

−0.68591.0532

0.0705

4.419

1.575

1.p−11.4585

1.132

5.54122−1.0905 p

1

1

1

0

0

0

0

1

0

1

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 .

Out[45]=

FIGURE 2 Possible output-feedback control structures. (a) Feedback control.
(b) Feedforward control. Only measurements are used in the feedback. As far
as pole-assignment algorithms are concerned, the structure of the feedback,
which affects the zeros of the closed-loop system, is not important. The result-
ing output-feedback compensator K0(s) usually has a lower degree compared
to a state-feedback controller with a Luenberger observer. The former choice
typically entails lower cost and easier implementation.

(a)

Ko(s) Aircraft
Input Output

−

(b)

Aircraft
Input

−

Ko(s)

Output

132 IEEE CONTROL SYSTEMS MAGAZINE » AUGUST 2007

Note that the closed-loop system description is obtained in
terms of the free parameter p. It is possible to pursue fur-
ther analysis using this symbolic result. The numerator
polynomial of the (3, 3) entry transfer function of the sys-
tem denoted N3,3(s), for example, is calculated as follows:

For N3,3(s) to have all of its roots in the open left-half
plane, all the coefficients of this polynomial as well as the
first entry r3 of the third row of the Routh table must be
positive. Using this idea, the following commands guaran-
tee that all of the roots of N3,3(s) are in the left shifted half
plane Re(s) < σ for stabilizing values of p < 0.

Note that Mathematica uses ∧ for “logic and,” and ∨ for
“logic or.” Hence, the above output shows that it is not
possible to have all of the roots of N3,3(s) to the left of the
line σ = 9.36354. This result means that the closed-loop
system has at least one right-half-plane zero when the
closed-loop system poles are selected as above. Placing the
free pole of the closed-loop system at −5 gives us the fol-
lowing compensator:

The roots of N3,3(s) in this case are calculated as follows:

Note that the gains of the full-rank compensator are
small compared to those of the dyadic compensator, which
is usually considered an advantage, since smaller gains
usually imply smaller control energy. A possible disadvan-

tage of using the FullRank method is that it requires a spe-
cial partitioning of the desired set of complex conjugate
poles similar to the FullRank method for the state-feedback
case; see the user manual of PCS and [12] for details.

We have discovered that the OutputFeedbackCompen-
sator[] command uses exact arithmetic in internal calcula-
tions to find required compensators. The result, however,
is presented in numeric format when the input arguments
are in numeric format. This approach is convenient since
the accuracy of the roots can easily be lost with pole-
assignment algorithms if numerical calculations are used.

The only command that allows output-feedback pole
assignment in the toolboxes of Matlab we examined is the
pplace command of the Polynomial Toolbox. The command
pplace requires a left (right) matrix fraction description of the
system together with a subset of desired closed-loop system
poles and returns a dynamic feedback compensator given as
a right (left) matrix fraction description. This command
returns a third-order compensator for the aircraft system,
appending three poles (−10, −12, and −15) to the set of
desired closed-loop poles.

Although it produces high-order compensators, the underly-
ing numerical method of PolyX is apparently quite robust as
can be observed from the achieved closed-loop system poles:

Input-Output Decoupling
In many practical MIMO systems, it is necessary to decou-
ple inputs and outputs so that each output is controlled
from a separate input or set of inputs. It is especially conve-
nient to use the ith input to control the ith output for square

>> pls=roots (N*Nc+D*Dc)

pls =

 −15.0000
 −12.0000
 −10.0000
 −7.0000
 −6.0000
 −5.0000
 −1.0000 + 1.0000i
 −1.0000 − 1.0000i

>> [N, D] = ss2lmf (A, B, C);
[Nc, Dc] = pplace(N, D, [desiredCLSPoles, −10, −12, −15])

Nc =

 −1.5e + 002 − 69s 76 + 16s 0.47 + 0.31s
 −18 12 −1.8
 −4e+ 002 − 1.9e + 002s 1.3e+003 + 2.9e+002s 1.2 + 0.86s

Dc =

 17 + s −0.079 −0.14 − 0.07s
 −9.6 − 0.07s 2 −1.9 − s
 1 −36 − s 0

In[55]:=

Out[55]=

s / . Solve [(N3, 3 / . p → −5) = 0.0]

{−24.4441, −5., 12.3442}

In[54]:=

Out[54]=

Ko2 / . p → −5

175.637

2.24657

33.993

−95.6997

−32.9997

4.92073 −0.0410728

92.6986

19.8707 .

In[48]:=

Out[53]=

clst = CoefficientList [N3, 3 / . s → s + σ, s];

{a0, a1, a2, a3} = clst;

r3 =

conds = Apply [And, Map [(# > 0) &, clst]] && r3 > 0 && p < 0;

rcon = Reduce [conds];

Rationalize [Simplyfy [rcon]] // N

a2
1− Det [];a3

a2
a1
a0

9.36354 < σ < 29.5177
(σ − 9.36354) (σ + 16.4634)

σ − 29.5177
< p < 0. σ ≥ 29.5177 ∧ p < 0.

In[46]:=

Out[47]=

TF = TransferFunction [To2] ;
N3, 3 = Chop [Numerator [TF [s] [[3, 3]]]]

1.665 s3 − 1.665 ps2 + 20.1463 s2 + 40.8219 ps − 197.563 s
+ 245.734 p − 1283.35

AUGUST 2007 « IEEE CONTROL SYSTEMS MAGAZINE 133

systems (number of inputs equal to number of outputs).
The first step in this direction is to pair inputs and outputs
suitably. We consider the closed-loop system achieved by a
full-rank, state-feedback, pole-assignment compensator for
the aircraft system as an illustrative example. Note that
although we use a closed-loop system as the starting point
in the following examples, the decoupling methods dis-
cussed here can also be used with the open-loop system.

To determine the interaction between inputs and out-
puts of the system at a given frequency such as dc, the rel-
ative gain array (RGA) of the system is examined:

Noting that rows and columns of the RGA sum up to one
and the entries near to 1 indicate strong interaction between
corresponding inputs and outputs, it is best to control out-
put 1 through input 3, output 2 through input 2, and output
3 through input 1 for the given system. Hence, using a static
precompensator, the inputs are rearranged as required.

Note that the third input to the closed-loop aircraft system
is multiplied by −1, since output 1 for a step signal to this
input yields a negative steady-state value (that is, entry (1,
3) of Ts2(0) < 0) as can be observed below.

The RelativeGainArray[] command is also used to deter-
mine input-output pairings suitable for a given frequency
using a second argument. PCS also provides a command
called RelativeGainArrayNumberPlot[] to determine such
pairings in various frequency bands.

The second step in input-output decoupling design is to
determine or establish the row (or column) diagonal domi-
nance of the system. A system is row (column) diagonal domi-
nant over the bandwidth of interest if, for all rows (columns),
the sum of the absolute values of the off-diagonal entries in a
row (column) is smaller than the absolute value of the diago-
nal entry of the same row (column) of the transfer function
matrix of the system evaluated at s = jω for all frequencies
over the same bandwidth. PCS comes with a set of tools for
analyzing and designing systems using the concept of diago-
nal dominance. It is possible, for example, to draw the
Nyquist array, inverse Nyquist array (with Gershgorin and
Ostrowski circles, if required), column (or row) dominance
ratio plots, Perron-Frobenius (PF) eigenvalue/eigenvector
plot, singular value plot, and characteristic value plot for sys-
tem analysis. The Nyquist array, for instance, is an array of
Nyquist plots of the entries of the system transfer function
matrix. Overlaying the Gershgorin circles, which are cen-
tered at the values of the diagonal entries and have a radius
given by the sum of the absolute values of all of the off-diag-
onal entries in the same row (or column), on top of the diag-
onal Nyquist plots shows the diagonal dominance of the
system at first sight:

The above Nyquist array reveals considerable interac-
tion between the first and third inputs of the system
since the Gershgorin circles evaluated through the
columns of the transfer function matrix include the ori-
gin at high frequencies. The same observation can be
made through the column-dominance ratio plot of the
system. The column-dominance ratio is defined as the
ratio of the sum of the absolute values of all off-diagonal
terms in a column to that of the diagonal term in that

0.05

−0.1

−0.1

0.1

−0.2
−0.25

−0.05

−0.15

0.2 0.3

0.05

−0.1

−0.1

−0.2
−0.25

−0.05

−0.15

0.1 0.2 0.3

0.05

−0.1

−0.1

−0.2
−0.25

−0.05

−0.15

0.1 0.2 0.3

0.05

−0.1

−0.1

−0.2
−0.25

−0.05

−0.15

0.1 0.2 0.3

0.05

−0.1

−0.1

−0.2
−0.25

−0.05

−0.15

0.1 0.2 0.3

0.05

−0.1

−0.1

−0.2
−0.25

−0.05

−0.15

0.1 0.2 0.3

0.05

−0.1

−0.1

−0.2
−0.25

−0.05

−0.15

0.1 0.2 0.3

0.05

−0.1

−0.1

−0.2
−0.25

−0.05

−0.15

0.1 0.2 0.3

0.05

−0.1

−0.1

−0.2
−0.25

−0.05

−0.15

0.1 0.2 0.3

In[61]:=

Out[61]=

NyquistArrayPlot [Tp, GershgorinCircles → ColumnDominance]

-GraphicsArray-

In[60]:=

Out[60]=

TransferFunction [Ts2] [0] // Chop

−0.018552

−0.00257846

0.105214

 0.0308186

0

0.2 −0.00807125

−0.254519

−0.0396429

In[58]:=
0

0
1

0

−1
0

1
0
0

P = ;

Tp = Chop [SeriesConnect [TransferFunction [P], Ts2]];

In[57]:=

Out[57]=

RelativeGainArray [Ts2] // Chop

0.0268729

−0.000575528

0.973703

−0.00535695

0

1.00536 −0.00478142

0.978484

0.0262974

Ts2 = StateFeedbackConnect [aircraft, Ks2] // Chop

0 0

0

0 0

0

0

0

0

0

0

0

0

0

1.

0
0

0

0

0

0

0

0

0

0

0

0

0

0

000

0

0

0

0

0

0

0

1.

1.

0

0

0

0

2.

−5.

−42.

−2.

−13.

−1.

−2.6782

−0.12

−1.665

−0.0732−0.308186 −12.3604

1.132

1.018

1.

0.210758

4.419

1.575

1.

In[56]:=

Out[56]=

.

134 IEEE CONTROL SYSTEMS MAGAZINE » AUGUST 2007

column. Obviously, smaller values of the column-domi-
nance ratio indicate less interaction between outputs for
each given input, where, for column diagonal domi-
nance, we require the value of column dominance ratio
to be less than one.

Note that column dominance exists for frequencies up to
around 4 rad/s for this system.

After determining the diagonal dominance the next
design step is to find a precompensator to increase the
level of diagonal dominance. Due to its simple structure,
using a diagonal input-scaling precompensator is conve-
nient in many cases. It is possible to use the PF eigenval-
ue plot to determine how much improvement of
diagonal dominance can be achieved by employing a
constant diagonal precompensator. The best row (col-
umn) dominance ratio that can be achieved with such a
compensator is given by λpf (jω) − 1, where λpf (jω) is the
PF eigenvalue of the transfer function evaluated at a
fixed frequency [5].

The above plot indicates that using a constant diagonal
scaling compensator, it is not possible to achieve diagonal
dominance for frequencies greater than 10 rad/s, since for
higher frequencies the PF eigenvalue is greater than two. If a
compensator is to be generated using the Perron-Frobenius
theorem, then it is possible to use the PerronFrobeniusCompen-
sator[] function of PCS to try to achieve diagonal dominance at
a given frequency yielding a static compensator, or a frequen-
cy band yielding a dynamic compensator of specified order.
For instance, the following produces a Perron-Frobenius com-
pensator with first-order diagonal entries to improve diagonal
dominance in the frequency range ω ∈ [0.001, 10].

It is possible to check that the compensator given in
Out[68] does not improve the diagonal dominance of the sys-
tem much (as predicted), and thus other methods need to be
exploited to achieve greater diagonal dominance. Usually a
pseudo-diagonalizing compensator, which is a nondiagonal
matrix, produces more satisfactory results in terms of achiev-
ing diagonal dominance at a given frequency at the cost of a
more complex controller structure. Here, the inverse com-
pensator F−1 is determined that best diagonalizes the inverse
system Q−1 = F−1G−1 in a least-mean-squares sense. For the
system we consider, it is possible to obtain a pseudo-diago-
nalizing compensator in steady state as follows:

The InverseSystem[] wrapper is used to denote the
inverse of a system. Moreover, note that PCS saves

0.988208

−0.0446807

−0.372339

−0.118587

0.0446813

1.00626 0.0104048

0.0745845

1.04053

In[65]:=

Out[66]=

InvF = PseudodiagonalizingCompensator [InverseSystem [Tp]];
F = Normal [InverSystem [InvF]]

.

In[64]:=

Out[64]=

PF = PerronFrobeniusCompensator [Tp, {ω, 0.001, 10}, 1]

0.

0.0546352 (s + 7.27777)
s + 2.57933

0.

0.933819 (s + 1.04323)
s + 2.19564

0.

0.

0.

0.
0.32222 (s + 6.45839)

s + 2.36055

3

3.5

2.5

2

1.5

0.001 0.01 0.1 1 10 100

P
F

 E
ig

en
va

lu
e

Frequency (Rad/Second)

In[63]:= PerronFrobeniusEigenvaluePlot [Tp];

14

12

10

8

6

4

2

0
0.001 0.01 0.1 1 10

C
ol

um
n

1

Frequency (Rad/Second)

C
ol

um
n

2

0.001 0.01 0.1 1 10
Frequency (Rad/Second)

0.15

0.125

0.1

0.075

0.05

0.025

0

C
ol

um
n

3

0.001 0.01 0.1 1 10
Frequency (Rad/Second)

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

cdrl = ColumnDominanceRatioPlot [Tp, {w, 0.001, 50}];In[62]:=

AUGUST 2007 « IEEE CONTROL SYSTEMS MAGAZINE 135

136 IEEE CONTROL SYSTEMS MAGAZINE » AUGUST 2007

computation time by not actually calculating the inverse of
the system until it is necessary, or it is told to do so. The
function InverseSystem[] can also be used with the Nyquis-
tArrayPlot[] command to depict an inverse Nyquist array.

The above plot reveals that for the system with a pseudo-
diagonalizing compensator, interactions for first and second
inputs are at acceptable levels, whereas a large interaction
persists for the third input at high frequencies. This fact can
also be observed from the step responses of the system.

In addition to calculating pseudodiagonalizing com-
pensators, PCS also helps in finding high-frequency align-
ing compensators, which are based on the idea of
minimizing the distance between minimum and maximum
singular values (depicted by SingularValuePlot[]) at a given
frequency, as an alternative method for improving diago-
nal dominance with nondiagonal constant compensators.

After establishing the diagonal dominance of a system,
each loop is designed separately using a diagonal output-
feedback compensator. Specifically, using the inverse
Nyquist array and Gershgorin bands it is usually possible
to determine stabilizing gains for such compensators [2].
The characteristic value plot, which is the locus of eigen-
values of the transfer function of a square system evaluat-
ed at the borders of the stability region (usually s = jω),
presents an alternative for determining stabilizing diago-
nal constant output-feedback compensators [13]. PCS
provides a command called CharacteristicValuePlot[] to
draw characteristic values. By using these techniques iter-
atively it is possible to achieve better decoupling for the
given aircraft system. However, our aim here is to
demonstrate the use of PCS rather than find the “best”
compensator for the given system.

CONCLUSIONS
We have found PCS to be useful and comprehensive. Spe-
cially, some of the controller design and synthesis tech-
niques are found to be unique to the toolbox and can be
helpful not only for practicing engineers but also for acad-
emicians pursuing research. Allowing exact and symbolic
calculations for manipulations of polynomial matrices
seems to be the greatest advantage of the toolbox. We
believe, therefore, that the toolbox can also be used to
teach some of the fundamental concepts of multivariable
systems to graduate and possibly undergraduate students.
We suggest that future improvements to the toolbox
include algorithms for analyzing and designing robust
control systems such as the techniques found in PolyX.

ACKNOWLEDGMENTS
The authors would like to express their gratitude to Dr. I.
Bakshee of Wolfram Research and Prof. M. Sebek and Dr.
M. Hromcik of Czech Technical University in Prague for
providing complimentary examination copies of PCS and
PolyX, respectively, for this review.

REFERENCES
[1] B. Paláncz, Z. Benyó and L. Kovács, “Control system professional suite,”
IEEE Control Syst. Mag., vol. 25, no. 2, pp. 67–75, Apr. 2005.
[2] N. Munro, Polynomial Control Systems: User Manual. Wolfram Research,
2006 [Online]. Available: http://documents.wolfram.com/applications/ pcs/
[3] The Mathworks, Control System Toolbox, [Online]. Available:
http://www.mathworks.com/products/control/
[4] PolyX, The Polynomial Toolbox, [Online]. Available: http://
www.polyx.com/
[5] H.H. Rosenbrock, State-Space and Multivariable Theory. London, U.K.:
Nelson, 1970.

In[69]:=

0.25

0.2

0.15

0.1

0.05

1 2 3 4 5

Input 1

1 2 3 4 5

Input 2
0.2

0.15

0.1

0.05

Input 3

0.1

0.08

0.06

0.04

0.02

−0.02
1 2 3 4 5

SimulationPlot [TF, UnitStep [t], {t, 0, 5}, PlotRange → All];

10

10 15

7.5
5

5

2.5

−2.5
−5

−5

−7.5
−10

−10

10

10 15

7.5
5

5

2.5

−2.5
−5

−5

−7.5
−10

−10

10

10 15

7.5
5

5

2.5

−2.5
−5

−5

−7.5
−10

−10

10

10 15

7.5
5

5

2.5

−2.5
−5

−5

−7.5
−10

−10

10

10 15

7.5
5

5

2.5

−2.5
−5

−5

−7.5
−10

−10

10

10 15

7.5
5

5

2.5

−2.5
−5

−5

−7.5
−10

−10

10

10 15

7.5
5

5

2.5

−2.5
−5

−5

−7.5
−10

−10

10

10 15

7.5
5

5

2.5

−2.5
−5

−5

−7.5
−10

−10

−10

10

10 15

7.5
5

5

2.5

−2.5
−5

−5

−7.5
−10

TF = SeriesConnect [F, Tp];
NyquistArrayPlot [InverseSystem [TF], {w, 0.001, 10},
 PlotRange → { {−10, 15}, {−10, 10} }, GershgorinCircles → ColumnDominance,
 CircleStyle → RGBColor [0, 0, 1]];

In[67]:=

[6] J.M. Maciejowski, Multivariable Feedback Design. Reading, MA: Addison-
Wesley, 1989.
[7] W.M. Wonham, “On pole assignment in multi-input controllable linear
systems,” IEEE Trans. Automat. Contr., vol. 12, no. 6, pp 660–665, 1967.
[8] M.T. Söylemez and N. Munro, “Pole assignment and symbolic algebra:
a new way of thinking,” in Proc. IEE UKACC Control'98, Swansea, UK,
1998, pp. 1306–1310.
[9] M.T. Söylemez and İ. Üstoğlu, “Designing control systems using exact
and symbolic manipulations of formulae,” Int. J. Contr., vol. 79, no. 11, pp
1418–1430, 2006.
[10] J. Kautsky, N.K. Nichols, and P. Van Dooren, “Robust pole assignment
in linear state feedback,” Int. J. Contr., vol. 41, no. 5, pp. 1129–1155, 1985.
[11] M.T. Söylemez, Pole Assignment for Uncertain Systems. Baldock, U.K.:
Research Studies Press, 1999.
[12] M.T. Söylemez and N. Munro, “A parametric solution to the pole
assignment problem using dynamic output-feedback,” IEEE Trans. Automat.
Contr., vol. 46, no. 5, pp. 711–723, 2001.
[13] I. Postlethwaite and A.G.J. MacFarlane, A Complex Variable Approach to
the Analysis of Linear Multivariable Feedback Systems. Berlin, Germany:
Springer-Verlag, 1979.

AUTHOR BIOGRAPHIES
Mehmet Turan Söylemez (soylemez@elk.itu.edu.tr)
received the B.Sc. degree in control and computer engi-
neering in 1991 from Istanbul Technical University (ITU),

Turkey, and the M.Sc. degree in control engineering and
information technology from the University of Manchester
Institute of Science and Technology (UMIST), U.K., in
1994. He completed his Ph.D. in control engineering in
Control Systems Center, UMIST in 1999. He is a professor
at the Control and Automation Engineering Division of the
School of Electrical and Electronics Engineering of ITU.
His research interests include inverse eigenvalue prob-
lems, pole assignment, multivariable systems, robust con-
trol, computer algebra, numerical analysis, genetic
algorithms, modeling and simulation of rail traction sys-
tems, PID controllers, and low-order controller design. He
is a Member of the IEEE.

İlker Üstoğlu received the B.Sc. degree in electrical
engineering from Istanbul Technical University (ITU),
Turkey, in 1997 and the M.Sc. degree in control and com-
puter engineering from ITU, in 1999. Since January 1998,
he has been working in the Electrical Engineering Depart-
ment of ITU as a research assistant. His research areas
include multivariable systems, robust control, computer
algebra, and low-order controller design.

Family Connections

There are many occasions when we use a group of
points joined either by lines or by arrows to

depict some situation which interests us; the points
may stand for people or places or atoms, and the
arrows or lines may represent kinship relations or
pipelines or chemical bonds. Diagrams like these are
met with everywhere, under different names: they
are called variously sociograms (psychology),
simplexes (topology), circuit diagrams (physics,
engineering), organizational structures (economics),
communication networks, family trees, etc.
D . KONIG was
the first person
to suggest that
the generic name
‘graph’ be used
for all of them,
and to undertake
a systematic study
of their properties.

—From C. Berge,
The Theory of
Graphs, 1966,
reprinted by
Dover, 2001,

p. vii.

Shadows and Light

Graph theory, more than any other branch of
mathematics, feeds on problems. There are a

great many significant open problems which arise
naturally in the subject: many of these are simple to
state and look innocent but are proving to be
surprisingly hard to resolve. It is no coincidence that
Paul Erdos, the greatest problem-poser the world has
ever seen, devoted much of his time to graph theory.
This amazing wealth of open problems is mostly a
blessing, but also, to some extent, a curse. A blessing,
because there is a constant flow of exciting problems
stimulating the development of the subject: a curse,
because people can be
misled into working
on shallow or dead-
end problems which,
while bearing a
superficial resem-
blance to important
problems, do not
really advance the
subject.

—From B. Bollobas,
Modern Graph Theory,

Springer, 1998,
p. viii.

AUGUST 2007 « IEEE CONTROL SYSTEMS MAGAZINE 137

