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Preface

This textbook contains the course of |ectures about some concepts in functional
analysis that | have delivered periodically to Ph.D. students of civil engineering at
the Budapest University of Technology and Economics.

Functional analysis is a study of abstract, primarily linear, spaces resulting
from a synthesis of geometry, linear algebra and mathematical analysis.
Functional analysis generalizes mathematical disciplines, and its popularity
originates from its geometric character: Most of the principal results in functional
analysis are expressed as abstractions of intuitive geometric properties of the
three-dimensional space.

The importance of getting acquainted with functional analysis lies in its
frequent use in the up-to-date engineering literature. | aim to present the basics of
functional analysis believed necessary to understand the mathematical theory of
the finite element method, variational solution of boundary-value problems, as
well as other praoblems of continuum mechanics.

For the purpose of this text, it is only necessary to acquire a simple
understanding of the Lebesgue integral and some other concepts related to it.
Hence, | have decided to avoid introducing a formalized framework for the
L ebesgue measure and integration theory. However, a short introduction to the
L ebesgue integration theory is given in Appendix B.

Some of the caculations of this textbook were made using the symbolic-
numeric computer algebra system Mathematica. | found this system very useful
for presenting these concepts because it does algebra and calculus computations
quickly in an exact, symbolic manner.

During the preparation of this textbook, | received helpful suggestions from
Professors Zsolt Gaspér, Béla Palancz and Tibor Tarnai whom | would like to
express my thanks. | would also like to thank Lajos R. Kozék for his help in
preparing this manuscript for the press.

This work was partially supported by the grant T 037880 from the Hungarian
Scientific Research Fund (OTKA).

Budapest, April, 2006. Gyorgy Popper
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1. Vector spaces, subspaces, linear manifolds

It is well known, that the sum of vectorsin a plane and the product of a vector
by real numbers results in a vector in the same plane. In other words, the set is
closed for these two operations. These "space”-properties of the geometric vector
space hold for some other sets too, e.g. for some function sets. Hence it is
advantageous to introduce the following definition:

Linear space or vector space is a non empty set X of elements, often called
vectors, for which two operations are defined:

1. Addition, that isif x,ye X then x+ye X
2. Multiplication by scalar, thet isif xe X and a is
arbitrary scalar, thena xe X .
These two operations are to satisfy the usual axioms:

If x,y,ze X and o,pe R (or C)*, then

1 X+y=y+Xx (law of commutatitvity);

2. (x+y)+z=x+(y+2z) (law of associativity);

3. there exigs an element ® € X such, that ©® + x=x for any xe X

(existence of the zero element);
4. for any xe X, thereisan element — xe X such asthat x+ (- x)=0

(existence of negative elements);

5. a(X+Yy)=ax+ay; (law of distributivity with respect to vectors);
6. (0 +B)x=ax+pXx; (law of distributivity with respect to scalars);
7. (ap)x=a(Bx); (law of associativity for scalar multiplication);

8. 0x=0 and 1x= x.

If the scalars areredl X isared vector space, while if the scalars are complex
X is acomplex vector space.

' R (C) denotes the set of real (complex) numbers



Examples

E.1.1. The set R"of all real ordered n-tuplesx=(X,...,%,), Y=Yy, V1), ---
is a rea linear space if addition is defined by Xx+y= (X +V,,... X, +Y,), and
scalar multiplication is defined by o x = (00 X,,...,a X,) with ae R. The zero
vector: © =(0,...,0).

E.1.2. The st C'%[a,b] of al (real-valued) continuous functions on a finite
interval a<t <b with addition and real number multiplication

(f+a)t)=ft)+at) (af)t)=af(t) telab]
forms alinear space. The zero vector ©: f(t)=0 for dl te [a,b].
Note, that C[a,b]c C"%(a,b) istrue, because f € C”[a,b]= f e C%(a,b).

More generally, C'“[a,b] denotes the linear space of k-times continuously
differentiable functions on a finite closed interval [a,b]. (This means the set of

functions whose derivatives at least up to order k inclusive are continuous
in[a,b].)

For example, the function

t2
t+—, if -1<t<0

f (t): 22

t— U it o<t<1
2

defined on the interval —1<t <1, is once continuously differentiable but only
once, i.e. f(t)e CW[-11] but its first derivative

g(t):%(t):1—|t|,—1StS1

belongs only toC'?[-1,1], (see Fig.1.1).



Using Mathematica:

IN1]:= Clear[£f, g]

2 2
2= £[t ] := Piecewise[{{t+£2, -1<ts0}, {t—%, 0<ts1}}]

glt_1=D[f[t], t] // Simplify

nl t=0
ou[3)= Indeterminate t==-1||t=1
1-t O<t<1
1+t -1<t<o0

inf4:= Plot[{£[t], g[t]l}, {t, -1, 1},

PlotStyle- {
{Thickness[.008]}, {Dashing[{.04, .02}]}
Y.

Prolog- {
Text["£f", {0.9, 0.6}],
Text["g", {-0.6, 0.6}]
}

Out[4]= = Graphics -

Figurel.1. Only once differentiable function.

In spite of the generality of vector spaces, it is easy to find a class of functions
which does not create alinear space:

E.1.3. The class of postive functions with usua addition and number
multiplication rules (introduced in E.1.2.) does not form a linear space. Really, if
f(t)>0 then (1) (t)<0.



E.1.4. The set of functions with property
| f(1)]<1, telab]

does not form alinear space (if f # © and the numbero > 0 is chosen sufficiently
large, then | o f | >1).

However, in general: The class of bounded functions with usua addition and
number multiplication is alinear space.

Direct product. If X and Y are two sets, then the set of all ordered pairs

{(x,y): xe X,ye Y}

is called direct- or Cartesian or Descartes product of sets Xand Y and is
denoted by X ®Y .

The direct product X ® Y can be obtained usng the Mathematica function
Outer[], which combines each element of the list given in its second argument
with each element of the list given in its third argument, while applying the
function given in the first argument to all of the possible pairs. Theresult isin the
form of alist:

In1]:= Outer[f, {a, b, ¢}, {1, 2}] (* outer product )

ouf1]= {{ffa, 1], f{a, 2]}, {f[b, 1], £[b, 2]}, {f[c, 1], f[c, 2]}}

InN2:= Outer[List, {a, b, ¢}, {1, 2}]

ouf2= {{{a, 1}, {a, 2}}, {{b, 1}, {b, 2}}, {{c, 1}, {c, 2}}}

In3]:= Flatten[%] (» flatten all levels in the list x)

ou3l= {a,1,a,2,b,1, b, 2, ¢ 1,c 2}

4= Flatten[%%, 1] (» flattens the topmost level in the list x)
oufd= {{a, 1}, {a, 2}, {b, 1}, {b, 2}, {c, 1}, {c, 2}}

Consequently it is reasonable to define the function:

In5:= Descartes[x , y ] := Flatten[Outer[List, x, y], 1]
X={a, b, c};
Y= {1, 2};
Descartes[X, Y]

oufgl= {{a, 1}, {a, 2}, {b, 1}, {b, 2}, {c, 1}, {c, 2}}
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In Mathematica, the direct product can occur as an argument or definition
domain of many inner functions. For example:

9= Plot3D[x’+y*-1, {x, -3, 3}, {y, 0, 1}]

ou[9= = SurfaceGraphics -

Figurel.2. lllustration to the use of Descartes product.

E.1.5.1f X and Y aretwo linear spaces, then the direct product
X®Y ={(x,y): xe X,ye Y}
isalinear space with the following operations:
06, Y+ (60 ¥, ) = 06+ %, Vi + Y2 ) X% € X, Yy, €Y
a(x,y):(ax, ay), xe X,yeY, a scaar.

Note, that the addition in vector space X ®Y is defined using the additions of
both linear spaces X and Y.

Subspaces. A nonempty subset S of a vector space X is called a linear
subspace of X, if S itself is a linear space with respect to addition and scalar
multiplication defined on X . In other terms, subspaces are closed for vector
addition and multiplication by scalar.

The subspaces are linear spaces, hence all subspaces contain the zero vector
O.

E.1.6. Any straight line and plane running through the origin of the three-
dimensional geometric vector space, isits linear subspace.

11



Among all subsets of the plane shown in Figure 1.3, only the sketches 1.3.c)
and 1.3.d) contain subspaces of the plane.

M M

M=point of origin

d) €) f)

Figurel.3. Subsets and subspacesin R°.

E.1.7. In the vector space C'”[a,b] defined in the example E.1.2, the subset

{f:f(a)=f(b)=0} isalinear subspace. The
subset

{t:f(a)=f(b)=1} is not a linear subspace.

E.18. If M and N are linear subspaces of a linear space X, then the
intersection M N N isalso alinear subspace of X . The set

M +N ={m+n:me M,ne N}
isalinear subspaceof X, too. If

M+N=X aadM nN ={0},

12



then both M and N is said to be the complement of the other with respect to X,
and the vector space X iscalled the direct sumof M and N, and is denoted by
X=M@&N.

For example see the sketch:

m+n
A N

Vi
ey

Linear manifold or affine subspace. Any subset of a vector space X whichis
of form {x,+s:se S}, where x,e X is a fixed vector, and S is a linear

subspace, is said to be a linear manifold or affine linear subspace of X. The
affine subspace {x,+s:se S} can aso be written in the form of direct sum

X @S.

Linear manifolds (withx,#®) can be considered as generalizations of
straight-lines or planes which do not contain the origin.

13



2. Dimension, spanning sets and (algebraic) basis

The vectors x,, X,,..., X, of alinear space X are said to be linearly dependent
if there are scalars a,, a,,...,a, not al of which are zero such that

X +o,X ..t X =0,

The vectors x;, x,,...,x, ae linearly independent if this equality holds only if
al of the scalars a,,a.,,...,0,, are zero.

The infinite set of vectors x, x,,..., X,,... issaid to be linearly independent if al of
itsfinite subsets are linearly independent.

Note, that the single vector x# © forms alinearly independent set because the
only way to have ax=0 is a = 0.

An important example of linearly independent vectors is the polynomials. For
example, the powersof x, that is {J, X, x2,...,x”} form a linearly independent set.
We make the proof for n=2 only, because it can be extended directly (without
new idea), to the general case.

Define the linear combination
p(x)= 8, +a,x+a,x>

and determine when p(x)=0. This identity implies that al derivatives of p(x)
are also identically equd to zero. That is,

p(x)=a, +ax+a,x* =0,
X)=  a+2ax=0,
(x)= 2a,=0.

The last equation implies a, =0, then from the second one: a, =0, and then
the first oneimplies a, =0. Therefore, p(x)=0 if andonly if a =0, i=0,12, ...

Dimenson. The vector space X is caled n-dimensional or finite-
dimensional, if X contains n linearly independent vectors but any n+1 vectors
of X arelinearly dependent.

The linear space X is said to be infinite-dimensional, if for any positive
integer n, n linearly independent vectorsof X can be found.

14



Spanning set. A subset S={x,,X,,...X ,...} of a vector space X is said to

span or generate X, if every xe X can be written as a linear combination of the
elementsof S.

Basis. A set of vectors x;,X,,...,X, of a vector space X is said to be an
algebraic or Hamel basisfor X, if and only if

1. the set spans X, and

2. the vectors  X,X,..,x, ae linearly
independent.

Theorem 2.1. Let {x,X%,,...,x,} denote a basis for a vector space X . Then
every vector xe X isaunique linear combination of x;,X,,..., X, .

Proof: By contradiction: if Xx=o,X +...+a,X =p,%+...+B,X, , then

X—=X=0= (0, =B X% +..t(a, =B, )X,. But  X,%,..,x, ae linearly
independent, therefore the coefficients of x,X,,...,Xx, must be zero. Hence

o =B, =P,

E.2.1. Consider the vector space C'%[a,b] of continuous functions defined on
the finite interval [a,b]. Its subset consisting of polynomias of degree <n is a

linear subspace in which the functions t“(k=0, 1, ..., n) are linearly independent.
An arbitrary polynomial of degree < n can be expressed as alinear combination

n
o, +a,t+o+a,, .

n+1

Therefore the vectors t“(k=04,...,n) span this (n+1)-dimensional linear
subspace and create its Hamel basis.

The linear space C'%[a,b] is infinite-dimensional. Redlly, for any positive
integer n the functions

() =1,%(t)=t,..., %, (t)=t"
are linearly independent and are elements of C'%[a,b].

The following example contains one of the basic concepts of the finite element
method:

E.2.2. Let C”[-11] denote that linear subspace of the vector space C”[-11],
which consists of piecewise linear polynomials on the intervals [-1,0] and[0/].

15



This means that an arbitrary function p(t)e C/%[-11] can be written in a unique
way as

p(t)=at+b, forte [-10]
p(t):{ p,(t)=a,t+h,, forte[0]

where in consequence of the continuity condition p,(0)= p,(0) follows b, =b, . If
we express the coefficients a,a,,b=b,=b usng the function values
g(-1), g(0), g(1) at the nodal- points —1,0,1, then

—-tg(-1)+(1+t) g(0),if te [-1,0]
p(‘):{ (1-1)g(0)+tg(1), if te[01]

This piecewise polynomial can be expressed in the form of alinear combination

p(t)=9(-1) ¢:(t)+ 9(0) ,(t)+ (1) 5(t)

where
_[-t,if te[-10] | [1+tif te[-10] _[0,if te[-10]
%(t)‘{ 0,if te [0.] 2(t)‘{l—t,ifte[o,l] 3(t)‘{ tif te [0]]
see Figure 2.1.
o, (t) ,(t) s(t)
1 1 1
1 0 1 1 0 1 1 o0 1

Figure 2.1. Basisin the function space C,'” [-1,1].

The functions ¢,(t), ¢,(t), @,(t) are linearly independent (see Figure 2.1.) and
any function p(t)e C “[-11] isalinear combination of ¢(t), @,(t), ,(t). Hence
these functions span (generate) this 3-dimesional function space.

Computing the basis functions for the vector space C,'” [-1,1] can be made
using Mathematica:

In[1]:= Clear[p]
plt ] := Piecewise[{{arit+b, -1<t<0}, {axt+b, 0t <1}}]

16



IN5]:=

ou9)=

I 6]:=

ou[6]=

IN7]:=

oul7]=

In[8]:=

(» g[-11,g9[0],g[1] given function values of p[t ] in node points -1,0,1 *)

s = Solve[Map[p, {-1, 0, 1}] == Map[g, {-1, 0, 1}], {a1, a2, b}] // First

{a1—» -g[-1] +g[0], a2~ -g[0] +g[1], b~ g[0]}

(* substitution of the solution into p[t ]: %)

ss=p[t] /. s
0gl0] +t (-g[-1] +g[0]) -1<t=<0
g[0] +t (-g[0] +g[1]) 0O<t=1

sss= {ss[[1, 1, 1]1, ss[[1, 2, 1]]}
{g[0] +t (-g[-1] +g[0]), g[0] +t (-g[0] +g[1])}

(xarrange to form p[t ]:=g[-1] ¢[1] [t]+g[0] ©[2] [t]1+g[1] @[3] [t]*)
fi = Table[Coefficient[sss, g[k-2]]1, {k, 1, 3}]

{{’tl O}I {l+tl l’t}l {OI t}}

Table[
ox[t ] =Piecewise[{{fi[[k, 1]], -1<t <0}, {fi[[k, 2]], O<t=<1}}],
{k, 1, 3}]

0 1 0 |:|l+t -1<t=<0 |:|O -1<t=<0
{ t =t=0, "9 ¢ octe1 ¢ Ostsl}

(* drawing the basis functions #)
Do[Plot[ek[t], {t, -1, 1}, AspectRatio-» 1/3,
PlotStyle -» Thickness[0.01]], {k, 1, 3}];

1
0.8
0.6
0.4 r
2T

0.8
0.6
0.4 1
0.2 r

17



Training problem: Let Cél) [-1,1] denote the linear subspace of the vector space
CW[-1,1] which consists of piecewise cubic polynomials on the intervals [-1,0]
and [01]. Similarly to example E.2.2, determine the basis of the function space
C[-1,1] and plot it using Mathematica!

A possible solution is shown in Appendix A.

E.2.3. Consider the linear space X whose elements are infinite sequences of

real numbers x=1&,&,,...} with ) & <. The subset of X consisting of vectors
k=1

e ={1.00,..}

e, ={010,..}

e =10,..,01,0,..}

(k)

span X which is infinite dimensional (really, for any positive integer k the
vectors e,...,e, are linearly independent and are elements of X). Clearly, all of
the vectors g, e, ... are linearly independent, too. However, they do not form a
Hamel basis (because {g,e,,...} isnot afinite set).

Itistrue, that any element of X can be written in the form

X=) 0,8
k=1

but this requires to define the convergence of infinite series for vectors. Later on,
the concept of bases will be extended.

E.24. Let S denote those infinite sequences of real numbers in which all
elements except for afinite number of elements are zero. S is a subspace of the
linear space X specified in example E 2.3. Any vector xe S can be written as a
linear combination of a finite set {el,ez, eh} Hence, these vectors form an

agebraic (Hamel) basis for the subspaceS.

18



3. Linear operator

Operator. The term operator is synonymous with function, map or mapping
and transformation.

Given two linear spaces (sets) X and Y, an operator T from X to Y,
denoted T: X — Y, isarule that assigns one and only one vector y=T(x)e Y to
every vector xe Dc X. Thesubset D of X isthe domain of T and the image
of D

R={T(x):xe D}
istherangeof T.

The operator T isconsidered to be given if both its domain D, co-doman Y,
and the rule of transformation are given.

The operator T: X — 'Y issaid to be one-to-one or injective, if
X %% = T04) = T(x,).

Inother terms, T: X — Y isone-to-one, if for every ye R thereis exactly one
xe X suchthat y=T(x).

The operator is said to map X onto Y or iscalled surjectiveif R=Y .
If T isboth injective and surjective, it is called abijection from X to Y.

E.3.1. Let R denote the set of rea numbers and R* the set of positive real
numbers. Using the rule T(x)= x* define the following operators (functions):

1. T,:R —>R. This operator is not one-to-one, since both —x and + x are

mapped into x*. It is not surjective either, since the negative real numbers arein
the co-domain R but not inthe range R".

2. T,: R —>R". This operator is not one-to-one, but it is onto.
3. T;: R —> R. This operator isone-to-one, but it is not onto.

4. T,:R" > R". Thisoperator isbijective, i.e. it is both one-to-one and
onto.

Note that although the rule T(x)=x* defining each operator T,,T,,T,, and T,
is the same, the four operators are quite different.

19



Similarly, changes in the domain (e.g. in the boundary conditions) of a
differential operator lead to a different operator (having properties different from
the original one).

Linear operator. Anoperator T : X — Y issaid to be linear, if the domain D
of T isalinear space (that is X or asubspaceof X), and if

T(ax+py)=aT(x)+pT(y)
for a,B scalarsand x,ye X.
For alinear operator T, we usually write Tx instead of T(x).

E 3.2. Any mxn (read " m" by "n") real matrix A represents alinear operator
T:R">R".

The operator T isinjective if and only if rank(A)=n; and T is surjectiveif and
only if rank(A)=m.

(Redlly, if rank(A)=n then from the inequality A(x—y)#© follows x—y#®©.
That is, if x#y= Ax# Ay. The case rank(A)=m is easy to verify by partition
of A.)

E 3.3. The linear operator of differentiation

di . CY[a,b]c C¥a,b] - COfa,b]
X

is surjective, i.e. onto the range C%[a,b] (surely, every continuous function is
integrable), but is not injective (the derivatives of f(x) and of f(x)+const are
equal).

The composition of two functions, f: X —Y and g:Y — Z, isdefined by

(ge f)(x)=g(f(x))

In Mathematica the composition of functions f and g can be calculated using
the function Composition(]:

1= £[x ] :=%% g[x ] :=/x-1
hl[x ] = Camposition[£f, g] [X]

o= -1+x

In3:= h2[x ] = Camposition[g, f][x]

20



or aternatively

IN4]:= hl[x ] = fegex
ouf4= -1+x
5= h2[x ] =gefex

ou[s= -1+ x>2

If T:X—>Y and T,:Y — Z arelinear operators, then the composition T, e T,
isalinear operator, too. Really,

(Tz °T1) (OLX1+ sz): T, ((l Tl(xl) +P Tl(xz)):

=aT, (Tl (Xl)) +BT, (Tl (Xz)): o (Tz °T1)(X1) +P (Tz °T1)(X2)-

Null space. The null space N(T) of the linear operator T: X — Y isthe set
N(T)={x:xe X, Tx=0}.

The null space, also known asthe kernel of the transformation T: X — Y isthe
subset of elementsof X which has the zero image.

It is easy to see that the null space of T isalinear subspace of X .

(Indeed, if x,e N(T) and x,e N(T), then Tx =@ and T x,=0. The linearity
implies T(ax +BX,)=aT X +BTx, =0.Thatis, ax +px, € N(T).

If A isan mxn matrix, then the Mathematica function NullSpace[A] gives a
list of vectorsthat forms abasis for the null space of the matrix A.

Asan example:

1= A={{1, 0,1, 2}, {0, 1, 1, 1}, {0, 0, 0, 0}}; MatrixForm[A]

QOut[ 1]//MatrixForm=

IN2:= B = NullSpace[A]

OUI[Z]: {{721 ’ll OI l}, {711 ’ll ll O}}

21



Check:

I3:= A. (aB[[1]]+BB[[2]]) (* Notice the symbolic computation =)

Ouf3= {0, 0, 0}

If the matrix A isnonsingular, then NullSpace[A] givesthe empty set { }.

(Notice, that the Mathematica function NullSpace [A] is available to compute
all the solutions of ahomogenous set of linear agebraic equations.)

The following result is useful in the study of operator equations.

Theorem 3.1. A linear operator, T: X — Y, isone-to-oneif and only if its null
spaceistrivial, N(T)={0}.

Proof: The linearity of T implies Tx=T(x+®)=Tx+T® and hence
TO=0,thais ©c N(T).

If Tis oneto-one, then x= O impliesTx#TO, that is Tx#O. In other terms, if
x# 0O then xe N(T). Hence N(T)={0}.

Conversely, if N(T)={®}, then the equality Tx, =Tx, implies T(x,—x,)=0©, that
is, % —X,e N(T) and since it is supposed that N(T)={0}, it follows x, = x,.
Thus, if N(T)={®} then the operator T is one-to-one. With this the proof is
completed.

Linear operators on finite-dimensional spaces. The study of continuous
systems often leads to solving boundary-value problems. The solution is a vector
in an infinite-dimensional space. The numerical methods approximate the solution
in finite-dimensional subspaces of the infinite-dimensional space. Hence it is of
great importance that:

Linear operators on finite-dimensional vector spaces can be represented by
matrices.

Let X and Y be finite-dimensional linear spaces, and let T: X —Y be a
linear operator. Let {¢, .., 0, } and {w, ...y, } be bases for X and

Y respectively. Then xe X and ye Y can be expressed uniquely as

X:Zai(pw y:Zle//j
i=1 j=1

22



Thusfor any xe X, it can be written

y=TX=T{Zai @J:Zai To=2 By,
i=1 i=1 j=1

Since Tg,e Y, thatistheimage of ¢ isan eement of the space Y we can write

To :thi V.
=

If we subdtitute this formula into the previous one, then because

24y, = ZZHI oYy e get
i1 -1

j=li=1

i(it“ lj‘/’J :gﬁj‘/’J’

i=1

and the uniqueness (see theorem 2.1.) implies

Zt“al— i j=1...,m
or in matrix form

A ]

L oy | B |

The matrix [t; ] is said to represent the linear transformation with respect to the
bases {@,.... ¢, } and {y,.... Wi}

Inverse operator. If T: X — Y isaone-to-one linear operator, then the linear
operator T™:R(T)cY — X, which to every element ye R(T) assigns the

element xe X, for which T x=y, is called the inverse operator to the operator
T.

Functional. If the operator to vectors of alinear space X assigns scalars (e.g.
if Y=%=R, the set of real numbers), then the operator is called functional on X .
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Since afunctiona is a special operator, the functional is said to be linear when
it isalinear operator.

E.3.4. Linear functional ise.g. f(x)= | x(t)dt

QD C—y T

Bilinear functional. Let X ®Y ={(x,y):xe X,ye Y} denote the direct or
Cartesian product of two real linear spaces X and Y . A functional

b(x, y)=(x y)
defined on X ® Y iscalled bilinear, if
(0 +%[y) =a(x]y)+(x|y)
(Xays+y,) =a(X|y;) +(xy,)
foral x,x,%e X, vy, y,Y,eY and ae R.
The bilinear functional (x|y) (defined on X ® X)) is said to be symmetric, if

(x|y)=(y|x), and is positive definite if (x|x)>0 and (x|x)=0 if and only if
X=0.

The bilinear functional is sometimes also called bilinear form.

Algebraic dual space. Let X and Y be two real linear spaces. The set of all
linear transformations from X to Y isitself alinear space and it is denoted by
L(X,Y).

For example, L(ﬂt”,ﬂtm) is the set of al real mxn matrices, which is clearly a
linear space. When Y =%*, L(X,Y) becomes the space of all linear functionals
on X . This vector space s called the algebraic dual of X and isdenoted by X' .
Thatis, X = L(X,%Y).

Linear functionals on X are often expressed in the form of dual-pairs, that is
as

f(x)=(f]x)

where fe X", xe X and (.|.) isabilinear map from X" ® X into R*. That
is, (.].): X"®X - R

E.35. If X isafinite or n-dimensiona vector space, then its algebraic dual
X" isafinite dimensional vector space, too.
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Thereisa special relation between the basesof X and X" . Let {x,...,x.} bea
bassof X.Thenany xe X uniquely can be written in the form

X= Zn:apq )
i=1

If F isalinear functional on the space X, then evidently

that is, every linear functional is uniquely determined by its valuesin basis vectors
X5, X, - Define the linear functionals 1,...,1, by the formula

We show that Ij is a linear functional. Indeed, for vectorsx:Zam,

i=1

y=> B;x and for any scalars ., %, we get

i=1

n

Ij(ux+Xy):<Ij

(3B % | =+, = 9+ 34, ).
i=1

With respect to the trivial relation x =0x +...+1x +...+0x,, it is obvious
that the relationship between {1, | and {x } is

=) =] o

0, ifizj

Since the basis vectors x are linearly independent, |. are also linearly

j
independent. Therefore the set {Ij} form a basis for the dua space X* and we

cal {1, } the dual basis

Using the formula Ij(x)z <Ij | x> =q;, any linear functional F(x) can be written in
usual form of linear combination
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4. Normed spaces

Norm. Let X be alinear space. A functional ||-|: X — %" (the non-negative
real numbers) isanormon X if and only if

N1. | x| =0 for every xe X and | x| =0 implies x=0;
N2. o x|=]a|[x]. xe X, a-isascdar;
N3. | x+y|/<|x|+] y[| X ye X (triangle inequality).

Normed vector spaces. Let X be alinear space and | . | be anorm on X.
Then the pair (X, |- ||) is called normed space or normed linear space.

Distance. The function
d(x,y)=|x-y[, xyeX

is a possible measure for distance and is said to be distance between vectors x
and y.

Note that this definition of distance (induced by the norm) is a special distance

(metric) defined in the theory of metric spaces. The conditions for general
distance in metric spaces are:

1. d(x,y)=0 and d(x,y)=0 if andonly if x=y;

2. d(x,y)=d(y,x);
3. d(x,2)<d(x,y)+d(y,z).

E.4.1. With the linear space R" (of n-tuples of rea numbers) the most
frequently associated norms are:

Ix], =22 1% (sum norm),
k=1
N 12
|x],= [Z ij ( Euclidean norm)
k=1

(however, Z xf , iIsnot anorm because it contradicts axioms N2 and N3)
k=1

26



x| = r?%lx| X | (max or infinite norm).

With the same vector space %", the different norms | x||l, I x||2, and | x|_
define different normed spaces, usualy denoted 1,12 and |7".

n

Notice, that the norms and the corresponding normed paces in above are
special cases of the normed spaces 1 with norms

n 1/ p
Wo=(Six| " 15pem a0 b= pmi,

p—e

In Mathematica 5.0 , vector p-norms can be computed using the function
Norm [x,pl]

where p can be omitted if p=2.

IN1:= Clear["Global x"]
x={a, b, c}; y=(3, -4};
{Nom[x, o], Norm[x], Norm[x, 1]}

ou[g= {Max[Abs(a], Abs(b], Abs[c]],

\/ Abs[a]2+ Abs[b]2 + Abs[c] 2, Abs[a] + Abs[b] +Abs[c]}

I4]:= {Nomm[y, =], Norm[y], Norm[y, 1]}

Oul4= {4, 5, 7}
5= {Nomm[x, p], Nomm[y, p]}

1 1
ou[s]= {(Abs[a]P+Abs[b1P+Abs[c]p> P, (3P 4P) P}

Using Mathematica it is easy to sketch the unit balls

S, = {xe %2: x|, <1}.
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Anexamplefor p=12,00:

In[6]:= << Graphics ImplicitPlot™
ImplicitPlot[Nomm [{x1, x2}, 1] == 1, {x1, -1.2, 1.2}, {x2, -1.2, 1.2},
AxesOrigin- {0, 0}, AxesLabel -» {"x1", "x2"}, PlotStyle -» {Thickness[0.008]}]

x2

N
y

Qut[7]= = ContourGraphics =

In[g:= TmplicitPlot[Nomm [{x1l, x2}] == 1, {x1, -1.2, 1.2}, {x2, -1.2, 1.2},
AxesOrigin- {0, 0}, AxesLabel -» {"x1", "x2"}, PlotStyle -» {Thickness[0.008]}]

x2

Y
/

out[8]= = ContourGraphics -
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In[9:= TmplicitPlot[Nomm [{x1l, x2}, o] = 1, {x1, -1.2, 1.2}, {x2, -1.2, 1.2},
AxesOrigin- {0, 0}, AxesLabel -» {"x1", "x2"}, PlotStyle -» {Thickness[0.008]}]

x2

out[9]= = ContourGraphics -

E.4.2. With the space C”[a,b] of continuous functions on the interval [a,b]
different normed spaces can be established. The norms

as<t<b

||X||1=T [ X(t) | dt. ||X||2=[T |X<t)|2dt] and | x|, = max(| x(t)|

definenormed spaces ~ Lj[a,b], L3[a,b] and Cl[a,b], respectively.

Note, that the norms in example E.4.1 are the discrete analogues of the normsin
E.4.2.

In Mathematica e.g. the norm of the space L2[a,b] can be defined as follows:

In[1]:= Func2Norm[f , a , b ] := '\/jabAbs[f[t] 12dt
3

2= g[x ] :=x

I3l:= Func2Norm[g, -1, 1]

o
Oou(3= J
7

4= %// N

Ouf4= 0.534522
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E.4.3. The vector space C'?[a, b] of twice continuously differentiable functions
onthefinite interval [a,b] with the norm

1/2
; o ax(®) 2 2l d2x(t) [
||x||=[f|x<t>|2dt+ Rt dtJ
2 b dixft) 5 \2
- dt
;i dt*
is also anormed space.
The same linear space C?[a, b] with the norm
2
| x]|= max| xt)] + max dx_<t>\+max d*t)
a<t<b ast<b| ast<sb |t

is another normed space.

E.4.4. Thereal valued function

[; Zdt]”z

is not a norm in the linear space C'Y[a,b], because it contradicts axiom NA1.

dx(t)

dt

b
Clearly, from J'x’(t)|2dt:0 it follows only X(t)=0 (and not x(t)=0)

everywherein [a,b].
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5. Convergence, complete spaces

Iterative methods are the only choice for the numerical solution of operator
equations. For this reason, it is necessary to extend the concept of convergence
and limit of sequences of numbers to sequences of vectorsin linear spaces.

Convergence. A sequence of elements {x,} in normed space X is said to be
convergent, if there exists X € X, so that the sequence of numbers Hxn —x*”

converge to zero. We refer tox” asthe limit of the sequence {x, } and write

X,—>X an—e o limx =Xx.

N—oc0

We emphasize that in this definition, the condition x e X is of fundamental
importance. Surely, the sequence of rational numbers

{1,1.4,1.41,1.414,1.4142, ...} in the normed space of real numbers (9(||)

converges to /2, but in the normed space of rational numbers (Rac, ||) this
sequence does not converge.

Cauchy sequence. A sequence {x. } in a normed space is called Cauchy
sequence, if

[%, = x| =0, as n,m-—soco.

Theorem 5.1 In normed spaces every convergent sequence is a Cauchy
sequence.

Proof: This followsimmediately from the triangular inequality
1%, =% | = | (6, = x )+ (6 =, )| <[ %=+ %0 = X |

supposing x, — X, X,— X & m,n— . (From the norm-axiom N2 it follows
X =l =] =0 b= ) =[x = x .

In the finite-dimensional space R", the converse of this statement is also true;
any Cauchy sequence is convergent. However, in general infinite-dimensional
spaces, a Cauchy sequence may fail to converge.

Complete space. A normed space X is said to be complete if every Cauchy
sequencein X hasalimit (in X).

Banach space. A complete normed linear space is called Banach space.
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Note, that not only normed spaces but other metric spaces may be complete
too, but Banach space may be only a normed space.

E.5.1. Consider the linear space X whose elements are infinite sequences of

real numbers x={&,&,,...} with i.sz <. Thenormin X can be defined by

k=1

[ x[l=4 2. &
k=1

and this (infinite-dimensional) normed vector space is usualy denoted by ¢ 2.

Let ¢ denote those infinite sequences of /2 in which al elements are zero,
except afinite numbers of elements. It is easy to see, that the sequence

x,={2% 22, ..,2",0,0, ..}e (3
does not have a limit, because the sequence

x={2% 22, ., 27200 L
does not belong to 7.

The completion of /3 is /2.

E.5.2. With the vector space C'°’[0,1] of continuous functions on the closed
interval [01], different normed spaces can be defined.

The normed space L,[0,1] defined by the integral norm

1
[ x|, =] [xt) ]t
0
is not complete, but the normed space C[01], defined by the maximum (infinite)
norm

| X[ = max

X(t) |

is complete, that is, a Banach space.
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To show, that the linear space C'”[0,1] of continuous functions with respect to

integral norm is not complete, it is enough to find a Cauchy sequence which does
not convergein L [01].

Therefore consider the sequence of continuous functions on interval [0,1] given
by

0, if OSISE—1
2 n
n .1 1 1
t)=y nt——+1 if =—-=<t<=
X (t) o tL i So—st<d
. 1
it t>=
L 2
(n>2) and illustrated in Figure 5.1.
X, (t)
x (t) | 1
iy
X
// m
/ n<m
/ | .
0 %-1n Yo-1Um Y 1 t

Figure 5.1. Sequence of continuous functions.

Figure 5.1 illustrates geometrically (area of lined triangle), that

4
2 m 2 n
and if m—eo, N— oo, then | x,—x, [, —0, that is, we have proved that the
sequence {x,(t) } inthenorm | .|, isa Cauchy sequence.

Xn‘xmlzixn(t)—xm(t) dt==

However, no continuous function x'(t) exists as a limit of the sequence

x,(t)}-
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To show it, consider the step function

Itis easy to verify, that | x,—y"| —0 & n— e, that is, the sequence {x,}

converges to the discontinuous function y*. Indeed,
. 111 (1 1 1
-y ===-|=-=|]1==——0, as n— . Moreover, the sequence
-y h=3 553 b g
{x.} cannot converge also to an other continuous function x* # y*, because if

[ %,~x |, 0 as n— e, then the inequality

e e e e Ol I P R B

implies X" =y, being a contradiction.

Hence the space L,[0,1] of continuous functions with respect to the integral
norm |.| . isnot complete.

The fact, that the space C[01] of continuous functions with respect to the
maximum norm |.|_ is complete, follows immediately from the theorem known
in elementary analysis:

"The limit of every uniformly convergent sequence of continuous functionsis a
continuous function."

(In more detail we demonstrate that the normed space C[0,1] is complete. For
any fixed point t,e[0,], a Cauchy sequence {x (t)} in C[01] yields a Cauchy
sequence of real numbers: [x,(t,)— X, (t,) < trn[oa>1%|xn(t)— X, (t)) >0, a mn— .

Consequently, for every te [0]1] point there exists a real number x(t) to which
{x (t)} converges. This pointwise convergence holds for any t in [01]; that is,
Cauchy sequences {x (t)} converge uniformly in [01]. Thus, there is a limit-
function x(t) for which

|, ()= x(t)[_ =max|x,(t)-x() >0, asn—e.

te[0,1]



It remains to be shown that x(t) is continuous. Let te [01] and let {t_} be a

sequence of pointsin [0,1] which convergesto point t as m—s> <. Clearly, for any
n>1

| X(t)—X(t)| | X)X, (t)[+] %, (tn)— Xt |

where {x.} is a Cauchy sequence in C[01]. Since each x, is continuous,
x,(t,) = X,(t) a m—eo. Since {x,(t)} is a Cauchy sequence, aready we have
shown, that x,(t) — X(t) a n— oo and thus x(t. ) — x(t) a n,m— 0. Likewise
X (t )= x(t,) asn—eo.

Hence, the previous inequality implies
| x(t)-x(t,,)| — 0
that is, x(t,,) — x(t) if t, —t. Thus, the function x(t) is continuous.)
We note, that convergence in maximum norm implies pointwise convergence,
and that the sequence of continuous functions illustrated in Figure 5.1 with respect

to the maximum norm is not even a Cauchy sequence. From the figure (n< m) it
isclear, that

1 1 1 1) n n
max | X, (t)— X, (t) |:‘ xn(E——j‘:n(———j——+1:1——
o<ts<1 m

and the limit of this sequenceisindeterminate. |ndeed, us ng Mathematica we get
n

1= 1-— /. {n> o, m-» ©}
m

— w::indet : Indeterminate expressian 0 o encountered . lMore..

Ou[1]= Indeterminate

(Now we could not use the inner function Limit[], because it can only work with
one variable.)

Completion. Every incomplete normed space can be completed by adding the
limit points of all Cauchy sequences in the space. If X is an incomplete normed

Space, one can construct a new space X that is complete and contains X as a
subspace. The space X is called the completion of X .

In general the only, but not a simple problem is to find out what the limit
elements will be. Remember, that the normed space (%, |-|), i.e. the set of real

numbers with the usua norm (i.e. absolute value) form complete normed space.
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Similarly, the normed space (9(”||||2) is a Banach space. However, the rational
numbers with the absolute value norm is not a Banach space.

Compact set. A subset S of a normed space X is said to be compact, if
every infinite sequence {x :x e S}contains a convergent subsequence, (that

convergesto avector X € S).
If S isaset for which itscompletion S iscompact, wesay S is precompact.

The normed space (%,||) is not compact. Indeed, {012,..} contains no
convergent subsequence.

Recall, that a set S={x,X%,,...,X,,...; iS said to be bounded, if there is a
number K >0 such that |x|<K for al n. The subset S isclosed, if x,e€ S
and x, — X" implies X" € S.

Theorem 5.2 (Heine-Borel). Let X be a finite-dimensional normed linear
space, and let S beasubset of X. Then S iscompact if and only if S isboth
closed and bounded.

However, in an arbitrary Banach space the statement of this theorem is not
true.

Consider the normed space ¢ introduced in example E 5.1, which consists of
infinite sequences of real numbers x=1{&,&,,...} with norm

=36

In ¢ consider the bounded, closed ball S defined by |x|<1. This ball is not
compact. Indeed, consider the sequence (of sequences)

e=0100..1} e={010..}, ..

For m=n we have | e,—e&,|=+2. Hence the sequence {g, : €, € S} and every

subsequence of S does not contain a Cauchy subsequence and so is not
convergent.

However, the compact sets are bounded and closed.
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6. Continuous and bounded linear operator

Let X and Y betwo normed spaces. The convergence of sequencesin X and
Y is understood with respect to the norms ||, and |||, associated with the

spaces X and Y, respectively.

Continuous operator. An operator T: X — Y (linear or nonlinear) is said to
be continuous at apoint X" e X , if for every sequence {x, :x e X} that converges

to X" the sequence T(x,)—>T(X') as n—> .
If T:X —>Y iscontinuous a every point of its domain D < X we smply say

that T iscontinuouson D.

Theorem 6.1. An operator T: X — Y is continuous a a point X e X, if and
onlyif for any £ >0 there exist a § = 5(¢)> 0so that

if “x—x* HX < d(e), then HT(X)—T(X*)”Y<5.

We want to emphasize, that the continuity of an operator depends on the used
norms ||-[, and |-,

Theorem 6.2. If alinear operator T: X — Y is continuous at the point x=0,
then T iscontinuous at all pointsof X.

Proof: If x* isan arbitrary vector and x, — X", a n— e, then X, — X — 0O
and so by the condition of the theorem we have T(xn - x*)—>T ©. The linearity
T(x,—x')=Tx,~Tx" and the equality Tx=T(x+®) implies TO®=0©. Hence
Tx, > Tx", so thatindeed T iscontinuous a an arbitrary point x".

Bounded linear operator. A linear operator T: X — Y issaid to be bounded
(above), if thereisaconstant K >0 so that

ITx[l, <Kfx],. xe X

The number K is called abound of the operator T .

In view of this definition, a linear functional F:D. < X — X is bounded on
itsdomain D, if thereisanumber K >0 so that

|F(x)|<K x|, xeDx.
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Theorem 6.3. (The eguival ence of boundedness and continuity).
A linear operator T iscontinuousif and only if it is bounded.

Proof: If T isabounded linear operator, then

“ X, —

isvalid for any x,,x e X . Therefore, T iscontinuousin X .
Conversely, if T is not abounded linear operator, we shall show that T is not

continuous at the point ® . Because T is not bounded, there exist such a bounded
sequence {x,:x,e X}, that | T x,[, — . Without loss of generality we may

suppose Tx, # O for any positive integer n. Define the sequence

< X,
X =—0_
1Tl

Itisobviousthat X, —©, but | TX ||, =1, 50 T isnot continuous.

E.6.1. In the normed space C[a,b] theintegral operator
t
j f(r)dz, te[ab]
is continuous. Clearly,

| T f(t) j. )dr

<J' f(z)] drsjl|f(r)|dr£ (b—a)max | f(t)|, te[ab]

a

and so

ITt].= dz|<(b-a)| f].

t
j f(z

This means, that T is bounded and hence continuous too.

E.6.2. Let D denote the subspace of the normed space Cl[a,b], which consists
of differentiable functions. Then the differential operator

LH):;fU feD
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is not continuous in Cla,b]. To show it, it is enough to find only one convergent
sequence {g, : g, € D} o, that the sequence {L g,, n=12,...} does not converge.

If gn(t):l sin(nt), then g,e D and g, —»©® as n— <, however the sequence
n

L g,(t)=cos(nt) does not have a limit. Thus the operator L is not continuous
(and by the theorem 6.3 it is also unbounded).

We note, that by appropriate selection of norm, the operator of differentiation
can be made continuous (and hence bounded too). For instance, let C™[a,b]

denote the normed space of functions from the linear space C%[a,b] with the
norm defined by

f/

oo

fl =max|f(t)+max|—==|f|| +
( df (t)
N astsb ast<b| dt ”
The operator

L :%; c™[a.b]— Cla,b]

i.e. the differentiation using the norm | f|| _ is continuous. Redly, if |f,| —0,
that is, if |, +[f; i

— 0, then

=Lt s0asn—ee.

Norm of linear operator. Let X, Y be normed spaces. The smallest bound of
the continuous linear operator T: X — Y, which is the smallest number K for
which

[T, <K,
iscalled thenormof T and is denoted by | T|.
It followsthat | T x|, <||T ||, -

The definition of the norm of continuous linear operator T also can be written
as

o Tl
[Tl=sup Sr== sup [Tx[,.

0 X[, Ixl -2

(The second form follows from the first one, if the vector x=# © is written as

x=Ixl, & 1], =1)

If T=F isacontinuous linear functional, then clearly
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F(x
1F =0 9o F ()]
X# 0 ”X" | x| =1

It can be shown, that | T || satisfies the norm axioms.

Topological dual space. Let X be anormed space. The set of al continuous
linear functionals

f: X—>R

isanormed space, denoted by X”, and called the (topological) dual of X .

Let f e X’ and expressthe functional f asaduality pair
f(x)=(f|x), fe X’ xe X,
where the symbol (-|-) denotes a bilinear map from the space X’® X into R .

If we substitute f =(f|x) into the formula for the norm of continuous linear
functional above, we get the norm

(F )
[ = sup ==
© e N,

of the dua normed space X’.

Compact operator. A linear operator T is compact if it transforms bounded
setsinto compact sets.



7. Dense sets, separable spaces

Denseset. Let X beanormed space. A set Sc X issaid to bedensein X if
for every element xe X there is a sequence {s,:s,€ S} such that s, —x as

N—oco.

In other words, any element in X can be reached as a limit of a subsequence
selected from the elements of the dense set S.

Theorem 7.1. Let X beanormed space. Theset Sc X isdensein X if and
only if for every £ >0 and every xe X thereisanelement se S such, that

[ x—s|<e.

In other words, the set S is dense in the normed space X if and only if any
xe X can be approximated (with arbitrary precision) by elementsof S.

Separable spaces. The normed space X issaid to be separable, if it containsa
countable dense subset.

In other words, the separability of X means, that there exists a sequence
{x,:x,e X} suchthat every xe X iseither an element of this sequence, or x isa

limit of asubsequence of {x_:x e X}.

We note, that the rational numbers, which are dense in (by absolute value)
normed space of real numbers, are countable (see the diagram below). Hence the
real numbers create a %parable space.l

S
W
///

1
3

N

W

4
A

Rl I

! Note, that Georg Cantor (1845-1918) has proved, that the set of real numbers on the interval
[0,1] isnot countable. (We say that the pointsof interval [0,1] create a continuum.)
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Recall, that a subset S={x,X,,...} of a vector space X is said to span or

generate X, if every xe X can be written as a linear combination of the vectors
of S.

Spanning set. A subset S of a normed space X is said to span or generate
X, if the st of all linear combinations of the vectors of Sisdensein X .

This means, that every xe X either is element of S, or isalinear combination
of vectorsof S, orisalimit of a sequence of such linear combinations.

Theorem 7.2. If the normed space X is separable, then it contains a countable
subset S which spans X .

The dense sequence {x, : x, € X} isthe desired subset S.

The converse of this statement is also true.

Theorem 7.3. If the spanning set S of the normed space X is countable, then
X is separable.

Theorem 7.4. (Weierstrass approximation theorem)

Let f e Cla,b],andlet £ >0. Then there exists apolynomial p(x) for which

If-p|. <e.

E.7.1. According to the Weierstrass approximation theorem, any continuous
function on a finite interval [a,b] can be established as a limit of a uniformly

convergent sequence of polynomials. This means, that polynomials form a dense
subspace in the normed space C[a,b]. Every polynomial can be written asa linear

combination of the power functions 1, t,t% ..; hence the sequence

{t; k=012, ...} spans the space Cla,b], and by the theorem 7.3 it is separable,
too.
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8. Inner product, Hilbert space

Inner product. Let X be areal linear space. A function (-[-): XxX - %R,

defined for each pair x,ye X, is called an inner product (or scalar product) on
X if and only if it satisfies the following axioms:

SL (x|y)=(y]%),

S2. (x+y|z)=(x|2)+(y|2); ze X,

S3. (ax|y)=a(X|y); a-real number,

$4. (x| x) 206s(x|x)=0 if and only if, ha x=©.

This definition is a generalization of the scalar product of geometric vectors.

We note, that if X denote complex linear space, then the axiom S1 is replaced

by (x| y)=(y|x), (upper bar denotes complex conjugate).

Observe, that the inner product is a bilinear functional which is positive definite
i.e. symmetric, too.

Inner product space. A real linear space with an inner product is called inner
product space or pre-Hilbert space (in finite dimensona cases also Euclidean

space).
E.8.1. Inthe linear space R" of red n-tuples x=(x,,...x.), y=(y,,.... y,,)
(X|Y) =% Y: + ot X, Y

isthe usual euclidean inner product.

E.8.2. In the real vector space CY[a,b] of al continuous functions with
continuous first derivative, the expressions

and
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define inner productson C'Y[a, b], but

is not an inner product on C%[a,b] because it contradicts axiom S4: from the

dx(t)

(x|x)=0 it follows only ?=o and not x(t)=0 everywherein [a,b].

Orthogonal vectors. The vectors x and y of an inner product space X are
said to be orthogonal if

(x|y)=0.

Test for linear dependence. Using the inner product, an effective method can
be given for determining whether or not the vectors x,..., X, are linearly

independent.

Theorem 8.1. Let X beaninner product space. A set of vectors x,..., x, of X
is linearly independent if and only if the Gram matrix

()fx) (k%)

ols) - (o]

is nonsingular.

Theorem 8.2. (Cauchy-Schwarz inequality.) For a real inner product space
X,

()] = i lyly), - xyex.
Proof: For any real scalar a,
0<(x=-ay|x—-ay)=(xx)-a(y|x) - a(x]y) +a*(y|y),
thet is

(y|y)a? - 2(x|y)a+(x|x)=0.



The left hand side of this inequality is a quadratic polynomial in variable o,
having real coefficients. The inequality indicates that this polynomial cannot have
distinct rea zeros. Consequently, its discriminant cannot be positive, that is,

(2<X|y>)2— 4(yly) (x|x) <0,
from which the Cauchy-Schwarz inequality isimmediate.

Note the general character” of thisinequality and the simplicity of its proof.

Theorem 8.3. Every inner product space is a normed space. In fact, if x isan
element in an inner product space X, the mapping

x = [[x] = /(x| %)
definesanormon X.

Proof: That /(x| x) satisfies the norm axioms N1 and N2, is obvious. The

validity of the axiom N3 that is of the triangle inequality is easy to see using the
Cauchy-Schwarz inequdlity as follows since:

[x-+y[" = ylxee y) = (%) + 2(x )+ (yly) < (x| X)+ 2| (] y)[+(y] y)

< (X + 2J04x) {(yly) +(oly) = (] + v

The existence of this norm makes possible to define the completeness of inner
product spaces.

Hilbert space. A complete inner product spaceis called a Hilbert space.

Every finite-dimensional inner product space is complete; hence the Euclidean
space isaHilbert space.

Werecall that the Banach space is a complete normed space. The Hilbert space
is a special Banach space, where the norm |-| is induced by the inner product

SPE

! For example

< \/T X2(t )it \/T y2(t)dt

DXy,
i=1

[t yit)ct
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In the following we will use the fact that any continuous linear functional F(u)
can be written as a duality pair i.e. in the form F(u)=(F|u), Fe X', ue X,
where X’ isthe dual space of the normed space X .

Theorem 8.4. ( Riesz' representation theorem.) Let H be a Hilbert space,
Fe H'. Thenthereisaunique ge H for which

F(u)=(g|u); ue H.
In addition,

[Fll. =lgll, -

We want to emphasize that F is a continuous linear functional defined on the
space H while g isanelement of H .

If the linear functional is not bounded, then the Riesz theorem is not valid.

Proof: At first, assuming the existence of g, we prove its uniqueness. Suppose
ge H satisfies

F(u)=(g|u)=(g|u) VueH.
Then
(g—-gJu)=0 VueH.
Choose u=g-g. Then | g—g||=0, whichimplies g=g.
We prove the existence of vector g.
Denote by
N=N(F)={u:ue H,Fu=0},

the null space of F, which is a subspace of H. If N=H, then Fu=0, and
choosing g = © the proof is finished.

Now suppose N#H. Then there exists at least one u, e H such that
F(u,)=0. It is possible to decompose H as the direct sum N@®M , where
M={ue H :(u|v)=0Vve N} is the orthogonal complement of N with respect
to H . Then we can write

! Frigyes Riesz (1880-1956), famous Hungarian mathematici an.



u, =uy+u,, ueN, u,eM
where
F<UM):F<UH_UN):F<UH)_F<UN):F<UH)¢O'

For any ue H , it istrue that

ot

Hence u— F(u) uy € N and because u,, isorthogona to N
F(uy)
<u—muM uM>:O.
F(uy)

Thet is <u|uM>_L“))|| wlf=0ie
M

F(u
F(u)=< F(uy,)

u
Juul*

In other words, we may choose g to be

F(uy)
2
[ uw

We complete the proof of the theorem by showing |F|,, =|g],, . From

Uy -

F(u)=(g|u); ue H
and the Cauchy-Schwarz inequality | F (u)]=[( g |u)|<]g],, |u],. ueH.

Hence (see the definition of norm of continuous linear functional)

faly
1F1-sp 18 g,
H

u0

However, it is impossible that | F |, <] g, because F(g)=<g|g>=||g||i o that
rally | £, = | g, holds
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We note that this theorem is a fundamental tool in the solvability theory for
dliptic partial differential equations.

Adjoint operator. Consider a bounded (i.e. continuous) linear operator
T:U—>V,where U and V are normed linear spaces. Let f(v) be a continuous
linear functional defined on V. Then f e V', where V' is the (topological) dual

space of V . Since v=Tu, the f(v) isdefined for vectors ue U , too. That is,

f (V)=(f|v)=(f|Tuy=f (Tu)=g (u)=(g|u)

where g(u) is a linear functional defined on U . The linear operator T is
supposed to be bounded, hence using the Cauchy-Schwarz inequality we get

lg @I=|CF[Tu)l<|IITI[ul=K|u

, whereK =| f || T

0 that g(u)=(g|u) is bounded i.e. continuous linear functional on U . Hence
ge U' where U’ isthe (topological) dual spaceof U .

-~
U _ > V
g f
T*
‘—

Consequently, to each functional f €V’ we have associated a corresponding
functional geU"', that is, we have defined an operator which transforms the

normed space V"’ to the normed space U’. This operator is denoted T* and called
the adjoint of T . That is, wecanwrite T' f = g.

We saw the equality ( f|Tu)=(g|u) and substituting T" f = g we get
(f \Tu>=<T* f ‘ u>.

Thisequality also can be used as the definition of the adjoint operator.



If U=V =His Hilbert space, then the Riesz representation theorem
guarantees the existence of a unique element g=T"f which satisfies the

equation ( f [ Tu)=(g|u).
The operator T iscalled self-adjointif T"=T.

E.8.3. For any matrix A, the adjoint of A is defined as the matrix A", which
satisfies the equation

(Ax|y)= <x‘ A*y>

for all x,ye C", where (u|v)= <uT ‘\7> denotes the inner product of the complex
euclidean space.

Thematrix A isself-adjointif A" =A.

To find the adjoint matrix A" explicitly, note that (using the Euclidean inner

product)
_ T
A y>

sothat A" = AT, i.e. the adjoint of A isequal to the transpose of its conjugate.

(Ax|y)=(AX) y=x"A"y=x' LAT y]:<x

If A isreal symmetric, then A" = A" = A, sothat A isself-adjoint.

E.8.4. The adjoint of a differential operator L is defined to be the operator L
for which

<Lu|v>=<u

L*v>
for al u inthedomainof L and v indomainof L .

This definition determines not only the operational definition of L, but its
domain as well. Consider the example

_du

Lu=—
dx

with the boundary condition u(0)=2u(1) with inner product

(uly) = [uu(x)ox.
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Using this inner product (and integration by parts) we have that

d dx

><

(Lufy) = [ v = u()(v(l)—2v(0))—J.u( 0% ().

In order to make (Lu|v) :<u‘ L*v>, we must take L*v:—% with the boundary

condition v(1)=2v(0).

The operator L is sdf-adjoint if L'=L. That means that not only the
operational definitionsof L and L agree but their domains are equal too.

An other application of the Riesz representation theorem is the Lax-Milgram
theorem which is used traditionally to demonstrate existence and unigqueness of
weak solutions of boundary value problems.

Theorem 8.5. (Lax-Milgram theorem.) Given an Hilbert space H with the
inner product (u|v). Let a{u|v) beabilinear functional in u,ve H such that

(1) |a(ulv)| <K|u] |v]
) |a(ulu)|za ul’ |

with positive constants K, a that are independent on u,v.

Further, let ¢ be a continuous linear functional on H,i.e. /e H’. Then there
existsaunique ue H such that
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9. Sets of measure zero, measurable functions

Set of measure zero. A set Ac [a,b] issaid to be of measure zero, if for every
£ >0 there is a sequence of openintervals I, =(a,,b,) such as, that

s

i(bk—ak)sg ad Ac

I,
k

1

In other words, a set has measure zero if and only if it can be covered by a
collection of open intervals whose total length is arbitrarily small.

Theorem 9.1. Any countable set A={x; k=12,..}c[ab] has a measure
zero.

Proof: to any & >0 we can choose theintervals I, =(a,,b, ) intheform

£ &
lkz(xk—w,xwﬁj, k=12, ....

Then i(bk—ak):ei ikzeiéze and A={x,...,X, }gUIkIS
k=1 k=1 2 l 2 k=1
1- =
2
valid too.

E.9.1 Afiniteset A={x,,...,x, }c[a, b] hasmeasure zero.

The intervals [a,b] and (a,b) have not measure zero. (Their common measure
istheir length: b—a.)

Almost everywhere property. A property P=P(x) on an interval [a,b] is
said to hold almost everywhere on [a,b], if P fails to hold only on subsets of
[a,b] of measure zero.

Measurable function. A (real-valued) function f(x) defined on [a,b] is said
to be measurable on [a,b], if there is a sequence of continuous functions
{g.(x):a< x<b}, which (pointwise) converges to f(x) almost everywhere on
[a,b] .

In other terms, f(x)=limg,(x) (xe[a,b] \ A) where A is a set of measure

zero. (Theset A dependson f(x).)

The set of measurable functionsis a linear space.
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We note that in the practice all functions are measurable.

The previous results for intervals can be extended to more-dimensional
domains as well.
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10. The spaceL,

Let Q denote a bounded domain (connected open set) in the n-dimensional
Euclidean space.

Squar e integrable function. A measurable (rea-valued) function f (x), xe Q
is said to be square integrable’, if

jfzdx<oo.
Q

The set L,(Q). The collection of al square integrable measurable (real-valued)
functions defined on Q is denoted L,(Q).

The L,(Q) isavery large set. It consists of all continuous functions on Q and
of all bounded piecewise continuous functions on Q. The unbounded f (x)= x'*

1
is also an element of L,(01) because I(x‘l’ 3Fdx=3. However, the unbounded
0
1
function f(x)=x"? doesnot belongto L,(0,1) since I(x‘l’ 2P lx = +oo.
0

We note that using Mathematica we got:
In[1]:= J‘l(-':\a/-}—:) ? dx
0
ouwy= 3

but

2
In[2):= J-lfx_%] dx

ol )

1
— Integrate ::1idiv : Integral of — does not cawerge on {0, 1}. More.
X

11
ouf2)= ~dx
0 X

The sum of square integrable functions is a square integrable function as well.
Indeed,

0£(|f|—|g|)2:f2—2|fg|+g2 and fg<|fg|

Yin sense of Lebesgueintegration , Henri Lebesgue (1875-1941)
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S0 that
fg<|f g|£%(f2+gz).
Thisinequality indicates, that
(f+gf=f2+2f g+gZS2(f2+gz),
and after integration the assertion follows. Since the product of a square integrable

function with a real number is a square integrable function, we have proved that
L,(Q) isalinear vector space.

By integrating the last but one inequality it follows that the I f gdx isfinite,
Q

and hence there exists the inner product

(f |g>:J. fgdx, f,geL,(Q).

In other words, the linear space of square integrable measurable functions
L,(Q) is a pre-Hilbert space. But any inner-product space is a normed space,
where the norm is defined using the inner product:

||f||:,/<f|f>:uf2dxj , fel,(Q)

If the integrals in this section are defined in the Lebesgue sense, then this real
inner product space is aso complete.

Theorem 10.1. The space L,(Q) with respect to the inner product above is a
(real) Hilbert space.

In contrast with the linear space C(O)(ﬁ) of continuous functions on a closed

domain Q, in the space L,(Q) the expressions such as the fourth axiom of the
inner product or the first axiom of the norm need amore detailed commentary:

In C®(Q) the relation

[ f2ax=0 (10-1)
Q

indicates f =0 on the closed domain Q and so on the open domain Q too™.

! Rememeber, that C(°)<§)c C(O)(Q) becauseif f e C(O)(ﬁ) then f e C(O)(Q).



In L,(Q), from (10-1) does not follow f =0 everywherein Q.
Consider the function

f1<x>{ Lt xeg

2
0, otherwise

defined on Q =(0,1). Obviously f, is square integrable on Q and satisfies the
equality (10-1). But this equality also satisfies, e.g. that function f,, for which

holds f,(x)=0 on Q=(0,1) except on the countable set { X, :%; k=2,3, }
In generd, the equality (10-1) satisfies all functions, for which f(x)=0 on
Q =(0,1) except on a set of measure zero, that is f(x)=0 almost everywhere on

Q. At the points where f(x)# 0 the valuesof f may be arbitrary, or f may be
non-defined.

Equivalent functions. Two square integrable functions f and g are said to
be equivalent if f(x)= g(x) amost everywhere on Q. Then we write o

f=g in  L(Q)
. 2
and then obviously I(f —-g) dx=0.
Q

E.10.1. The Dirichlet function

X€E [O,l]

1 if x rationa
f(x)= e
0 if x irrationd

is equa to zero almost everywhere on [01] because the rational numbers are
countable.

The Riemann-integral for this function does not exist, the Lebesgue-integral is
equal to zero.

The proof of the following theorem is based on very serious results from the
theory of measurable functions and the Lebesgue integral.

Theorem 10.2. Continuous functions are dense in L,(Q).

As already mentioned in example E 7.1, any continuous function on a finite
interval [a,b] is alimit of uniformly convergent and hence al the more in mean

(in an integral norm) convergent sequence of polynomials. This fact and the
theorem 10.2 imply:
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Theorem 10.3. The polynomials are densein L,(a,b).

Every polynomial is a linear combination of the power functions 1, t,t?,...,
hence the sequence {t*; k=0,1,2,..} spans the space L,(a,b), and o - by
theorem 7.3. - L,(a,b) is separable.

More generally:

Theorem 10.4. L,(Q) is separable.
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11. Generalized derivatives, distributions, Sobolev spaces

Multi-index notation. The ordered n-tuple of non-negative integers
i = (i)
is called multi-index. The sum i, +i, +...+i, isdenoted by |i|.

Using the multi-index notation, the partial derivatives of the function
f = f(x,%,...,X,) can be expressed in shorter, so-called operator form

lif
Dif :a—f
X OX: ..oX."
. 3 . 0%
E.11.1.1f i =(3,0), theninstead of D' f = e wewrite D'f = vk
%

If [i|=0,then D'f = .

If n=2, k=3 then |i|<k represents the following multi-indices

i = (iyiz):
(0,0 li|=0
1.0} (03 i1
(2.0).01). 0.2 ij=2
(30). (22),(12), (0.3) i]=3

With this notation, for instance instead of

of of o f 2% f 2% f
f ] T ] - ] — 5 ] - ~ ] — 5 ]
(o) + 5060+ 5050+ 5 ) )+ )
o° f 9 f 2% f 2% f
+a_Xf<X11X2)+m<xl1X2)+m<xl1x2)+a_xg<xl1xz)

we can use the short operator form > D' f .
[i]<k

Smooth function. The function ¢:R" —>NR is sad to be smooth if it is
continuously differentiable infinitely times.
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Support of function. Let Q be a domain (i.e. a connected open subset) in
R". The support of the function ¢(x), xe Q= R", denoted by suppe is the
closure of the set of those points x a which ¢(x)#0. That is,

suppp ={x:xe Q, ¢p(x)=0}.

Compact support. The function ¢(x), xe Q c R" is said to have a compact
support with respect to Q, if its supp¢ isacompact st (i.e., if it is bounded) and
isaproper subset of Q (i.e. if suppp c Q).

Since suppe isaclosed set by definition, and since it lies - by assumption - in
an open domain Q, it has a positive distance from the boundary 0Q of this
domain.

Test function. Let Q be a domain in R". Denote by C{(Q) the set of all

smooth  functions  with  compact support in Q. That is
c(Q)={pe C™(Q):supppcQ}. Any pe C)(Q) iscalled test function.

E.11.2. In R* the

()= g/ b1 if |x|<1
L if |x|>1

is an example of a smooth function with compact support in Q =(-2,2). But ¢(x)
is not a test function with respect to Q =(~1,1), because the suppy ={-1< x<1}
is not aproper subset of the domain Q ={-1< x<1}.

Using Mathematica we can easily plot this function:

IN[1]:= Clear[¢]

_1
@[x ] := Piecewise[{{0, x=< -1}, {Ex*-1, -1<x< 1}, {0, x21}}]

In[3]:= Plot[e[x], {x, -2, 2}, PlotStyle- {Thickness[0.008]}]
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This function has limits at the points x=-1, x=1 which are equal to zero.
Indeed, e.g. at the point x =1the limit fromthe left
In4]:= Limit[e[x], x- 1, Direction- 1]

ou[4= 0
and obvioudy the limit fromthe right

In5:= Limit[e[x], x— 1, Direction- -1]

ou[5]= 0

(The option Direction -1 and +1 denotes the right- and left-hand limit,
respectively.) At the points x=-1, x=1 there exist all derivatives of ¢(x) and
they are also equal to zero. Consequently ¢(x) is smooth too.

For example:

InN6l:= D[o[x], {x, 3}] // Simplify (% The third derivative of ¢ *)

0 1
oufel= _ 4e -1 x (3-10:2+3x46x5)

-l<x<1
((12)6 s

IN7:= Plot[%, {x, -2, 2}, PlotStyle - {Thickness[0.008]}]

150 r

100 r

| = )

Ou[7]= = Graphics -

Suppose that the function f = f(x,X,,...x,) in its doman Q is locally
integrable. That is, the Lebesgue integral of f in every compact subdomain of Q
isfinite.

Generalized derivative. We say, that D'f is the i-th generalized or
distributional or weak derivative of the function f inthedoman Q, if

[D'fpdx=(-2)" [f D'pdx, (11-1)
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where pe C\”(Q), that is ¢ isan arbitrary test function.
It is easy to see, that if a function is differenciable, then its generalized

derivative coincide with the classical one. For example, the integration by partsin
Q =(0,1) and using the test function property ¢(0) = ¢(1)= 0 leads to

1 1 1
J'x” 49 gy - (x)]%,—J'nx”‘lgp(x) dx = (—l)J. D'f g dx.
0 0 0

E.11.3. Consider the function

CX for 0<xs%

f(x)=

c(l-x) for %Sx<l

where ¢ isaconstant. Thisfunction is not differentiable at x= % (seethe Figure

11.1).

The piecewise derivative of f(x) ontheinterval (0,1), coincides with its
generalized derivative

" C if 0<x<l
)¢ _
DY f = o .
-c if =<xx1
2
f(x) DU f
cl/2 c
T ]
I I
I I
| |
T T |
0 1/2 1 X 0 1/2] 1 x
I
o L

Figure 11.1. Non-differentiable functionsat x = %
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Indeed, integration by parts yields to

Jl. f D(1)¢dx:lj.2cx%dx+ Jl.c(l— x)%dx:
exp()s% [oplaxs o xlp(alh [(-c)p(x) dx=
- ¢@ . TC¢(X) x-S go@ _jz(_ &) o(x) dx= 1)i DY £ pax

E.11.4. Now, consider the second generalized derivative D?f of the function
f(x) defined in (0,1) in the previous example. The relation (11-1) - as definition-
gives

1 1/2 d2
D@ f ¢dx:(—1)2I fDPpdx= I o f
X
0

0

1 2
dx + I c(l—x)d ? dx=

2
1/2 dX

O t—y

12 1/2 1 1
= {cx%} - I 92 gt {c(l— x)%} - (= c)% dx =
dX 0 0 dX dX /2 1/2 dX

- E%GJ ~[cp(x)]§>- E%(Ej +clp()]; = _ZWG}

S 2dx\2 2 dx |2
since ¢(x) isatest function on theinterval (0,1), that is, ¢(0)= ¢(1)=0.

But no integrable function D'?f exists which satisfies the definition (11-1),
that is, the relationship

D@ f p(x) dx=—-2c (p(%j

Oy

If we introduce the symbolic notation

Jl(; 5(x—%) o(x) dx = ¢(%)

where the §(x—%] is not afunction but it is a so-called delta-distribution, then

the second generalized derivative of the f(x) given in the previous example is

D? f :—2c§(x—l].
2
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In applications it is often the case that the delta "function” is symbolically
defined by

S(x=¢&)=0 if xz¢& and T§(x—§)dx:l.

However, for any reasonable definition of integration there cannot be such
function. How is it, then, that many practicing scientists have used this definition
with impunity for years?

To make mathematical sense of delta "function” there are, traditionally, two
ways to do o, the first through delta sequences and the second through the theory
of distributions.

The idea of delta sequences is to realize that, although a delta-function
satisfying

oo

[ 8(x=&) plx) dx= (&)

—oo

cannot exist, we might be able to find a sequence of functions s,(x—¢) which in
the limit n — - satisfies the defining equation

N—eco

im ['5,(x-£)plx) dx=p(¢)

for al continuous functionsg(x). Notice that this definition of s, in no way
implies that lims, (x—&)=d(x—¢) exists. In fact, we are certainly not alowed

to interchange the limit pocess with integration. (We note that one criterion that
alows the interchange of limit and integration is given by the Lebesgue theorem
B.4. in Appendix B.)

There are many suggestive examples of delta sequences. The choice

n, if .f—i£x£§+i
Sn(x_‘f): 2n 12n
0, if [x=&[|>—
| §| 2n

(see Figure 11.2) is adelta sequence, since

Nn—co N—oo

lim Tsh(x—.f) p(x)dx=1lim n | ¢(x) dx= (&)
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because of the mean value theorem', provided ¢(x) is continuous near x=¢&.

? X
1 1
—_— + R
d 2n g d 2n
Figure 11.2. Delta sequence.

The application of delta sequences in practice is very cumbersome. For
example, if we want to solve the boundary-value problem

2,
d—gzé(x—lj, 0<x<1
dx

(establish the shape of a cable under a concentrated force), then this problem can
be approximated by the sequence of boundary-va ue problems

2,
(jjuz" :sh(x—lj, 0<x<1
X

Then, taking the limit

limu, (x)=u(x)

Nn—sco

we can produce the correct solution for the examined boundary-value problem.

In more detail: If we solve the previous differential equation separately on the
intervals

(0520, Lmomist ol G

b
Lthereissuch apoint, 77€ [a,b], tha J.¢(X)dX= (b—a)e(n)
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with respect to u,(0)=u, (1) = 0, then we have

if 0<x<i_ L
ax, 2 2n
u,(x)={2x +bx+c, if i 1_,.1. 1
2 2n 2" 2n
dx-1) if 1+i<xsl
2 2n

We can compute the coefficients a,b,c,d from the conditions for the continuity

of values and the first derivatives of the function at x:l—i and x:l+i.
2n 2 2n
The solution is the function
1
—5% if 0<x<t--
5 n
u,(x)= n X(x—1)+ 11 , fl Loyt t
2 2n 2 n 2 2n
1 1
if =+—<x<1
~(x-1), 2 "

which depends on n, is once continuously differenciable in the interval [0,1] and
satisfies the boundary conditions u(0)=u(l)=0.

Using Mathematica it is easy to plot the function u,(x) and its first derivative
according to x asfollows

In[1]:= n ,x ] := Piecewise x 0<x i i
ni= umn , x ] := [{{ 5 1 0 <2_2n}'
n 1 1,2 1 1 1 1
{E (x(x‘l)*'(z—z) )IE_ESXSE+E}'
x-1 1 1
{ 2 ,E+E<x51}}]
vx ] :=u[5, x]



In3]:= Plot[v[x], {x, 0, 1}, PlotStyle - {Thickness[0.008]}]

-0.05

-0.15

-0.2

Out[3]= = Graphics -

In4]:= Derivative[l] [V]

go #1<0

7—; 0<#1<§H#1:§
oul- % (-1+2#1) %<#1<% .

5 #1211 2 <#1<1

0 #1>1

Indeterminate True

5= Plot[%[x], {%x, 0, 1}, PlotStyle » {Thickness[0.008]}]

0.4

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.4

Out[5]= = Graphics -

If Nn— oo, then u, — u pointwise and hence inintegral norm too, where

—lx, if 0< xsl
U= 12 A 2
—(x-1), if =<x<1
2 2
(at the point x::—L we get u,, E :—1+i so that if n— «, then u,, l :—l).
2 2 4 8n 2 4
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However, there is a further significant difficulty with this, since we do not only
need to find u (x), but also to show that the limit exists independently of the

particular choice of delta sequence.

We note that using Mathematica this boundary-vaue problem can be solved
easily as follows:

IN1]:= Clear[x, u]

DSolve[{u''[x] = DiracDelta[x - %], u[0] == 0, u[1] = 0}, u[x], x|
1 , .
ou[2)= Hu[x] > (-x- UnitsStep[-1+2x] + 2xUn1tStep[—l+2x})}}

In3:= Plot[Evaluate[u[x] /. %], {x, 0, 1}, PlotStyle » {Thickness[0.008]}]

-0.05

-0.15

-0.2

-0.25

Ou[3]= = Graphics -

A much more useful way to discuss delta "functions” is through the theory of
distributions. As we shall see, distributions provide a generalization of functions
and inner products.

Digributions!

Convergence in the linear space Cc(,"“)(Q). In our previous discussions, the
convergence was defined using the norm. In
c(Q)={pe C™(Q): supppcQ}, that is in the set of al smooth functions

with compact support in €, for our purposes suitable norm does not exist.
Therefore, it is advantageous to introduce the following definition:

The sequence {g, } of test functions is said to be convergent in C{”(Q) and its
limit is the test function ¢, if there is a bounded set Q" cQ, contai ning the
supports of ¢, ¢, @,,... and if the sequence {p, } and al its generalized derivatives

1 The concept of distributions first was used by Laurent Schwartz in 1944.
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Do),

respectively. That is, if

i|>0 converges uniformly to ¢ and its generalized derivatives D'¢p,
lim max|D'p,—D'p|=0
N—o0 XeQ*‘ Pn 4

for everyi =0,1,2, ....

A linear functional f :C{”/(Q)— % is said to be continuous (in C{”(Q)), if f
maps every converegent sequence in C{™(Q) into a convergent sequence in R,
i.eif (flg,)—(f|p)" whenever g, — ¢ in C(Q).

Distribution. A continuous linear functional on Cc(,‘”)(Q) is called distribution
or generalized function.

E.11.5. An example of distribution is the delta-distribution ¢ , defined by
(6(x=¢) | p(x) )=p(&) fordl  peCrl(Q).

The notation ( f |¢) is used to denote the "action” of the distribution f on the
test function ¢ .

The linearity of distributions means, that operations of addition and
multiplication by scalar of distributions are defined as follows: if f and g are

distributions (i.e. linear functionalson ¢) and ¢ and [ are scalars, we define the
distribution a f + 4 g to bethe functional «{ f|p)+ B(g|e) for dl pe C(Q).

The notation of distributions looks exactly like an inner product between
functions f and ¢, and this smilarity is intentional athough misleading, since
f need not be representable as a true inner product.

The simplest examples of linear functionals are indeed inner products. Suppose
f(x) is alocally integrable, that is, the Lebesgue integral ﬂf(x)dx is defined
|

and bounded for every finite interval | . Then the inner product
(flo)= If(x)gp(x)dx

isalinear functional if ¢ isin Ci~)( oo, e0).

* The dudl-pair notation f (@)= (f |¢) isused.
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Every locally integrable function f induces a (so-called regular) distribution

through the usual inner product. (Two localy integrable functions which are the
same amogt everywhere induce the same distribution.)

E.11.6. One important distribution is the Heaviside-distribution

oo

(H| ¢>:I¢(x)dx

0

which is equivalent to the inner product of ¢ with the well-known
Heaviside(Unitstep)- function

1 if x=0
H(x)= _ )
0 if x<0O

For any function f that islocally integrable we can interchangesbly refer toits
function values f(x) or to its distributional values (or action)

(T]p)=] (3 @ (x) dx.

That is, either x— f(x), or ¢ —(f|g).

There are numerous distributions which are not representable as an inner
product. The example we have already seen isthe (so-caled singular) distribution

<5§ ‘ @ >:(p(§). Similarly to the differential operator %x which cannot be

evaluated at the point x=2 for example, but %x can be evaluated pointwise

only after it has first acted on a differentiable function f(x), the distribution
<5§ ‘ 0] > can be evaluated only after ¢ isknown.

Sobolev spaces.

The set c(Q), (as the linear space of k-times continuously differentiable
functions on Q ), with respect to the inner product

(ulv),= > [D'uD'vdx (11-2)
‘i‘skg

isapre-Hilbert pace with the norm

ol =JToTo [ 5 [ ure

[i|<k
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induced by (11-2).

Let V,")(Q) denote this incomplete inner product space. The space V,™(Q)
can be completed by adding the limit points of all Cauchy sequencesin V,(Q).
These limit points are distributions.

The set D of al distributions generated by Cauchy sequences in V,¥ (Q) is
itself alinear space: if the distributions f,ge D are generated by {p, } and {i}
respectively, then the distribution o f + £ g is generated by the Cauchy sequence
{ap, + Bw,}. When the space D is endowed with the inner product

(fla)=lim{o, [v.), (12-3)

where (.| .), isdefined by (11-2), the resulting inner product space is the Sobolev
space H"(Q).

Itisin use to define the Sobolev spaces as follows too:

The Sobolev space W¥/(Q)= H™(Q) is the set of those real-valued functions,
which with their generalized derivatives up to and including the order k exist and
are in Lebesgue sense square-integrable in Q..

The space W¥(Q) contains, besides the continuous functions, e.g. those

functions, which are k-1-times continuoudy differentiable on Q and their
derivative of order k is piecewise continuousin €.

The function f sketched in Figure 11.1. belongs to Sobolev space W/Y(0,1).
Indeed, there exists its generalized derivative DY f which with the function f is
square-integrable in (0,1). The function f does not belong to W/?(0,1), because
its generalized derivative D'?f exists only as distribution but is not a square-
integrable function.

Theorem 11.1. The Sobolev space W.¥(Q)=H™®(Q) with the inner product
(11-3) isareal Hilbert space.
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12. Weak (or generalized) solutions

Consider the model boundary-value problem

d’u
_@: f, as<x<b (12-1)
u(@)=u(b)=0

If feC(ab), then the classcal solution u (if exists) belongs to
ue C?(a,b)nC[ab] and u(a)=u(b)=0. Multiplying (12-1) by an arbitrary
test function ¢ (recall, that ¢(x) is smooth with compact support in (a,b)) so that
¢(a)=¢p(b)=0 and integrating the result, we obtain

b 2u b
—IﬁquX:If(pdx. (12-2)
Now an integration by parts yields

b b
I%%dx:j fpdx, @eC(ab). (12-3)
°dx dx .

If feC©(ab) then the equation (12-1) does not have a classical solution
(because then ug C @ (a,b)). For such a case it is possible to weaken, generalize
the concept of the solution. Note, that for f e L,(a,b) the equation (12-3) makes

sense if %e L,(a,b). Thisrequirement is satisfied if
X

UEV\;(Zl)(a,b):{u: ueW % (ab), u(a)=u(b)=0}

0
where the symbol refers to homogeneous boundary conditions. Then the
definition of Sobolev space W,”(a,b) implies that the derivatives are considered

inthe generalized sense and that %e L,(a,b).
X

0
The function ue W"(a,b) is called the weak or generalized solution of
equation (12-1), if for f € L,(a,b), u satisfies equation (12-3). In other terms, a

0
generalized solution of equation (12-1) is a distribution ue W,”(a,b) such that
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equation (12-2) or equivalently, equation (12-3), is satisfied for all pe C ) (a,b)
and agiven digtribution f in L,(a,b).

0 0
We note that C ) (a,b) is a dense subspace of W (a,b) (because W,"(a,b) is
the closure (extension) of C!”(a,b)). This property guaranties that if u is a

classical solution of the equation (12-1) then it is also a solution of the weak
formulation (12-3). Indeed, the integration by parts on the left-hand side of (12-3)
yields

% (d&u
J(W+ f] @ dx=0 ge C{’'(ab).

By the lemma’ known from the calculus of variations we must have

d?u
d x?

+f=0 in Ly(ab)

and the continuity of f implies that the differential equation (12-1) is satisfied.
The equation (12-3) can be expressed in the form

(D¥u)|D¥p))=(f]p),  peCl(ab)

where (|-} is the inner product in the space L,(a,b). This equation makes sense
0
when ¢ is any element of W,"(a,b). Since C”)(a,b) is a dense subspace of
0
W Y(a,b), it follows that this equation is equivalent to
0@
< D(l)(u)‘ D(l)(¢)> =(f o) peW: (a,b).
0
Denote H =W,” (a,b), and let a(.|.): Hx H — % bethe bilinear functional

defined by

a(ulv)=(D¥(u)| D¥(v)) for u,veH,

and let /:H — R be the continuous linear functional on H (i.e. /e H”) defined
by

o(v)=(f|v) for VveH.

! Lemma If ue H is orthogonal to dl elements vV of a set Swhich is dense in a pre-Hilbert
space H , then uisthe null-element of H .
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Then the weak formulation of the boundary-value problem is to find
ue H such that

alulv)=/¢(v) VveH . (12-4)

The solvability of the problem (12-4) is given in the Lax-Milgram theorem (see
theorem 8.5) which is a generalization of the Riesz representation theorem.

Weak convergence. A sequence of distributions {f, } is said to converge to the
distribution f if their actions convergein R, that is, if

(.| @) =(flp) fordl  peCy(Q).

This convergence is caled convergence in the sense of distribution or weak
convergence.

If the sequence of distributions f, converges to f then the sequence of
derivatives D f, convergesto D . This follows since

o)=-(f,

(D" f

D) — - (f[DY%)=(D"f|p)
foral peC{) .

COoS NX

E.12.1. The sequence {fn}:{ } is both a sequence of functions and a

sequence of distributions. As n— o, f converges to 0 both as a function

(pointwise) and as adistribution. It follows that DY f, =—sinnx converges to the
zero distribution even though the pointwise limit is not defined.

Recall, that using distributions, we are able to generalize the concept of
function and derivative to many objects which previously made no sense in the
usual definitions. It is also possible to generalize the concept of a differential
equation.

Weak formulation. The differential equation Lu= f is a differential equation
in the sense of distribution (i.e., in the weak sense), if f and u are distributions

and all derivatives are interpreted in the sense of distributions. Such a differential
equation is called the weak formulation of the differential equation.
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13. Orthogonal systems, Fourier series

Orthonormal systems. A sequence {¢,; k=1,2, ...} of eements of an inner
product space is said to be orthonormal, if

(0 i %]
<¢'¢j>_{1 it i=j

The vectors of an orthonormal system are linearly independent. Indeed, if we
select nvectors from an orthonormal system {(pk; k=1,2, } then they are

linearly independent. This follows from the Theorem 8.1 because the
corresponding Gram matrix is equal to the identity matrix.

Fourier series. Suppose, that {¢,; k=1,2, ...} is an orthonormal system in a
Hilbert space H and that uisan arbitrary element of H . The series

Z o P O :< u ‘ (2% > (131)
k=1

is said to be an orthogonal or generalized Fourier series representation of
ue H , with respect to the orthonormal system {¢; k=1,2, ...}, and the scalars

o, k=1,2, ... arecalled the (generalized) Fourier coefficientsof ue H .

Convergence of infinite series. Let {u,; k=1,2, ...} denote a sequence of
vectorsin anormed space U . Aninfinite series

2. U
k=1
is said to be convergent if and only if the sequence of n-th partial sums

Snzzuk
k=1

converges. In other words, an infinite series Z u, converges, if and only if there
k=1

exists a vector se U such, that for every £>0 there is an integer N >0 such,
that

|s,-s|<e whenever n>N.
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Theorem 13.1. Let {¢; k=1,2, ...} be an orthonorma system in a Hilbert

space H. Then the Fourier series representation (13-1) of an arbitrary element
ue H converges.

However, it does not follow, that the limit of this seriesisu'!

E.13.1. The sequence

{ (pk:\/g sn((2k-1)x); k=1,2,.. } (13-2)

is orthonormal in the Hilbert space H =L,(0,7). Indeed, using Mathematica we
have got

1= e = \[i_ sin[ (2k-1) x]
Assuming[{m, n} € Integers, {J;nwm ondx, J-o"wnzdlx}]
ou[2= {0, 1}
The function
u=sin2x

is orthogonal to every ¢, and hence the Fourier coefficients of u
V4 V4 0
o =(ulg,) = [ sin2xp, dx=2[ g sinxd(snx)=2[gt dt=0.
0 0 0

The corresponding Fourier series

0\/zsinx+0\/zsin3x+0\/zsin5x+
4 4 4

converges - in accordance with the Theorem 13.1 - but its limit is the function
u=0 and not u=sin 2x.

This does not occure, if the sequence (13-2) would contain the function
\/zsin 2x too. Hence the sequence (13-2) is in this respect deficient,
V4
"incompl ete”.

Complete orthonormal sets. Let {¢,; k=1,2, ...} be an orthonormal set in a
Hilbert space H . The orthonormal set {¢, } is said to be complete, if for every
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element ue H the Fourier series representation of u with respect to
{@; k=1,2, ...} convergesto thelimit u.

Do not be confused by this second use of the notion complete. In the Section 5
we defined, that a (normed) space S is complete if every Cauchy sequencein S
is convergent in S. Here we say that the set {¢,; k=1,2, ...} is complete, if

oo

> (u|g) ¢, =u for every u inthe Hilbert space H .

k=1

Theorem 13.2. An orthonormal system {¢,; k=1,2, ...} is complete if and
only if

(ulg)=0 foral k implies u=0.

That is, the orthonormal sysem {¢,; k=1,2, ...} is complete, if u=0 isthe
only vector in H which is orthogonal to all elements of the set {¢,; k=1,2, ...}.

We saw that the function u=sin2x=© is orthogonal to al elements of the
orthonormal set (13-2). Hence also by theorem 13.2 the set (13-2) is not complete.

Recall, that a subset S of a Hilbert space H spans or generates the Hilbert
space, if the set of all linear combinations of the elementsof S isdensein H .

Complete sequences. Let H be aHilbert space. A sequence
fw.; k=12,..} (13-3)

of (not only mutually orthogonal) elementsof H iscalled a complete sequence of
H,if {y,; k=12, ...} spansthe Hilbert space H .

In other words, {y,; k=12, ...} is a complete sequence of a Hilbert space
H, if for any ue H and for every £>0, there is a positive integer N and
numbers &, al", ..., al" such, that

< ¢ fordl n>N.

n
u->y, ay,
k=1

Bases for a Hilbert space. Let H be a Hilbert space. A sequence
{w.; k=12,..}of dementsof H iscalled abasisforH ,if {y,; k=12,..}

1. isacomplete sequence of H

(that is, every ue H can be approximated with an arbitrary accuracy

by linear combinations of elementsof {y,; k=12, ..})
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and
2. islinearly independent.

In other tems, a basis for a Hilbert space H is every linearly independent
countable subset of H which spans H .

We note, that in the finite element approximations not only the coefficients
a”, a, ..., a" but dso the basis functions ",y ... depend on the
accuracy €.

Schauder basis. If the basis for a Hilbert space H has the property, that any

ue H can be uniquely written in the form of infinite sum

u=> a.y,
k=1

(which is interpreted as < ¢ for dl n>N) then the linearly

u-> ay
k=1

independent sequence {y,; k=12, ...} iscaled Schauder basis.

If a sequence (13-3) is orthonormal then the previous definitions of complete
sequences and of complete orthonormal sets expressidentical concepts.

Orthonormal bases. An orthonormal sequence
{o; k=1,2,..}
that forms abass for a Hilbert space H iscalled an orthonormal basisfor H .

Now we give an algorithm for the construction of an orthonormal bass
{p; k=1,2,..} onceabasis {w,; k=12,..}for H isgiven.

Gram-Schmidt orthonormalization. Let

0= na
v

be the first element of the orthonorma set. (The linear independence of
{w., k=12,..} implies that the zero vector is not an element of {w,}).

Obviously | ¢ |=1.
Let

0, =¥,+C,0
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be orthogonal to ¢, (seeFig. 13.1), that is let

<¢1|92>:<¢1|'//2+C12¢1>:01

from whichiit follows ¢, =— (¢, | ¥, ) -

CrL,

&) 9,

?,

A 4
v

2] v

Figure 13.1. First step of the orthonormalization procedure

Wenote, that | g, ||#0 becauseif

0, = Vo + Ty = O
vl

then the vectors y,, i, are not linearly independent. Hence

_ 9,
| 9,

?,

and ¢, and ¢, are mutually orthogonal vectors and have unit norms.

Let

O:=¥3+C30,+C50,

be orthogonal to ¢, and to ¢,, that islet
<¢1| 93>:<¢1|l//3>+013 <¢1| ¢1>+C23<¢1| ¢2>:0

<¢2|93>:<¢2|l//3>+c’13<¢2|¢1>+C23<¢2|¢2>:0
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from which it follows

C13:_<¢1|l//3>1 C23:_<¢2|l//3>-

Similarly to the case of the vector g, it can be shown, that g, # © and hence

9s

o= =,
Y

@, ¢, and ¢, are mutually orthogonal and have unit norms.
If we continue this technique, then we get an orthonormal system {¢,, ¢,, ... }.

It is easy to see, that the sequence { ¢, ; k=1,2, ...} isan orthonormal basis for

aHilbert space H . The orthonormality of the sequence immediately follows from
its congtruction, so that it is enough to prove that it is complete. From the process
of the orthonormalization it is clearly seen, that the n-th eement of

{p;k=1,2,..} is a linear combination of the firt n elements of
{w.; k=12,..} and vice-versa Therefore, if any ue H can be approximated

with an arbitrary accuracy by linear combinations of the elements of
{w.; k=12,..}cH then this is aso true for the linear combinations of the

dements of {¢;k=1,2,..}cH, tha means that the sequence
{p; k=1,2, ...} iscompletein H.

E.13.2. Recall, that the sequence of functions
{1, X, X2, 3, x4 ... }

forms a base for the Hilbert spacel,(~11). But this base is not orthonormal. To

orthonormalize it we may apply the process of Gram-Schmidt orthonormalization
which can be redized using Mathematica as follows:

IN1]:= << LinearAlgebra Orthogonalization™
{yl, y2, y3, v4, y4} =
GramSchmidt[{1, x, ¥, X, x4}, Normalized -» True,

ImmerProduct - (J-l(#l #2) dx &)]
1

o (3 T2 (5103

X 3 105 (’E*XAL*% (f§+x2>>
o |

2 2 5 8\/72
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Control:

1 1

In3]:= {J y1? dlx,f yly2dx}
1 1

ou[3= {1, 0}

The following example applies the Gram-Schmidt orthonormalization to the
given list of three-dimensional vectors.

IN1]:= << LinearAlgebra Orthogonalization™
ul= {3, 4, 2};u2={2, 5, 2}; u3 ={1, 2, 6};
{vl, v2, v3} = GramSchmidt[{ul, u2, u3}]

ou[g= {{ 3 4 2 }
- Wyzet yze o yas )
{7 321 25 . 2 }1{721721 7H
/1653 /1653 /1653 /57 57 /57

Theresult is an orthonorma basis, so the scalar product of each pair of vectors
is zero and each vector has unit length:

In4:= {vl.v2, v2.v3, vl1.v3, vl.vl, v2.v2, v3.v3}

Ou[4= {0, 0, 0,1, 1, 1}

In[5]:= Show[
Graphics3D[
{Hue[0], Thickness[0.008], Map[Line[{{0, 0, 0}, #}] &, {V1l, V2, v3}1}],
Axes - True]

Out[5]= = Graphics3D -
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Theorem 13.3. If aHilbert space H is separable, then H contains abass.

Proof: If a Hilbert space is separable, then H contains a countable dense subset
which spans H . If we order the elements of this subset into a sequence, then we
have a complete sequence; if we omit those elements which are linear
combinations of the others, then this does not disturb the completeness of the
sequence, so that we have a linearly independent complete sequence of H, which
isabasisfor H.

Theorem 13.3 and the Gram-Schmidt orthonormalization implies:

Theorem 13.4. A separable Hilbert space has an orthonormal basis.
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14. The projection theorem, the best approximation

From simple geometry it is well known how to determine the point m among
al poits mof a plane M, for which the distance from a point x¢ M is the

shortest. The point m is given as the intersection of a line passing through the
point x, perpendicular to the plane M itself (see Fig. 14.1).

A
7

M

X —m*

Figure 14.1. Orthogonal projectionin R,.

This obvious and intuitive result can be generalized to the problem of finding
the best approximation m’ of a given vector x of a Hilbert space in the subspace
M.

Minimizing vector. Let H be an inner product spaceand M alinear subspace
of H. A vector m € M is said to be a minimizing vector of a given vector
xe H inasubspace M , if

H X—m' H < | x—m| foradl meM.

Theorem 14.1. (The projection theorem).

(@D} m" e M isaminimizig vector of avector xe H in asubspace M , if
and only if
<x—m* m>:0 foradl meM.

2 If aminimizing vector exists, thenit is unique.

3 If H isaHilbert pace, and M isaclosed linear subspacein H (i.e.
if meM and m, - m, implies me M), then to every xe H

there exists aminimizing vector m" in M .
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We note, that neither the orthogonality of x—m' nor the unicity of m depends
on the completeness of the space H .

The best approximation. Let H be areal Hilbert space and suppose we have
an orthonorma sequence of functions {¢,; k=1,2, ...,n}c H with which we
wish to agpproximate an arbitrary function u in H . To approximate u in the best
possible way, we want a linear combination of {g,; k=1,2,...,n} which is as

close as possble, in terms of the norm in H, to u. In other words, we want to
minimize

u- Z G
p}

By the projection theorem, this norm isminimal if and only if

<u - ch D
k=1

q>:0,i:12“wn

Since the orthonormality of the sequence {¢,; k=1,2, ...,n}, it follows that
¢ =(ule), k=1,2, ...,n, that is, the scalars ¢,; k=1,2, ...,n are the Fourier
coefficientsof ue H .

With this choice of ¢, , the error of our approximation is

2

= <U - ch¢k
k=1

a3 )=l -3l

k=1

n
u- Z N2
k=1
Since the error (norm) can never be negative, it follows that

n n 2 2

2.6 =2 (Ule) <|ul" <o,

k=1 k=1
which is known as Bessd’s ineguality. Since this is true for al n, if the set
{¢k; k=12, n} is infinite, we can take the limit n— <, and conclude that

> ¢, converges to some function in H . (We know this because ) ¢, isa
k=1 k=1

Cauchy sequencein H and H iscomplete)

For any orthonormal system {¢,; k=1,2, ...,n}, the best approximation of u is

Z<u|(pk>¢k, which is the projection of u onto the space spanned by the set

k=1

{o;k=12,..,n}
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Appendix: A. Construction of basis functionsfor the vector space
c{’[-11) usng Mathematica

Training problem: Let c{[-1,1] denote that linear subspace of the vector space
CW[-11], which consists of piecewise cubic polynomials on the intervals [-1,0]
and [0]. Similarly to example E.2.2, determine the basis of the function space
c¥[-1,1] and plot it using Mathematica!

In[1]:= Clear["Global "] (* Training problem x)

pilt ] i=a1tP+bit?+cit+dy
p2[t ] :=a; t3+b2t2+02 t+dy

(» conditions for continuity in t==0 %)

P1[0] = p2[0]

ouf4= di =dy

5= (D[p1[t], t] /.t~ 0) = (D[p2[t], ] /. £~ 0)

ouf5]= ¢y = Cy

InN6l:= dg=dp=dj;ci=cz=c;
plt ] := Piecewise[{{p1[t], -1<t< 0}, {p2[t], 0= t<1}}]
dp[t ] := Piecewise[{{p1'[t], -1 <t <0}, {p2'[t], 0<t<1}}]
s= Solve[{Map[p, {-1, 0, 1}] = Map[g, {-1, 0, 1},

Mep[dp, {-1, 0, 1}] == Map[dg, {-1, 0, 1}]} // Flatten, {ai1, b1, az, bz, ¢, d}] //
First

ouf9= {a1-dg[-1] +dg[0] +29g[-1] -29[0],
by »dg[-1] +2dg[0] + 3g[-1] -39g[0], ax~ dg[0] +dg[1l] + 2g[0] - 29[1],
by » -2dg[0] -dg[1] -3g[0] +3g[1], c~» dg[0], d- g[0]}

IN10]:= (% substitution of the solution into p[t ] *)

ss=p[t] /. s

Otdg[o] +t2 (dg[-1]+2dg[0] + 3g[-1] -3g[0]) + t3 (dg[-1] +dg[0] +2g[-1] -2g[0]) +g[0] -1<t=<0

Out[10]=
o tdg[0] +g[0] + £ (dg[0] + dg[1] + 29[0] -29g[1]) + t? (-2dg[0] - dg[1] -3 g([0] + 3g[1]) O=<t=1
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IM11:= (% arrange to form p[t ]:=
gl[-1] e1[t] +dp[-1] @2[t]+g[0] @3 [t]+AP[O0] ¢4 [t]+
g[1] es[t]+dp[1] s [t] *)

sss= {ss[[1, 1, 111, ss[[1, 2, 1]]}

ou[11]= {tdg[0] +t? (dg[-1] +2dg[0] +3g[-1] - 3g[0]) +
t® (dg[-1] +dg[0] +2g[-1] -29[0]) +g[0], £dg[0] +g[0] +

t? (dg[0] +dg[1] +2g[0] - 2g[1]) + t* (-2dg[0] -dg[1] - 39[0] + 3g[1])}

IN12):= £i= Table[Map[Coefficient[sss, #] &, {g[k-2], dg[k-2]1}1, {k, 1, 3}1 //
Flatten[#, 1] &

ou[17= ((3t2+2¢3, 0y, (£2+¢3 0y, 1-3t%-2¢3, 1-3¢c2+2¢%,
tv2t?re3, to2t24 8%, (0, 3t2-2t%, (0, t2+£3)

In[13)= Table[pk[t ] = Piecewise[{{fi[[k, 1]]1, -1<t <0}, {fi[[k, 2]], O< t=<1}}],
{k, 1, 6}]

01-3t°-2t3 —1<t=<0

ouy= {03e2:263 act<o, 0e2ie2 —1ctso L 3t2.90 o.po1’
- + < =<

Ot+2t?2+t3 -1<t=<0 o ~lst=<0 o —lstso}
£_2t2,t3 0<t<1 = 3t2-2t3 0<t=1 ' -t2+t3 o0<t=1

In14]:= drawing = Table[Plot[pk[t], {t, -1, 1}, AspectRatio- 1 /2, PlotStyle -» Thickness[0.011],
DisplayFunction - Identity], {k, 1, 6}];
Show [GraphicsArray[Partition[drawing, 2]], DisplayFunction- $DisplayFunction]

0.5 1
0.5 1 -0.15
: 1 0.5 0.5
os -0.02
-0.04
0.6 -0.06
0.4 -0.08
02 -0.1
-0.12
-1 -0.5 0.5 1 -0.14

Ouf15]= = GraphicsArray -



Appendix: B. The Lebesgue integral

For purposes of thistext, it is only necessary to acquire a simple understanding
of the definition of thisintegral and some of its fundamental properties.

The Lebesgue integral for bounded measurable functions: Let f(x) be a
(real-valued), bounded measurable function on a closed interval [a,b]. Since
f(x) is measurable on [a,b], there exists a sequence of continuous functions
{g,(x)} which converges to f(x) almost everywhere on [a,b]. Since f(x) is
bounded, there is a number K >0 for which |f(x) <K ontheinterval a<x<b.
Then we may write

j! f(x)dx= IimU gn(x)dxj ,

N—oc0

where the integrals on the right-hand side are Riemann integrals of continuous
functions.

We note, that this definition is correct, because it can be shown that the limit
does not depend on the choice of sequence {g, (x)}.

Nonnegative integrable functions: Let f(x)>0, a<x<b be a measurable
function. Define the sequence of bounded measurable functions

f(x) xelab] and 0< f(x)
{ n xelab] and n<f(x

The function f(x) issaid to be (L ebesgue) integrableoninterval [a, b, if the
b
sequence of integrals {J‘ f (x) dx} is bounded from above. Then we may write

a

IN

n

f.(x)= (n=12,..).

~—

j! f(x)dx= lim b fn(x)dXL: supjb‘ fn(x)dxj

Nn—eo
a a

and this expression is called L ebesgue integral of the function f(x) on [a,b].

Integrable functions of arbitrary signs. Let f(x) be a (real-valued),
measurable function on a closed interva [a,b]. If f,(x) and f,(x) are two
nonnegative integrable functions such that

f)="1(J-1f,(0 (xe[ab]),
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then we say that f(x) is (L ebesgue) integrable on [a,b]. The number

j! f(x)dx:i fl(x)dx—i f,(x)dx

is called the (Lebesgue) integral of function f(x) oninterval [a,b].

Some properties of the Lebesgue integral and the Riemann integral are the
same. For example, the set of integrable functions isalinear space and the map

f— [ f(x)dx

islinear, that is,

b

(f(x)+g(x))dx= I f (x)dx+ig(x)dx and j!(/l f(x))dx = AT f(x)dx.

a

D —— T

In Section 9 we defined the set of (Lebesgue) measure zero. Sets of arbitrary
Lebesgue measures can be defined using their characteristic functions. If
A=[a,b], then the function

Oif xg A
- as<x<b
n {lifXEA ( )

is called the characteristic function of A.

Measurable sets. A set Acla,b] is said to be measurable (Lebesgue
measurable) if its characteristics function y, isintegrable. The number

I)(A(X) dx

a

is called the (Lebesgue measure) of A and is denoted mesA.

E.B.1. If A=[c,d]c[a,b], then mesA=d—-c. Consequently the Lebesgue
measure is a generalization of the length in elementary geometry.

Theorem B.1. If Ac|[a,b] and Bc[a,b] are two measureble disjoint sets on
theinterval [a,b], that is, if AnB=06,then AUB ismeasurable and

mes (AU B) = mes A+ mesB.
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Till now we have supposed that the interval [a,b] is arbitrary, but fixed. It can

be shown, that the previous definitions and theorems are independent from the
choice of such an interval. There are general bounded Lebesgue measurable sets
and integrable functions on bounded intervals. The extension of the ideas above to
functions which are defined on unbounded intervals can be made if the limit
process is applied. Nonnegative integrable functions can be obtained using the
following properties:

fi(~oo,+00) >R, f(x)=0 (xeR),
f integrableonevery interval [-n,n]  (n=12...),

n

the lim | f(x)dx exists.

N—co
-n

The last limit is denoted by j f (x)dx.

Now it is possible to extend the definition of integrable functions of arbitrary
signs to interval (—oe,+eo), and the unbounded measurable sets can be discussed in
an analogous way as the bounded measurable sets.

The theory of Lebesgue integral in ®* can be easly extended to the n-
dimensional space R".

Also arbitrary measurable sets may be applied as domains of definition of
integrable functions.

Finally, we mention some very important theorems:
Theorem B.2. Let f(x) bean integrable function ontheinterval [a,b] and let
b

“ f (x)| dx=0,

then f(x)=0 almost everywhere on [a,b].

Theorem B.3. (B. Levi): Suppose {f (x)} is a sequence of non-decreasing
non-negative integrable functions on [a,b] and let there be areal number K >0

b
independent from n such that J.fn(X)dXSK (n=12,..). Then the function

f(x)=lim f (x) isintegrable on [a,b] and

N—sco

87



b

j:f(x)dx:J.(

a

b

lim fn(x))dx: lim | f (x)dx.

N—c0 N—co

Theorem B.4. (H. Lebesgue): Suppose {f (x)} is a sequence of integrable
functions on [a,b] and f,(x) converges to f(x) pointwise amost everywhere
(that i, except on a set of measure zero). If there is an integrable function g(x) so
that for every n= N, |f,(x) < g(x), the pointwise limit f(x) isintegrable and

b b b
lim [ f.(x)dx=[ lim fn(x)dx:J. f(x)dx.

In other words, the limit process and integration may be interchanged without
harm.
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Index

composite, 20

adjoint operator, 48 Composition[], 20
affine-subspace, 13 construction, of basis functions, 83
algebraic continuous

basis, 15 linear functional, 47

dual, 24 continuous operator, 37

dual space, 24 convergence, 31, 73
almost everywhere property, 51, 55, 85 inC c()m) (Q) 66

imation, best, 82 o .
spproxmaton of infinite series, 73

Banach space, 31, 45 wesk, 72
basis, 14 convergent, 31
agebraic, 15 countable, 41
dud, 25 s, 51
{-IorarlT-IméII b?st Pece 15 delta
orthonormal, 76 distribution, 61
Schauder, 76 seguences, 62
Bessdl'sinequality, 82 dense
best approximation, 82 functions, 55
bijection, 19 Set, 41
bijective operator, 19 Subspace, 71
bilinear derivative
form, 24 distributional, 59
functional, 24, 71 gener d!zed, 57
functional, symmetric, 24 generalized, 59
bound of operator, 37 piecewise, 60
boundary value problem, 63 weak, 59
bounded Descartes product, 10
linear operator, 37 differentiation, 20
set, 36 dimension, 14
, dimensional
CYab], 8 finite-, 14
Clah], 29 infinite-, 14, 18
C(Q), 58, 66 o n-, 14
Cantor, Georg, 41 direct
Cartesian product, 10
product, 10 ~sum, 13 .
Cauchy sequence, 31, 69 Di richlet function, 55
Cauchy-Schwarz inequality, 44 distance, 26

characteristic function, 86 distribution, 66

classical solution, 70 delta 61
closed subset, 36 regular, 68
co-domain, 19 ~singuler, 68
compact distributional derivative, 59
operator, 40 domain, 19
S, 36 dual
support, 58 basis, 25
complement, 13 pair, 24 .
complete dual .space, topological, 40
sequences, 75 duality pair, 40
sets, othonormal, 74, 76 ] .
space, 31 equivaent functions, 55

completion, 35 Eudlidean



norm, 26
space, 43

finite e ement method, 15

finite-dimensiona space, 14, 22

formulation
weak, 72

Fourier
coefficients, 73
series, 73

function, 19
characteristic, 86
dense, 55
Dirichlet, 55
equivalent, 55
generdlized, 67
Heaviside, 68
locdly integrable, 68
measurable, 51, 85
smooth, 57
sguare integrable, 53
support of, 58
test, 58, 67
unitstep, 68

functiona, 23, 67
bilinear, 24, 71
linear, 24, 67
linear, continuous, 47

positive definite bilinear, 24

symmetric bilinear, 24

generalized
derivative, 57, 59
function, 67
representation, 73
solution, 70

generate, 15, 75

Gram matrix, 44, 73

Gram-Schmidt orthonormalization, 76

HY(Q), 69
Hamel
basis, 15
Heaviside
distribution, 68
function, 68
Heine-Borel theorem, 36
Hilbert space, 45, 69, 75, 80
basisfor, 75

inequality
Bessdl's, 82
Cauchy-Schwarz, 44
infinite
-dimensional, 14, 18
norm, 27, 32
sequences, 18, 36
s, 14
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injective operator, 19, 20
inner product, 43, 68, 73
integral
Lebesgue, 53, 55, 67, 85
norm, 32
Riemann, 55
intersection, 12
inverse operator, 23

kernd, 21

lol %, 32
Lo[ab], 29
Lo ab], 29
L,(Q), 53
Lax-Milgram theorem, 50, 72
Lebesgue
integral, 53, 55, 67, 85
measure, 86
theorem, 62, 85
L ebesgue, Henri, 53
Levi theorem, 87
limit, 31
Limit[], 35
linear
functional, 24, 67
functional, continuous, 47
manifold, 13
operator, 20, 22
operator, bounded, 37
space, 7
subspace, 11
linearly
dependent, 14
independent, 14
L1217 27
locally integrable function, 68

map, 19
mapping, 19
Mathemeati ca® function
Composition[], 20
Limit[], 35
Norm[], 27
NullSpace]], 21
Outer[], 10
matrices, 21
matrix
Gram, 44
maximum norm, 27, 32
mean vaue theorem, 63
measurable
function, 51, 85
set, 86
method
finite e ement, 15
metric space, 26
minimizing vector, 81



multi index notation, 57

n-dimensional, 14

norm, 26
Euclidean, 26
infinite, 27, 32
integral, 32
maximum, 27, 32
of linear operator, 39
sum, 26

Norm[], 27

normed space, 26, 30, 31, 32, 40, 45, 46, 48

Cl[ab], 29
complete linear, 31
Loab], 29
Loab], 29
linear, 26
notation
multi index, 57
symbolic, 61
Null space, 21
NullSpace]], 21

one-to-one operator, 19
onto operator, 19
operator, 19
adjoint, 48
bijective, 19
bound of, 37
compact, 40
continuous, 37
injective, 19, 20
inverse, 23
linear, 20, 22
linear, bounded, 37
linear, norm of, 39
one-to-one, 19
onto, 19
sdf-adjoint, 49
surjective, 19, 20
orthogonal
representation, 73
orthogonal vectors, 44
orthonormal
basis, 76
set, complete, 74, 76
systems, 73
orthonormalization
Gram-Schmidt, 76
Outer[], 10

piecewise

derivative, 60

linear polynomials, 15

linear poynomials, 83
positive definite

bilinear functional, 24
precompact set, 36

pre-Hilbert space, 43
problem
boundary value, 63
product
Cartesian, 10
Descartes, 10
direct, 10
inner, 43, 68, 73
scaar, 43
projection theorem, 81
property

amost everywhere, 51, 55, 85

range, 19
regular distribution, 68
representation
Fourier series, 73
generaized, 73
orthogonal, 73
Riemann integral, 55

Riesz representati on theorem, 46, 72

Riesz, Frigyes, 46

scalar product, 43
Schauder basis, 76
Schwartz, Laurent, 66
self-adjoint operator, 49

separable space, 41, 56, 80

sequence(s)
Cauchy, 31, 69
complete, 75
delta, 62
infinite, 18, 36

set
bounded, 36
compact, 36

compl ete othonormal, 74, 76

countable, 51
densg, 41
infinite, 14
Ly(Q), 53
measurable, 86
of measure zero, 51
precompact, 36
spanning, 14, 15, 42
singular distribution, 68
smooth function, 57
Sobolev space, 57, 68
HY(Q), 69
W®(Q), 69
solution
classical, 70
generaized, 70
weak, 70
space
algebraic dud, 24
Banach, 31, 45
complete, 31
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compl ete normed linear, 31
Euclidean, 43
finite-dimensional, 14, 22
Hilbert, 45, 69, 75, 80
infinite-dimensional, 14
inner product, 43
L, 53
linear, 7
metric, 26
n-dimensional, 14
normed, 26, 30, 32, 40, 45, 48
normed, C[ab], 29
normed, Lo[a,b], 29
normed, Lo7ab], 29
null, 21
pre-Hilbert, 43
separable, 41, 56, 80
Sobolev, 57, 68
Sobolev, HY(Q), 69
Sobolev, W,(€), 69
sub-, 11
topological dual, 40
vector, 7
span, 15, 75
spanning set, 14, 15, 42
sguare integrabl e function, 53
subset
closed, 36
subspace, 11
afine, 13
dense, 71
linear, 11
sum
direct, 13
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norm, 26
support

compact, 58

of function, 58
surjective operator, 19, 20
symboalic notation, 61

test function, 58, 67
theorem
Heine-Bord, 36
Lax-Milgram, 50, 72
Lebesgue, 62, 85
Levi, 87
mean value, 63
projection, 81
Riesz representation, 46, 72
Weierstrass approximation, 42
topological dua space, 40
transformation, 19

unitstep function, 68

vector
minimizing, 81
orthogonal, 44
space, 7

W,4(Q), 69

weak
convergence, 72
derivative, 59
formulation, 72
solution, 70

Weierstrass approxi mation theorem, 42



