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Preface 

 
 This textbook contains the course of lectures about some concepts in functional 
analysis that I have delivered periodically to Ph.D. students of civil engineering at 
the Budapest University of Technology and Economics. 

 Functional analysis is a study of abstract, primarily linear, spaces resulting 
from a synthesis of geometry, linear algebra and mathematical analysis. 
Functional analysis generalizes mathematical disciplines, and its popularity 
originates from its geometric character: Most of the principal results in functional 
analysis are expressed as abstractions of intuitive geometric properties of the 
three-dimensional space.  

 The importance of getting acquainted with functional analysis lies in its 
frequent use in the up-to-date engineering literature. I aim to present the basics of 
functional analysis believed necessary to understand the mathematical theory of 
the finite element method, variational solution of boundary-value problems,  as 
well as other problems of continuum mechanics. 

 For the purpose of this text, it is only necessary to acquire a simple 
understanding of the Lebesgue integral and some other concepts related to it. 
Hence, I have decided to avoid introducing a formalized framework for the 
Lebesgue measure and integration theory. However, a short introduction to the 
Lebesgue integration theory is given in Appendix B. 

   Some of the calculations of this textbook were made using the symbolic-
numeric computer algebra system Mathematica. I found this system very useful 
for presenting these concepts because it does algebra and calculus computations 
quickly in an exact, symbolic manner.  

 During the preparation of this textbook, I received helpful suggestions from 
Professors Zsolt Gáspár, Béla Paláncz and Tibor Tarnai whom I would like to 
express my thanks. I would also like to thank Lajos R. Kozák for his help in 
preparing this manuscript for the press.  

 This work was partially supported by the grant T 037880 from the Hungarian 
Scientific Research Fund (OTKA).  

 

 

Budapest, April, 2006.        György  Popper   
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1. Vector spaces, subspaces, linear manifolds  

 It is well known, that the sum of vectors in a plane and the product of a vector 
by real numbers results in a vector in the same plane. In other words, the set is 
closed for these two operations. These "space"-properties of the geometric vector 
space hold for some other sets too, e.g. for some function sets. Hence it is 
advantageous to introduce the following definition: 

 Linear space or vector space is a non empty set X of elements, often called 
vectors, for which two operations are defined: 

1. Addition, that is if Xyx ∈, then Xyx ∈+  

2. Multiplication by scalar, that is if Xx ∈ and α  is 

arbitrary scalar, then Xx ∈ α . 

These two operations are to satisfy the usual axioms:  

If Xzyx ∈,,  and )(βα, Corℜ∈ 1, then  

1. xyyx +=+    (law of commutatitvity); 

2. ( ) ( )zyxzyx ++=++  (law of associativity); 

3. there exists an element X∈Θ such, that xx =+Θ  for any Xx ∈   

      (existence of the zero element); 

4. for any Xx ∈ , there is an element Xx ∈− such as that ( ) Θ=−+ xx  

      (existence of negative elements); 

5. ( ) yxyx ααα +=+ ;  (law of distributivity with respect to vectors); 

6. ( ) xxx βαβα +=+ ;  (law of distributivity with respect to scalars); 

7. ( ) ( )xx βαβα = ;   (law of associativity for scalar multiplication); 

8. Θ=x0  and xx =1 . 

 If the scalars are real X is a real vector space, while if the scalars are complex 
X is a complex vector space. 

                                                
1 ℜ  (C) denotes the set of real (complex) numbers 
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Examples 

 

 E.1.1. The set nℜ of all real ordered n-tuples ( )nxxx ,...,1= , ( )nyyy ,...,1= , … 

is a real linear space if addition is defined by ( )nn yxyxyx ++=+ ,...,11 , and 

scalar multiplication is defined by ( )nxxx α,...,αα 1=  with ℜ∈α . The zero 

vector: ( )0,...,0=Θ . 

 

 E.1.2. The set ( )[ ]baC ,0  of all (real-valued) continuous functions on a finite 
interval bta ≤≤  with addition and real number multiplication  

( )( ) ( ) ( ) ( )( ) ( ) [ ]battftftgtftgf ,,, ∈=+=+ αα  

forms a linear space. The zero vector ( ) 0: =Θ tf  for all [ ]bat ,∈ . 

 Note, that ( )[ ] ( )( )baCbaC ,, 00 ⊂  is true, because ( )[ ] ( ) ( )baCfbaCf ,, 00 ∈⇒∈ . 

 More generally, ( )[ ]baC k ,  denotes the linear space of k-times continuously 

differentiable functions on a finite closed interval [ ]ba, . (This means the set of 
functions whose derivatives at least up to order k inclusive are continuous 
in [ ]ba, .) 

 

 For example, the function 

( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

≤≤−

≤≤−+
=

10if,
2

01if,
2

2

2

t
t

t

t
t

t
tf  

defined on the interval 11 ≤≤− t , is once continuously differentiable but only 
once, i.e. ( ) ( )[ ]1,11 −∈ Ctf  but its first derivative  

( ) ( ) 11,1 ≤≤−−== ttt
dt

df
tg  

belongs only to ( )[ ]1,10 −C , (see Fig.1.1). 
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Using Mathematica: 

In[1]:= Clear@f,gD  

In[2]:= f@t_D := PiecewiseA99t+
t2

2
, −1≤ t≤ 0=, 9t−

t2

2
, 0≤ t≤ 1==E

g@t_D = D@f@tD, tD êê Simplify  

Out[3]=

�≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤∞
±
≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤

1 tm 0
Indeterminate tm −1 »» t m 1
1−t 0 < t< 1
1+t −1 < t < 0  

In[4]:= Plot@8f@tD,g@tD<, 8t, −1,1<,
PlotStyle→ 88Thickness@.008D<, 8Dashing@8.04,.02<D<<,
Prolog→ 8
Text@"f", 80.9, 0.6<D,
Text@"g", 8−0.6, 0.6<D<D  

-1 -0.5 0.5 1

-0.4

-0.2

0.2

0.4

0.6

0.8

1

fg

Out[4]= h Graphics h  

 

Figure1.1. Only once differentiable function. 

 
 

 In spite of the generality of vector spaces, it is easy to find a class of functions 
which does not create a linear space: 

 E.1.3. The class of positive functions with usual addition and number 
multiplication rules (introduced in E.1.2.) does not form a linear space. Really, if 

( ) 0>tf  then ( ) ( ) 01 <− tf . 
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E.1.4. The set of functions with property 

( ) [ ]battf ,,1 ∈<  

does not form a linear space ( if Θ≠f  and the number 0α >  is chosen sufficiently 

large, then 1α >f ). 

 However, in general: The class of bounded functions with usual addition and 
number multiplication is a linear space. 

 

 Direct product. If X and Y are two sets, then the set of all ordered pairs  

( ){ }YyXxyx ∈∈ ,:,  

is called direct- or Cartesian or Descartes product of sets X and Y  and is 
denoted by YX ⊗ . 

 The direct product YX ⊗  can be obtained using the Mathematica function 
Outer[], which combines each element of the list given in its second argument 
with each element of the list given in its third argument, while applying the 
function given in the first argument to all of the possible pairs. The result is in the 
form of a list: 

In[1]:= Outer@f, 8a, b, c<, 81,2<D H∗ outer product ∗L
Out[1]= 88f@a, 1D, f@a, 2D<, 8f@b, 1D, f@b, 2D<, 8f@c, 1D, f@c, 2D<<  

In[2]:= Outer@List, 8a, b,c<, 81, 2<D
Out[2]= 888a, 1<, 8a, 2<<, 88b, 1<, 8b, 2<<, 88c, 1<, 8c, 2<<<  

In[3]:= Flatten@%D H∗ flatten all levels in the list ∗L
Out[3]= 8a, 1, a, 2, b, 1, b, 2, c, 1, c, 2<  

In[4]:= Flatten@%%,1D H∗ flattens the topmost level in the list ∗L
Out[4]= 88a, 1<, 8a, 2<, 8b, 1<, 8b, 2<, 8c, 1<, 8c, 2<<  

Consequently it is reasonable to define the function: 

In[5]:= Descartes@x_, y_D:= Flatten@Outer@List,x, yD,1D
X = 8a, b,c<;
Y= 81,2<;
Descartes@X,YD

Out[8]= 88a, 1<, 8a, 2<, 8b, 1<, 8b, 2<, 8c, 1<, 8c, 2<<  
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 In Mathematica, the direct product can occur as an argument or definition 
domain of many inner functions. For example: 

In[9]:= Plot3DAx3+ y2−1, 8x, −3,3<, 8y, 0, 1<E

-2

0

2
0

0.2

0.4

0.6

0.8

1

-20

0

20

-2

0

2

Out[9]= h SurfaceGraphics h  

Figure1.2. Illustration to the use of  Descartes product. 
 

 

 E.1.5. If X and Y are two linear spaces, then the direct product  

( ){ }YyXxyxYX ∈∈=⊗ ,:,  

is a linear space with the following operations: 

( ) ( ) ( ) YyyXxxyyxxyxyx ∈∈++=+ 212121212211 ,,,,,,,  

( ) ( ) α,,,α,α,α YyXxyxyx ∈∈= scalar. 

 Note, that the addition in vector space YX ⊗  is defined using the additions of 
both linear spaces X  and Y . 

 Subspaces. A nonempty subset S  of a vector space X  is called a linear 
subspace of X , if S  itself is a linear space with respect to addition and scalar 
multiplication defined on X . In other terms, subspaces are closed for vector 
addition and multiplication by scalar.  

 The subspaces are linear spaces; hence all subspaces contain the zero vector 
Θ . 

 E.1.6. Any straight line and plane running through the origin of the three-
dimensional geometric vector space, is its linear subspace. 
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 Among all subsets of the plane shown in Figure 1.3, only the sketches 1.3.c) 
and 1.3.d) contain subspaces of the plane.  

 

Figure1.3. Subsets and subspaces in 2ℜ . 

 

 E.1.7. In the vector space ( )[ ]baC ,0  defined in the example E.1.2, the subset  

     ( ) ( ){ }0: == bfaff   is a linear subspace. The 
subset 

     ( ) ( ){ }1: == bfaff    is not a linear subspace. 

 E.1.8. If M  and N  are linear subspaces of a linear space X , then the 
intersection NM ∩  is also a linear subspace of X . The set  

{ }NnMmnmNM ∈∈+=+ ,:  

is a linear subspace of X , too. If 

XNM =+  and { }Θ=∩ NM , 

M M 
M 

M=point of origin 

M M 

a) b) c) 

d) e) f) 
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then both M and N  is said to be the complement of the other with respect to X , 
and the vector space X  is called the direct sum of M  and N , and is denoted by 

NMX ⊕= . 

For example see the sketch: 

               

 Linear manifold or affine subspace. Any subset of a vector space X  which is 
of form { }Sssx ∈+ :0 , where Xx ∈0  is a fixed vector, and S  is a linear 

subspace, is said to be a linear manifold or affine linear subspace of X . The 
affine subspace { }Sssx ∈+ :0  can also be written in the form of direct sum 

Sx ⊕0 . 

 Linear manifolds (with Θ≠0x ) can be considered as generalizations of 

straight-lines or planes which do not contain the origin. 

M 

   N 

m 

O 

n 

   m+n 



14   

2. Dimension, spanning sets and (algebraic) basis 

 
 The vectors nxxx ,...,, 21  of a linear space X  are said to be linearly dependent 

if there are scalars nα,...,α,α 21  not all of which are zero such that 

Θ=+++ nnxxx α...αα 2211 . 

 The vectors nxxx ,...,, 21  are linearly independent if this equality holds only if 

all of the scalars nα,...,α,α 21  are zero. 

The infinite set of vectors ...,,...,, 21 nxxx  is said to be linearly independent if all of 

its finite subsets are linearly independent. 

 Note, that the single vector Θ≠x  forms a linearly independent set because the 
only way to have Θ=xα  is 0α = . 

 An important example of linearly independent vectors is the polynomials. For 
example, the powers of x , that is { }nxxx ,...,,,1 2  form a linearly independent set. 
We make the proof for 2=n  only, because it can be extended directly (without 
new idea), to the general case.  

 Define the linear combination 

( ) 2
210 xaxaaxp ++=  

and determine when ( ) 0≡xp . This identity implies that all derivatives of ( )xp  
are also identically equal to zero. That is, 

( )
( )
( ) .02

,02

,0

2
,,

21
,

2
210

==

=+=

=++=

axp

xaaxp

xaxaaxp

 

 

 The last equation implies 02 =a , then from the second one: 01 =a , and then 

the first one implies 00 =a . Therefore, ( ) 0≡xp  if and only if ...,2,1,0,0 == iai  

 Dimension. The vector space X  is called n -dimensional or finite-
dimensional, if X  contains n  linearly independent vectors but any 1+n  vectors 
of X  are linearly dependent. 

 The linear space X  is said to be infinite-dimensional, if for any positive 
integer n , n  linearly independent vectors of X  can be found. 
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 Spanning set. A subset { }...,...,,, 21 nxxxS =  of a vector space X  is said to 

span or generate X , if every Xx ∈  can be written as a linear combination of the 
elements of S . 

 Basis. A set of vectors nxxx ,...,, 21  of a vector space X  is said to be an 

algebraic or Hamel basis for X , if and only if 

1.  the set spans X , and 

2.  the vectors nxxx ,...,, 21  are linearly 

independent. 

 Theorem 2.1. Let { }nxxx ...,,, 21  denote a basis for a vector space X . Then 

every vector Xx ∈  is a unique linear combination of nxxx ,...,, 21 . 

 Proof: By contradiction: if nnnn xxxxx β...βα...α 1111 ++=++=  , then 

( ) ( ) nnn xxxx βα...βα 111 −++−=Θ=− . But nxxx ,...,, 21  are linearly 

independent, therefore the coefficients of nxxx ,...,, 21  must be zero. Hence 

nn βα,...,βα 11 == . 

 E.2.1. Consider the vector space ( )[ ]baC ,0  of continuous functions defined on 

the finite interval [ ]ba, . Its subset consisting of polynomials of degree n≤  is a 

linear subspace in which the functions ( )nktk ,...,1,0=  are linearly independent. 
An arbitrary polynomial of degree n≤  can be expressed as a linear combination  

n
n tt 121 α...αα ++++ . 

Therefore the vectors ( )nktk ,...,1,0=  span this ( 1+n )-dimensional linear 
subspace and create its Hamel basis. 

 The linear space ( )[ ]baC ,0  is infinite-dimensional. Really, for any positive 
integer n  the functions  

( ) ( ) ( ) n
n ttxttxtx === +121 ,...,,1  

are linearly independent and are elements of ( )[ ]baC ,0 . 

 The following example contains one of the basic concepts of the finite element 
method: 

 E.2.2. Let ( )[ ]1,10
1 −C  denote that linear subspace of the vector space ( )[ ]1,10 −C , 

which consists of piecewise linear polynomials on the intervals [ ]0,1−  and [ ]1,0 . 
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This means that an arbitrary function ( ) ( )[ ]1,10
1 −∈Ctp  can be written in a unique 

way as  

( ) ( ) [ ]
( ) [ ]⎩

⎨
⎧

∈+≡
−∈+≡

=
1,0for ,

0,1for,

222

111

tbtatp

tbtatp
tp  

where in consequence of the continuity condition ( ) ( )00 21 pp =  follows 21 bb = . If 

we express the coefficients bbbaa == 2121 ,,  using the function values 

( ) ( ) ( )1,0,1 ggg −  at the nodal- points 1,0,1− , then 

( ) ( ) ( ) ( ) [ ]
( ) ( ) ( ) [ ]⎩

⎨
⎧

∈+−
−∈++−−

=
1,0if,101

0,1if,011

tgtgt

tgtgt
tp  

This piecewise polynomial can be expressed in the form of a linear combination  

( ) ( ) ( ) ( ) ( ) ( ) ( )tgtgtgtp 321 101 ϕϕϕ ++−=  

where 

( ) ( ) ( )
⎩
⎨
⎧

∈
−∈

=
⎩
⎨
⎧

∈−
−∈+

=
⎩
⎨
⎧

∈
−∈−

=
]1,0[if,

]0,1[if,0
      

]1,0[if,1

]0,1[if,1

]1,0[if,0

]0,1[if,
321 tt

t
t

tt

tt
t

t

tt
t ϕϕϕ  

see Figure 2.1. 

 

  ( )t1ϕ                                              ( )t2ϕ                                                    ( )t3ϕ  

Figure 2.1. Basis in the function space ( ) [ ]1,10
1 −C . 

 

 The functions ( ) ( ) ( )ttt 321 ,, ϕϕϕ  are linearly independent (see Figure 2.1.) and 

any function ( ) ( )[ ]1,10
1 −∈Ctp  is a linear combination of ( ) ( ) ( )ttt 321 ,, ϕϕϕ . Hence 

these functions span (generate) this 3-dimesional function space.  

 Computing the basis functions for the vector space ( ) [ ]1,10
1 −C  can be made 

using Mathematica: 

In[1]:= Clear@pD
p@t_D := Piecewise@88a1 t+ b, −1≤ t≤ 0<, 8a2 t+ b,0 ≤t ≤1<<D  

-1 0 1 -1 0 0 1-1

1 1        1

     1
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In[3]:= H∗ g@−1D,g@0D,g@1D given function values of p@t_D in node points −1,0,1 ∗L
s= Solve@Map@p, 8−1, 0,1<Dm Map@g, 8−1,0,1<D, 8a1, a2, b<D êê First

Out[3]= 8a1 → −g@−1D + g@0D, a2 → −g@0D + g@1D, b → g@0D<  

In[4]:= H∗ substitution of the solution into p@t_D: ∗L
ss= p@tD ê.s

Out[4]= �≤≤≤≤∞±≤≤≤≤≤≤≤
g@0D +tH−g@−1D +g@0DL −1 ≤ t ≤ 0
g@0D +tH−g@0D + g@1DL 0 ≤ t≤ 1  

In[5]:= sss= 8ss@@1,1,1DD,ss@@1,2, 1DD<
Out[5]= 8g@0D+ tH−g@−1D+ g@0DL, g@0D + t H−g@0D+ g@1DL<  

In[6]:= H∗arrange to form p@t_D:=g@−1D ϕ@1D@tD+g@0D ϕ@2D@tD+g@1D ϕ@3D@tD∗L
fi= Table@Coefficient@sss,g@k−2DD, 8k,1, 3<D

Out[6]= 88−t, 0<, 81+ t, 1− t<, 80, t<<  

In[7]:= Table@
ϕk@t_D =Piecewise@88fi@@k,1DD, −1 ≤t ≤0<, 8fi@@k,2DD, 0≤ t≤ 1<<D,8k,1,3<D

Out[7]= :�≤≤∞±≤≤≤≤≤ −t −1 ≤ t ≤ 0, �≤≤≤≤∞±≤≤≤≤≤≤≤
1+ t −1 ≤ t≤ 0
1− t 0 ≤ t ≤ 1

, �≤≤≤∞≤≤≤≤≤
0 −1 ≤ t ≤ 0
t 0 ≤ t ≤ 1

>
 

In[8]:= H∗ drawing the basis functions ∗L
Do@Plot@ϕk@tD, 8t, −1,1<, AspectRatio→ 1ê3,

PlotStyle→ Thickness@0.01DD, 8k,1,3<D;  
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  Training problem: Let ( ) [ ]1,11
3 −C  denote the linear subspace of the vector space 

( )[ ]1,11 −C  which consists of piecewise cubic polynomials on the intervals [ ]0,1−  

and [ ]1,0 . Similarly to example E.2.2, determine the basis of the function space 
( ) [ ]1,11
3 −C  and plot it using Mathematica! 

 A possible solution is shown in Appendix A. 

 E.2.3. Consider the linear space X  whose elements are infinite sequences of 

real numbers { }...,, 21 ξξ=x  with ∞<∑
∞

=1

2

k
kξ . The subset of X consisting of vectors  

{ }...,0,0,11 =e  

{ }...,0,1,02 =e  

M  

{ }
( )k

ek ...,0,1,0,...,0=
 

M  

span X  which is infinite dimensional (really, for any positive integer k  the 
vectors kee ...,,1  are linearly independent and are elements of X ). Clearly, all of 

the vectors ...,, 21 ee  are linearly independent, too. However, they do not form a 

Hamel basis (because { }...,, 21 ee  is not a finite set). 

 It is true, that any element of X  can be written in the form 

∑
∞

=

=
1

α
k

kkex  

but this requires to define the convergence of infinite series for vectors. Later on, 
the concept of bases will be extended. 

 E.2.4. Let S  denote those infinite sequences of real numbers in which all 
elements except for a finite number of elements are zero. S  is a subspace of the 
linear space X  specified in example E 2.3. Any vector Sx ∈  can be written as a 
linear combination of a finite set { }neee ...,,, 21 . Hence, these vectors form an 

algebraic (Hamel) basis for the subspace S . 
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3. Linear operator 

 Operator. The term operator is synonymous with function, map or mapping 
and transformation.  

 Given two linear spaces (sets) X  and Y , an operator T  from X  to Y , 
denoted YXT →: , is a rule that assigns one and only one vector ( ) YxTy ∈=  to 
every vector XDx ⊆∈ . The subset D  of X  is the domain of T  and the image 
of D  

( ){ }DxxTR ∈= :  

is the range of T . 

 The operator T  is considered to be given if both its domain D , co-domain Y , 
and the rule of transformation are given. 

 The operator YXT →:  is said to be one-to-one or injective, if  

( ) ( )2121 xTxTxx ≠⇒≠ . 

 In other terms, YXT →:  is one-to-one, if for every Ry ∈  there is exactly one 

Xx ∈  such that ( )xTy = . 

 The operator is said to map X onto Y or is called surjective if YR = .  

 If T  is both injective and surjective, it is called a bijection from X  to Y . 

 E.3.1. Let ℜ  denote the set of real numbers and +ℜ  the set of positive real 
numbers. Using the rule ( ) 2xxT =  define the following operators (functions): 

  1. ℜ→ℜ:1T . This operator is not one-to-one, since both x−  and x+  are 

mapped into 2x . It is not surjective either, since the negative real numbers are in 
the co-domain ℜ  but not in the range +ℜ . 

  2. +ℜ→ℜ:2T . This operator is not one-to-one, but it is onto. 

  3. .:3 ℜ→ℜ+T  This operator is one-to-one, but it is not onto. 

  4. .:4
++ ℜ→ℜT  This operator is bijective, i.e. it is both one-to-one and 

onto. 

 Note that although the rule ( ) 2xxT =  defining each operator ,,, 321 TTT  and 4T  

is the same, the four operators are quite different. 
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 Similarly, changes in the domain (e.g. in the boundary conditions) of a 
differential operator lead to a different operator (having properties different from 
the original one). 

 Linear operator. An operator YXT →:  is said to be linear, if the domain D  
of T  is a linear space (that is X  or a subspace of X ), and if  

( ) ( ) ( )yTxTyxT βαβα +=+  

for β,α  scalars and Xyx ∈, . 

 For a linear operator T , we usually write Tx  instead of ( )xT . 

 E 3.2. Any nm×  (read " m " by " n ") real matrix A  represents a linear operator 
mnT ℜ→ℜ: . 

The operator T  is injective if and only if ( ) nA =rank ; and T  is surjective if and 

only if ( ) mA =rank . 

(Really, if ( ) nA =rank  then from the inequality ( ) Θ≠− yxA  follows Θ≠− yx . 

That is, if AyAxyx ≠⇒≠ . The case ( ) mA =rank  is easy to verify by partition 
of A .) 

 E 3.3. The linear operator of differentiation 

( )[ ] ( )[ ] ( )[ ]baCbaCbaC
dx

d
,,,: 001 →⊂  

is surjective, i.e. onto the range ( )[ ]baC ,0  (surely, every continuous function is 

integrable), but is not injective (the derivatives of ( )xf  and of ( ) const+xf  are 
equal). 

 The composition of two functions, YXf →:  and ZYg →: , is defined by  

( )( ) ( )( )xfgxfg =•  

 In Mathematica the composition of functions f  and g  can be calculated using 
the function Composition[]: 

In[1]:= f@x_D := x2; g@x_D:=
è!!!!!!!!!
x−1

h1@x_D= Composition@f, gD@xD
Out[2]= −1+ x  

In[3]:= h2@x_D= Composition@g, fD@xD
Out[3]=

"####### #### ##
−1+ x2  
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or alternatively 

In[4]:= h1@x_D= f@g@x

Out[4]= −1+ x  

In[5]:= h2@x_D= g@f@x

Out[5]=
"##### ## ## ## ##

−1+ x2  

 

 If YXT →:1  and ZYT →:2  are linear operators, then the composition 12 TT •  
is a linear operator, too. Really, 

( ) ( ) ( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( ).βαβα

βαβα

212112212112

211122112

xTTxTTxTTxTT

xTxTTxxTT

•+•=+=

=+=+•
 

  

 Null space. The null space ( )TN  of the linear operator YXT →:  is the set 

( ) { }Θ=∈= xTXxxTN ,: . 

 The null space, also known as the kernel of the transformation YXT →:  is the 
subset of elements of X  which has the zero image. 

 It is easy to see that the null space of T  is a linear subspace of X . 

(Indeed, if ( )TNx ∈1  and ( )TNx ∈2 , then Θ=1xT  and Θ=2xT . The linearity 

implies ( ) Θ=+=+ 2121 βαβα xTxTxxT . That is, ( )TNxx ∈+ 21 βα . 

 If A  is an nm×  matrix, then the Mathematica function NullSpace[A] gives a 
list of vectors that forms a basis for the null space of the matrix A . 

 As an example: 

In[1]:= A = 881,0, 1, 2<, 80,1, 1,1<, 80,0,0, 0<<;MatrixForm@AD
Out[1]//MatrixForm=ikjjjjj1 0 1 2

0 1 1 1
0 0 0 0

y{zzzzz  

In[2]:= B= NullSpace@AD
Out[2]= 88−2, −1, 0, 1<, 8−1, −1, 1, 0<<   
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Check: 

In[3]:= A.HαB@@1DD+ βB@@2DDL H∗ Notice the symbolic computation ∗L
Out[3]= 80, 0, 0<  

  

 If the matrix A  is nonsingular, then NullSpace[A] gives the empty set { }. 

 (Notice, that the Mathematica function NullSpace [A] is available to compute 
all the solutions of a homogenous set of linear algebraic equations.) 

 The following result is useful in the study of operator equations. 

 Theorem 3.1.  A linear operator, YXT →: , is one-to-one if and only if its null 
space is trivial, ( ) { }Θ=TN . 
 
 Proof: The linearity of T  implies ( ) Θ+=Θ+= TTxxTTx  and hence 

Θ=ΘT , that is ( )TN∈Θ . 

If T is one-to-one, then Θ≠x implies Θ≠ TTx , that is Θ≠Tx . In other terms, if 
Θ≠x  then ( )TNx ∉ . Hence ( ) { }Θ=TN . 

Conversely, if ( ) { }Θ=TN , then the equality 21 TxTx =  implies ( ) Θ=− 21 xxT , that 

is, ( )TNxx ∈− 21  and since it is supposed that ( ) { }Θ=TN , it follows 21 xx = . 

Thus, if ( ) { }Θ=TN  then the operator T  is one-to-one.  With this the proof is 
completed. 

 Linear operators on finite-dimensional spaces. The study of continuous 
systems often leads to solving boundary-value problems. The solution is a vector 
in an infinite-dimensional space. The numerical methods approximate the solution 
in finite-dimensional subspaces of the infinite-dimensional space. Hence it is of 
great importance that: 

 Linear operators on finite-dimensional vector spaces can be represented by 
matrices. 

  Let X  and Y  be finite-dimensional linear spaces, and let YXT →:  be a 
linear operator. Let { }nϕϕ ,...,1  and { }mψψ ,...,1  be bases for X  and 

Y respectively. Then Xx ∈  and Yy ∈  can be expressed uniquely as 

j

m

j
ji

n

i
i yx ψϕ ∑∑

==

==
11

β,α  
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Thus for any Xx ∈ , it can be written 

j

m

j
ji

n

i
i

n

i
ii TTxTy ψϕϕ ∑∑∑

===

==⎟
⎠

⎞
⎜
⎝

⎛==
111

βαα . 

Since YT i ∈ϕ , that is the image of iϕ  is an element of the space Y we can write  

j

m

j
iji tT ψϕ ∑

=

=
1

. 

If we substitute this formula into the previous one, then because 

ji

m

j

n

i
jij

m

j
ji

n

i
i tt ψψ αα

1 111
∑∑∑∑

= ===

=  we get  

j

m

j
jj

m

j
i

n

i
jit ψψ ∑∑ ∑

== =

=⎟
⎠

⎞
⎜
⎝

⎛

11 1

βα , 

and the uniqueness (see theorem 2.1.) implies  

mjt ji

n

i
ji ,...,1,βα

1

==∑
=

 

or in matrix form 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

m

n

mnm

n

tt

tt

β

β

α

α

.

.

.

.

.

.

.

.

.

...

..

..

..

..

..

..

... 1

1

1

111

 

The matrix [ jit ] is said to represent the linear transformation with respect to the 

bases { }nϕϕ ,...,1  and { }mψψ ,...,1 . 

 Inverse operator. If YXT →:  is a one-to-one linear operator, then the linear 

operator ( ) XYTRT →⊆− :1 , which to every element ( )TRy ∈  assigns the 
element Xx ∈ , for which yxT = , is called the inverse operator to the operator 
T . 

 Functional. If the operator to vectors of a linear space X  assigns scalars (e.g. 
if ℜ=Y , the set of real numbers), then the operator is called functional on X . 
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 Since a functional is a special operator, the functional is said to be linear when 
it is a linear operator. 

 E.3.4.  Linear functional is e.g. ( ) ( )dttxxf
b

a
∫=  

 Bilinear functional. Let ( ){ }YyXxyxYX ∈∈=⊗ ,:,  denote the direct or 
Cartesian product of two real linear spaces X  and Y . A functional  

( ) yxyxb ≡,  

defined on YX ⊗ is called bilinear, if 

2121

2121

αα

αα

yxyxyyx

yxyxyxx

+=+

+=+
 

for all YyyyXxxx ∈∈ 2121 ,,,,,  and ℜ∈α . 

 The bilinear functional yx  (defined on XX ⊗ ) is said to be symmetric, if 

xyyx = , and is positive definite if 0≥xx  and 0=xx  if and only if 

Θ=x . 

 The bilinear functional is sometimes also called bilinear form. 

 Algebraic dual space. Let X  and Y  be two real linear spaces. The set of all 
linear transformations from X  to Y  is itself a linear space and it is denoted by 

( )YXL , .  

For example, ( )mnL ℜℜ ,  is the set of all real nm ×  matrices, which is clearly a 

linear space. When 1ℜ=Y , ( )YXL ,  becomes the space of all linear functionals 

on X . This vector space is called the algebraic dual of X  and is denoted by *X . 
That is, ( )1* ,ℜ= XLX . 

 Linear functionals on X  are often expressed in the form of dual-pairs, that is 
as 

( ) xfxf ≡  

where XxXf ∈∈ ∗,  and ..  is a bilinear map from XX ⊗∗  into 1ℜ . That 

is, 1:.. ℜ→⊗∗ XX . 

 E.3.5. If X  is a finite or n -dimensional vector space, then its algebraic dual 
*X  is a finite dimensional vector space, too. 
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 There is a special relation between the bases of X  and *X . Let { }nxx ,...,1  be a 

basis of X . Then any Xx ∈  uniquely can be written in the form 

i

n

i
ixx ∑

=

=
1

α  . 

If F  is a linear functional on the space X , then evidently  

( ) ( ) i

n

i
ixFxFxF α

1
∑

=

=≡  ; 

that is, every linear functional is uniquely determined by its values in basis vectors 

nxx ,...,1 . Define the linear functionals nll ...,,1  by the formula 

( ) jjj xlxl α=≡ . 

 We show that jl  is a linear functional. Indeed, for vectors i

n

i
i xx ∑

=

=
1

α , 

i

n

i
i xy ∑

=

=
1

β  and for any scalars μ , λ , we get 

( ) ( ) ( ) ( )ylxlxlyxl jjjj

n

i
iiijj λμβλαμβλαμλμ

1

+=+=+=+ ∑
=

. 

 With respect to the trivial relation nii xxxx 0...1...0 1 ++++= , it is obvious 

that the relationship between { }jl  and { }ix  is 

( )
⎩
⎨
⎧

≠
=

=≡
ji

ji
xlxl ijij if,0

if,1
. 

Since the basis vectors ix  are linearly independent, jl  are also linearly 

independent. Therefore the set { }jl  form a basis for the dual space *X  and we 

call { }jl  the dual basis. 

Using the formula ( ) jjj xlxl α=≡ , any linear functional ( )xF  can be written in 

usual form of linear combination  

( ) ( ) ( )xlxFxF i

n

i
i∑

=

=
1

. 
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4. Normed spaces 

 
 Norm. Let X  be a linear space. A functional +ℜ→⋅ X:  (the non-negative 

real numbers) is a norm on X  if and only if  

     N1. 0≥x  for every Xx ∈  and 0=x  implies Θ=x ; 

     N2. α,,αα Xxxx ∈= - is a scalar; 

     N3. Xyxyxyx ∈+≤+ ,,   (triangle inequality). 

 Normed vector spaces. Let X  be a linear space and .  be a norm on X . 

Then the pair ( ).,X  is called normed space or normed linear space. 

 Distance. The function 

( ) Xyxyxyxd ∈−= ,,,  

is a possible measure for distance and is said to be distance between vectors x  
and y . 

 Note that this definition of distance (induced by the norm) is a special distance 
(metric) defined in the theory of metric spaces. The conditions for general 
distance in metric spaces are: 

     1. ( ) 0, ≥yxd  and ( ) 0, =yxd  if and only if yx = ; 

     2. ( ) ( )xydyxd ,, = ; 

     3. ( ) ( ) ( )zydyxdzxd ,,, +≤ . 

 E.4.1. With the linear space nℜ  (of n -tuples of real numbers) the most 
frequently associated norms are: 

      ∑
=

=
n

k
kxx

1
1

   (sum norm), 

       
2/1

1

2

2
⎟
⎠

⎞
⎜
⎝

⎛= ∑
=

n

k
kxx  ( Euclidean norm) 

 (however, ∑
=

n

k
kx

1

2 , is not a norm because it contradicts axioms N2 and N3) 
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      k

n

k
xx

1
max

=∞
=     (max or infinite norm). 

 With the same vector space nℜ , the different norms ,,
21

xx  and 
∞

x  

define different normed spaces, usually denoted 21, nn ll  and ∞
nl . 

 Notice, that the norms and the corresponding normed spaces in above are 
special cases of the normed spaces p

nl  with norms 

∞<≤⎟
⎠

⎞
⎜
⎝

⎛= ∑
=

pxx
pn

k

p

kp
1,

/1

1

 and 
pp

xx
∞→∞

= lim . 

 

 In Mathematica 5.0 , vector p-norms can be computed using the function  

Norm [x,p] 

where p can be omitted if 2=p . 

 

In[1]:= Clear@"Globaĺ ∗"D
x= 8a, b,c<; y = 83, −4<;8Norm@x,∞D, Norm@xD, Norm@x, 1D<

Out[3]= :Max@Abs@aD, Abs@bD, Abs@cDD,"##### #### #### ## ## ## ## ## ## ## #### #### #### #### ## ## ###
Abs@aD2+ Abs@bD2+ Abs@cD2, Abs@aD + Abs@bD + Abs@cD>  

In[4]:= 8Norm@y,∞D, Norm@yD, Norm@y, 1D<
Out[4]= 84, 5, 7<  

In[5]:= 8Norm@x, pD, Norm@y, pD<
Out[5]= :HAbs@aDp+ Abs@bDp+ Abs@cDpL 1

p, H3p +4pL1p >  

 

 Using Mathematica it is easy to sketch the unit balls   

{ }1:2 ≤ℜ∈=
pp xxS . 



28   

 An example for ∞= ,2,1p : 

In[6]:= <<Graphics̀ ImplicitPlot̀

ImplicitPlot@Norm @8x1, x2<, 1Dm 1, 8x1,−1.2,1.2<, 8x2, −1.2,1.2<,
AxesOrigin→ 80,0<, AxesLabel→ 8"x1", "x2"<,PlotStyle→ 8Thickness@0.008D<D

-1 -0.5 0.5 1
x1

-1

-0.5

0.5

1

x2

Out[7]= h ContourGraphics h  

 

In[8]:= ImplicitPlot@Norm @8x1, x2<Dm 1,8x1, −1.2, 1.2<, 8x2, −1.2, 1.2<,
AxesOrigin→ 80,0<, AxesLabel→ 8"x1", "x2"<,PlotStyle→ 8Thickness@0.008D<D

-1 -0.5 0.5 1
x1

-1

-0.5

0.5

1

x2

Out[8]= h ContourGraphics h  
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In[9]:= ImplicitPlot@Norm @8x1, x2<,∞Dm 1,8x1, −1.2, 1.2<, 8x2, −1.2, 1.2<,
AxesOrigin→ 80,0<, AxesLabel→ 8"x1", "x2"<,PlotStyle→ 8Thickness@0.008D<D

-1 -0.5 0.5 1
x1

-1

-0.5

0.5

1

x2

Out[9]= h ContourGraphics h  

 E.4.2. With the space ( )[ ]baC ,0  of continuous functions on the interval [ ]ba,  
different normed spaces can be established. The norms  

( ) dttxx
b

a
∫=

1
, ( )

2/1

2

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∫

b

a

dttxx  and ( )txx
bta ≤≤

∞
= max  

define normed spaces       [ ]baL ,0 , [ ]baL ,2
0  and [ ]baC , , respectively. 

Note, that the norms in example E.4.1 are the discrete analogues of the norms in 
E.4.2. 

 In Mathematica e.g. the norm of the space [ ]baL ,2
0  can be defined as follows: 

In[1]:= Func2Norm@f_,a_, b_D:=
"###############################ŸabAbs@f@tDD2 Åt  

In[2]:= g@x_D:= x3  

In[3]:= Func2Norm@g, −1, 1D
Out[3]= $%%%%%%2

7  

In[4]:= %êê N
Out[4]= 0.534522 
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 E.4.3. The vector space ( )[ ]baC ,2  of twice continuously differentiable functions 
on the finite interval [ ]ba,  with the norm  

( ) ( ) ( )
2/12

2

22
2

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++= ∫∫ ∫

b

a

b

a

b

a

dt
dt

txd
dt

dt

tdx
dttxx  

( )
2/12

2

0 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∑ ∫

=
dt

dt

txd

k

b

a
k

k

 

is also a normed space. 

The same linear space ( )[ ]baC ,2  with the norm 

( ) ( ) ( )
2

2

maxmaxmax
dt

txd

dt

tdx
txx

btabtabta ≤≤≤≤≤≤
++=  

is another normed space. 

 E.4.4. The real valued function  

( )
2/12

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∫
b

a

dt
dt

tdx
 

is not a norm in the linear space ( )[ ]baC ,1 , because it contradicts axiom N1. 

Clearly, from ( ) 0
2 =′∫ dttx

b

a

 it follows only ( ) 0≡′ tx  (and not ( ) 0≡tx ) 

everywhere in [ ]ba, . 
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5. Convergence, complete spaces 

 Iterative methods are the only choice for the numerical solution of operator 
equations. For this reason, it is necessary to extend the concept of convergence 
and limit of sequences of numbers to sequences of vectors in linear spaces.  

 Convergence. A sequence of elements { }nx  in normed space X  is said to be 

convergent, if there exists Xx ∈* , so that the sequence of numbers *xxn −  

converge to zero. We refer to *x as the limit of the sequence { }nx  and write 

*xxn →  as ∞→n  or *lim xxnn
=

∞→
. 

 We emphasize that in this definition, the condition Xx ∈*  is of fundamental 
importance. Surely, the sequence of rational numbers 
{ }...,4142.1,414.1,41.1,4.1,1  in the normed space of real numbers ( )⋅ℜ,  

converges to 2 , but in the normed space of rational numbers ( )⋅,Rac  this 

sequence does not converge. 

 Cauchy sequence. A sequence { }nx  in a normed space is called Cauchy 

sequence, if  

0→− mn xx , as ∞→mn , . 

 
 Theorem 5.1  In normed spaces every convergent sequence is a Cauchy 
sequence. 

Proof: This follows immediately from the triangular inequality 

( ) ( ) ∗∗∗∗ −+−≤−+−=− xxxxxxxxxx mnmnmn  

supposing ∗∗ →→ xxxx mn ,  as ., ∞→nm  (From the norm-axiom N2 it follows 

( ) ( ) ∗∗∗ −−=−−=− xxxxxx mmm 11 ). 

 In the finite-dimensional space nℜ , the converse of this statement is also true; 
any Cauchy sequence is convergent. However, in general infinite-dimensional 
spaces, a Cauchy sequence may fail to converge. 

 Complete space. A normed space X  is said to be complete if every Cauchy 
sequence in X  has a limit (in X ). 

 Banach space. A complete normed linear space is called Banach space. 
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 Note, that not only normed spaces but other metric spaces may be complete 
too, but Banach space may be only a normed space. 

 E.5.1. Consider the linear space X  whose elements are infinite sequences of 

real numbers { }...,, 21 ξξ=x  with ∞<∑
∞

=1

2

k
kξ . The norm in X  can be defined by  

∑
∞

=

=
1

2

k
kx ξ  

and this (infinite-dimensional) normed vector space is usually denoted by 2l . 

 Let 2
0l  denote those infinite sequences of 2l  in which all elements are zero, 

except a finite numbers of elements. It is easy to see, that the sequence 

{ } 2
0

21 ...,0,0,2,...,2,2 l∈= −−− n
nx  

does not have a limit, because the sequence  

( ){ } 2121 ...,2,2,...,2,2 l∈= +−−−−∗ nnx  

does not belong to 2
0l . 

The completion of 2
0l  is 2l . 

  

E.5.2. With the vector space ( ) [ ]1,00C  of continuous functions on the closed 

interval [ ]1,0 , different normed spaces can be defined.  

 The normed space [ ]1,00L  defined by the integral norm 

( ) dttxx ∫=
1

0
1

 

is not complete, but the normed space [ ]1,0C , defined by the  maximum ( infinite) 
norm 

( )txx
t 10

max
≤≤∞

=  

is complete, that is, a Banach space. 
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 To show, that the linear space ( )[ ]1,00C  of continuous functions with respect to 
integral norm is not complete, it is enough to find a Cauchy sequence which does 
not converge in [ ]1,00L . 

 Therefore consider the sequence of continuous functions on interval [ ]1,0  given 
by 

( )

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≥

≤≤−+−

−≤≤

=

2
1

if,1

2

11

2

1
if,1

2

1
2
1

0if    ,0

t

t
n

n
nt

n
t

txn  

( )2≥n  and illustrated in Figure 5.1. 

( )tx n  

( )tx m  1 

           nx  

        mx  

          n<m 

 

 

           
             0     ½ - 1/n           ½ - 1/m    ½                                                      1             t  

 

Figure 5.1. Sequence of continuous functions. 

 

 Figure 5.1 illustrates geometrically (area of lined triangle), that 

( ) ( ) ,
11

2

1
1.

1

2

11

2

1

2

11

0
1 mnnm

dttxtxxx mnmn −=⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ −=−=− ∫  

and if ,, ∞→∞→ nm then 0
1

→− mn xx , that is, we have proved that the 

sequence ( ){ }txn  in the norm 
1

.  is a Cauchy sequence. 

  However, no continuous function ( )tx∗  exists as a limit of the sequence 
( ){ }txn . 
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 To show it, consider the step function  

( )
⎪
⎩

⎪
⎨

⎧

≤≤

<≤
=∗

1
2
1

if,1

2
1

0if,0

t

t
ty . 

It is easy to verify, that 0
1

→− ∗yxn  as ∞→n , that is, the sequence { }nx  

converges to the discontinuous function ∗y . Indeed, 

,0
2

1
1.

1

2

1

2

1

2

1
1

→=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−=− ∗

nn
yxn as ∞→n . Moreover, the sequence 

{ }nx  cannot converge also to an other continuous function ∗∗ ≠ yx , because if 

0
1

→− ∗xxn  as ∞→n , then the inequality  

( ) ( )
1111

∗∗∗∗∗∗ −+−≤−+−=− yxxxyxxxyx nnnn  

implies ∗∗ = yx , being a contradiction. 

 Hence the space [ ]1,00L  of continuous functions with respect to the integral 

norm 
1

.  is not complete. 

 The fact, that the space [ ]1,0C  of continuous functions with respect to the 

maximum norm 
∞

.  is complete, follows immediately from the theorem known 

in elementary analysis:  

 "The limit of every uniformly convergent sequence of continuous functions is a 
continuous function." 

 (In more detail we demonstrate that the normed space [ ]1,0C  is complete. For 
any fixed point [ ]1,00 ∈t , a Cauchy sequence ( ){ }txn  in [ ]1,0C  yields a Cauchy 

sequence of real numbers: ( ) ( )
[ ]

( ) ( ) 0max
1,0

00 →−≤−
∈

txtxtxtx mn
t

mn , as ∞→nm, . 

Consequently, for every [ ]1,0∈t  point there exists a real number ( )tx  to which 

( ){ }txn  converges. This pointwise convergence holds for any t  in [ ]1,0 ; that is, 

Cauchy sequences ( ){ }txn  converge uniformly in [ ]1,0 . Thus, there is a limit-

function ( )tx  for which  

( ) ( )
[ ]

( ) ( ) ∞→→−=−
∈∞

nastxtxtxtx n
t

n ,0max
1,0

. 
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 It remains to be shown that ( )tx  is continuous. Let [ ]1,0∈t  and let { }mt  be a 

sequence of points in [ ]1,0  which converges to point t  as ∞→m . Clearly, for any 
1≥n  

( ) ( ) ( ) ( ) ( ) ( )mmnmnm txtxtxtxtxtx −+−≤−  

where { }nx  is a Cauchy sequence in [ ]1,0C . Since each nx  is continuous, 

( ) ( )txtx nmn →  as ∞→m . Since ( ){ }txn  is a Cauchy sequence, already we have 

shown, that ( ) ( )txtxn →  as ∞→n  and thus ( ) ( )txtx mn →  as 0, →mn . Likewise 

( ) ( )mmn txtx →  as ∞→n .  

Hence, the previous inequality implies  

( ) ( ) 0→− mtxtx  

that is, ( ) ( )txtx m →  if ttm → . Thus, the function ( )tx  is continuous.) 

 We note, that convergence in maximum norm implies pointwise convergence, 
and that the sequence of continuous functions illustrated in Figure 5.1 with respect 
to the maximum norm is not even a Cauchy sequence. From the figure ( mn < ) it 
is clear, that 

( ) ( )
m

nn

m
n

m
xtxtx nmn

t

−=+−⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −=−

≤≤
11

2

1

2

11

2

1
max

10

 

and the limit of this sequence is indeterminate. Indeed, using Mathematica we get 

In[1]:= 1−
n

m
ê.8n→ ∞, m→ ∞<

— ∞::indet  :  Indeterminate expression 0 ∞ encountered . More…

Out[1]= Indeterminate  

(Now we could not use the inner function Limit[], because it can only work with 
one variable.)  

 Completion. Every incomplete normed space can be completed by adding the 
limit points of all Cauchy sequences in the space. If X is an incomplete normed 
space, one can construct a new space X  that is complete and contains X  as a 
subspace. The space X  is called the completion of X . 

 In general the only, but not a simple problem is to find out what the limit 
elements will be. Remember, that the normed space ( )⋅ℜ, , i.e. the set of real 

numbers with the usual norm (i.e. absolute value) form complete normed space. 
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Similarly, the normed space ( )
2

, ⋅ℜn  is a Banach space. However, the rational 

numbers with the absolute value norm is not a Banach space. 

 Compact set. A subset S  of a normed space X  is said to be compact, if 
every infinite sequence { }Sxx nn ∈: contains a convergent subsequence, (that 

converges to a vector Sx ∈∗ ). 

 If S  is a set for which its completion S  is compact, we say S  is precompact.  

 The normed space ( )⋅ℜ,  is not compact. Indeed, { }...,2,1,0  contains no 

convergent subsequence. 

 Recall, that a set { }...,,...,, 21 nxxxS =  is said to be bounded, if there is a 

number 0>K  such that Kxn <  for all n . The subset S  is closed, if Sxn ∈  

and ∗→ xxn  implies Sx ∈∗ . 

 Theorem 5.2 (Heine-Borel). Let X  be a finite-dimensional normed linear 
space, and let S  be a subset of X . Then S  is compact if and only if S  is both 
closed and bounded. 

 However, in an arbitrary Banach space the statement of this theorem is not 
true.  

 Consider the normed space 2l  introduced in example E 5.1, which consists of 
infinite sequences of real numbers { }...,, 21 ξξ=x  with norm 

∑
∞

=
=

1

2

k
kx ξ . 

In 2l  consider the bounded, closed ball S  defined by 1≤x . This ball is not 

compact. Indeed, consider the sequence (of sequences) 

{ } { } ...,...,0,1,0,,...0,0,1 21 == ee  

For nm ≠  we have 2=− mn ee . Hence the sequence { }See kk ∈:  and every 

subsequence of S  does not contain a Cauchy subsequence and so is not 
convergent. 

 However, the compact sets are bounded and closed. 
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6. Continuous and bounded linear operator 

 Let X  and Y  be two normed spaces. The convergence of sequences in X  and 
Y  is understood with respect to the norms 

X
⋅  and 

Y
⋅  associated with the 

spaces X  and Y , respectively. 

 Continuous operator. An operator YXT →:  (linear or nonlinear) is said to 
be continuous at a point Xx ∈∗ , if for every sequence { }Xxx nn ∈:  that converges 

to ∗x  the sequence ( ) ( )∗→ xTxT n  as ∞→n . 

If YXT →:  is continuous at every point of its domain XD ⊆  we simply say 
that T  is continuous on D . 

 
 Theorem 6.1. An operator YXT →:  is continuous at a point Xx ∈∗ , if and 
only if for any 0>ε  there exist a ( ) 0>= εδδ so that 

if ( )εδ<− ∗

X
xx , then ( ) ( ) ε<− ∗

Y
xTxT . 

 We want to emphasize, that the continuity of an operator depends on the used 
norms 

X
⋅  and 

Y
⋅ . 

 Theorem 6.2. If a linear operator YXT →:  is continuous at the point Θ=x , 
then T  is continuous at all points of X . 

 Proof: If ∗x  is an arbitrary vector and ∗→ xxn , as ∞→n , then Θ→− ∗xxn  

and so by the condition of the theorem we have ( ) Θ→− ∗ TxxT n . The linearity 

( ) ∗∗ −=− TxTxxxT nn  and the equality ( )Θ+= xTTx  implies Θ=ΘT . Hence 
∗→ TxTxn , so that indeed T  is continuous at an arbitrary point ∗x . 

 Bounded linear operator. A linear operator YXT →:  is said to be bounded 
(above), if there is a constant 0>K  so that  

XxxKxT
XY

∈≤ , . 

The number K  is called a bound of the operator T . 

 In view of this definition, a linear functional ℜ→⊆ XDF F:  is bounded on 
its domain FD , if there is a number 0>K  so that 

( ) ., FDxxKxF ∈≤  
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Theorem 6.3. (The equivalence of boundedness and continuity).  

 A linear operator T  is continuous if and only if it is bounded. 

 Proof: If T  is a bounded linear operator, then 

( )
XnYnYn xxKxxTTxTx ∗∗∗ −≤−=−  

is valid for any Xxxn ∈∗, . Therefore, T  is continuous in X . 

 Conversely, if T  is not a bounded linear operator, we shall show that T  is not 
continuous at the point Θ . Because T  is not bounded, there exist such a bounded 
sequence { }Xxx nn ∈: , that ∞→

YnxT . Without loss of generality we may 

suppose Θ≠nTx  for any positive integer n . Define the sequence 

Yn

n
n xT

x
x =~ . 

It is obvious that Θ→nx~ , but 1~ =
YnxT , so T  is not continuous. 

 E.6.1. In the normed space [ ]baC ,  the integral operator  

( ) ( ) [ ]batdftfT
t

a

,, ∈= ∫ ττ  

is continuous. Clearly, 

( ) ( ) ( ) ( ) ( ) ( ) [ ]battfabdfdfdftfT
b

a

t

a

t

a

,,max ∈−≤≤≤= ∫∫∫ ττττττ  

and so 

( ) ( )
∞

≤≤
∞ −≤= ∫ fabdffT

t

abta

ττmax  

This means, that T is bounded and hence continuous too. 

 E.6.2. Let D  denote the subspace of the normed space [ ]baC , , which consists 
of differentiable functions. Then the differential operator  

( ) ( ) Dftf
dt

d
tfL ∈= ,  
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is not continuous in [ ]baC , . To show it, it is enough to find only one convergent 

sequence { }Dgg nn ∈:  so, that the sequence { }...,2,1, =ngL n  does not converge. 

If ( ) ( )tn
n

tgn sin
1= , then Dgn ∈  and Θ→ng  as ∞→n , however the sequence 

( ) ( )tntgL n cos=  does not have a limit. Thus the operator L  is not continuous 

(and by the theorem 6.3 it is also unbounded). 

 We note, that by appropriate selection of norm, the operator of differentiation 
can be made continuous (and hence bounded too). For instance, let [ ]baCnew ,  

denote the normed space of functions from the linear space ( )[ ]baC ,1  with the 
norm defined by  

( ) ( )
∞∞

≤≤≤≤
′+=+= ff

dt

tdf
tff

btabta
new

maxmax . 

The operator  

[ ] [ ]baCbaC
dt

d
L new ,,: →=  

i.e. the differentiation using the norm 
new

f  is continuous. Really, if 0→
newnf , 

that is, if 0' →+
∞∞ nn ff , then 0' →=

∞∞ nn fLf  as ∞→n . 

 Norm of linear operator. Let X , Y  be normed spaces. The smallest bound of 
the continuous linear operator YXT →: , which is the smallest number K  for 
which 

XY
xKxT ≤  

is called the norm of T  and is denoted by T . 

It follows that 
XY

xTxT ≤ . 

 The definition of the norm of continuous linear operator T  also can be written 
as  

.supsup
1

Y
x

X

Y

x

xT
x

xT
T

X
=Θ≠

==  

(The second form follows from the first one, if the vector Θ≠x  is written as 
1, ==

XX
xx ξξ .) 

If FT =  is a continuous linear functional, then clearly 
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( ) ( )xF
x

xF
F

xx 1

supsup
=Θ≠

== . 

It can be shown, that T  satisfies the norm axioms. 

 Topological dual space. Let X  be a normed space. The set of all continuous 
linear functionals 

ℜ→Xf :  

is a normed space, denoted by X ′ , and called the (topological) dual of X . 

 Let Xf ′∈  and express the functional f  as a duality pair 

( ) XxXfxfxf ∈′∈= ,, , 

where the symbol ⋅⋅ denotes a bilinear map from the space XX ⊗′  into ℜ . 

 If we substitute xff =  into the formula for the norm of continuous linear 

functional above, we get the norm 

X
x

X x

xf
supf

Θ≠
′ = . 

of the dual normed space X ′ . 

 Compact operator. A linear operator T  is compact if it transforms bounded 
sets into compact sets. 

 



 

  41 

7. Dense sets, separable spaces 

 
 Dense set. Let X  be a normed space. A set XS ⊂  is said to be dense in X  if 
for every element Xx ∈  there is a sequence { }Sss nn ∈:  such that xsn →  as 

∞→n . 

 In other words, any element in X  can be reached as a limit of a subsequence 
selected from the elements of the dense set S . 

 Theorem 7.1. Let X  be a normed space. The set XS ⊂  is dense in X  if and 
only if for every 0>ε  and every Xx ∈  there is an element Ss ∈  such, that 

ε<− sx . 

 In other words, the set S  is dense in the normed space X  if and only if any 
Xx ∈  can be approximated (with arbitrary precision) by elements of S . 

 Separable spaces. The normed space X  is said to be separable, if it contains a 
countable dense subset.  

 In other words, the separability of X  means, that there exists a sequence 
{ }Xxx nn ∈:  such that every Xx ∈  is either an element of this sequence, or x  is a 

limit of a subsequence of { }Xxx nn ∈: . 

 We note, that the rational numbers, which are dense in (by absolute value) 
normed space of real numbers, are countable (see the diagram below). Hence the 
real numbers create a separable space.1 

      
1

1
 

2

1
 

3

1
 

4

1
 ... 

 

      
1

2
 

2

2
 

3

2
 

4

2
 ... 

                                                             

      
1

3
 

2

3
 

3

3
 

4

3
 ... 

 

      
1

4
 

2

4
 

3

4
 

4

4
 ... 

       M   M   M   M  

                                                
1 Note, that Georg Cantor (1845-1918) has proved, that the set of real numbers on the interval  
[0,1] is not countable. (We say that the points of  interval  [0,1]  create a continuum.) 
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 Recall, that a subset { }...,, 21 xxS =  of a vector space X  is said to span or 
generate X , if every Xx ∈  can be written as a linear combination of the vectors 
of S . 

 Spanning set. A subset S  of a normed space X  is said to span or generate 
X , if the set of all linear combinations of the vectors of S is dense in X . 

 This means, that every Xx ∈ either is element of S , or is a linear combination 
of vectors of S , or is a limit of a sequence of such linear combinations. 

 Theorem 7.2. If the normed space X  is separable, then it contains a countable 
subset S  which spans X . 

The dense sequence { }Xxx nn ∈:  is the desired subset S . 

 The converse of this statement is also true. 

 Theorem 7.3. If the spanning set S  of the normed space X is countable, then 
X is separable. 

 Theorem 7.4. (Weierstrass approximation theorem)  

 Let [ ]baCf ,∈ , and let 0>ε . Then there exists a polynomial ( )xp  for which  

ε≤−
∞

pf . 

 E.7.1. According to the Weierstrass approximation theorem, any continuous 
function on a finite interval [ ]ba,  can be established as a limit of a uniformly 
convergent sequence of polynomials. This means, that polynomials form a dense 
subspace in the normed space [ ]baC , . Every polynomial can be written as a linear 

combination of the power functions ...,,,1 2tt ; hence the sequence 

{ }...,2,1,0; =kt k  spans the space [ ]baC , , and by the theorem 7.3 it is separable, 
too. 
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8. Inner product, Hilbert space 

 
Inner product.  Let X  be a real linear space. A function ℜ→×⋅⋅ XX: , 

defined for each pair Xyx ∈, , is called an inner product (or scalar product) on 
X  if and only if it satisfies the following axioms: 

    S1. xyyx = , 

    S2. Xzzyzxzyx ∈+=+ ; , 

    S3. α;αα yxyx = -real number, 

                            S4. 00 =≥ xxésxx if and only if, ha Θ=x . 

 This definition is a generalization of the scalar product of geometric vectors. 

 We note, that if X  denote complex linear space, then the axiom S1 is replaced 

by xyyx = , (upper bar denotes complex conjugate). 

Observe, that the inner product is a bilinear functional which is positive definite 
i.e. symmetric, too.  

 Inner product space. A real linear space with an inner product is called inner 
product space or pre-Hilbert space (in finite dimensional cases also Euclidean 
space). 

 E.8.1. In the linear space nℜ  of real n -tuples ( ) ( )nn yyyxxx ,...,,,..., 11 ==  

nn yxyxyx ++= ...11  

is the usual euclidean inner product. 

 E.8.2. In the real vector space ( )[ ]baC ,1  of all continuous functions with 
continuous first derivative, the expressions  

( ) ( )dttytxyx
b

a
∫=  

and 

( ) ( ) ( ) ( )
dt

dt

tdy

dt

tdx
dttytxyx

b

a

b

a
∫∫ +=  
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define inner products on ( )[ ]baC ,1 , but 

( ) ( )
dt

dt

tdy

dt

tdxb

a
∫  

is not an inner product on ( )[ ]baC ,1  because it contradicts axiom S4: from the 

0=xx  it follows only 
( )

0=
dt

tdx
 and not ( ) 0=tx  everywhere in [ ]ba, . 

 Orthogonal vectors. The vectors x  and y  of an inner product space X  are 
said to be orthogonal if 

0=yx . 

 Test for linear dependence. Using the inner product, an effective method can 
be given for determining whether or not the vectors nxx ,...,1  are linearly 

independent. 

 Theorem 8.1. Let X  be an inner product space. A set of vectors nxx ,...,1 of X  

is linearly independent if and only if the Gram matrix  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

nnn

n

xxxx

xxxx

...

..

..

..

...

1

111

 

is nonsingular. 

 Theorem 8.2. (Cauchy-Schwarz inequality.)  For a real inner product space 
X , 

Xyxyyxxyx ∈≤ ,, . 

 Proof: For any real scalar α , 

,ααααα0 2 yyyxxyxxyxyx +−−=−−≤  

that is 

0α2α2 ≥+− xxyxyy . 
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 The left hand side of this inequality is a quadratic polynomial in variable α , 
having real coefficients. The inequality indicates that this polynomial cannot have 
distinct real zeros. Consequently, its discriminant cannot be positive, that is,  

( ) ,042
2 ≤− xxyyyx  

from which the Cauchy-Schwarz inequality is immediate. 

 Note the general character1 of this inequality and the simplicity of its proof. 

 

 Theorem 8.3. Every inner product space is a normed space. In fact, if x  is an 
element in an inner product space X , the mapping 

xxxx =→  

defines a norm on X . 

 Proof: That xx  satisfies the norm axioms N1 and N2, is obvious. The 

validity of the axiom N3 that is of the triangle inequality is easy to see using the 
Cauchy-Schwarz inequality as follows since: 

yyyxxxyxyxyx ++=++=+ 2
2

yyyxxx ++≤ 2   

( ) .2
2

yxyyyyxxxx +=++≤  

 The existence of this norm makes possible to define the completeness of inner 
product spaces. 

 
 Hilbert space. A complete inner product space is called a Hilbert space. 

 
 Every finite-dimensional inner product space is complete; hence the Euclidean 
space is a Hilbert space. 

 
 We recall that the Banach space is a complete normed space. The Hilbert space 
is a special Banach space, where the norm ⋅  is induced by the inner product 

⋅⋅ . 

                                                

1 For example ∑∑∑
===

≤
n

i
i

n

i
i

n

i
ii yxyx

1

2

1

2

1

 or     ( ) ( ) ( ) ( )dttydttxdttytx
b

a

b

a

b

a
∫∫∫ ≤ 22  
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 In the following we will use the fact that any continuous linear functional ( )uF  

can be written as a duality pair i.e. in the form ( ) XuXFuFuF ∈′∈= ,, , 

where X ′  is the dual space of the normed space X . 

 Theorem 8.4. ( Riesz1 representation theorem.)  Let H  be a Hilbert space, 
HF ′∈ . Then there is a unique Hg ∈  for which  

( ) Hu;uguF ∈= . 

In addition,  

HH
gF =′  . 

 We want to emphasize that F  is a continuous linear functional defined on the 
space H  while g  is an element of H .  

 If the linear functional is not bounded, then the Riesz theorem is not valid. 

 Proof: At first, assuming the existence of g , we prove its uniqueness. Suppose 
Hg ∈~  satisfies  

( ) .~ HuuguguF ∈∀==  

 Then 

Huugg ∈∀=− 0~ . 

 Choose ggu ~−= . Then 0~ =− gg , which implies gg ~= . 

We prove the existence of vector g . 

Denote by 

( ) { },0,: =∈== FuHuuFNN  

the null space of F , which is a subspace of H . If HN = , then 0=Fu , and 
choosing Θ=g  the proof is finished. 

 Now suppose HN ≠ . Then there exists at least one HuH ∈  such that 
( ) 0≠HuF . It is possible to decompose H  as the direct sum MN ⊕ , where 

{ }NvvuHuM ∈∀=∈= 0:  is the orthogonal complement of N  with respect 

to H . Then we can write 

                                                
1 Frigyes Riesz (1880-1956), famous Hungarian mathematician. 
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MNH uuu += , NuN ∈ , MuM ∈  

where 

( ) ( ) ( ) ( ) ( ) 0≠=−=−= HNHNHM uFuFuFuuFuF . 

For any Hu ∈ , it is true that 

( )
( ) 0=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− M

M

u
uF

uF
uF . 

Hence 
( )

( ) Nu
uF

uF
u M

M

∈−  and because Mu  is orthogonal to N  

( )
( ) 0=− MM

M

uu
uF

uF
u . 

That is 
( )

( ) 0
2 =− M

M
M u

uF

uF
uu  i.e. 

( ) ( )
uu

u

uF
uF M

M

M
2= . 

 In other words, we may choose g to be  

( )
M

M

M u
u

uF
2

. 

 We complete the proof of the theorem by showing 
HH

gF =′ . From  

( ) HuuguF ∈= ;  

and the Cauchy-Schwarz inequality ( ) HuuguguF
HH

∈≤= , . 

Hence (see the definition of norm of continuous linear functional) 

H

H
u

H
g

u

ug
F ≤=

Θ≠
sup'1 . 

However, it is impossible that 
HH

gF <  because ( ) 2

H
ggggF ==  so that 

really 
HH

gF =′  holds. 
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 We note that this theorem is a fundamental tool in the solvability theory for 
elliptic partial differential equations. 

 Adjoint operator. Consider a bounded (i.e. continuous) linear operator 
VUT →: , where U  and V  are normed linear spaces. Let ( )vf  be a continuous 

linear functional defined on V . Then Vf ′∈ , where 'V  is the (topological) dual 

space of V . Since Tuv = , the ( )vf  is defined for vectors Uu ∈ , too. That is, 

( ) ( ) ( ) uguguTfuTfvfvf ≡=≡=≡  

where ( )ug  is a linear functional defined on U . The linear operator T  is 
supposed to be bounded, hence using the Cauchy-Schwarz inequality we get 

( ) uKuTfTufug =≤= , where TfK = , 

so that ( ) ugug =  is bounded i.e. continuous linear functional on U . Hence 

'Ug ∈  where U ′  is the (topological) dual space of U . 

 

 

 Consequently, to each functional Vf ′∈  we have associated a corresponding 
functional 'Ug ∈ , that is, we have defined an operator which transforms the 

normed space V ′  to the normed space U ′ . This operator is denoted ∗T  and called 
the adjoint of T . That is, we can write gfT =* . 

 We saw the equality uguTf =  and substituting gfT =* we get 

ufTTuf ∗= . 

 This equality also can be used as the definition of the adjoint operator.  

U V 

 U’  V’ 
T* 

T 

f g 
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 If HVU == is Hilbert space, then the Riesz representation theorem 
guarantees the existence of a unique element fTg ∗=  which satisfies the 

equation ugTuf = . 

 The operator T  is called self-adjoint if TT =∗ . 

 E.8.3. For any matrix A , the adjoint of A  is defined as the matrix *A , which 
satisfies the equation  

yAxyxA ∗=  

for all nCyx ∈, , where vuvu T=  denotes the inner product of the complex 

euclidean space. 

 The matrix A  is self-adjoint if AA =∗ . 

 To find the adjoint matrix ∗A  explicitly, note that (using the Euclidean inner 
product)  

( ) yAxyAxyAxyAxyAx
TT

TTTT
_

_________

___

=⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
===  

so that TAA =∗ , i.e. the adjoint of A  is equal to the transpose of its conjugate. 

 If A  is real symmetric, then AAA TT == , so that A  is self-adjoint. 

 E.8.4. The adjoint of a differential operator L  is defined to be the operator ∗L  
for which  

vLuvLu ∗=  

for all u  in the domain of L  and v  in domain of ∗L . 

 This definition determines not only the operational definition of ∗L , but its 
domain as well. Consider the example 

dx

du
Lu =  

with the boundary condition ( ) ( )120 uu =  with inner product 

( ) ( )dxxvxuvu ∫=
1

0

. 
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Using this inner product (and integration by parts) we have that  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )dxx
dx

dv
xuvvudxxvx

dx

du
vLu ∫∫ −−==

1

0

1

0

0211 . 

In order to make vLuvLu ∗= , we must take 
dx

dv
vL −=∗  with the boundary 

condition ( ) ( )021 vv = . 

 The operator L  is self-adjoint if LL =∗ . That means that not only the 
operational definitions of L  and ∗L  agree but their domains are equal too. 

 An other application of the Riesz representation theorem is the Lax-Milgram 
theorem which is used traditionally to demonstrate existence and uniqueness of 
weak solutions of boundary value problems. 

 Theorem 8.5. (Lax-Milgram theorem.)  Given an Hilbert space H  with the 
inner product vu . Let vua  be a bilinear functional in Hvu ∈,  such that  

      (1)  vuKvua ≤ , 

      (2)  
2α uuua ≥ , 

with positive constants α,K  that are independent on vu, . 

 Further, let l  be a continuous linear functional on H , i.e. H ′∈l . Then there 
exists a unique Hu ∈ such that 

( ) vuav =l , Hv ∈ . 
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9. Sets of measure zero, measurable functions 

 Set of measure zero. A set [ ]baA ,⊂  is said to be of measure zero, if for every 

0>ε  there is a sequence of open intervals ( )kkk baI ,=  such as, that 

( ) ε≤−∑
∞

=1k
kk ab  and k

k
IA

∞

=
⊆

1
U . 

 In other words, a set has measure zero if and only if it can be covered by a 
collection of open intervals whose total length is arbitrarily small.  

 Theorem 9.1. Any countable set { } [ ]bakxA k ,...,2,1; ⊂==  has a measure 

zero.  

 Proof: to any 0>ε  we can choose the intervals ( )kkk baI ,=  in the form 

...,2,1,
2

,
2 11 =⎟

⎠
⎞

⎜
⎝
⎛ +−= ++ kxxI kkkkk

εε
. 

Then ( ) εεε =
−

==− ∑∑
∞

=

∞

= 2

1

2

1
1

1

2

1

11 k
k

k
kk ab  and { } U

∞

=

⊆=
1

1 ...,,...,
k

kk IxxA is 

valid too. 

 E.9.1. A finite set { } [ ]baxxA n ,,...,1 ⊂=  has measure zero. 

 The intervals [ ]ba,  and ( )ba,  have not measure zero. (Their common measure 
is their length: ab − .) 

 Almost everywhere property. A property ( )xPP =  on an interval [ ]ba,  is 

said to hold almost everywhere on [ ]ba, , if P  fails to hold only on subsets of 

[ ]ba,  of measure zero. 

 Measurable function. A (real-valued) function ( )xf  defined on [ ]ba,  is said 

to be measurable on [ ]ba, , if there is a sequence of continuous functions 

( ){ }bxaxgn ≤≤: , which (pointwise) converges to ( )xf  almost everywhere on 

[ ]ba,  . 

 In other terms, ( ) ( )xgxf nn ∞→
= lim  ( [ ]bax ,∈  \ A ) where A  is a set of measure 

zero. (The set A  depends on ( )xf .) 

 The set of measurable functions is a linear space.  
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 We note that in the practice all functions are measurable. 

 The previous results for intervals can be extended to more-dimensional 
domains as well. 
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10. The space L 2  

 Let Ω  denote a bounded domain (connected open set) in the n-dimensional 
Euclidean space. 

 Square integrable function. A measurable (real-valued) function ( )xf , Ω∈x  
is said to be square integrable1, if 

∞<∫
Ω

dxf 2 . 

 The set L2(Ω). The collection of all square integrable measurable (real-valued) 
functions defined on Ω  is denoted ( )Ω2L . 

 The ( )Ω2L  is a very large set. It consists of all continuous functions on Ω  and 

of all bounded piecewise continuous functions on Ω . The unbounded ( ) 3/1−= xxf  

is also an element of ( )1,02L  because ( ) 3
1

0

23/1 =∫ − dxx . However, the unbounded 

function ( ) 2/1−= xxf  does not belong to ( )1,02L  since ( ) +∞=∫ − dxx
1

0

22/1 . 

 We note that using Mathematica we got: 

In[1]:= ‡
0

1Jè!!!!x−3 N2 Åx
Out[1]= 3  

but 

In[2]:= ‡
0

1ikjjx− 1
2y{zz2 Åx

— Integrate ::idiv  :  Integral of
1

x
does not converge on 80, 1<. More…

Out[2]= ‡
0

1 1

x
 Å x

 

 The sum of square integrable functions is a square integrable function as well. 
Indeed, 

( ) 222
20 ggffgf +−=−≤  and gfgf ≤  

                                                
1 in sense of  Lebesgue integration , Henri Lebesgue (1875-1941) 
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so that  

( )22

2
1

gfgfgf +≤≤ . 

 This inequality indicates, that 

( ) ( ),22 22222 gfggffgf +≤++=+  

and after integration the assertion follows. Since the product of a square integrable 
function with a real number is a square integrable function, we have proved that 

( )Ω2L  is a linear vector space. 

 By integrating the last but one inequality it follows that the ∫
Ω

dxgf  is finite, 

and hence there exists the inner product  

( )∫
Ω

Ω∈= 2,, Lgfdxgfgf . 

 In other words, the linear space of square integrable measurable functions 
( )Ω2L  is a pre-Hilbert space. But any inner-product space is a normed space, 

where the norm is defined using the inner product: 

( )., 2

2/1

2 Ω∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== ∫

Ω

Lfdxffff  

 If the integrals in this section are defined in the Lebesgue sense, then this real 
inner product space is also complete. 

 Theorem 10.1. The space ( )Ω2L  with respect to the inner product above is a 
(real) Hilbert space. 

 In contrast with the linear space ( )( )Ω0C  of continuous functions on a closed 

domain Ω , in the space ( )Ω2L  the expressions such as the fourth axiom of the 
inner product or the first axiom of the norm need a more detailed commentary: 

 In ( )( )Ω0C  the relation  

       02 =∫
Ω

dxf      (10-1) 

indicates 0≡f  on the closed domain Ω  and so on the open domain Ω  too1. 

                                                
1 Rememeber, that ( )( ) ( )( )Ω⊂Ω 00 CC  because if ( )( )Ω∈ 0Cf  then ( )( )Ω∈ 0Cf . 
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 In ( )Ω2L , from (10-1) does not follow 0=f  everywhere in Ω . 

 Consider the function 

( )
⎪⎩

⎪
⎨
⎧ ==

otherwise,0
2

1
if,1

1
xxf  

defined on ( )1,0=Ω . Obviously 1f  is square integrable on Ω  and satisfies the 

equality (10-1). But this equality also satisfies, e.g. that function 2f , for which 

holds ( ) 02 =xf  on ( )1,0=Ω  except on the countable set 
⎭
⎬
⎫

⎩
⎨
⎧ == ...,3,2;

1
k

k
xk . 

 In general, the equality (10-1) satisfies all functions, for which ( ) 0=xf  on 
( )1,0=Ω  except on a set of measure zero, that is ( ) 0=xf  almost everywhere on 

Ω . At the points where ( ) 0≠xf  the values of f  may be arbitrary, or f  may be 
non-defined. 

 Equivalent functions. Two square integrable functions f  and g  are said to 
be equivalent if ( ) ( )xgxf =  almost everywhere on Ω . Then we write also  

gf =  in ( )Ω2L  

and then obviously ( ) 0
2

=−∫
Ω

dxgf . 

 E.10.1. The Dirichlet function  

( )
⎩
⎨
⎧

=
irrational if

rational   if

0

1

x

x
xf ;  [ ]1,0∈x  

is equal to zero almost everywhere on [ ]1,0  because the rational numbers are 
countable. 

 The Riemann-integral for this function does not exist, the Lebesgue-integral is 
equal to zero. 

 The proof of the following theorem is based on very serious results from the 
theory of measurable functions and the Lebesgue integral. 

 Theorem 10.2. Continuous functions are dense in ( )Ω2L . 

 As already mentioned in example E 7.1, any continuous function on a finite 
interval [ ]ba,  is a limit of uniformly convergent and hence all the more in mean 
(in an integral norm) convergent sequence of polynomials. This fact and the 
theorem 10.2 imply: 
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 Theorem 10.3. The polynomials are dense in ( )baL ,2 . 

 Every polynomial is a linear combination of the power functions ,...,,,1 2tt  

hence the sequence { }...,2,1,0; =kt k  spans the space ( )baL ,2 , and so - by 
theorem 7.3. - ( )baL ,2  is separable. 

 More generally: 

 Theorem 10.4. ( )Ω2L  is separable.  
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11. Generalized derivatives, distributions, Sobolev spaces 

 Multi-index notation. The ordered n-tuple of non-negative integers  

( )niiii ,...,, 21=  

is called multi-index. The sum niii +++ ...21  is denoted by i . 

 Using the multi-index notation, the partial derivatives of the function 
( )nxxxff ,...,, 21=  can be expressed in shorter, so-called operator form 

ni
n

ii

i
i

xxx

f
fD

∂∂∂
∂=

...21
21

. 

 E.11.1. If ( )0,3=i , then instead of 
0
2

3
1

3

xx

f
fDi

∂∂
∂=  we write 

3
1

3

x

f
fDi

∂
∂= . 

   If 0=i , then ffDi = . 

   If 2=n , 3=k  then ki ≤  represents the following multi-indices 

( )21, iii = : 

 

    ( )0,0         0=i  

        ( ) ( )1,0,0,1        1=i  

   ( ) ( ) ( )2,0,1,1,0,2        2=i  

       ( ) ( ) ( ) ( )3,0,2,1,1,2,0,3       3=i  

With this notation, for instance instead of 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )213
2

3

212
21

3

21
2

2
1

3

213
1

3

212
2

2

21
21

2

212
1

2

21
2

21
1

21

,,,,

,,,,,,

xx
x

f
xx

xx

f
xx

xx

f
xx

x

f

xx
x

f
xx

xx

f
xx

x

f
xx

x

f
xx

x

f
xxf

∂
∂+

∂∂
∂+

∂∂
∂+

∂
∂+

+
∂
∂+

∂∂
∂+

∂
∂+

∂
∂+

∂
∂+

 

we can use the short operator form ∑
≤ ki

i fD . 

 Smooth function. The function ℜ→ℜn:ϕ  is said to be smooth if it is 
continuously differentiable infinitely times. 
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 Support of function.  Let Ω  be a domain (i.e. a connected open subset) in 
nℜ . The support of the function ( ) nxx ℜ⊂Ω∈,ϕ , denoted by ϕsupp  is the 

closure of the set of those points x  at which ( ) 0≠xϕ . That is, 

( ){ }0,:supp ≠Ω∈= xxx ϕϕ .  

 Compact support. The function ( ) nxx ℜ⊂Ω∈,ϕ  is said to have a compact 
support with respect to Ω , if its ϕsupp  is a compact set (i.e., if it is bounded) and 
is a proper subset of Ω  (i.e. if Ω⊂ϕsupp ). 

 Since ϕsupp  is a closed set by definition, and since it lies - by assumption - in 
an open domain Ω , it has a positive distance from the boundary Ω∂  of this 
domain. 

 Test function. Let Ω  be a domain in nℜ . Denote by ( )Ω∞)(
0C  the set of all 

smooth functions with compact support in Ω . That is, 
( )( ) ( )( ){ }Ω⊂Ω∈=Ω ∞∞ ϕϕ supp:0 CC . Any ( ) ( )Ω∈ ∞

0Cϕ  is called test function. 

 E.11.2. In 1ℜ  the  

( )
( )

⎪⎩

⎪
⎨
⎧

≥
<

=
−

1if0

1if 1/1 2

x

xe
x

x

ϕ  

is an example of a smooth function with compact support in ( )2,2−=Ω . But ( )xϕ  

is not a test function with respect to ( )1,1−=Ω , because the { }11supp ≤≤−= xϕ  

is not a proper subset of the domain { }11 <<−=Ω x . 

Using Mathematica we can easily plot this function: 

In[1]:= Clear@ϕD
ϕ@x_D := PiecewiseA980,x≤ −1<, 9E 1

x2−1, −1< x< 1=, 80,x ≥1<=E
 

In[3]:= Plot@ϕ@xD, 8x, −2,2<,PlotStyle→ 8Thickness@0.008D<D

-2 -1 1 2

0.05

0.1

0.15

0.2

0.25

0.3

0.35
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This function has limits at the points 1,1 =−= xx  which are equal to zero. 
Indeed, e.g. at the point 1=x the limit from the left 

In[4]:= Limit@ϕ@xD,x→ 1,Direction→ 1D
Out[4]= 0  

and obviously the limit from the right 

In[5]:= Limit@ϕ@xD,x→ 1,Direction→ −1D
Out[5]= 0  

(The option Direction -1 and +1 denotes the right- and left-hand limit, 
respectively.) At the points 1,1 =−= xx  there exist all derivatives of ( )xϕ  and 

they are also equal to zero. Consequently ( )xϕ  is smooth too. 

 For example: 

In[6]:= D@ϕ@xD, 8x,3<D êê Simplify H∗ The third derivative of ϕ ∗L
Out[6]=

�≤≤≤≤≤≤≤≤≤≤∞
±
≤≤≤≤≤≤≤≤≤≤≤≤≤ −

4Æ

1
−1+x2 xI3−10x2+3x4+6x6MI−1+x2M6 −1 < x < 1

 

In[7]:= Plot@%, 8x, −2, 2<,PlotStyle→ 8Thickness@0.008D<D

-2 -1 1 2

-150

-100

-50

50

100

150

Out[7]= h Graphics h  

 Suppose that the function ( )n,...,x,xxff 21=  in its domain Ω  is locally 

integrable. That is, the Lebesgue integral of f  in every compact subdomain of Ω  
is finite. 

 Generalized derivative. We say, that fDi  is the i -th generalized or 
distributional or weak derivative of the function f  in the domain Ω , if  

    ( ) ,1 dxDfdxfD iii ϕϕ ∫∫
ΩΩ

−=    (11-1)  
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where ( )( )Ω∈ ∞
0Cϕ , that is ϕ  is an arbitrary test function. 

 It is easy to see, that if a function is differenciable, then its generalized 
derivative coincide with the classical one. For example, the integration by parts in 

( )1,0=Ω  and using the test function property ( ) ( ) 010 == ϕϕ  leads to  

( )[ ] ( ) ( ) dxfDdxxxnxxdx
dx

d
x nnn ϕϕϕϕ

∫∫∫ −=−= −
1

0

1
1

0

11
0

1

0

1 . 

 E.11.3. Consider the function 

( )
( )⎪

⎩

⎪
⎨

⎧

<≤−

≤<
=

1
2

1
for1

2

1
0for

xxc

xxc
xf  

where c  is a constant. This function is not differentiable at 
2

1=x  (see the Figure 

11.1). 

  The piecewise derivative of ( )xf  on the interval ( )1,0 , coincides with its 
generalized derivative  

( )

⎪
⎩

⎪
⎨

⎧

<<−

<<
=

1
2

1
if

2

1
0if  

1

xc

xc
fD . 

. 

                               ( )xf                                               ( ) fD 1  

                          Figure 11.1. Non-differentiable functions at 
2

1=x . 

 

 c/2 c

0 1/2 1 x 0 1/2  1 x

   -c
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  Indeed, integration by parts yields to 

( ) ( )

( )[ ] ( ) ( ) ( )[ ] ( ) ( )

( ) ( ) ( ) ( ) ( ) .1
2
1

22
1

2

1

1

1

0

1
1

2/1

2/1

0

1

2/1

1
2/1

2/1

0

2/1
0

1

2/1

2/1

0

1

0

1

dxfDdxxc
c

dxxc
c

dxxcxxcdxxcxxc

dx
dx

d
xcdx

dx

d
xcdxDf

ϕϕϕϕϕ

ϕϕϕϕ

ϕϕϕ

∫∫∫

∫∫

∫∫∫

−=−−⎟
⎠
⎞

⎜
⎝
⎛−−⎟

⎠
⎞

⎜
⎝
⎛=

=−−−+−=

=−+=

 

 

E.11.4. Now, consider the second generalized derivative ( ) fD 2  of the function 

( )xf  defined in ( )1,0  in the previous example. The relation (11-1) - as definition- 
gives 

( ) ( ) ( ) ( ) =−+=−= ∫∫∫∫ dx
dx

d
xcdx

dx

d
cxdxDfdxfD

1

2/1
2

22/1

0
2

2
2

1

0

2
1

0

2 11
ϕϕϕϕ   

( ) ( ) =−−⎥⎦
⎤

⎢⎣
⎡ −+−⎥⎦

⎤
⎢⎣
⎡= ∫∫ dx

dx

d
c

dx

d
xcdx

dx

d
c

dx

d
cx

ϕϕϕϕ 1

2/1

1

2/1

2/1

0

2/1

0

1  

( )[ ] ( )[ ] ,
2
1

2
2
1

22
1

2
1

2/1
2/1

0 ⎟
⎠
⎞

⎜
⎝
⎛−=+⎟

⎠
⎞

⎜
⎝
⎛−−⎟

⎠
⎞

⎜
⎝
⎛= ϕϕϕϕϕ

cxc
dx

dc
xc

dx

dc
 

since ( )xϕ  is a test function on the interval ( )1,0 , that is, ( ) ( ) 010 == ϕϕ . 

 But no integrable function ( ) fD 2 exists which satisfies the definition (11-1), 
that is, the relationship  

( ) ( ) .
2

1
2

1

0

2 ⎟
⎠
⎞

⎜
⎝
⎛−=∫ ϕϕ cdxxfD  

 If we introduce the symbolic notation  

( ) ⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ −∫ 2

1
2
11

0

ϕϕδ dxxx , 

where the ⎟
⎠
⎞

⎜
⎝
⎛ −

2

1
xδ  is not a function but it is a so-called delta-distribution, then 

the second generalized derivative of the ( )xf  given in the previous example is 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −−=

2

1
22 xcfD δ . 
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 In applications it is often the case that the delta "function" is symbolically 
defined by 

( ) 0=− ξδ x  if ξ≠x  and ( ) 1=−∫
∞

∞−

dxx ξδ . 

 However, for any reasonable definition of integration there cannot be such 
function. How is it, then, that many practicing scientists have used this definition 
with impunity for years?  

 To make mathematical sense of delta "function" there are, traditionally, two 
ways to do so, the first through delta sequences and the second through the theory 
of distributions.  

 The idea of delta sequences is to realize that, although a delta-function 
satisfying  

( ) ( ) ( )ξϕϕξδ =−∫
∞

∞−

dxxx  

cannot exist, we might be able to find a sequence of functions ( )ξ−xsn  which in 

the limit ∞→n  satisfies the defining equation  

( ) ( ) ( )ξϕϕξ =−∫
∞

∞−
∞→

dxxxsn
n
lim  

for all continuous functions ( )xϕ . Notice that this definition of ns  in no way 

implies that ( ) ( )ξδξ −=−
∞→

xxslim n
n

 exists. In fact, we are certainly not allowed 

to interchange the limit pocess with integration. (We note that one criterion that 
allows the interchange of limit and integration is given by the Lebesgue theorem 
B.4. in Appendix B.) 

 There are many suggestive examples of delta sequences. The choice  

( )
⎪
⎩

⎪
⎨

⎧

>−

+≤≤−
=−

n
x

n
x

n
n

xsn

2

1
if,0

2

1

2

1
if,

ξ

ξξ
ξ  

(see Figure 11.2) is a delta sequence, since 

( ) ( ) ( ) ( )ξϕϕϕξ
ξ

ξ

==− ∫∫
+

−
∞→

∞

∞−
∞→

dxxndxxxs
n

n

n
n

n

2

1

2
1

limlim  
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because of the mean value theorem1, provided ( )xϕ  is continuous near ξ=x . 

 

n

x 

n2

1−ξ  ξ  
n2

1+ξ  

Figure 11.2. Delta sequence. 

 The application of delta sequences in practice is very cumbersome. For 
example, if we want to solve the boundary-value problem 

10,
2
1

2

2

≤≤⎟
⎠
⎞

⎜
⎝
⎛ −= xx

dx

ud δ  

( ) ( ) 010 == uu  

(establish the shape of a cable under a concentrated force), then this problem can 
be approximated by the sequence of boundary-value problems 

10,
2

1
2

2

≤≤⎟
⎠
⎞

⎜
⎝
⎛ −= xxs

dx

ud
n

n  

( ) ( ) 010 == nn uu . 

 

Then, taking the limit  

( ) ( )xuxun
n

=
∞→

lim  

we can produce the correct solution for the examined boundary-value problem. 

  

In more detail: If we solve the previous differential equation separately on the 
intervals 

[ 0, ]1,
2

1

2

1
(],

2

1

2

1
,

2

1

2

1
[),

2

1

2

1

nnnn
++−−  

                                                

1 there is such a point, [ ]ba,∈η , that ( ) ( ) ( )ηϕϕ abdxx
b

a

−=∫   
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with respect to ( ) ( ) ,010 == nn uu then we have 

( )
( )

1
2
1

2
1

if 

2
1

2
1

2
1

2
1

if 

2
1

2
1

0if

,1

,
2

,
2

≤<+

+≤≤−

−<≤

⎪
⎩

⎪
⎨

⎧

−

++=

x
n

n
x

n

n
x

xd

cbxx
n

ax

xun  . 

 

We can compute the coefficients dcba ,,,  from the conditions for the continuity 

of values and the first derivatives of the function at 
n

x
2

1

2

1 −=  and 
n

x
2

1

2

1 += .  

 

The solution is the function  

( ) ( )

( ) 1
2

1

2

1
if

2
1

2
1

2
1

2
1

if  

2
1

2
1

0if 

,1
2
1

,
2
1

2
1

1
2

,
2
1

2

≤<+

+≤≤−

−<≤

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+−

−

=

x
n

n
x

n

n
x

x

n
xx

n

x

xun  

which depends on n , is once continuously differenciable in the interval [ ]1,0  and 

satisfies the boundary conditions ( ) ( ) 010 == uu . 

 

 

Using Mathematica it is easy to plot the function ( )xun  and its first derivative 

according to x  as follows: 

In[1]:= u@n_, x_D:= PiecewiseA99−x

2
,0≤ x<

1

2
−

1

2n
=,9n

2
 ikjjx Hx−1L+ J 1

2
−

1

2 n
N2y{zz, 1

2
−

1

2n
≤ x≤

1

2
+

1

2n
=,9x−1

2
,
1

2
+

1

2n
< x≤ 1==E

v@x_D := u@5,xD  
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In[3]:= Plot@v@xD, 8x,0,1<, PlotStyle→ 8Thickness@0.008D<D
0.2 0.4 0.6 0.8 1

-0.2

-0.15

-0.1

-0.05

Out[3]= h Graphics h  

In[4]:= Derivative@1D@vD
Out[4]=

�≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤∞

±

≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤

0 #1< 0

− 1
2

0 < #1 < 2
5
»» #1m 2

5
5
2
H−1+ 2#1L 2

5
< #1< 3

5
1
2

#1m 3
5
»» 3

5
< #1< 1

0 #1> 1
Indeterminate True

&

 

In[5]:= Plot@%@xD, 8x,0, 1<,PlotStyle→ 8Thickness@0.008D<D

0.2 0.4 0.6 0.8 1

-0.4

-0.2

0.2

0.4

Out[5]= h Graphics h  

 If ∞→n , then uun →  pointwise and hence in integral norm too, where 

( )⎪
⎩

⎪
⎨

⎧

≤≤−

≤≤−
=

1
2

1
if,1

2

1
2

1
0if  ,

2

1

xx

xx
u  

(at the point 
2

1=x  we get 
n

un 8

1

4

1

2

1 +−=⎟
⎠
⎞

⎜
⎝
⎛  so that if ∞→n , then 

4

1

2

1 −=⎟
⎠
⎞

⎜
⎝
⎛

nu ). 
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 However, there is a further significant difficulty with this, since we do not only 
need to find ( )xun , but also to show that the limit exists independently of the 

particular choice of delta sequence. 

 We note that using Mathematica this boundary-value problem can be solved 
easily as follows: 

In[1]:= Clear@x,uD
DSolveA9u''@xDm DiracDeltaAx−

1

2
E,u@0Dm 0,u@1D m 0=, u@xD, xE

Out[2]= ::u@xD →
1

2
H−x− UnitStep@−1+2xD + 2xUnitStep@−1+2xDL>>

 

In[3]:= Plot@Evaluate@u@xD ê.%D, 8x,0,1<,PlotStyle→ 8Thickness@0.008D<D
0.2 0.4 0.6 0.8 1

-0.25

-0.2

-0.15

-0.1

-0.05

Out[3]= h Graphics h  

 A much more useful way to discuss delta "functions" is through the theory of 
distributions. As we shall see, distributions provide a generalization of functions 
and inner products. 

 

Distributions.1 

 Convergence in the linear space ( )( )Ω∞
0C . In our previous discussions, the 

convergence was defined using the norm. In 
( )( ) ( )( ){ }Ω⊂Ω∈=Ω ∞∞ ϕϕ supp  :0 CC , that is in the set of all smooth functions 

with compact support in Ω , for our purposes suitable norm does not exist. 
Therefore, it is advantageous to introduce the following definition: 

 The sequence { }nϕ  of test functions is said to be convergent in ( )( )Ω∞
0C  and its 

limit is the test function ϕ , if there is a bounded set Ω⊂Ω∗ , containing the 

supports of ...,,, 21 ϕϕϕ  and if the sequence { }nϕ  and all its generalized derivatives 

                                                
1 The concept of distributions first was used by Laurent Schwartz in 1944.   
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{ } 0, >iD n
iϕ  converges uniformly to ϕ  and its generalized derivatives ϕiD , 

respectively. That is, if 

0maxlim =−
∗Ω∈∞→

ϕϕ i
n

i DD
xn

 

for every i =0,1,2, … . 

 A linear functional ( )( ) ℜ→Ω∞
0: Cf  is said to be continuous (in ( )( )Ω∞

0C ), if f 

maps every converegent sequence in ( )( )Ω∞
0C  into a convergent sequence in ℜ , 

i.e. if ϕϕ ff n → 1 whenever ϕϕ →n  in ( )( )Ω∞
0C .  

 Distribution. A continuous linear functional on ( )( )Ω∞
0C  is called distribution 

or generalized function. 

 E.11.5. An example of distribution is the delta-distribution δ , defined by  

( ) ( ) ( )ξϕϕξδ =− xx  for all ( )( )Ω∈ ∞
0Cϕ . 

 The notation ϕf  is used to denote the "action" of the distribution f  on the 

test function ϕ . 

 The linearity of distributions means, that operations of addition and 
multiplication by scalar of distributions are defined as follows: if f  and g  are 
distributions (i.e. linear functionals on )ϕ  and α  and β  are scalars, we define the 

distribution gf βα +  to be the functional ϕβϕα gf +  for all ( )( )Ω∈ ∞
0Cϕ . 

 The notation of distributions looks exactly like an inner product between 
functions f  and ϕ , and this similarity is intentional although misleading, since 
f  need not be representable as a true inner product. 

 The simplest examples of linear functionals are indeed inner products. Suppose 
( )xf  is a locally integrable, that is, the Lebesgue integral ( ) dxxf

I
∫  is defined 

and bounded for every finite interval I . Then the inner product  

( ) ( )dxxxff ϕϕ ∫
∞

∞−

=  

is a linear functional if ϕ  is in ( )( )∞∞−∞ ,0C . 

                                                
1 The dual-pair notation ( ) ϕϕ ff ≡  is used. 



68   

 Every locally integrable function f  induces a (so-called regular) distribution 
through the usual inner product. (Two locally integrable functions which are the 
same almost everywhere induce the same distribution.) 

 E.11.6. One important distribution is the Heaviside-distribution  

( )dxxH ∫
∞

=
0

ϕϕ  

which is equivalent to the inner product of ϕ  with the well-known 
Heaviside(Unitstep)- function  

( )
⎩
⎨
⎧

<
≥

=
0if0

0if 1

x

x
xH . 

 For any function f  that is locally integrable we can interchangeably refer to its 
function values ( )xf  or to its distributional values (or action) 

( ) ( ) dxxxff ϕϕ ∫
∞

∞−

= . 

That is, either ( )xfx → , or ϕϕ f→ . 

 There are numerous distributions which are not representable as an inner 
product. The example we have already seen is the (so-called singular) distribution 

( )ξϕϕδξ = . Similarly to the differential operator dx
d  which cannot be 

evaluated at the point 2=x  for example, but dx
d  can be evaluated pointwise 

only after it has first acted on a differentiable function ( )xf , the distribution 

ϕδξ  can be evaluated only after ϕ  is known. 

 Sobolev spaces. 

 The set ( )( )ΩkC , (as the linear space of k -times continuously differentiable 
functions on Ω ), with respect to the inner product 

     dxvDuDvu i

ki

i

k ∑ ∫
≤ Ω

=     (11-2) 

is a pre-Hilbert space with the norm 

( )
2/1

2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== ∑ ∫

≤ Ωki

i

kk
dxuDuuu  
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induced by (11-2).  

 Let ( )( )ΩkV2  denote this incomplete inner product space. The space ( )( )ΩkV2  

can be completed by adding the limit points of all Cauchy sequences in ( )( )ΩkV2 . 
These limit points are distributions.  

 The set D of all distributions generated by Cauchy sequences in ( ) ( )ΩkV2  is 

itself a linear space: if the distributions Dgf ∈,  are generated by { }nϕ  and { }nψ  

respectively, then the distribution gf   βα +  is generated by the Cauchy sequence 

{ }nn ψβϕα + . When the space D is endowed with the inner product  

     
knnnkgf ψϕ

∞→
= lim      (11-3) 

where 
k

..  is defined by (11-2), the resulting inner product space is the Sobolev 

space ( ) ( )ΩkΗ . 

 It is in use to define the Sobolev spaces as follows too: 

 The Sobolev space ( )( ) ( )( )Ω=Ω kk HW2  is the set of those real-valued functions, 
which with their generalized derivatives up to and including the order k  exist and 
are in Lebesgue sense square-integrable in Ω . 

  The space ( )( )ΩkW2  contains, besides the continuous functions, e.g. those 

functions, which are k-1-times continuously differentiable on Ω  and their 
derivative of order k  is piecewise continuous in Ω . 

 The function f  sketched in Figure 11.1. belongs to Sobolev space ( )( )1,01
2W . 

Indeed, there exists its generalized derivative ( ) fD 1  which with the function f  is 

square-integrable in ( )1,0 . The function f  does not belong to ( )( )1,02
2W , because 

its generalized derivative ( ) fD 2  exists only as distribution but is not a square-
integrable function. 

 Theorem 11.1. The Sobolev space ( )( ) ( )( )Ω=Ω kk HW2  with the inner product 
(11-3) is a real Hilbert space.  
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12. Weak (or generalized) solutions 

 Consider the model boundary-value problem  

      bxaf
dx

ud ≤≤=− ,
2

2

   (12-1) 

( ) ( ) 0== buau . 

 If ( ) ( )baCf ,0∈ , then the classical solution u  (if exists) belongs to 
( ) ( ) ( )[ ]baCbaCu ,, 02 ∩∈  and ( ) ( ) 0== buau . Multiplying (12-1) by an arbitrary 

test function ϕ  (recall, that ( )xϕ  is smooth with compact support in ( )ba, ) so that 
( ) ( ) 0== ba ϕϕ  and integrating the result, we obtain  

      .dxfdx
dx

ud b

a

b

a
2

2

∫∫ =− ϕϕ    (12-2) 

Now an integration by parts yields  

     ( ) ( )baCdxfdx
dx

d

dx

du b

a

b

a

,, 0
∞∈= ∫∫ ϕϕϕ

. (12-3) 

 If ( ) ( )baCf ,0∉  then the equation (12-1) does not have a classical solution 

(because then ( ) ( )baCu ,2∉ ). For such a case it is possible to weaken, generalize 

the concept of the solution. Note, that for ( )baLf ,2∈  the equation (12-3) makes 

sense if ( )baL
dx

du
,2∈ . This requirement is satisfied if 

( )( ) ( ) ( ) ( ) ( ){ }0,,:, 1
2

0
1

2 ==∈=∈ buaubaWuubaWu  

where the symbol 
0

 refers to homogeneous boundary conditions. Then the 

definition of Sobolev space ( )( )baW ,1
2  implies that the derivatives are considered 

in the generalized sense and that ( )baL
dx

du
,2∈ . 

 The function ( )( )baWu ,
0

1
2∈  is called the weak or generalized solution of 

equation (12-1), if for ( )baLf ,2∈ , u  satisfies equation (12-3). In other terms, a 

generalized solution of equation (12-1) is a distribution ( )( )baWu ,
0

1
2∈  such that 
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equation (12-2) or equivalently, equation (12-3), is satisfied for all ( ) ( )baC ,0
∞∈ϕ  

and a given distribution f  in ( )baL ,2 . 

 We note that ( ) ( )baC ,0
∞  is a dense subspace of ( )( )baW ,

0
1

2  (because ( )( )baW ,
0

1
2  is 

the closure (extension) of ( ) ( )baC ,0
∞ ). This property guaranties that if u  is a 

classical solution of the equation (12-1) then it is also a solution of the weak 
formulation (12-3). Indeed, the integration by parts on the left-hand side of (12-3) 
yields 

0
2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∫ dxf

dx

udb

a

ϕ  ( ) ( )baC ,0
∞∈ϕ . 

By the lemma1 known from the calculus of variations we must have 

Θ=+ f
xd

ud
2

2

 in ( )baL ,2   

and the continuity of f  implies that the differential equation (12-1) is satisfied. 

 The equation (12-3) can be expressed in the form  

  ( )( ) ( )( ) ( ) ( )baCfDuD ,, 0
11 ∞∈= ϕϕϕ  

where ⋅⋅  is the inner product in the space ( )baL ,2 . This equation makes sense 

when ϕ  is any element of ( )( )baW ,
0

1
2 . Since ( ) ( )baC ,0

∞  is a dense subspace of 

( )( )baW ,
0

1
2 , it follows that this equation is equivalent to  

  ( )( ) ( )( )
( )

( )baWfDuD ,,
1

2

0
11 ∈= ϕϕϕ . 

 Denote H = ( ) ( )baW ,
0

1
2 , and let ℜ→× HHa :..  be the bilinear functional 

defined by  

( )( ) ( )( ) ,,for11 HvuvDuDvua ∈=  

and let ℜ→H:l  be the continuous linear functional on H ( i.e. H ′∈l ) defined 
by 

( ) Hvvfv ∈∀= forl . 

                                                
1 Lemma: If Hu ∈ is orthogonal to all elements v  of a set S which is dense in a pre-Hilbert 
space H , then u is the null-element of H . 
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 Then the weak formulation of the boundary-value problem is to find 
Hu ∈ such that  

     ( ) Hvvvua ∈∀= l  .    (12-4) 

 The solvability of the problem (12-4) is given in the Lax-Milgram theorem (see 
theorem 8.5) which is a generalization of the Riesz representation theorem. 

 Weak convergence. A sequence of distributions { }nf  is said to converge to the 

distribution f  if their actions converge in ℜ , that is, if 

ϕϕ ffn →  for all ( ) ( )Ω∈ ∞
0Cϕ . 

 This convergence is called convergence in the sense of distribution or weak 
convergence. 

 If the sequence of distributions nf  converges to f  then the sequence of 

derivatives ( )
nfD 1  converges to ( ) fD 1 . This follows since  

( ) ( ) ( ) ( ) ϕϕϕϕ fDDfDffD nn
1111 =−→−=  

for all ( )∞∈ 0Cϕ . 

 E.12.1. The sequence { }
⎭
⎬
⎫

⎩
⎨
⎧=

n

xn
fn

cos
 is both a sequence of functions and a 

sequence of distributions. As ∞→n , nf  converges to 0  both as a function 

(pointwise) and as a distribution. It follows that ( ) xnfD n sin1 −=  converges to the 

zero distribution even though the pointwise limit is not defined. 

 Recall, that using distributions, we are able to generalize the concept of 
function and derivative to many objects which previously made no sense in the 
usual definitions. It is also possible to generalize the concept of a differential 
equation. 

 Weak formulation. The differential equation fuL = is a differential equation 
in the sense of distribution (i.e., in the weak sense), if f  and u  are distributions 
and all derivatives are interpreted in the sense of distributions. Such a differential 
equation is called the weak formulation of the differential equation. 
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13. Orthogonal systems, Fourier series 

 Orthonormal systems. A sequence { }...,2,1; =kkϕ  of elements of an inner 

product space is said to be orthonormal, if  

⎩
⎨
⎧

=
≠

=
ji

jii
ji if1

f0
ϕϕ . 

 The vectors of an orthonormal system are linearly independent. Indeed, if we 
select n vectors from an orthonormal system { }...,2,1; =kkϕ , then they are 

linearly independent. This follows from the Theorem 8.1 because the 
corresponding Gram matrix is equal to the identity matrix. 

 Fourier series. Suppose, that { }...,2,1; =kkϕ  is an orthonormal system in a 

Hilbert space H and that u is an arbitrary element of H . The series  

     kk
k

kk u ϕαϕα =∑
∞

=

;
1

    (13-1) 

is said to be an orthogonal or  generalized Fourier series representation of 
Hu ∈ , with respect to the orthonormal system { }...,2,1; =kkϕ , and the scalars 

...,2,1; =kkα  are called the (generalized) Fourier coefficients of Hu ∈ . 

 Convergence of infinite series. Let { }...,2,1; =kuk  denote a sequence of 

vectors in a normed space U . An infinite series  

∑
∞

= 1k
ku  

is said to be convergent if and only if the sequence of n-th partial sums  

∑
=

=
n

k
kn us

1

 

converges. In other words, an infinite series ∑
∞

= 1k
ku  converges, if and only if there 

exists a vector Us∈  such, that for every 0>ε  there is an integer 0>N  such, 
that 

ε<− ssn  whenever Nn ≥ . 
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 Theorem 13.1. Let { }...,2,1; =kkϕ  be an orthonormal system in a Hilbert 

space H . Then the Fourier series representation (13-1) of an arbitrary element 
Hu ∈  converges. 

 However, it does not follow, that the limit of this series is u ! 

 E.13.1. The sequence  

     ( )( )
⎭
⎬
⎫

⎩
⎨
⎧

=−= ...,2,1;12sin
2

kxkk π
ϕ    (13-2) 

is orthonormal in the Hilbert space ( )π,02LH = . Indeed, using Mathematica we 
have got 

In[1]:= ϕk_ :=$%%%%%%2
π

 Sin@H2 k−1L xD
AssumingA8m,n<∈ Integers, 9‡

0

π
ϕm ϕn Åx, ‡

0

π
ϕn

2 Åx=E
Out[2]= 80, 1<  

 The function 

xu 2sin=  

is orthogonal to every kϕ  and hence the Fourier coefficients of u  

02)(sinsin22sin
0

0

00

===== ∫ ∫∫ dttxdxdxxu kkkkk

ππ

ϕϕϕϕα . 

The corresponding Fourier series  

...5sin
2

03sin
2

0sin
2

0 +++ xxx
πππ

 

converges - in accordance with the Theorem 13.1 - but its limit is the function 
Θ=u  and not xu 2sin= . 

 This does not occure, if the sequence (13-2) would contain the function 

x2sin
2
π

 too. Hence the sequence (13-2) is in this respect deficient, 

"incomplete".  

 Complete orthonormal sets. Let { }...,2,1; =kkϕ  be an orthonormal set in a 

Hilbert space H . The orthonormal set { }kϕ  is said to be complete, if for every 
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element Hu ∈  the Fourier series representation of u  with respect to 
{ }...,2,1; =kkϕ  converges to the limit u . 

 Do not be confused by this second use of the notion complete. In the Section 5 
we defined, that a (normed) space S  is complete if every Cauchy sequence in S  
is convergent in S . Here we say that the set { }...,2,1; =kkϕ  is complete, if 

uu
k

kk =∑
∞

=1

ϕϕ  for every u  in the Hilbert space H . 

 Theorem 13.2. An orthonormal system { }...,2,1; =kkϕ  is complete if and 

only if  

0=ku ϕ  for all k  implies Θ=u . 

 That is, the orthonormal system { }...,2,1; =kkϕ  is complete, if Θ=u  is the 

only vector in H  which is orthogonal to all elements of the set { }...,2,1; =kkϕ . 

 We saw that the function Θ≠= xu 2sin  is orthogonal to all elements of the 
orthonormal set (13-2). Hence also by theorem 13.2 the set (13-2) is not complete. 

 Recall, that a subset S  of a Hilbert space H  spans or generates the Hilbert 
space, if the set of all linear combinations of the elements of S  is dense in H . 

 Complete sequences. Let H  be a Hilbert space. A sequence  

      { }...,2,1; =kkψ     (13-3) 

of (not only mutually orthogonal) elements of H  is called a complete sequence of 
H , if { }...,2,1; =kkψ  spans the Hilbert space H . 

  In other words, { }...,2,1; =kkψ  is a complete sequence of a Hilbert space 

H , if for any Hu ∈  and for every 0>ε , there is a positive integer N  and 
numbers ( ) ( ) ( )n

n
nn aaa ,...,, 21  such, that  

   ( ) εψ <−∑
=

n

k
k

n
kau

1

 for all Nn ≥ . 

 Bases for a Hilbert space.  Let H  be a Hilbert space. A sequence 
{ }...,2,1; =kkψ  of elements of H  is called a basis for H , if { }...,2,1; =kkψ  

   1. is a complete sequence of H  

   (that is, every Hu ∈ can be approximated with an arbitrary accuracy 

   by linear combinations of elements of { }...,2,1; =kkψ ) 
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   and 

   2. is linearly independent. 

 In other tems, a basis for a Hilbert space H  is every linearly independent 
countable subset of H  which spans H . 

 We note, that in the finite element approximations not only the coefficients 
( ) ( ) ( )n

n
nn aaa ,...,, 21  but also the basis functions ( ) ( ) ( )n

n
nn ψψψ ,...,, 21  depend on the 

accuracy ε . 

 Schauder basis. If the basis for a Hilbert space H  has the property, that any 
Hu ∈  can be uniquely written in the form of infinite sum 

∑
∞

=

=
1k

kkau ψ  

(which is interpreted as εψ <−∑
=

n

k
kkau

1

 for all Nn > ) then the linearly 

independent sequence { }...,2,1; =kkψ  is called Schauder basis.  

 If a sequence (13-3) is orthonormal then the previous definitions of complete 
sequences and of complete orthonormal sets express identical concepts. 

 Orthonormal bases. An orthonormal sequence  

{ }...,2,1; =kkϕ  

that forms a basis for a Hilbert space H  is called an orthonormal basis for H . 

 Now we give an algorithm for the construction of an orthonormal basis 
{ }...,2,1; =kkϕ  once a basis { }...,2,1; =kkψ  for H  is given. 

 Gram-Schmidt orthonormalization. Let  

1

1
1 ψ

ψϕ =  

be the first element of the orthonormal set. (The linear independence of 
{ }...,2,1; =kkψ  implies that the zero vector is not an element of { }kψ ). 

Obviously 11 =ϕ . 

 Let  

11222 ϕψ cg +=  
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be orthogonal to 1ϕ  (see Fig. 13.1), that is let 

,01122121 =+= ϕψϕϕ cg  

from which it follows 2112 ψϕ−=c . 

 

 

ψ

ψ
2

1ϕ 1

ϕ 2

c
12

ϕ  
1 

g
  2

0 

     
 

Figure 13.1. First step of the orthonormalization procedure 

 

 We note, that 02 ≠g  because if  

Θ=+= 1
1

12
22 ψ

ψ
ψ c

g  

then the vectors 21,ψψ  are not linearly independent. Hence  

2

2
2 g

g=ϕ  

and 1ϕ  and 2ϕ  are mutually orthogonal vectors and have unit norms. 

 Let 

22311333 ϕϕψ ccg ++=  

be orthogonal to 1ϕ  and to 2ϕ , that is let  

0212311133131 =++= ϕϕϕϕψϕϕ ccg  

0222312133232 =++= ϕϕϕϕψϕϕ ccg  

112ϕc  

2ψ  

1ϕ  1ψ  

2ϕ  

2g  



78   

from which it follows  

32233113 , ψϕψϕ −=−= cc . 

Similarly to the case of the vector 2g  it can be shown, that Θ≠3g and hence  

,
3

3
3 g

g=ϕ  

1ϕ , 2ϕ  and 3ϕ are mutually orthogonal and have unit norms. 

 If we continue this technique, then we get an orthonormal system { }...,, 21 ϕϕ . 

 It is easy to see, that the sequence { }...,2,1; =kkϕ  is an orthonormal basis for 

a Hilbert space H . The orthonormality of the sequence immediately follows from 
its construction, so that it is enough to prove that it is complete. From the process 
of the orthonormalization it is clearly seen, that the n -th element of 
{ }...,2,1; =kkϕ  is a linear combination of the first n  elements of 

{ }...,2,1; =kkψ  and vice-versa. Therefore, if any Hu ∈ can be approximated 

with an arbitrary accuracy by linear combinations of the elements of 
{ } Hkk ⊂= ...,2,1;ψ  then this is also true for the linear combinations of the 

elements of { } Hkk ⊂= ...,2,1;ϕ , that means that the sequence 

{ }...,2,1; =kkϕ  is complete in H . 

 
 E.13.2. Recall, that the sequence of functions 

{ }...,,,,,1 432 xxxx  

forms a base for the Hilbert space ( )1,12 −L . But this base is not orthonormal. To 
orthonormalize it we may apply the process of Gram-Schmidt orthonormalization 
which can be realized using Mathematica as follows: 

In[1]:= <<LinearAlgebrà Orthogonalizatioǹ8y1, y2, y3, y4, y4< =

GramSchmidtA91, x, x2, x3, x4=, Normalized→ True,

InnerProduct→ J‡
−1

1H#1#2L Åx &NE
Out[2]= : 1è!!!!2 ,$%%%% %%3

2
x,

3

2
$%%%%%%5

2
J−

1

3
+x2N,

5

2
$%%%% %%7

2
J−

3x

5
+ x3N, 105I− 1

5
+x4 − 6

7
I− 1

3
+x2MM

8è!!!!2 >
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Control: 

In[3]:= 9‡
−1

1
y12 Åx,‡

−1

1
y1y2 Åx=

Out[3]= 81, 0<  

 The following example applies the Gram-Schmidt orthonormalization to the 
given list of three-dimensional vectors. 

In[1]:= <<LinearAlgebrà Orthogonalizatioǹ

u1= 83, 4,2<;u2 =82, 5,2<; u3 =81, 2, 6<;8v1, v2, v3< = GramSchmidt@8u1,u2,u3<D
Out[3]= :: 3è!!!!!!29

,
4è!!!!!!29

,
2è!!!! !!29

>,:−
32è!!!! !!!! !!1653

,
25è!!!!! !! !!!1653

, −
2è!!!!! !!!!!1653

>, :−
2è!!!!!!57

, −
2è!!!!!!57

,
7è!!!! !!57

>>
 

 The result is an orthonormal basis, so the scalar product of each pair of vectors 
is zero and each vector has unit length: 

In[4]:= 8v1.v2, v2.v3, v1.v3, v1.v1, v2.v2, v3.v3<
Out[4]= 80, 0, 0, 1, 1, 1<  

In[5]:= Show@
Graphics3D@8Hue@0D, Thickness@0.008D, Map@Line@880, 0,0<,#<D &, 8v1, v2, v3<D<D,
Axes→ TrueD
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Out[5]= h Graphics3D h  
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 Theorem 13.3. If a Hilbert space H is separable, then H contains a basis. 

Proof: If a Hilbert space is separable, then H contains a countable dense subset 
which spans H . If we order the elements of this subset into a sequence, then we 
have a complete sequence; if we omit those elements which are linear 
combinations of the others, then this does not disturb the completeness of the 
sequence, so that we have a linearly independent complete sequence of H , which 
is a basis for H . 

 Theorem 13.3 and the Gram-Schmidt orthonormalization implies: 

 Theorem 13.4. A separable Hilbert space has an orthonormal basis. 
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14. The projection theorem, the best approximation 

 From simple geometry it is well known how to determine the point *m among 
all poits m of a plane M , for which the distance from a point Mx ∉  is the 
shortest. The point *m is given as the intersection of a line passing through the 
point x , perpendicular to the plane M  itself (see Fig. 14.1).  

 

x – m*

m * 

x

O
M

3ℜ
 

  

Figure 14.1. Orthogonal projection in 3ℜ . 

 
 This obvious and intuitive result can be generalized to the problem of finding 
the best approximation *m of a given vector x  of a Hilbert space in the subspace 
M . 

 Minimizing vector. Let H be an inner product space and M  a linear subspace 
of H . A vector Mm ∈*  is said to be a minimizing vector of a given vector 

Hx ∈  in a subspace M , if 

 
Mmmxmx ∈−≤− ∗ allfor . 

 
 Theorem 14.1. (The projection theorem). 

 (1)  Mm ∈∗  is a minimizig vector of a vector Hx ∈  in a subspace M , if 
and only if 

Mmmmx ∈=− ∗ allfor0 . 

 
 (2)  If a minimizing vector exists, then it is unique. 

 

 (3)  If H  is a Hilbert space, and M  is a closed linear subspace in H  (i.e.  
   if Mmn ∈  and mmn → , implies Mm∈ ), then to every Hx ∈  

   there exists a minimizing vector ∗m  in M . 
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 We note, that neither the orthogonality of *mx − nor the unicity of *m depends 
on the completeness of the space H . 

 The best approximation. Let H  be a real Hilbert space and suppose we have 
an orthonormal sequence of functions { } Hnkk ⊂= ,...,2,1;ϕ  with which we 

wish to approximate an arbitrary function u  in H . To approximate u  in the best 
possible way, we want a linear combination of { }nkk ,...,2,1; =ϕ  which is as 

close as possible, in terms of the norm in H , to u . In other words, we want to 
minimize 

∑
=

−
n

k
kkcu

1

ϕ . 

By the projection theorem, this norm is minimal if and only if  

nicu i

n

k
kk ,...,2,1,0

1

==−∑
=

ϕϕ  

 Since the orthonormality of the sequence { }nkk ,...,2,1; =ϕ , it follows that 

kk uc ϕ= , nk ,...,2,1= , that is, the scalars nkck ,...,2,1; =  are the Fourier 

coefficients of Hu ∈ . 

With this choice of kc , the error of our approximation is 

∑∑∑∑
====

−=−−=−
n

k
k

n

k
kk

n

k
kk

n

k
kk uucucucu

1

22

11

2

1

ϕϕϕϕ . 

Since the error (norm) can never be negative, it follows that 

∞<≤=∑∑
==

2

1

2

1

2 uuc
n

k
k

n

k
k ϕ , 

which is known as Bessel’s inequality. Since this is true for all n , if the set 
{ }nkk ,...,2,1; =ϕ  is infinite, we can take the limit ∞→n , and conclude that 

∑
∞

=1k
kkc ϕ  converges to some function in H . (We know this because ∑

=

n

k
kkc

1

ϕ  is a 

Cauchy sequence in H  and H  is complete.) 

 For any orthonormal system { }nkk ,...,2,1; =ϕ , the best approximation of u  is 

∑
=

n

k
kku

1

ϕϕ , which is the projection of u  onto the space spanned by the set 

{ }nkk ,...,2,1; =ϕ  
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Appendix: A. Construction of basis functions for the vector space 
( ) [ ]11,C −1

3
 using Mathematica 

 Training problem: Let ( ) [ ]1,11
3 −C  denote that linear subspace of the vector space 

( )[ ]1,11 −C , which consists of piecewise cubic polynomials on the intervals [ ]0,1−  
and [ ]1,0 . Similarly to example E.2.2, determine the basis of the function space 

( ) [ ]1,11
3 −C  and plot it using Mathematica! 

 

In[1]:= Clear@"Global̀ ∗"D H∗ Training problem ∗L
p1@t_D :=a1 t3+ b1 t

2+c1 t+d1
p2@t_D :=a2 t3+ b2 t

2+c2 t+d2H∗ conditions for continuity in tm0 ∗L
p1@0D m p2@0D

Out[4]= d1 m d2

In[5]:= HD@p1@tD,tD ê.t→ 0L m HD@p2@tD,tD ê.t→ 0L
Out[5]= c1 m c2

In[6]:= d1 =d2 = d;c1 = c2 =c;

p@t_D := Piecewise@88p1@tD, −1≤ t≤ 0<, 8p2@tD,0≤ t≤ 1<<D
dp@t_D:= Piecewise@88p1'@tD, −1 ≤t ≤0<, 8p2'@tD, 0≤ t≤ 1<<D
s= Solve@8Map@p, 8−1, 0,1<Dm Map@g, 8−1,0,1<D,

Map@dp, 8−1, 0, 1<Dm Map@dg, 8−1,0,1<D< êêFlatten, 8a1, b1, a2, b2, c,d<D êê
First

Out[9]= 8a1 → dg@−1D +dg@0D + 2g@−1D− 2g@0D,
b1 → dg@−1D +2dg@0D + 3g@−1D− 3g@0D, a2 → dg@0D + dg@1D+ 2g@0D − 2g@1D,
b2 → −2dg@0D −dg@1D − 3g@0D + 3g@1D, c→ dg@0D, d→ g@0D<  

In[10]:= H∗ substitution of the solution into p@t_D ∗L
ss= p@tD ê. s  

Out[10]=
�≤≤≤≤≤≤≤∞
±≤≤≤≤≤≤≤≤≤≤
tdg@0D +t2 Hdg@−1D+ 2dg@0D + 3g@−1D − 3g@0DL + t3Hdg@−1D + dg@0D+ 2g@−1D −2g@0DL + g@0D −1 ≤ t ≤ 0

tdg@0D +g@0D + t3Hdg@0D + dg@1D + 2g@0D −2g@1DL + t2H−2dg@0D − dg@1D −3g@0D + 3g@1DL 0≤ t ≤ 1  
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In[11]:= H∗ arrange to form p@t_D:=

g@−1D ϕ1@tD+dp@−1D ϕ2@tD+g@0D ϕ3@tD+dp@0D ϕ4@tD+

g@1D ϕ5@tD+dp@1D ϕ6@tD ∗L
sss= 8ss@@1,1,1DD,ss@@1,2,1DD<

Out[11]= 8tdg@0D+ t2 Hdg@−1D + 2dg@0D + 3g@−1D − 3g@0DL +

t3Hdg@−1D +dg@0D + 2g@−1D− 2g@0DL + g@0D, tdg@0D + g@0D +

t3Hdg@0D + dg@1D+ 2g@0D − 2g@1DL + t2H−2dg@0D −dg@1D − 3g@0D + 3g@1DL<  

In[12]:= fi= Table@Map@Coefficient@sss,#D&, 8g@k−2D, dg@k−2D<D, 8k,1,3<D êê
Flatten@#,1D&

Out[12]= 883t2+ 2t3, 0<, 8t2+ t3, 0<, 81− 3t2− 2t3, 1− 3t2+ 2t3<,8t+ 2t2+ t3, t− 2t2+ t3<, 80, 3t2− 2t3<, 80, −t2 +t3<<  

In[13]:= Table@ϕk@t_D =Piecewise@88fi@@k,1DD, −1 ≤t ≤0<, 8fi@@k,2DD, 0< t≤ 1<<D,8k,1,6<D
Out[13]= :�≤≤∞±≤≤≤≤≤ 3t2+ 2t3 −1 ≤ t ≤ 0, �≤≤∞±≤≤≤≤≤ t2+ t3 −1≤ t≤ 0,

�≤≤≤≤≤≤∞
±≤≤≤≤≤≤≤≤≤≤
1 − 3t2− 2t3 −1 ≤ t ≤ 0

1 − 3t2+ 2t3 0 < t ≤ 1
,

�≤≤≤≤≤≤≤∞
±≤≤≤≤≤≤≤≤≤≤
t +2t2 +t3 −1 ≤ t ≤ 0

t −2t2 +t3 0< t≤ 1
, �≤≤≤≤≤∞±≤≤≤≤≤≤≤≤

0 −1 ≤ t≤ 0

3t2− 2t3 0 < t ≤ 1
, �≤≤≤≤≤∞≤≤≤≤≤≤≤≤

0 −1 ≤ t ≤ 0

−t2+ t3 0 < t ≤ 1
>

 

In[14]:= drawing= Table@Plot@ϕk@tD,8t, −1,1<, AspectRatio→ 1ê2, PlotStyle→ Thickness@0.011D,
DisplayFunction→ IdentityD, 8k, 1, 6<D;

Show@GraphicsArray@Partition@drawing,2DD, DisplayFunction→ $DisplayFunctionD
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Out[15]= h GraphicsArray h  
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Appendix: B. The Lebesgue integral 

 For purposes of this text, it is only necessary to acquire a simple understanding 
of the definition of this integral and some of its fundamental properties. 

 The Lebesgue integral for bounded measurable functions: Let ( )xf  be a 

(real-valued), bounded measurable function on a closed interval [ ]ba, . Since 

( )xf  is measurable on [ ]ba, , there exists a sequence of continuous functions 
( ){ }xgn  which converges to ( )xf  almost everywhere on [ ]ba, . Since ( )xf  is 

bounded, there is a number 0>K  for which ( ) Kxf ≤  on the interval bxa ≤≤ . 

Then we may write 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∫∫ ∞→

dxxgdxxf
b

a

n
n

b

a

lim ,  

where the integrals on the right-hand side are Riemann integrals of continuous 
functions. 

 We note, that this definition is correct, because it can be shown that the limit 
does not depend on the choice of sequence ( ){ }xgn .  

 Nonnegative integrable functions: Let ( ) bxaxf ≤≤≥ ,0  be a measurable 
function. Define the sequence of bounded measurable functions  

( ) ( ) [ ] ( )
[ ] ( ) ( )...,2,1

and ,

0and,
=

⎩
⎨
⎧

<∈
≤≤∈

= n
xfnbaxn

nxfbaxxf
xfn . 

 The function ( )xf  is said to be (Lebesgue) integrable on interval [ ]ba, , if the 

sequence of integrals ( )
⎭
⎬
⎫

⎩
⎨
⎧
∫
b

a

n dxxf  is bounded from above. Then we may write  

( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== ∫∫∫ ∞→

b

a

n
n

b

a

n
n

b

a

dxxfdxxfdxxf suplim  

and this expression is called Lebesgue integral of the function ( )xf  on [ ]ba, . 

 Integrable functions of arbitrary signs: Let ( )xf  be a (real-valued), 
measurable function on a closed interval [ ]ba, . If ( )xf1  and ( )xf2  are two 
nonnegative integrable functions such that  

( ) ( ) ( ) [ ]( )baxxfxfxf ,21 ∈−= , 
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then we say that ( )xf  is (Lebesgue) integrable on [ ]ba, . The number  

( ) ( ) ( )dxxfdxxfdxxf
b

a

b

a

b

a
∫∫∫ −= 21  

is called the (Lebesgue) integral of function ( )xf  on interval [ ]ba, . 

 Some properties of the Lebesgue integral and the Riemann integral are the 
same. For example, the set of integrable functions is a linear space and the map 

( )dxxff
b

a
∫→  

is linear, that is,  

( ) ( )( ) ( ) ( )dxxgdxxfdxxgxf
b

a

b

a

b

a
∫∫∫ +=+  and ( )( ) ( )dxxfdxxf

b

a

b

a
∫ ∫= λλ . 

 In Section 9 we defined the set of (Lebesgue) measure zero. Sets of arbitrary 
Lebesgue measures can be defined using their characteristic functions. If 

[ ]baA ,= , then the function 

( )bxa
Ax

Ax
A ≤≤

⎩
⎨
⎧

∈
∉

=
if1

if0
χ  

is called the characteristic function of A . 

 Measurable sets. A set [ ]baA ,⊆  is said to be measurable (Lebesgue 
measurable) if its characteristics function Aχ  is integrable. The number  

( )dxx
b

a

A∫ χ  

is called the (Lebesgue measure) of A  and is denoted Ames . 

 E.B.1. If [ ] [ ]badcA ,, ⊆= , then cdA −=mes . Consequently the Lebesgue 
measure is a generalization of the length in elementary geometry.  

 Theorem B.1. If [ ]baA ,⊆  and [ ]baB ,⊆  are two measurable disjoint sets on 
the interval [ ]ba, , that is, if Θ=∩ BA , then BA ∪  is measurable and 

( ) .mesmesmes BABA +=∪  
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 Till now we have supposed that the interval [ ]ba,  is arbitrary, but fixed. It can 
be shown, that the previous definitions and theorems are independent from the 
choice of such an interval. There are general bounded Lebesgue measurable sets 
and integrable functions on bounded intervals. The extension of the ideas above to 
functions which are defined on unbounded intervals can be made if the limit 
process is applied. Nonnegative integrable functions can be obtained using the 
following properties: 

    ( ) ( ) ( )ℜ∈≥ℜ→∞+∞− xxff 0,,: , 

    f  integrable on every interval [ ]nn,−  ( ),...2,1=n , 

    the ( )dxxf
n

n
n ∫

−
∞→

lim  exists. 

The last limit is denoted by ( )dxxf∫
∞

∞−

. 

 Now it is possible to extend the definition of integrable functions of arbitrary 
signs to interval ( )+∞∞− , , and the unbounded measurable sets can be discussed in 
an analogous way as the bounded measurable sets.  

 The theory of Lebesgue integral in 1ℜ  can be easily extended to the n -
dimensional space nℜ . 

 Also arbitrary measurable sets may be applied as domains of definition of 
integrable functions.  

 Finally, we mention some very important theorems: 

 Theorem B.2. Let ( )xf  be an integrable function on the interval [ ]ba,  and let  

( ) 0=∫ dxxf
b

a

, 

then ( ) 0=xf  almost everywhere on [ ]ba, . 

 Theorem B.3. (B. Levi): Suppose ( ){ }xfn  is a sequence of non-decreasing 

non-negative integrable functions on [ ]ba,  and let there be a real number 0>K  

independent from n  such that ( ) ( ),...2,1=≤∫ nKdxxf
b

a

n . Then the function 

( ) ( )xfxf n
n ∞→

= lim  is integrable on [ ]ba,  and 
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( ) ( )( ) ( )dxxfdxxfdxxf
b

a

n
n

b

a

n
n

b

a
∫∫∫ ∞→∞→

== limlim . 

 

 Theorem B.4. (H. Lebesgue): Suppose ( ){ }xfn  is a sequence of integrable 

functions on [ ]ba,  and ( )xfn  converges to ( )xf  pointwise almost everywhere 

(that is, except on a set of measure zero). If there is an integrable function ( )xg  so 

that for every ( ) ( )xgxfNn n ≤≥ , , the pointwise limit ( )xf  is integrable and 

( ) ( ) ( )dxxfdxxfdxxf
b

a

b

a

n
n

b

a

n
n ∫∫∫ ==

∞→∞→
limlim . 

 In other words, the limit process and integration may be interchanged without 
harm. 
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Index 

  
adjoint operator, 48 
affine-subspace, 13 
algebraic 

basis, 15 
dual, 24 
dual space, 24 

almost everywhere property, 51, 55, 85 
approximation, best, 82 
  
Banach space, 31, 45 
basis, 14 

algebraic, 15 
dual, 25 
for Hilbert space, 75 
Hamel, 15 
orthonormal, 76 
Schauder, 76 

Bessel's inequality, 82 
best approximation, 82 
bijection, 19 
bijective operator, 19 
bilinear 

form, 24 
functional, 24, 71 
functional, symmetric, 24 

bound of operator, 37 
boundary value problem, 63 
bounded 

linear operator, 37 
set, 36 

  
C(k)[a,b], 8 
C[a,b], 29 
C0

(∞)(Ω), 58, 66 
Cantor, Georg, 41 
Cartesian 

product, 10 
Cauchy sequence, 31, 69 
Cauchy-Schwarz inequality, 44 
characteristic function, 86 
classical solution, 70 
closed subset, 36 
co-domain, 19 
compact 

operator, 40 
set, 36 
support, 58 

complement, 13 
complete 

sequences, 75 
sets, othonormal, 74, 76 
space, 31 

completion, 35 

composite, 20 
Composition[], 20 
construction, of basis functions, 83 
continuous 

linear functional, 47 
continuous operator, 37 
convergence, 31, 73 

in ( ) ( )Ω∞
0C , 66 

of infinite series, 73 
weak, 72 

convergent, 31 
countable, 41 

set, 51 
  
delta 

distribution, 61 
sequences, 62 

dense 
functions, 55 
set, 41 
subspace, 71 

derivative 
distributional, 59 
generalized, 57 
generalized, 59 
piecewise, 60 
weak, 59 

Descartes product, 10 
differentiation, 20 
dimension, 14 
dimensional 

finite-, 14 
infinite-, 14, 18 
n-, 14 

direct 
product, 10 
sum, 13 

Dirichlet function, 55 
distance, 26 
distribution, 66 

delta, 61 
regular, 68 
singular, 68 

distributional derivative, 59 
domain, 19 
dual 

basis, 25 
pair, 24 

dual.space, topological, 40 
duality pair, 40 
  
equivalent functions, 55 
Euclidean 
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norm, 26 
space, 43 

  
finite element method, 15 
finite-dimensional space, 14, 22 
formulation 

weak, 72 
Fourier 

coefficients, 73 
series, 73 

function, 19 
characteristic, 86 
dense, 55 
Dirichlet, 55 
equivalent, 55 
generalized, 67 
Heaviside, 68 
locally integrable, 68 
measurable, 51, 85 
smooth, 57 
square integrable, 53 
support of, 58 
test, 58, 67 
unitstep, 68 

functional, 23, 67 
bilinear, 24, 71 
linear, 24, 67 
linear, continuous, 47 
positive definite bilinear, 24 
symmetric bilinear, 24 

  
generalized 

derivative, 57, 59 
function, 67 
representation, 73 
solution, 70 

generate, 15, 75 
Gram matrix, 44, 73 
Gram-Schmidt orthonormalization, 76 
  
H(k)(Ω), 69 
Hamel 

basis, 15 
Heaviside 

distribution, 68 
function, 68 

Heine-Borel theorem, 36 
Hilbert space, 45, 69, 75, 80 

basis for, 75 
  
inequality 

Bessel's, 82 
Cauchy-Schwarz, 44 

infinite 
-dimensional, 14, 18 
norm, 27, 32 
sequences, 18, 36 
set, 14 

injective operator, 19, 20 
inner product, 43, 68, 73 
integral 

Lebesgue, 53, 55, 67, 85 
norm, 32 
Riemann, 55 

intersection, 12 
inverse operator, 23 
  
kernel, 21 
  
l0,l0

2, 32 
L0[a,b], 29 
L0

2[a,b], 29 
L2(Ω), 53 
Lax-Milgram theorem, 50, 72 
Lebesgue 

integral, 53, 55, 67, 85 
measure, 86 
theorem, 62, 85 

Lebesgue, Henri, 53 
Levi theorem, 87 
limit, 31 
Limit[], 35 
linear 

functional, 24, 67 
functional, continuous, 47 
manifold, 13 
operator, 20, 22 
operator, bounded, 37 
space, 7 
subspace, 11 

linearly 
dependent, 14 
independent, 14 

ln
1, ln

2, ln
∞, 27 

locally integrable function, 68 
  
map, 19 
mapping, 19 
Mathematica® function 

Composition[], 20 
Limit[], 35 
Norm[], 27 
NullSpace[], 21 
Outer[], 10 

matrices, 21 
matrix 

Gram, 44 
maximum norm, 27, 32 
mean value theorem, 63 
measurable 

function, 51, 85 
set, 86 

method 
finite element, 15 

metric space, 26 
minimizing vector, 81 
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multi index notation, 57 
  
n-dimensional, 14 
norm, 26 

Euclidean, 26 
infinite, 27, 32 
integral, 32 
maximum, 27, 32 
of linear operator, 39 
sum, 26 

Norm[], 27 
normed space, 26, 30, 31, 32, 40, 45, 46, 48 

C[a,b], 29 
complete linear, 31 
L0[a,b], 29 
L0

2[a,b], 29 
linear, 26 

notation 
multi index, 57 
symbolic, 61 

Null space, 21 
NullSpace[], 21 
  
one-to-one operator, 19 
onto operator, 19 
operator, 19 

adjoint, 48 
bijective, 19 
bound of, 37 
compact, 40 
continuous, 37 
injective, 19, 20 
inverse, 23 
linear, 20, 22 
linear, bounded, 37 
linear, norm of, 39 
one-to-one, 19 
onto, 19 
self-adjoint, 49 
surjective, 19, 20 

orthogonal 
representation, 73 

orthogonal vectors, 44 
orthonormal 

basis, 76 
set, complete, 74, 76 
systems, 73 

orthonormalization 
Gram-Schmidt, 76 

Outer[], 10 
  
piecewise 

derivative, 60 
linear polynomials, 15 
linear poynomials, 83 

positive definite 
bilinear functional, 24 

precompact set, 36 

pre-Hilbert space, 43 
problem 

boundary value, 63 
product 

Cartesian, 10 
Descartes, 10 
direct, 10 
inner, 43, 68, 73 
scalar, 43 

projection theorem, 81 
property 

almost everywhere, 51, 55, 85 
  
range, 19 
regular distribution, 68 
representation 

Fourier series, 73 
generalized, 73 
orthogonal, 73 

Riemann integral, 55 
Riesz representation theorem, 46, 72 
Riesz, Frigyes, 46 
  
scalar product, 43 
Schauder basis, 76 
Schwartz, Laurent, 66 
self-adjoint operator, 49 
separable space, 41, 56, 80 
sequence(s) 

Cauchy, 31, 69 
complete, 75 
delta, 62 
infinite, 18, 36 

set 
bounded, 36 
compact, 36 
complete othonormal, 74, 76 
countable, 51 
dense, 41 
infinite, 14 
L2(Ω), 53 
measurable, 86 
of measure zero, 51 
precompact, 36 
spanning, 14, 15, 42 

singular distribution, 68 
smooth function, 57 
Sobolev space, 57, 68 

H(k)(Ω), 69 
W2

(k)(Ω), 69 
solution 

classical, 70 
generalized, 70 
weak, 70 

space 
algebraic dual, 24 
Banach, 31, 45 
complete, 31 
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complete normed linear, 31 
Euclidean, 43 
finite-dimensional, 14, 22 
Hilbert, 45, 69, 75, 80 
infinite-dimensional, 14 
inner product, 43 
L2, 53 
linear, 7 
metric, 26 
n-dimensional, 14 
normed, 26, 30, 32, 40, 45, 48 
normed, C[a,b], 29 
normed, L0[a,b], 29 
normed, L0

2[a,b], 29 
null, 21 
pre-Hilbert, 43 
separable, 41, 56, 80 
Sobolev, 57, 68 
Sobolev, H(k)(Ω), 69 
Sobolev, W2

(k)(Ω), 69 
sub-, 11 
topological dual, 40 
vector, 7 

span, 15, 75 
spanning set, 14, 15, 42 
square integrable function, 53 
subset 

closed, 36 
subspace, 11 

affine, 13 
dense, 71 
linear, 11 

sum 
direct, 13 

norm, 26 
support 

compact, 58 
of function, 58 

surjective operator, 19, 20 
symbolic notation, 61 
  
test function, 58, 67 
theorem 

Heine-Borel, 36 
Lax-Milgram, 50, 72 
Lebesgue, 62, 85 
Levi, 87 
mean value, 63 
projection, 81 
Riesz representation, 46, 72 
Weierstrass approximation, 42 

topological dual space, 40 
transformation, 19 
  
unitstep function, 68 
  
vector 

minimizing, 81 
orthogonal, 44 
space, 7 

  
W2

(k)(Ω), 69 
weak 

convergence, 72 
derivative, 59 
formulation, 72 
solution, 70 

Weierstrass approximation theorem, 42 
 
 


