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General relativity and quantum physics are both correct, but are incompatible in 20th century mathematics; is the mathematics wrong? A new approach arose from Sir W.R.Hamilton’s observation that quaternion and octonion algebra multiplication tables had four and eight signed “dimensions”, and were obtained from tables with eight and sixteen unsigned “directions”. This generalizes; many algebras are obtained by equivalence relationships folding* (*=new concept) Cayley tables with r-fold symmetry to create signed numbers. Real, complex, quaternion and Clifford algebras are folded from the C2, C4, quaternion, etc. groups. Folding is usually two-fold with signs {+,-}, or four-fold, with signs {+,i,-,-i}; three-fold symmetry gives algebras with signs {+,J,JJ}*. Generalised signs* arise as powers of orthogonal (NOT cyclotomic) primitive roots of unity. Frobenius [1] proved that associative tables  (groups) “conserve” the determinant of the inverse symbolic table, Det[AB]=±Det[A] Det[B], where the determinant is that of the table mapped with the vector. All groups, “signed table” algebras folded from them, and a few “alternative” Moufang loops [2] (including octonions and split-octonions) conserve the determinant factors as “symmetries” or “sizes”; most loops do not.

Hoops* are defined as symmetry-conserving algebras based on unsigned continuous Primal numbers*, generalised signs, and multiplication tables folded (equivalenced to introduce signed numbers) from conservative Cayley tables. Hoops add, multiply and divide* generalised* vectors. Their implementation (MathSource/6198/, /4894/) is demonstrated here; supplementary material [S] is based on Mathematica notebooks that users can test with different data. 

Frobenius symmetry-conservation makes hoops relevant to, and suggests possible new paradigms for, mathematical physics. Vector multiplicative inverses have conserved symbolic determinant factors as partial-fraction denominators*. In hoop multiplication and division two vectors produce a third vector and two (often null) remainder* vectors carrying different symmetries. This emulates symmetry-conserving particle interactions. It eliminates division-by-zero by projection* (as in h-deformed algebras) into a sub-algebra when a size approaches zero. Multi-phase sinusoidal* polar duals* (generalising Cartesian-polar duality) appear when quadratic sizes are conserved. Some hoops have stable de-Broglie-like orbits* with Planck-like intrinsic areas*. In Dozal* (the 12-element algebras) 3, 4, 6 & 12-phase orbits have areas that multiply to one (or are zero, as missing symmetries*), possibly explaining particle families, particle stability, ternary quark symmetry, mass, M-theory T-duality, and the “large number hypothesis”.  (The author lacks the time and ability to develop these concepts much further.) 

Hoops complement the use of groups as coordinate transformation matrices. Real, complex, quaternion and octonion algebras are single-symmetry* hoops; their operations are degenerate* cases of more general hoop operations that describe mathematical physics. (409 words)

Hoop Development.

Hoops involve some neglected and some new mathematical concepts; the latter are indicated by asterisks*:- 

(1) Primal* unsigned continuous numbers (the half-line, the union of 0 and R+) can be developed from set theory via natural numbers N, Landau's [3] unsigned rational numbers Q+ and a continuity axiom. Subtraction and negation are undefined.

 Few mathematicians acknowledge that integers are equivalence relations on pairs of natural numbers; most conflate (unary) negation with (binary) subtraction - implicitly assuming that minus one exists and is unique (which is then justified by a circular argument).

Some physical concepts (time? mass?) should, perhaps, have primal (rather than real) measures.

(2) Algebraic loops are m×m multiplication tables for m-element sets of coefficients (or operators) such as A = {a1, a2,…, am}, {a ,b,…,m}, or a1 d1+ a2 d2 …+ am dm. The coefficients ai are unsigned; loops are developed without introducing negation*. Moufang loops have zx.yz=(z.xy)z . Groups are associative Moufang loops, with x(yz)=(xy)z. Frobenius [1] showed that all groups conserve their determinants (up to a sign) when they are used as vector multiplication tables; Det[A] Det[B] = ±Det[AB].  (Det is the determinant of the inverse multiplication table mapped with the vector.) A few non-associative Moufang loops also possess Frobenius symmetry-conservation*.

(3) Generalised signs* are orthogonal primitive roots of unity* sj (with sr =1) describing r-directional spaces or sub-spaces. (Cyclotomic numbers are distorted signs, projected onto the complex field). r=2 or 4 give Real {+.-} or Complex {-,i,-,-i} signs. r=3 gives terplex* signs {+,J,J2} relevant to quarks. Multi-phase sinusoids* are a key application; the r=4 case of es(=Σj=0 to r-1 [c+sj Cos[θ+2jπ/r]] folds to e-iθ=Cos[θ]+iSin[θ].


(4) "Directors" are sets of primal coefficients with associated "directions" (named by Sir W.R.Hamilton), i.e. the di's in (2). r-fold equivalence relationships* on m-element directors fold* them to generalized vectors* with r-signed coefficients* and m/r associated dimensions. 2-folding gives real vectors, ri ~ ai-ai+m/2; this is the special case "Minus 1 exists and is unique" that conflates negation and subtraction. Folding relates generalised signs to loop symmetries. Equivalence relationships on conservative m×m-element loops with r-fold symmetry fold them to "Hoop Algebra" (m/r)×(m/r) multiplication tables for r-signed vectors*. These have addition, vector and scalar multiplication. The hoop.m package (demonstrated in [S]) defines over 80 named hoops. Many have "signed element" products and so are not loops. E.g. quaternions have four elements {e, i, j, ij} with i.j=ij, but j.i=-ij.

Figure 1 shows protoloops* (preferred Cayley table isomorphs) for three (C4C2, quaternion, and C9) groups. The top left (bold-face) sub-table is repeated in the tables; it also occurs with offsets of 3, 4, or 6, showing the symmetry. Sub-tables are shown as folded tables C4, Q4, C9J & P4, with the indices replaced by the usual complex or quaternion symbols, or (in the C9J algebra) by J-signed indices*, 4 & 5 becoming J1 and J2. Note that the C4C2 table folds again, giving the complex algebra table C4c with i i= - 1. The Pauli-σ algebra* P4 is 4-folded from a 16-element group (not shown) created by dot-multiplying Pauli-σ matrices.
(5) Factors of the symbolic inverse table determinant are conserved sizes* (symmetries) for hoop multiplication; this property defines hoop algebras. Complex-conjugate pairs are not conserved functions - complex algebra is not universal. General loops are not conservative.
Figure 2 shows the symbolic tables, the factorised determinants, and the products hoopTimes[{1,2, …},{a,b,…}] for the algebras in Figure 1. (Bold figures are calculated results). Mathematica users can repeat the calculations with their own input data, using hoopAlg&Physics.nb. The three C4 sizes fold to the single conserved size a2+b2 of Complex algebra. Quaternion and Pauli-σ algebras conserve their single factors. (These are repeated* because the tables are non-Abelian). C9J conserves a3+b3J-3abcJ+c3J2, a conjugate of the determinant factor. (Conjugate conservation* is the general rule, but conjugation leaves most sizes unchanged.) 

(6) The Moufang property merges multiplication and division into one procedure because every vector has a multiplicative inverse* Ai, with Ai.A={1,0,..} (the unit vector*). The determinant is a divisor for each element of Ai, so multiple sizes are denominators for partial-fraction formulations*. Although the un-factored determinant becomes zero if one or more size becomes zero, the other factors (and partial fractions) remain finite*.

Figure 3 shows the symbolic C3 table, the C3 product of two symbolic vectors, and the two determinant factors. The inverse is then shown; each term splits into two partial fractions. Numeric vectors A & B are multiplied; the sizes are shown as shape A, etc. The sizes of the product AB are the products of the sizes of A & B. Ai is a left inverse, so hoopTimes[Ai,AB] recovers B. C2 and C4 algebras are similarly demonstrated in [S,fig.1]. 

(7) Vectors with zero-sizes* exist in sub-algebras* where these sizes are constrained (by conservation or definition) to zero. Their use in multiplication and division projects* the result into the sub-algebras and ejects* remainders to maintain size conservation. This eliminates division-by-zero; zeroed sizes are "factored-out" by projection into the sub-algebra. If a size is within an arbitrary hmin of zero hoopTimes sets it to zero and tests whether a remainder is created. This is demonstrated for C3 and C4 in Figure 4. “Ultra-violet divergence” may be eliminated by this process.

Compare integer division I/J=K+R where J.K+R=I, with hoop operations, where A.B=C+Rleft+Rright and C/B+Rleft=A , C/A+Rright=B . Rleft carries the sizes that are zero in C but not in A. Rright carries the sizes that are zero in C but not in B . Remainders maintain conservation in hoop multiplication and division when some sizes are zero. There are obvious analogies with particle interactions, where there may be several products with different symmetries, and with h-deformed algebras.

Do not confuse finite loop operations, acting on two vectors to give a new vector and two (possibly null) remainder vectors, with continuous groups acting as matrices to transform a vector to different coordinates in the “particle physics standard model”.

(8) Some hoops have quadratic sizes* that provide polar-Cartesian dual* formulations and continuous multi-phase sinusoidal* orbits*, as shown in Figures 5 & 6. Each quadratic size releases a degree of freedom that is taken up by an angle (a hidden variable* for the Cartesian form).

Abelian polar dual angles add on vec multiplication*. This leads to powers and roots. Figure 5 first shows that the polar form for the C3 vector {a,b,c} consists of expressions for the two sizes {α,ε2} and the angle σ. The reversion from polar to Cartesian form has α as an offset from zero for three symmetric phases. It then demonstrates that vector[polar[A]]=A, angles add on multiplication, and taking a square root halves the angle and gives sizes that are square roots of the original sizes. C3 has a prototypical ternary* (3-phase) form polar form. C4 has the prototypical 4-phase dual. This folds to the (asymmetric) {Cos[θ], Sin[θ]} pair. All known polar duals are related to these two prototypes.

The supplementary material [S,Ex.11] demonstrates that non-Abelian hoops have repeated roots, often leading to pseudo-polar* duals that revert correctly. However, the pseudo-angles* do not add on vector multiplication, and the pseudo-powers* differ from repeated products. They have extra degrees of freedom (introducing uncertainty?). [S,section3.10] shows that hyperbolic duals* can be constructed from conserved differences of squares.
(9) Some Hoops have stable orbits resembling multi-phase deBroglie waves*; products of orbits are orbits [S,Ex.35]. They define intrinsic sizes resembling Planck areas*. This may determine particle stability. They have some elements (e.g. ζ in Figure 6) that are neither real nor complex (combining two square roots of unity with the terplex cube root) but can act as quantum operators [S,Sect.3.2]. Only orbits with 3, 4, & 6 phases (and some multiples) appear to be stable*. 

(10) Four Dozal* multiplication rules (for vecs with 12 elements [S,Sect.3.3]) may correspond to four forces as four types of interaction between particles, with different sizes corresponding to different conserved properties* and remainders corresponding to emitted particles. C3K and C3C4 are abelian, Q12 & D3C2 are non-abelian. The non-abelian hoops are indirect compositions of C2 with (bosonic) groups* that appear to be supersymmetric to the larger (fermionic) groups. Fermions have more symmetries (and more particle types) than bosons. Supersymmetry is not one-to-one*. Conjecture - bosons are not subject to the Pauli exclusion principle because each is equivalent to many fermions.

Figure 6 shows symbolic vector and polar (orbit) forms for C3K. Each line defines an element of one form as a function of the elements of the other. Orbits are unital*; their non-zero sizes multiply to one so that repeated products also multiply to one. Different orbits are obtained when some of the sizes {α,β,γ,δ,ζ,λ,η,κ} are zero*. Note that ζ has three phases (repeated four times), whilst {λ,η,κ} each have six; η=κ+π/6 gives twelve phases. The C3C4 orbits [S,Ex.25] are closely related to those for C3K, but include a four-phase system in which γ and δ are replaced by another squared-radius εε and an angle σ. The author conjectures that this relates to leptons as 4-phase orbits and hadrons as 3, 6, and 12-phase quark orbits. Orbits properties include spin, chirality and polarisation.
(11) Many Dozal properties disappear when 2-folding converts the vectors to Hexal*. Figure 7 shows the polar and vector forms for C3C2, which is obtained by replacing g by -a , etc, in Figure 6; here supersymmetry appears to create bosons as equivalence relations. 


Many functions (not all being sizes) are conserved in one or more Dozal orbit interactions. Thirty-nine are listed in [S,Ex.30]. The author conjectures that these are related to particle properties, but has not been able to correlate them.

(12) The real division algebras R, C, H, O are degenerate (monosized*) hoops without divisors of zero because their sizes (the sums of the squared elements) are non-negative. Consequently, every non-trivial vector has a positive size. These hoops operate correctly with complex coefficients, but then have divisors of zero. This gives the light cone in the complex quaternion case. 
(13) Hoops subsume, but do not invalidate, complex mathematics. Complex functions, and many standard mathematical operations, are specialisations of general hoop operations*; many "obvious mathematical truths" are special cases restricted to the "real algebras without divisors of zero”. E.g. exponents of generalized signs create multiphase sinusoids; repeated products and powers (AA and A2) may differ; vector division is defined; both multiplication and division of vectors may leave remainders. (1731words)

Further Properties of Hoops.

The supplementary material [S] discusses further Hoop properties in detail, and provides figures referenced as [S,Example ??], etc. These are briefly explained.  

[S,Example 14] shows that, in general, loops do not conserve their factors. Only the linear factors are conserved in Q4n and C6n.

[S,Examples 4 & 32] demonstrates that C4 folds to Complex algebra. Multiplication, division, and powers are shown to match those of the complex numbers created by 2-folding. The shape includes the squared radius and the polar angle; two extra degrees of freedom (conserved linear sizes) are destroyed by the folding process. If a size is negative, A.A will differ from A2 (though they both fold to the correct complex number; folding is many-to-one). This size is alternately negative and positive for repeated products but is negative for powers in all hoops; An is a continuous function of n. 

[S,Example 33] first demonstrates that two and three dimensional dot, cross, and wedge products are obtained by quaternion, octonion and Clifford algebra hoop multiplication, with the restriction that only the multiplicand basis-vectors are non-zero. The dot product is then the scalar (first) element of the product. 2D &3D cross products are multivectors. The nomenclature matches [4, p11 and p37]. All Clifford algebras are hoops. Wedge (exterior) algebras are the bivector part of the Clifford product [4, p.10]. Finite Lie algebras appear to be Clifford hoops for which the real (scalar) elements have been zeroed - to be explored.


Complex conjugation replaces i by – i; multiplying a vector by its conjugate gives a real number (the conserved quadratic size) in complex, quaternion, and octonion hoops. The other elements in the product are zero. [S,Example33] demonstrates that this also applies to the split-octonion hoop and to three Clifford Algebra hoops (though Clifford(3) gives a non-zero trivector element and the size is the sum of the terms). Other hoops have plex-conjugates*, generalisations of complex conjugation. These are involutions that give size-related results on multiplication by the original vector. Hoops with ternary symmetry interchange the second and third elements to give the plex* [S,Example34], exchanging the signs J & J2. The sum and the signed sum of the product elements give the sizes (squared in the first case). C3C2 behaves similarly. Some plex-conjugates can be found easily; this has been used to discover the shapes of a few hoops with more than twelve elements.

Orbits are sub-algebras with the product of non-zero sizes multiplying to one; they have angle parameters that add on abelian multiplication, and products of orbits are orbits. This is demonstrated for two C3 orbits in [S,Example5].

4. Controversial concepts discussed in the supplementary material.

Negation "-a" and subtraction "b-a" are conflated and treated as a single fundamental process by most mathematicians, but [2] requires over a hundred pages of "Post-Modern Algebra" before subtraction can be tackled. In hoops, ordinary negation is the result of r=2 folding. This equivalences {ai,ai+m/2} to a real number ai, with {ai+m/2,ai} ~ - ai and { ai, ai} ~ 0. The first size Σai, is destroyed, as it equivalences to zero. Subtraction can now be generalised [S,Section2.12] to additive elimination*. Add a set of coefficients to make all the terms of an un-folded vector identical, so that they equivalence to zero: {a,b}+{b,a} ={a+b,a+b} ~ 0. When r is 3, the equivalence relationship is tj~{aj,aj+m/3,aj+2m/3}~{bj,bj+m/3,bj+2m/3} iff (aj+bj+m/3) = (aj+m/3+bj+2m/3) = (aj+2m/3+bj). A "terplex number {x,y,z} has a left negation (or rotation) {y,z,x} and a right negation {z,x,y}, with {x,y,z} + {y,z,x} + {z,x,y} = {x+y+z, x+y+z, x+y+z}~ 0. A terplex number is eliminated by adding the two rotations of its primal form. This extends to other r values; a number is eliminated by adding the r-1 rotations of a primal form. Simultaneous equations can be solved in this way in hoop algebras; this is demonstrated in Mathsource/4894; it suffers from multiple solutions.

Orbits are related to the interpretation of hoops as banded sets of differential equations with multi-phase cyclic solutions; resonances at multiples of the fundamental frequency may account for the resonances of particle physics. [S,Ex.23] demonstrates the basic equations. 

Half-spin quantum operators [6] can be mapped onto elements of the C3K Hoop algebra (Figure 7). This implies that they cannot be complex operators; they involve the “second negation” of double numbers.

The Dozal sizes with ternary symmetry could have three sizes that multiply to 1, one corresponding to a Planck area p2 and the others in a reciprocal relationship, two squared radii r2 and R2 related to the dimensions of "pseudo-point" particles and the universe. P.r.R=1 gives three size regimes. There is an analogy with T-duality in M-theory. Whilst each quadratic size could correspond to a brane dimension, there is no obvious link between the 7 polar sizes of Dozal and the 10, 11, or 26 dimensions favoured by string theorists. Many string theories may be eliminated because they are not conservative. These topics have not been explored.

The basic wave equation in many dimensions [S,section3.8] gives a unit velocity, which is projected onto the different dimensions as velocity components. Massless particle waves would be restricted to space-like dimensions and would travel at the speed of light. Others would have velocities in Kaluza-Klein dimensions and their spatial velocities would be less than that of light.
5. Outstanding Problems.

The author interprets Goëdel’s theorem as “Truth transcends Proof”, and has only studied the demonstrability of hoop properties. Rigorous analysis, based on primal numbers rather than real numbers, is required. General proofs are needed for the observation that the conservative property ensures that vectors are invertible, and that real sizes are conserved.

Non abelian algebras are not well understood. Some non-abelian hoops have "pseudo-roots" with non-additive angles [S,Example16]. Their "pseudo-powers" A2 differ from the repeated products, but the "pseudo-roots" recover A.

Conservation and orbits are “emergent properties”; others may emerge when techniques are developed to find sizes for larger hoops. Higher-order sizes may lead to new emergent properties. A4 has one linear size, one quadratic size (giving an orbit) and a repeated cubic size that appears to discriminate between other types of Dozal orbit. This is a conserved symmetry; is there a related force or particle?


The (complex) Schrödinger equation describes “information about particles” and undergoes dispersion. Replacing i by the 12th root of unity could lead to a Dozal description of non-dispersing (solitonic) particles with 4-phase leptons and {3,6,12}-phase hadrons.


Orbit instability is a vague concept. It may be related to the occurrence of determinant factors that are larger than quadratic.

Dozal may eventually lead to descriptions of particles as stable multi-phase wave-packets in bosonic and leptonic fields. Their space-time description may involve much larger groups, possibly composed from the 12-element Dozal groups and the groups (derived from Pauli-σ matrices) that conserve the Minkowski metric, or the complex quaternions that describe the electromagnetic field.  There are no known techniques to find the non-linear conserved properties of such large groups.

MathSource/4894/ details the creation and properties of groups, loops, & hoops and provides further examples and a glossary.

6. Review.

Hoops provide a unified approach to many algebras relevant to physics. They introduce new concepts that transcend the limitations of real and complex fields. Conservative Cayley multiplication tables (for sets of unsigned primal coefficients) fold to hoops with generalised signs. These are symmetry-conserving vector division algebras that project results into constrained sub-algebras whenever any sizes are zero. Remainders are ejected to maintain conservation. Multi-phase polar-duals have been found for some hoops; a few provide stable unital orbits – possibly related to the limited number of stable particles. 12-element “Dozal” algebras have some elements that act as half-spin quantum operators. Are 3, 4, 6, and 12–phase orbits related to lepton and hadron wave-packets, and three ternary orbits are related to M-theory dimensions and T-duality?

Many problems remain to be solved before Hoops can provide the improved description of physics that is hinted at by their known properties. 
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