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1 Curvilinear coordinates

Let x; with 4 = 1, 2,3 be Cartesian coordinates of a point and let &, with a = 1,2, 3 be the corresponding
curvilinear coordinates. We shall use ordinary Cartesian vector notation & = (z1, 2, x3) for the Cartesian
coordinates, but not for the curvilinear ones. The two sets of coordinates are connected by a bijective
coordinate transformation
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The most important quantity is the infinitesimal vector element
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where the J_;L are the columns of the Jacobian
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The Cartesian square norm of the infinitesimal element is
A = gapdiads, (4)
ab
where
Gab = j(; . jl; (5)

is the metric.

2 Orthogonality

A large subclass of interesting coordinate systems are orthogonal, which means that
Gab = Ja - Jp =0 (a#b) (6)

In that case it is better to write
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where h, is a scale factor and €, is a unit vector. These vectors form a local basis in each point
— — - o APa
€, €p = Ogp Z €€, = 1 (8)

a

where the first equation expresses orthogonality of the basis and the second completeness. This permits
normal vector and matrix algebra to be used in the curvilinear coordinates.



3 Basis derivatives

The derivatives 9€,/9¢, of the basis vectors play an important role. From &7 = 1 we get
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for all a,b. This shows that all derivatives of a unit vector are orthogonal to the unit vector. Similarly
from the symmetry of the second derivatives we get

2% O(hata)  O(hoés)

De06 06 0k (10)

€p = 0 (9)

Expanding this becomes

Oh, oe, Ohy ey

—e€ytho— =——€ + hy— a#b 11

96, " og, ~ o, (a#8) (1)
Expanding in the basis, and using that the derivative of a unit vector is orthogonal to the unit vector,
this equation can only be fulfilled for
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Dotting with €. and using that €, - €. = 0 we get
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Combining these two rules we get
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Consequently we have A4, = 0 so that
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Dotting (11) with €, we get
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and using €, - €, = 0 this leads to
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Using completeness this becomes (as may be easily verified)
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This concludes the analysis of derivatives of the basis vectors.



4 Vector operators

Derivative operators transform as
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where V; = 9/0x;. Using completeness we get
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4.1 Gradient of scalar field
If f is a scalar field, then V. f is the gradient in the local basis,
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4.2 Divergence of vector field
For the divergence of a vector field ¢ with local components v, = €, - ¥ we find
. € 0 . e O0(v4€q) 1 Ov, € 08,
V. -v= — Va€q = — = — va .
Zb: hy 08 Za: %; hy — O0& za: ha 08 Z &
1 6’Ua a ahb Vq aha
= ha O, Zh ol 0, Ea:f?zaga
B Z 1 8va vy Ohy
N — ha 8§a h ohp 08,

Introducing h = Ha ho = h1hohs this may be written
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which is the most compact form of the divergence.

4.3 Curl of vector field

In the local system the curl becomes
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This can be combined into
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4.4 Gradient of vector field

The vector field gradient V7 is a tensor with the following components in the local basis
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One may immediately verify that its trace equals the divergence.
Specializing to diagonal and non-diagonal elements we get
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4.5 Divergence of tensor

It is often necessary to calculate the divergence of a tensor V-
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Expanding the sum we get
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Using the divergence of a vector this becomes
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t in curvilinear coordinates. We find
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