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Abstract: Mathematica is an integrated scientific and technical computing system, with 

impressive numerical calculation, programming, symbolic manipulation, 
visualization and documentation capabilities. In recent years Mathematica's 
optimization related features have been significantly expanded, both by in-
house development and by application packages. Such developments make it 
an increasingly useful tool also in Operations Research studies. We review and 
illustrate these features, placing added emphasis on nonlinear (global and 
convex) optimization, and – within this context – discussing the application 
packages MathOptimizer and MathOptimizer Professional.  

 
Key words: Mathematica; built-in optimization functions; modeling and optimization 

packages; MathOptimizer; MathOptimizer Professional; illustrative examples 
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1. INTRODUCTION 
 

Mathematica – an integrated scientific and technical computing 
environment by Wolfram Research (2004) – is arguably one of the most 
sophisticated software products available today. Its capabilities and range of 
applications are documented in the massive Mathematica tome (Wolfram, 
2003) and in the supplementary documentation. Further information is found 
in nearly 400 topical books, and in thousands of articles and presentations. 
According to Wolfram Research, the software is used by well over a million 
people worldwide.  

Mathematica can also increasingly meet the needs of Operations 
Research professionals, including business analysts, model, algorithm and 
software developers, researchers, professors, and students. O.R. related 
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features include data analysis and management, model prototyping, concise 
programming (in several paradigms), advanced computing, visualization, 
and documentation – all in the same ‘live’ notebook document, if preferred. 
Such notebooks can also be directly converted to tex, html, xml, ps, and pdf 
file formats. Mathematica also supports direct links to external application 
packages, to other software products, and to the Internet. A significant 
further advantage is portability across a broad range of hardware platforms 
and operating systems, due to the standardized notebook document format.  

For further general information, visit the websites of Wolfram Research, 
specifically including the Mathematica Information Center (2004) that 
provides extensive details and links. We also refer to a recent review of 
Mathematica in ORMS Today (Sodhi, 2003), as well as to an illustrative list 
of Mathematica books with a modeling and/or optimization related content 
(Bahder, 1995; Schwalbe and Wagon, 1996; Gass, 1998; Bhatti, 2000; 
Maeder, 2000; Jacob, 2001; Hollis, 2003; Pemmaraju and Skiena, 2003; 
Kampas and Pintér, 2004). Let us note here that MathReader, a freely 
available viewer, can be used to display and print Mathematica notebooks, 
animate graphics, play sounds, and copy information from notebooks to 
other documents; MathReader can also be used in most web browsers.  

In this work we review and illustrate Mathematica's O.R. modeling and 
optimization related features. Within the broad category of optimization 
models, we see particularly strong application potentials for Mathematica in 
the analysis of (possibly complex) nonlinear systems when the 
corresponding decision model can not be brought to simple standard forms. 
In such cases, problem-specific modeling and code development are 
essential, and using Mathematica as the development platform can be a good 
choice. For this reason, here we shall place added emphasis on nonlinear 
(global and convex) optimization, where – in addition to built-in 
functionality – our packages MathOptimizer and MathOptimizer 
Professional can be put to good use.  
 
 
2. NUMERICAL OPTIMIZATION IN Mathematica  
 

We start with a concise summary of built-in optimization functionality. 
Most of the related Mathematica functions can be invoked in several 
variations, and have a number of optional settings. Here we shall use their 
basic forms with default settings; for further details, consult (Wolfram, 
2003) and the Mathematica help system. We shall also refer to several 
closely related articles and presentations. For simplicity, only minimization 
problems are considered: several functions also have a maximization 
equivalent, with identical solver functionality.  

In the illustrative statements we shall use bold Courier fonts for 
displaying Mathematica input and regular Courier fonts for 
Mathematica output; however, in the explanatory text we retain the standard 



                      

(Times New Roman) fonts used in this article. All input/output statements 
and calculations presented in this work are directly imported from a 
corresponding Mathematica notebook. 
 
2.1 LinearProgramming 
 

The function LinearProgramming[c, A, b] finds a vector x that solves the 
LP problem stated as min cTx subject to Ax≥b and x≥0. Here c and x are 
(real) n-vectors; b is an m-vector and A is an m-row, n-column matrix. We 
will not discuss the ConstrainedMin (and ConstrainedMax) functions since 
these are also LP solvers, and both became obsolete since the release of 
Mathematica version 5.  

A simple example of using LinearProgramming is shown below. Let us 
remark that in Mathematica vectors are denoted by lists: each component of 
a list is followed by a comma, and the entire list is enclosed by curly braces 
{}. The next three lines describe the model data (semicolon is used to 
suppress Mathematica output that in this case would simply echo the input 
lines shown): 

 
c={1,2,1,1,3};  
A={{2,-3,3,5,4},{-1,2,1,-4,-2},{2,2,2,1,1}};  
b={3,8,12}; 
 
The solution is then simply obtained by entering the statement 
 
xopt=LinearProgramming[c,A,b] 
{0,2,4,0,0} 

 
The result (i.e., the listed components of xopt) is shown in the row 

immediately following the Mathematica input statement. The solution is 
verified and the optimum value obtained by the following statements (the 
symbol . denotes the matrix-vector and vector-vector (dot) products): 

 
A.xopt 
{6,8,12} 
 
c.xopt 
8 

 
The solution time for this ‘mini-problem’ is less than 0.001 seconds. 

Mathematica timings are usually displayed in one-thousandth of a second 
precision. All illustrative timing information in this article is measured using 
a Pentium 4 1.6 GHz processor based desktop machine that runs under 
Windows XP Professional; we are using Mathematica version 5.0.  

Let us note here that recent LP related development includes the 
Mathematica implementation of the LAPACK package that has been used 



 

worldwide to solve the most common tasks in numerical linear algebra 
(Leyk, 2003). Another notable development is discussed by Hu (2003): a 
new interior point algorithm option has been added to LinearProgramming 
that is now capable of solving large-scale linear optimization problems with 
hundreds of thousands of variables and equations. 
 
2.2 FindMinimum 
 

The function FindMinimum locally solves unconstrained nonlinear 
optimization problems, optionally using various methods that include 
conjugate gradient and BFGS quasi-Newton search strategies. As a simple 
illustration, we shall demonstrate its application in the form FindMinimum[f, 
{{x, x0},{y, y0}}] that uses the initial solution estimate {x0, y0} in solving 
the two-variable problem min f(x,y). The multiplication symbol * is used 
below for clarity: it could be replaced by a space between the multiplier 
constant and the variable. 

 
FindMinimum[Sin[x2-x]+3*y2, {{x,3},{y,1}}] 
8 8 <<−1., x → 2.72764, y→ −2.91001× 10−11  

  
In the result received, -1 is the objective function value, and → denotes a 

symbol-to-value assignment. FindMinimum is a local search method: hence, 
this could be – in fact, is – only one of the local or global solutions (most 
likely, the one closest to the starting point). This point is illustrated by  
 

FindMinimum[Sin[x2-x]+3*y2, {{x,13},{y,11}}] 
8 8 <<−1., x → 11.6509, y→ −1.49268× 10−9   

  
2.3 NMinimize 
 

The Mathematica function NMinimize[{f, cons},{x, y,…}] attempts to 
find the global minimum of f, subject to the listed constraints cons. The 
following simple example illustrates its application; notice the double 
equality sign == that denotes a strict equality constraint:  
 

NMinimize[{(x12-x2)2,  
x1-x1*x2==0, x1≥-10, x1≤20, x2≥-15, x2≤10}, 
{x1,x2}] 
8 8 <<2.46519×10−30, x1 → 1., x2→ 1.  

 
We will use NMinimize later on in some illustrative comparisons. 



                      

3. MODELING AND OPTIMIZATION PACKAGES 
 

There is a range of application packages offered by Wolfram Research 
and by independent developers with apparent O.R. relevance. A brief review 
of these is provided below, for simplicity in alphabetical order. We will not 
mention or display the (quite possibly changing) version numbers, when 
discussing the packages: for further details see the related references and 
visit the website of Wolfram Research.  

All packages discussed can be seamlessly integrated into Mathematica, 
when properly installed: in particular, their documentation can be directly 
invoked from Mathematica's help system. Since all packages present 
detailed application examples, these can be directly used and customized to 
create new model development and optimization projects.  

Needless to say, we do not intend to specifically endorse any of these 
applications, and – in lack of access to all listed packages – we rely partly on 
the product descriptions provided by Wolfram Research and the developers. 
Packages will be referred to using italics fonts. 

Advanced Numerical Methods expands the functionality of the Control 
System Professional package with an extensive collection of numerical 
algorithms. These algorithms solve a wide class of control and linear algebra 
problems.  

Combinatorica extends Mathematica‘s capabilities by over 450 new 
functions: these serve to construct graphs and other combinatorial objects, 
and to display them. The detailed guide to Combinatorica is Pemmaraju and 
Skiena (2003) that can also be used as a course textbook.  

Control System Professional Suite is an extensible framework of 
integrated Mathematica application packages for handling common, 
interdisciplinary control problems that arise in engineering, as well as in 
chemistry, biology, economics and financial studies.  

Database Access Kit brings Mathematica's data analysis and 
management tools to large data sets. These capabilities can be interfaced 
with relational databases (including Oracle, Microsoft Access, SQLServer, 
and DB2) and to a number of flat-file databases (like Excel or dBase files).  

DiffEqs is a collection of individual packages that accompanies the 
textbook by Hollis (2003): the book presents an introduction to 
Mathematica, and to differential equations.  

Experimental Data Analyst integrates a set of programs that help to 
analyze experimental data, from error analysis and data fitting capabilities to 
data visualization and transformation. A collection of examples based on 
real experimental data is included. 

Fuzzy Logic provides a set of tools for creating, modifying, and 
visualizing fuzzy sets and fuzzy logic-based systems. It also includes 
practical examples that introduce the basic concepts and demonstrate the 
numerical solution of various system design problems.  



 

Global Optimization offers a collection of functions for constrained and 
unconstrained nonlinear optimization, as well as several tools of interest for 
statistical studies.  

Industrial Optimization is designed to solve a range of O.R. models, by 
providing algorithms for linear, pure and mixed integer linear, and convex 
optimization, as well as some heuristic techniques such as genetic 
programming.  

Mathematica Link for Excel provides Excel users with a seamless 
connection to Mathematica: one can directly activate a range of advanced 
Mathematica calculations and functions from the calling spreadsheet.  

MathOptimizer and MathOptimizer Professional are our own application 
packages (Pintér, 2002b; Pintér and Kampas, 2003): these will be discussed 
in more details later on. 

ModelMaker serves to build and analyze finite element (FE) models. 
The package permits building parametric models, where the FE database 
contains both numeric data and symbolic Mathematica expressions which 
can be used to morph the model geometry.  

Neural Networks provides tools to define, train, visualize, and validate 
neural network models. It supports a set of network structures; it also 
implements training (unconstrained local optimization) algorithms.  

Operations Research offers tools for solving linear optimization, 
quadratic programming, shortest path, and combinatorial optimization 
problems, including both exact and heuristic approaches.  

Optimization Toolbox contains programs that accompany Bhatti's well-
written textbook (2000), targeted primarily to an undergraduate and graduate 
student (and instructor) readership. Optimization theory is presented in an 
informal style; pedagogical Mathematica algorithms are presented and 
illustrated by examples.  

Parallel Computing Toolkit brings parallel computation tools to a 
computer network, or to multiprocessor machines. It implements parallel 
programming primitives and includes high-level commands for the parallel 
execution of operations such as animation, plotting, and matrix 
manipulation.  

VisualDSolve has been developed along with the textbook by Schwalbe 
and Wagon (1996) that serves as its reference manual. The book covers 
many of the topics in a first course in ordinary differential equations, and 
provides a wide variety of tools for visualizing solutions. 
 
 
 
 
 
 



                      

4. MathOptimizer 
 
4.1 Introduction and Usage 
 

MathOptimizer (Pintér, 2002b) is a native Mathematica software 
package that serves to solve general – global or local – nonlinear 
optimization models stated in the form  
 
(1)  min f(x)   f: D0 Ø R1 

g(x)=0   g: D0 Ø Rm1 

h(x)§0   h: D0 Ø Rm2 

D0 :={x: xl§x§xu}  x, xl, xu e Rn

 
It is assumed that all functions f, g, h are at least continuous, and that xl, 

xu are finite (known) real n-vectors. All bound, equality and inequality 
constraints are interpreted component-wise. Notice that the equality and 
inequality constraints are treated separately: their number is denoted by m1 
and m2, respectively.  

In addition to MathOptimizer’s built-in local solver methodology, a 
special emphasis is placed on finding the global solution of models that may 
have a number of local solutions. Fairly comprehensive reviews of global 
optimization are presented e.g., in the Handbooks edited by Horst and 
Pardalos (1995), Pardalos and Romeijn (2002); see also the topical website 
of Neumaier (2004).   

MathOptimizer consists of two core solver packages and a solver 
integrator package. One of these solver components is called MS, 
abbreviating MultiStart (global search). MS serves for the – as a rule, 
approximate – global optimization of an exact penalty function that 
aggregates f, g, and h in the given n-dimensional interval range. MS uses an 
adaptive stochastic search method, combined with a statistical bounding 
procedure. The second component package – called CNLP, abbreviating 
Constrained NonLinear Programming (for local search) – implements a 
Lagrangian approach that is aimed at finding a (global or local) solution that 
satisfies the Karush-Kuhn-Tucker optimality conditions. (Note that, 
theoretically, this component requires smooth problem structure.) CNLP is 
used for ‘precise’ local optimization, based on a given initial solution: the 
latter is either produced by the global search phase, or it can be directly 
provided by the user. The solver integrator package, called Optimize,  
supports the individual or combined use of the two solver packages. It is 
planned to add further solver components to MathOptimizer: the presence of 
the integrator package directly supports this objective. 

The MathOptimizer User Guide is a Mathematica notebook (currently 
consisting of over 70 printed pages) that can be directly invoked through 
Mathematica's online help system. The manual presents installation and 
technical notes, provides concise mathematical background information and 



 

modeling tips, and discusses a number of test problems as well as several 
more advanced applications. 

MathOptimizer is invoked by the following Mathematica statement. 
Observe the notation used to identify the entire package and the integrator 
package component: the latter then indirectly activates both MS and CNLP.  

 
Needs["MathOptimizer`Optimize`"]; 
 
The following Mathematica code illustrates the definition of a small 

non-convex optimization model that is made up by decision variables 
(denoted below as vars); lower/upper bounds and nominal (initial) values of 
the variables (varlb, varub, and varnom); objective function to minimize 
(objf); and the separate lists of equality constraints (eqs) and inequality 
constraints (ineqs, by assumption, are stated in §0 form). 

 
vars={x1,x2}; 
varlb={-10,-15}; 
varub={20,10}; 
varnom={8,-14}; 
objf=10*(x12-x2)2+(x1+3*x2-4)2; 
eqs={x14-x1*x23}; 
ineqs={3*x1+4*x22-8}; 

 
The next statement calls MathOptimizer to solve the model: 
 
Optimize[objf, eqs, ineqs, vars, varnom, varlb, 
v rub] a
881., 1.<, 6.23774×10−21, 8−3.94744×10−11<,
−1. , 3.94744×10−11, 2.73735× 10−9, 0.8 < 8 <<  

 
The result shows the composite list of the following elements: the list of 

global solution components (x1=x2=1), the optimum value (a close 
numerical approximation to the theoretical value 0), as well as the lists of 
constraint function values at the solution, and finally the list of violation 
levels with respect to feasibility, the Kuhn-Tucker equation (defined by the 
gradient of the Lagrangian), and the complementary slackness condition at 
the solution found. The MathOptimizer runtime is less than 0.5 seconds. 

Note that it is very easy to make changes to the model, and then to 
immediately repeat the solution procedure. For example, we can replace the 
constraints by defining (over-writing) 

 
eqs={x14-Sin[1-x1*x23]-1};  
ineqs={3*x1-4*x22+1}; 
 
After evaluating these statements – on MS Windows machines, by using 

the Shift-Enter key combination while pointing anywhere in the 



                      

Mathematica cell that includes the above input (so that they can be evaluated 
in a single move) – we can run MathOptimizer again. Observe passing by 
that the optimum value should be the same, except numerical rounding 
errors, since the previously found global solution {1, 1} meets also the new 
constraints. 

 
Optimize[objf, eqs, ineqs, vars, varnom, varlb, 
v rub] a
881., 1.<, 5.68314×10−19, 88.07199×10−11<,
−1.07488×10−9 , 8.07199×10−11, 9.53077×10−9, 0.8 < 8 <<  

 
The numerical solution received is essentially the same as the one found 

above. For comparison, now we attempt to solve this model by using the 
built-in function NMinimize (in default mode, similarly to MathOptimizer). 
The NMinimize formulation for the model is slightly different: 

 
NMinimize[objf, 
x14-Sin[1-x1*x23}-1==0, 3*x1-4*x22+1≤0,  
x1≥-10, x1≤20, x2≥-15, x2≤10}, {x1,x2}] 
{2532.29,{x1→1.1892, x2→-10.354}} 
 
The solution found by NMinimize is obviously sub-optimal. Of course, 

this finding is not sufficient per se to draw far-reaching conclusions. 
However, it certainly shows that the solution of nonlinear models can be 
tricky, even in (very) low dimensions.  
 
4.2 Applications 
 

In addition to a number of relatively simple numerical test examples, the 
MathOptimizer User Guide discusses illustrative applications from the 
following areas: chemical equilibrium modeling, industrial design, acoustic 
engineering design, and two numerical mathematics challenges (Problems 4 
and 9 from Trefethen (2002)). In solving some of these – specifically, the 
sonar transducer model formulated by Purcell and the numerical integration 
problem of Trefethen – it is essential that MathOptimizer can handle 
arbitrary computable (preferably also continuous) Mathematica functions. 
This feature makes it suitable to handle ‘black box’ models defined by 
functions that are evalulated by complex, numerically intensive procedures. 
Pintér and Purcell (2003) discuss the sonar transducer design problem: its 
solution requires a combination of the ModelMaker (Purcell, Dai, and Xue, 
2001) and MathOptimizer packages.  

To mention other areas of application, Kampas and Pintér (2002) solve 
configuration analysis and design models using MathOptimizer: such 
problems arise e.g. in applied mathematics, statistics, physics, chemistry, 
and robotics. Pintér (2003c) discusses nonlinear model calibration: the 



 

illustrative numerical results demonstrate that MathOptimizer produces 
superior results to local search based model fitting. The article then reviews 
several case studies in which global optimization has been applied to model 
calibration problems related to water quality, environmental engineering, 
time series analysis and photoelectron spectroscopy applications. 
 
 
5. MathOptimizer Professional 
 
5.1 Introduction and Usage 
 

MathOptimizer Professional (Pintér and Kampas, 2003) is another 
Mathematica model development and nonlinear optimization package: 
however, it is based on an entirely different approach from the native 
Mathematica solver systems reviewed and discussed above. MathOptimizer 
Professional solves globally or locally nonlinear optimization models stated 
in the following general form (notice that the m-vector function g below now 
includes both equality and equality constraints): 
 
 
(2)  min f(x)  f: D0 Ø R1             

g(x)§0  g: D0 Ø Rm

D0 :={x: xl§x§xu} x, xl, xu e Rn 

 

The core of the package is the LGO external solver system that is 
activated and then used via MathLink, a general-purpose interface that 
supports communication between Mathematica and external programs. LGO 
– originally abbreviating the Lipschitz (continuous) Global Optimizer – can 
handle general (continuous) nonlinear optimization models, using a suite of 
global and local search algorithms. The currently implemented LGO 
algorithm options include branch-and-bound (BB), global adaptive random 
search (single-start, GARS) and multi-start (MS) based search strategies, as 
well as a (local) generalized reduced gradient (GRG) method. Note that in 
the global search phase the model functions are aggregated applying an 
exact penalty function; in the local search phase – that either automatically 
follows one of the global search modes or is used as a ‘local search only’ 
option – all constraint functions are treated individually.  

The global search methods are, in theory, globally convergent 
(deterministically, or with probability 1, at least for box-constrained global 
optimization models). The actual code implementations are numerical 
approximations of the underlying theory. Due to the usage of an aggregated 
merit function, the automatic ‘switching point’ from global to local search, 
and other parameter settings, there are heuristic elements in LGO (similarly 
to most – if not all – numerical optimization methods). The optional choice 
of global methods often helps in solving difficult models, since BB, GARS, 



                      

and MS apply different search strategies. The parameterization of these 
component algorithms (e.g., intensified global search) can also help to solve 
difficult models, although the internally set default search effort typically 
produces a close numerical approximation of the global solution. The latter 
statement has been verified by solving some difficult global optimization 
problems in which the solution is reproducible and publicly available: some 
examples will be mentioned later on.  

Note also that all LGO search algorithms are derivative-free: 
specifically, in the local search phase central differences are used to 
approximate gradients. This choice reflects our objective to handle models 
with merely computable, continuous functions, including ‘black box’ 
systems.  

LGO has been developed and maintained for well over a decade (as of 
2004), and the software is discussed in details elsewhere: consult, e.g., Pintér 
(1996, 2001, 2002a, 2004a), or the peer review by Benson and Sun (2000). 
LGO is currently available for essentially arbitrary C and Fortran compiler 
platforms, with seamless links to Excel, GAMS, Maple, Mathematica, and 
TOMLAB (the latter provides a solver interface and a collection of solvers 
for optimization using MATLAB). The details of these implementation 
versions are described in the corresponding documentation: see Frontline 
Systems and Pintér Consulting Services (2001); Pintér (2003a); Pintér 
(2004b); Pintér, Holmström, Göran and Edvall (2004).  

The computational study (Pintér, 2003b) reviews the performance of 
LGO in comparison to several state-of-art local nonlinear solvers linked to 
the GAMS platform. This evaluation has been done in a fully automated and 
reproducible manner using publicly available GAMS model libraries: hence, 
it can be considered as reasonably objective, even if the collection of models 
and other circumstances (solver options and parameters) always carry 
elements of arbitrariness and subjectivity. The numerical experiments 
described in this study show that global optimization tools are needed to 
solve nearly half of the GAMS models from the chosen library, even when – 
possibly quite useful – initial solution points are provided to the local 
solvers. (We conjecture that providing random starting points from a search 
box that contains the feasible region would demonstrate even more 
pronounced need for global scope search.) 

MathOptimizer Professional combines the model development power of 
Mathematica with the LGO solver suite: this leads to enhanced nonlinear 
solver capabilities, and a performance (solution speed) that – especially on 
larger models – is comparable to compiler-based solver implementations.  

The functionality of MathOptimizer Professional is summarized by the 
following steps (all steps are fully automatic, except the first one): 
• model formulation in Mathematica 
• translation of the Mathematica optimization model into C or Fortran 

code (LGO model function file) 
• generation of LGO input parameter file  



 

• compilation of the C or Fortran model code into object code or dynamic 
link library (dll): this step needs a suitable compiler  

• call to the LGO solver engine: the latter is typically provided as object 
code or an executable program that is linked together with the model 
object or dll file 

• model solution and report generation by LGO 
• report of LGO results back to the calling Mathematica notebook. 

 
Obviously, the approach outlined supports ‘only’ the solution of models 

defined by Mathematica functions that can be directly converted into C or 
Fortran program code. This, however, still allows the handling of a broad 
range of continuous nonlinear optimization models. A ‘side-benefit’ of using 
MathOptimizer Professional is that Mathematica models are automatically 
translated into C or Fortran format: this can be useful e.g., in generating new 
test models. 

Following installation, the MathOptimizer Professional User Guide 
(Pintér and Kampas, 2003) can be directly invoked as part of Mathematica's 
help system. The package is activated by the following statement  

 
Needs["MathOptimizerPro`callLGO`"]; 
 
Upon executing this statement, on MS Windows machines a command 

window opens that serves to monitor the MathLink connection that support 
external system calls to/from LGO. In our case, this window will display the 
background compiler and linker operations.  

The numerical solution of an optimization model now can be launched 
by a single Mathematica statement of the form callLGO[f, g, {x, xl, xn, 
xu}]. Here we use the notation corresponding to (2); in addition, xn is the 
nominal setting of x (used in the first model function evaluation and/or as a 
starting point of the ‘local search only’ LGO solver mode). The following 
call illustrates the basic MathOptimizer Professional functionality:  
 

callLGOAx2+3 y2, x+Sin y ≥1 , x,−2,0,2 , 8y,−2,0,2<<E8 @ D < 88 <
{0.753796,{x→0.757485,y→0.244957},0} 

 

 
The result shows (again, in Mathematica list format) the optimum value 

found, the list of corresponding variable settings, and the maximal model 
function infeasibility at the solution: all values are numerical 
approximations, of course. Note that the function callLGO currently has 15 
optionally set parameters: these are all documented and illustrated in the 
User Guide, but their discussion is outside of the scope of this paper. For 
further details, consult the manual or Pintér and Kampas (2004). 
 



                      

5.2 Applications 
 

For over a decade, LGO has been applied in a variety of professional, as 
well as academic research and educational contexts. In recent years, LGO 
has been used to solve models in up to a few thousand variables and 
constraints. Some recent applications and case studies – including e.g., 
model fitting in econometrics and laboratory analysis, potential energy 
models in computational chemistry, laser design, cancer therapy planning, 
and non-uniform sphere packings – are discussed by Pintér (2001a, b, 
2002a), Isenor, Pintér, and Cada (2003), Tervo et al. (2003), Kampas and 
Pintér (2004a), Pintér and Kampas (2004). Note additionally that some of 
the LGO software users in the financial industry, process industries, 
biotechnology, etc. develop other advanced (but confidential) applications. 
We expect essentially similar performance from the recently released 
MathOptimizer Professional that enables the solution of sizeable, 
sophisticated nonlinear models formulated in Mathematica. The role of 
communication overhead between Mathematica and the external solver suite 
becomes relatively less significant in solving larger models, in which the 
external LGO solver time dominates.  

The MathOptimizer Professional User Guide (an approximately 150-
page document when printed) describes several tens of test problems starting 
with simple LP problems, through convex and non-convex nonlinear 
models, to a number of fairly challenging optimization models originating 
from  mathematics, physics, chemistry, engineering and economics. For 
illustration, we shall consider here a pair of transcendental equations:  

 
eq1= Hx − Sin@2 x+3 yD − Cos@3 x−5 yDL2;
eq2= y − Sin x−2 y + Cos x+3 y 2;H @ D @ DL

L ]

 
 

We wish to find a solution in the region -2 ≤ x ≤ 3, -2.5 ≤ y ≤ 1.5, or to 
numerically verify that there is no solution in the region specified. The 
surface and contour plots of eq1+eq2 (this corresponds to the squared l2-
norm based error function) reveal the rather complex multi-extremality of 
the induced optimization model: see Figures 1 and 2.    

Let us apply MathOptimizer Professional to solve this problem. First, 
we define the equations (eqs), the constraints (cons: note here that the 
relations eq1=eq2=0 can be expressed by using the Mathematica function 
Thread), and the variables with bounds and nominal values 
(varswithbounds). Then we call LGO. 
 

eqs={eq1,eq2}; 
cons=Thread[eqsm0]; 
varswithbounds={{x,-2,1,3},{y,-2.5,1,1.5}}; 
call GO[0,cons,varswithbounds  
8 8 < <0, x→ −0.173363, y→ −0.256098 , 1.44819 ×10−9  
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Figure 1. Surface plot of error function in solving a system of equations.  
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Figure 2. Contour plot of error function in solving a system of equations.  
 



                      

As the result shows, MathOptimizer Professional finds a numerical 
solution that is precise to about 1.45ÿ10-9, when substituted into the 
equations. The external LGO runtime is 0.03 seconds. (In total, 7843 search 
steps – model function evaluations, including gradient estimates in the local 
search phase – are done in using the default MS+LS search mode with 
default parameterization; all results are exactly reproducible.) Note also that 
the User Guide addresses the issue of finding (possible) multiple solutions to 
systems of equations and inequalities. 

As for another illustrative application, in (Kampas and Pintér, 2004a) we 
state and solve a challenging new model type: our objective is to find the 
‘best’ non-overlapping arrangement of a set of given non-uniform size 
circles in an embedding circle. The best packing is defined here by a 
combination of two criteria: the size (radius) of the circumscribed circle, and 
the average pair-wise distance between the centers of the embedded circles. 
The relative weight of the two objective function components can be 
selected as a model-instance parameter.  

Detailed numerical results are reported in (Kampas and Pintér, 2004a) 
for circles defined by the radii ri=i-0.5, i=3,…,N, up to 40-circle 
configurations. For illustration, the configuration found for the case N=20 
circles using MathOptimizer Professional is displayed below. In this 
example, equal consideration (weight) is given to minimizing the radius of 
the circumscribed circle and the average distance between the circle centers.  
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Figure 3. A non-uniform circle packing result for N=20 circles.  



 

 
Let us remark in this context that in Kampas and Pintér (2002) we have 

attempted to solve instances of the circle packing problem applying the 
built-in Mathematica function NMinimize, but (in default mode) it could not 
find a solution of acceptable quality even for the case N=5. MathOptimizer 
worked better and found good quality solutions for small configurations (up 
to N=10), but – due to its native Mathematica solver functions – solution 
times are increasing far more rapidly than for MathOptimizer Professional. 
Again, this is just a numerical observation, as opposed to a conclusion: we 
plan to make a more systematic comparison of global solvers (available for 
use with Mathematica) in the near future, based on detailed numerical tests.  

Let us also mention finally that both MathOptimizer and MathOptimizer 
Professional are included in a recent peer review of optimization capabilities 
using Mathematica (Cogan, 2003).  
 
 
6. CONCLUDING REMARKS 
 

This article discusses the potentials of Mathematica in Operations 
Research related modeling and optimization studies. Within this context, we 
review built-in Mathematica optimization functionality and provide an 
annotated list of relevant application packages. Next, we introduce the 
packages MathOptimizer and MathOptimizer Professional, and discuss their 
usage by solving a few illustrative (yet non-trivial) optimization problems. 
We think that integrated modeling and solver environments will have a 
significant role in O.R. modeling and optimization studies, in an increasing 
range of business, research, and educational contexts.  
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