
MATHOPTIMIZER PROFESSIONAL
Key Features and Illustrative Applications

János D. Pintér and Frank J. Kampas1 2

1 Pintér Consulting Services, Inc., Halifax, Nova Scotia, Canada
jdpinter@hfx.eastlink.ca http://www.pinterconsulting.com
2 WAM Systems, Inc., Plymouth Meeting, PA, USA
fkampas@wamsystems.com http://www.wamsystems.com

To appear in:

Liberti, L., and Macaulan, N., Editors

Global Optimization: From Theory to Implementation

Springer Science + Business Media, New York, 2005.

http://www.pinterconsulting.com/
http://www.wamsystems.com/

Chapter

MATHOPTIMIZER PROFESSIONAL
Key Features and Illustrative Applications

János D. Pintér1 and Frank J. Kampas2

1 Pintér Consulting Services, Inc., Halifax, Nova Scotia, Canada
jdpinter@hfx.eastlink.ca http://www.pinterconsulting.com
2 WAM Systems, Inc., Plymouth Meeting, PA, USA
fkampas@wamsystems.com http://www.wamsystems.com

Abstract: Integrated scientific-technical computing (ISTC) environments play an

increasing role in advanced systems modeling and optimization.
MathOptimizer Professional (MOP) has been recently developed to solve
nonlinear optimization problems formulated in the ISTC system Mathematica.
We introduce this software package, and review its key functionality and
options. MOP is then used to solve illustrative circle packing problems,
including both well-frequented models and a new (more difficult) model-class.

Key words: Integrated computing systems; Mathematica; global optimization; LGO solver

suite; MathOptimizer Professional; uniform and arbitrary size circle packings;
illustrative results.

1. INTRODUCTION

Operations Research (O.R.) provides a consistent quantitative framework
and techniques, to assist analysts and decision-makers in finding “good”
(feasible) or “best” (optimal) solutions in a large variety of contexts. For an
overview of prominent O.R. application areas, consult e.g. the 50th
anniversary issue of the journal Operations Research (2002).

A formal procedure aimed at finding optimized decisions consists of the
following key steps.
• Conceptual description of the decision problem at a suitable level of

abstraction that retains all essential attributes, but omits secondary details
and circumstances.

http://www.pinterconsulting.com/
http://www.wamsystems.com/

• Development of a quantitative model that captures the key elements of

the decision problem, in terms of decision variables and functional
relationships among them.

• Development and/or adaptation of an algorithmic solution procedure, in
order to explore the set of feasible solutions, and to select the best
decision.

• Numerical solution of the model and its verification; interpretation and
summary of results.

• Posterior analysis and implementation of the decision(s) selected.
The problems tackled by O.R. are often so complex that the correct

model and solution procedure may not be clear at the beginning. Therefore,
decision makers often must carry out the steps outlined above in an iterative
fashion. The analyst repeatedly modifies and refines the model formulation
and solution procedure until the model captures the essence of the problem,
is computationally tractable, and its numerical solution is applicable in the
context of the problem studied.

These considerations make a strong case for using high-level, integrated
software tools that can effectively assist in performing all related tasks in a
unified framework. This point is particularly valid in modeling nonlinear
systems, since their analysis may involve the evaluation of computationally
intensive functions, visualization, animation, and so on.

Maple (Maplesoft, 2004a), Mathematica (Wolfram Research, 2004), and
Matlab (MathWorks, 2004) are prominent, fully integrated scientific-
technical computing systems. The capabilities and range of applications of
these software products and related application packages are documented in
software manuals, hundreds of books, and many thousands of articles and
presentations. The current user base of ISTC systems is several million
people worldwide.

A concise list of the most significant features and capabilities of ISTC
environments includes the following (note that each feature listed below is
currently supported by at least one – and sometimes by all – of the three
ISTC systems mentioned):
• A broad range of simple and advanced computations with high – or even

with arbitrarily high, adjustable – precision
• Support for symbolic calculations
• Extensive set of readily available functions, from programming language

standards to special functions and general-purpose, complete numerical
procedures (examples of the latter are integration routines, differential
equation solvers, and numerical optimization routines)

• Context-specific “point and click” (essentially syntax-free) operations
via GUI elements that help to execute various tasks

• Support for concise, transparent code development and maintenance

• Support for several programming styles (procedural, functional, and rule-

based paradigms)
• Full programmability (i.e., extendibility by adding new functionality)
• Posterior analysis and implementation of the decision(s) selected
• Advanced technical documentation, desktop publishing, and presentation

features
• Interactive and multimedia tools (in-situ evaluation, visualization,

animation, sound)
• Built-in, fully integrated help system that includes portable application

examples
• Automatic code generation from a given ISTC language to more

“traditional, lower-level” programming languages (such as Basic, C,
Fortran, Java, and so on)

• Automatic conversions of ISTC system documents to tex, html, xml, ps,
pdf (and possibly other) file formats

• Direct links to external application packages, to other software products,
and to the Internet

• Portability across a broad range of hardware platforms and operating
systems (such as e.g., Windows, Macintosh, Linux, and Unix versions).
Many of these features can be effectively used during the various stages

of developing O.R. applications. In particular, data analysis, model
formulation, solution strategy and algorithm development, numerical
solution, and project documentation can all be put together from the
beginning – even in a single unified work document, if the developer wishes
to do so. Hence, ISTC environments can increasingly provide a “one-stop”
solution, to meet a broad range of needs of researchers, educators and
students. This tendency has been receiving growing attention also in the
O.R. community: for example, Mathematica has been recently reviewed in
ORMS Today (Sodhi, 2003).

We emphasize here that, although all modeling and computational
environments – from Excel spreadsheets, through optimization-specific
algebraic modeling languages (such as AIMMS, AMPL, GAMS, LINGO,
MPL, and others) to the more general-purpose computing (ISTC) systems –
may have a lower program execution speed when compared to a compiled
“pure number crunching” system, the overall application development time
can often be massively reduced by using higher-level systems, especially
when development can be started from scratch. It is instructive to recall in
this context the debate that surrounded the early development of
programming languages – such as Algol, Basic, C, Fortran, Pascal, etc. – as
opposed to machine-level assembly programming.

Within the broad category of modeling and optimization problems, we
see particularly strong application potentials for ISTC systems in studying

nonlinear systems. For discussions of nonlinear system models and a broad
range of their applications, consult e.g. Aris (1999), Bazaraa, Sherali, and
Shetty (1993), Beltrami (1993), Bertsekas (1999), Bracken and McCormick
(1968), Chong and Zak (2001), Diwekar (2003), Edgar, Himmelblau and
Lasdon (2001), Gershenfeld (1999), Grossmann (1996), Hansen and
Jørgensen (1991), Hillier and Lieberman (2005), Kampas and Pintér (2005),
Murray (1983), Papalambros and Wilde (2000), Pardalos, Shalloway, and
Xue (1996), Parlar (2000), Pearson (1986), Pintér (1996, 2005), Rich (1973),
Schittkowski (2002), Tawarmalani and Sahinidis (2002), Wilson, Turcotte
and Halpern (2003), Zabinsky (2003), and Zwillinger (1989).

2. GLOBAL OPTIMIZATION

As the books listed above well illustrate, nonlinearity is literally
ubiquitous in the development (and modeling) of objects, formations and
processes, including also living organisms of all scales, as well as various
man-made systems. Decision-making (optimization) models that incorporate
such a nonlinear system description frequently lead to complex problems
that may or provably do have multiple − local and global − optima. The
objective of global optimization (GO) is to find the “absolutely best”
solution of nonlinear optimization models under such circumstances.

In order to formalize the general global optimization paradigm
considered here, we shall use the following notation:

• x decision vector, an element of the real Euclidean n-space Rn

• f(x) objective function, f: Rn º R1

• D non-empty set of admissible decisions.

The set D is defined by

• xl, xu explicit, finite bounds of x (an embedding “box” in Rn)

• g(x) m-vector of constraint functions, g: Rn º Rm.

Applying the notation given above, the GO model can be stated as

(1) min f(x) x ∈ D := {x: xl ≤ x ≤ xu g(x) ≤ 0}.

Note that in (1) all inequalities are interpreted component-wise. Under

fairly general analytical conditions, the GO model (1) has a global solution
(set). (For example, if D is non-empty, and f, g are continuous functions,
then the model has a non-empty set of global solutions X*). Note that –
although we know that X* exists – if we use “traditional” local scope

optimization strategies, then – depending on the starting point of the search –
we will find only the corresponding locally optimal solution. In order to find
– i.e., to properly approximate) – the “true” solution, a genuine global scope
search effort is needed.

Global optimization is of great theoretical and practical importance, with
significant existing and prospective applications. As of today (2004), a few
hundred books, thousands of articles and dozens of web sites are devoted to
the subject. For detailed discussions of the most prominent GO model types
and solution approaches, consult, for example, Horst and Pardalos (1995),
and Pardalos and Romeijn (2002), visit also Neumaier (2004). Among the
earlier cited books on nonlinear systems models and optimization, e.g.
Grossmann (1996), Kampas and Pintér (2005), Pardalos, Shalloway and Xue
(1996), Pintér (1996, 2005), Tawarmalani and Sahinidis (2002), Zabinsky
(2003) – as well as many others – discuss nonlinear models and real-world
applications which require a global solution approach.

3. LGO SOLVER SUITE

The LGO (Lipschitz Global Optimizer) software package serves to find –
i.e., to numerically approximate – global and local solutions to nonlinear
optimization models. The current LGO implementation incorporates the
following solver modules:
• Branch-and-bound global search method (BB)
• Global adaptive random search (single-start) (GARS)
• Multi-start based global random search (MS)
• Constrained local search (LS) by the reduced gradient method

All three global search methods will generate one (BB, GARS) or
several (MS) approximations of the global optimizer point(s), before LGO is
automatically switched to local search. The LS option can also be used in
stand-alone mode, when started from a user-supplied initial point.

For theoretical details of the underlying global search methodology,
consult Pintér (1996). The LS approach used is discussed in numerous
textbooks: see for instance, Edgar et al. (2001). The LGO software system
itself has been discussed in books and articles: consult e.g., Pintér, 2001,
2002, 2004, and the peer review by Benson and Sun, 2000. Therefore here
we provide only a brief summary of the solver components. (Since LGO is a
commercial software product, many of the implementation details will be
omitted.)

The BB module is based on a theoretically established (rigorous) global
optimization approach. BB combines set partition steps with deterministic
and randomized sampling: this combination also enables a statistical

bounding procedure. Note, however, the program runtimes can be expected
to grow fast(er) for higher-dimensional and more difficult models, if we
want to find a close approximation of the global solution solely by BB. (A
similar comment applies also to all other theoretically rigorous global search
methods.)

Pure random search is a very simple, “folklore” approach to global
optimization that converges to the global solution (set) with probability 1.
GARS is an improvement over that passive search approach in the sense that
it adaptively attempts to focus the global search effort in the region which –
on the basis of the actual sample results – is estimated to contain the global
solution point (or, in general, one of these points).

Multi-start (MS) based global search applies a similar search strategy to
GARS; however, the total sampling effort is distributed among several
searches. Each of these leads to a “promising” starting point for subsequent
local search. Typically, this approach takes the most computational effort
(due to its multiple local searches); however – especially in more difficult
models – it often finds the best numerical solution (Pintér, 2003).

In all global search modes an exact penalty (merit) function serves to
aggregate the objective and constraint functions. Obviously, this assumes
that the model functions are “acceptably” scaled. (A constraint penalty
parameter can be adjusted via an LGO solver options file, to assist scaling.)

Ideally – and also in many actual model-instances – all three global
search methods will give the same answer, except perhaps small numerical
differences. In practice, especially when solving more difficult problems, the
LGO user may wish to try all three global search options (in conjunction
with the subsequent local search), to see which method gives the best results.

The local search (LS) component is based on the generalized reduced
gradient (GRG) algorithm. In general, this search strategy is “only” locally
convergent: therefore its use is recommended following one of the global
searches, except in local optimization contexts. The application of LS, as a
rule, results in a solution that is feasible and satisfies the Karush-Kuhn-
Tucker local optimality conditions.

The solver suite approach – based on three different global solvers –
supports the robust and efficient numerical solution of nonlinear models.
The entirely derivative-free methods implemented in LGO enable the
handling of merely computable model functions: this is of particular
relevance with respect to applications, in which higher order (gradient,
Hessian, etc.) information is impossible, difficult, or too costly to obtain.
LGO can be used even to handle “black box” models provided (only) as
object files, dynamic link libraries, or executable programs.

The LGO solver suite is currently available for C and Fortran compiler
platforms, with customized links to Excel, GAMS, Maple, Mathematica and

Matlab (via TOMLAB). For specific descriptions of the versions not
discussed here, see e.g. Frontline Systems and Pintér Consulting Services
(2001), GAMS Development Corporation and Pintér Consulting Services
(2003), Maplesoft (2004b), TOMLAB Optimization Inc. and Pintér
Consulting Services (2004). LGO is also offered – in a demo (size-limited)
version – with the latest edition of the classical O.R. textbook by Hillier and
Lieberman (2005). LGO, in its various implementations, has been used in
commercial applications, as well as in a variety of research and educational
environments for more than a decade.

4. MATHOPTIMIZER PROFESSIONAL

The MathOptimizer Professional software product is based on an
external LGO solver implementation that is seamlessly linked to the
Mathematica platform. In other words, MathOptimizer Professional offers a
combination of Mathematica's sophisticated application development tools
with core LGO solver functionality. This leads to a numerical performance
that – in terms of both solution quality and solver speed – is comparable to
other (compiler-based or optimization modeling language-related) LGO
implementations, especially when models are more difficult and/or
computationally intensive. In this section, we review the key features of
MOP. Further details and an extensive list of practically motivated examples
are discussed in the user manual (Pintér and Kampas, 2003), as well as in
our forthcoming book (Kampas and Pintér, 2005).

The functionality of MOP can be summarized by the following steps:
• Optimization model formulation, in a Mathematica document (notebook)
• Automatic export and translation of the model into C or Fortran code
• Compilation of the generated code into a dynamic link library (DLL)
• Call to the external LGO engine: the latter is a “ready-made” executable

program that is now linked to the model-dependent DLL
• Automatic model solution and report generation by LGO
• Import and display of results into the calling Mathematica notebook.

We refer to the approximately 150-page (printed) manual for further
details.

It should be noted that the approach outlined supports automatically
“only” the solution of models defined by Mathematica functions that can be
directly converted into (C or Fortran) program code. This, however, still
allows the handling of a fairly broad range of continuous nonlinear
optimization models (including, of course, all models that could be directly
written in C or Fortran). Other implementations (with extended
functionality) are also possible.

One “side benefit” of using MOP is that models built in Mathematica
can be directly used to generate corresponding C or Fortran test models. This
is particularly advantageous in case of larger model-instances.

MathOptimizer Professional (MOP) – and its solver function callLGO
– is launched by the Mathematica statement

Needs["MathOptimizerPro`callLGO`"];

The basic functionality of callLGO can be queried by the following

Mathematica statement: see the auto-generated reply immediately below.
(The format of this reply is slightly edited for the present purposes.)

?callLGO

callLGO[obj_, cons_List, varswithbounds_List,
opts___]:
obj is the objective function,
cons is a list of the constraints,
varswithbounds are the variables and their bounds in
the format {{variable, lower bound, initial value for
local search, upper bound}...} or {variable, lower
bound, upper bound}...}.

Function return is the value of the objective
function, a list of rules giving the solution, and
the maximum constraint violation.

See Options[callLGO] for the options and also see the
usage statements of the various options for their
possible values. For example, enter ?Method for the
possible settings of the Method option.

Table 1 (below) summarizes the current callLGO option list, with added

notes. All options can be changed by users, following MOP specifications.

Option Name and Default Settings, with Additional Notes

ShowSummary→False Display (or not) LGO report file
Method→MSLS Alternatives: BBLS, GARSLS, LS
MaxEvals→ProblemDetermined Global search effort, set by default to

1000*(n + m); (global search phase
stopping criterion)

MaxNoImprov→ProblemDetermined Global search effort without sufficient
improvement, set by default to
200*(n + m) (global stopping criterion)

PenaltyMul→1 Penalty multiplier

ModelName→LGO Model Model-dependent name (can be chosen

by user)
DllCompiler→BC Supported compilers: Borland C,

Lahey Fortran, Microsoft C, Salford
Fortran

ShowLGOInputs→False Display (or not) LGO input files
LGORandomSeed→0 Set internally (can be reset by user)
TimeLimit→300 Seconds (global search phase stopping

criterion)
TOBJFGL→ –1000000 Target objective function value in

global search phase (global search
phase stopping criterion)

TOBJFL→ –1000000 Target objective function value in local
search phase (local search phase
stopping criterion)

MFPI→10-6 Merit function precision improvement
tolerance (local search phase stopping
criterion)

CVT→10-6 Accepted constraint violation tolerance
 (local search phase stopping criterion)
KTT→10-6 Kuhn-Tucker condition tolerance
 (local search phase stopping criterion)

Table 1. MathOptimizer Professional: callLGO options

As indicated above, callLGO is activated by a statement of the form

callLGO[f,{g},{x,xl,xn,xu}, options].

Here the notations f, g, x, xl and xu directly correspond to the symbols

defined in (1). In addition, xn (xl≤xn≤xu) is a user-supplied nominal
solution – or a default setting, if xn is absent – that is used by LGO in its
initial local search mode; finally, options denotes the calling parameters
of the function callLGO.

The following simple example serves to illustrate the basic MOP
functionality, as it appears to the user in default mode. Consider the model

min x2 + 2 y2 x + y ≥ 1 –2 ≤ x ≤ 2 –2 ≤ y ≤ 2.

This optimization problem is solved by the next Mathematica statement

that leads to the answer shown immediately below:

callLGO[x^2 + 2*y^2,
{x + y >= 1}, {{x, (-2, 0, 2}, {y, -2, 0, 2}}]

The answer received is a Mathematica list (as shown by the curly braces

and comma separators):

{0.6666666666666666, {x -> 0.6666666667,
y -> 0.3333333333}, 5.551115123125783*^-17}

Here the first list element is the optimal objective function value found,

followed by the list of corresponding variable assignments, and the maximal
constraint violation at the solution point. (More details are shown
automatically in the generated LGO report that can also be displayed in the
notebook.) An extensive set of interesting GO challenges and practically
motivated numerical examples are discussed also in the MOP User Guide.

In the numerical examples discussed here Mathematica versions 5.01 or
5.1 are used in conjunction with the Microsoft Visual C/C++ (MSVC,
version 6.0) or the Salford FORTRAN 95 (FTN95) compiler. Furthermore,
in all cases Pentium 4 processor based machines running under Microsoft
Windows XP Professional version are used. Let us also note here that the
RAM requirements of MOP per se are rather modest, at least for small or
mid-size models; e.g., a personal computer with 256 Mb RAM is certainly
adequate to handle MOP models with up to (at least) 1000 variables and
1000 constraints. In principle, arbitrarily large models can be handled using
virtual memory, given sufficient hard drive space and time.

5. ILLUSTRATIVE APPLICATIONS:
SOLVING SPHERE PACKING MODELS

Object packing models are aimed at finding the best non-overlapping
arrangement of a set of objects in a container object. This general modeling
paradigm can be specified in many ways, leading to interesting – and
typically quite difficult – models. In addition to a more theoretical interest
directed towards specific, analytically tractable problem-instances, there is
also an obvious practical motivation to solve packing models.

In our recent and ongoing studies, we have found that this general
model-class can be used to test and benchmark global optimization software.
Several special cases and model-instances will be discussed below, to
illustrate the potentials of numerical global optimization in solving object
packing problems.

5.1 Packing Identical Size Circles in the Unit Square

The problem can be stated as follows: given the unit square and a

positive integer k, find the maximal radius r of k identical circles that can be
placed into the square, without overlaps. (Evidently, r=r(k).)

This problem, as well as some other related circle packing models, has
become a fascinating subject for both professional researchers and amateurs,
at least in recent decades. There exists a significant body of literature (books,
articles, dissertations, and web sites) discussing uniform circle packings.
This information available includes proofs (only) for a small number of
special cases (namely, for k=2,…,9, 14, 16, 25, and 36 circles), or computer
aided optimality proofs, with guaranteed bounds (for up to k=30). In many
other cases, only “best known” constructions are known.

To illustrate some rigorous bounding results, Csendes and his colleagues
have applied interval arithmetic based GO methodology to prove bounds for
best circle packings. The websites of Csendes (2004) and Markót (2004) list
their related publications.

Referring to the general case, Graham noted in an interview (Albers,
1996) that he does not expect to know the true (i.e., proven optimal) solution
for placing 1000 equal size circles in the unit square. The reason for his
“learned skepticism” is that there is no unifying theory, and that intuition
may fail: for example, in the k=49-circle case the seemingly obvious “seven-
by-seven” configuration is not optimal, consult e.g. Specht (2004).

Without going into further details regarding this area of research, let us
mention the thesis of Melissen (1997): he provides a detailed review of
uniform circle packing model statements and key analytical results, with
more than 350 topical references. The website of Specht (2004) is another
rich source of information related to uniform size circle packings (in the unit
square, the unit circle, and in rectangles): the site also includes references.
We will compare our numerical results to those listed at this website as best
(proved or postulated).

We also wish to emphasize that our sole purpose here is to illustrate the
applicability of numerical global optimization (specifically, of LGO and
thereby of MathOptimizer Professional) to difficult packing models, even
without specifying or postulating any prior structure. More extensive studies
should be based on more detailed and sophisticated modeling than what we
are presenting here. We will cite only some of our existing numerical results:
more details are available upon request, and will appear elsewhere.

Let us denote by ci=(xi yi) the center of circle i=1,…,k: the coordinate
pairs (xi yi) and the radius r of these circles are the decision variables. The
constraint that the circles i and j do not overlap means that the sum of their
radii is less than the distance between the centers:

(2) 2r ≤ || ci – cj ||; here || ci – cj || := [(xi– xj)2 + (yi –yj)2]1/2 1≤i<j≤k.

Note that each instance of the inequality in (2) is a non-convex constraint
(since the norm function is convex). For k-circle configurations, we have
k(k-1)/2 such constraints.

We shall consider the unit square that is centered at the origin.
Additional constraints postulate that the circles are inside the enclosing
square. These are derived from simple geometrical considerations; a possible
formulation is:

(3) | xi | + r ≤ 0.5 and | yi | + r ≤ 0.5 1≤i≤k.

This way, in addition to the non-convex constraints we have 2k non-
linear convex constraints. (Alternative formulations are also possible, e.g. by
replacing the latter constraints by linear ones. However, we have been using
the constraints (3) in our numerical experiments.). Under the conditions (2)-
(3), our objective is to

(4) maximize r.

We have developed a Mathematica model (a function) that is directly
based on relations (2) to (4). This function is parameterized by the number of
circles: therefore inserting a positive integer value k in the function provides
the corresponding k-circle model instance. As noted earlier, MathOptimizer
Professional automatically translates this Mathematica model to C or Fortran
form, and then the external LGO solver is invoked to solve it. For
illustration, the 20-circle solution found is shown below.

Figure 1. Packing 20 uniform size circles in the unit square

Note that this figure is directly imported from the Mathematica notebook
document where the model formulation and all calculations have also been
done. The optimized value of the circle radius r=r(20) found by MOP is

r ~ 0.1113823476.

The radius found agrees well (to about 10-10 absolute precision) with the

value 0.111382347512 posted at http://www.packomania.com. Note that
such – arguably minor – imprecision can be due to several factors: one of the
significant factors is that LGO applies central finite-difference based
gradient approximation in its local search phase. This adds some error to that
of standard floating point precision calculations.

The computer used to solve this example has a 3.2 GHz Pentium 4
processor and is running Windows XP; we used the Salford Fortran 95
compiler (Salford Software, 2004). The corresponding runtime is about 19
seconds. Note that runtimes may change slightly even when repeating the
same run, due to hardware and OS status changes: however, the timing cited
gives an impression of the MOP solver speed. (LGO per se runs faster, of
course.) Recall that the 20-circle model instance of (2)-(4) has 41 decision
variables, and 230 nonlinear constraints of which 190 are non-convex.
Further detailed numerical results will appear e.g. in our forthcoming book
(Kampas and Pintér, 2005).

5.2 Packing Identical Size Circles in the Unit Circle

This problem can be stated as follows: given the unit circle and a
positive integer k, find the maximal radius r=r(k) of k identical circles that
can be placed into the circle, without overlaps.

Applying straightforward modifications of model (2)-(4), the adapted
model can be written as

(5) maximize r

2r ≤ || ci – cj || 1≤i<j≤k
r + || ci || ≤ 1 1≤i≤k.

As above, || ci – cj ||= [(xi– xj)2 + (yi –yj)2]1/2 and || ci || := (xi
2 + yi

2)1/2. The
model (5) has 2k+1 decision variables, k convex nonlinear constraints, and
k(k-1)/2 non-convex constraints.

For illustration, we cite the solution of the 20-circle model instance (that
has 41 decision variables and 210 constraints of which again 190 are non-
convex). The next figure shows the configuration obtained.

Figure 2. Packing 20 uniform size circles in the unit circle

The radius r=r(20) found by MOP in this example equals 0.1952240114.
This value agrees to at least 10-9 absolute precision with the best known
result cited at www.packomania.com (0.1952240110...) The corresponding
runtime is approximately 43 seconds, on the same computer as mentioned
above.

5.3 Packing Non-Uniform Size Circles in an Optimized Circle

In this section, we introduce a new class of object packing models. Our
objective is to find the minimal size circle that contains a given non-
overlapping circle configuration that is made up by (in principle, arbitrary
size) circles. To our best knowledge, this model has not been studied before
by others in a GO setting: we also think that such models can be
significantly more difficult than the more specific cases discussed in the
preceding two sections.

We shall denote by ri the radius of circle i for i=1,…,k. With a
straightforward generalization of (5), we obtain the model

(6) minimize r

ri + rj ≤ || ci – cj || 1≤i<j≤k.
ri + || ci || ≤ r i=1,...,k.

Notice that now r is the unknown radius of the circumscribing circle that
is minimized: its value depends on the set of circle radii {ri}. Similarly to
(5), model (6) has 2k+1 decision variables, k convex nonlinear constraints,
and k(k-1)/2 non-convex constraints.

To illustrate this model, in the last numerical example presented here we
will pack circles of radius ri=i-1/2 i=1,...,k into a circumscribing circle. Notice
that in this case the total area of the embedded circles is slowly divergent as

k goes to infinity: therefore the optimized radius also will be unbounded as a
function of k. (Packings with bounded total area may also be of interest, of
course.) Figure 3 shows the optimized circle arrangement found for k=20.

Figure 3. Packing 20 non-uniform size circles in the unit circle: ri=i-1/2 i=1,...,20

The radius of the circumscribing circle r=r(20) in this case approximately
equals 2.12545. The corresponding runtime is about 47 seconds, on the
machine mentioned before. Comparing this runtime with the previous one
(that was 43 seconds for packing 20 identical size circles) one can see that
MOP (i.e., LGO) handles the more general model with fairly little extra
computational effort.

Although obviously all numerical test results depend also on certain
solver parameterizations, we think that the examples presented indicate the
capabilities and potentials of MOP. (The same default solver settings were
used in all examples reviewed here, without any “tweaking”.)

Let us remark finally that we have attempted to solve a large variety of
circle packing model instances using also other “general purpose”
commercial optimization software products (and applying all solver options
with default settings, the same way MOP was used). The solvers tested
specifically included Mathematica’s built-in constrained optimization
function (NMinimize), and several third party packages. Our comparative
results consistently have demonstrated the relative strength and efficiency of
MOP, both in terms of solution quality and runtime. These results will
appear in a forthcoming paper, as well as in Kampas and Pintér (2005).

6. CONCLUSIONS

In addition to perhaps more “traditional” development environments –
such as compiler platforms, spreadsheets, and algebraic modeling languages
– integrated scientific-technical computing systems will play an increasing
role in advanced systems modeling and optimization.

In order to meet related user demands, MathOptimizer Professional has
been recently developed to handle nonlinear optimization problems
formulated in Mathematica. MOP operations are based on an easy-to-use
Mathematica interface to the LGO solver suite. Following a brief
introduction to the key features of MathOptimizer Professional, we illustrate
its usage by solving relatively small, yet non-trivial circle packing problems.
More detailed numerical results and comparative assessments will appear
elsewhere.

For over a decade, the core LGO solver suite has been applied in a large
variety of research and professional contexts: consult, e.g., Pintér (1996,
2001, 2002, 2003, 2004, 2005), with numerous further references to such
applications. In recent years, LGO has become a solver engine option
available for use with an increasing number of modeling environments.
Currently these include essentially “all” C and Fortran compilers, Excel
spreadsheets, the GAMS modeling language, and the integrated scientific-
technical computing systems Maple, Mathematica and MATLAB. (Further
similar development is in progress.) The current LGO implementations have
been used to solve models in up to a few thousand variables and constraints.
We expect that MathOptimizer Professional will enable the solution of
sizeable, sophisticated Mathematica models with efficiency comparable to
that of compiler platform based nonlinear solvers.

ACKNOWLEDGEMENTS

The research of JDP related to Mathematica software development –
including MathOptimizer Professional – has been supported by Wolfram
Research, by providing quality software and professional documentation.
We also wish to thank Mark Sofroniou of Wolfram Research for his
permission to use (and to modify in our MOP development work) his
Format.m package.

REFERENCES

Albers, D.J. (1996) A nice genius. Math Horizons, November 1996 issue, 18-23.
Aris, R. (1999) Mathematical Modeling: A Chemical Engineer’s Perspective. Academic

Press, San Diego, CA.
Bazaraa, M.S., Sherali, H.D. and Shetty, C.M. (1993) Nonlinear Programming: Theory and

Algorithms. Wiley, New York.
Beltrami, E. (1993) Mathematical Models in the Social and Biological Sciences. Jones and

Bartlett, Boston.
Benson, H.P. and Sun, E. (2000) LGO – versatile tool for global optimization. ORMS Today

27 (5), 52-55. See also http://www.lionhrtpub.com/orms/orms-10-00/swr.html.
Bertsekas, D.P. (1999) Nonlinear Programming. (2nd Edition.). Athena Scientific, Cambridge,

MA.
Bracken, J. and McCormick, G.P. (1968) Selected Applications of Nonlinear Programming.

Wiley, New York.
Chong, E.K.P. and Zak, S.H. (2001) An Introduction to Optimization. (2nd Edition.) Wiley,

New York.
Csendes, T. (2004) http://www.inf.u-szeged.hu/~csendes/publ.html.
Diwekar, U. (2003) Introduction to Applied Optimization. Kluwer Academic Publishers,

Dordrecht.
Edgar, T.F., Himmelblau, D.M., and Lasdon, L.S. (2001) Optimization of Chemical

Processes. (2nd Edition.) McGraw-Hill, NY.
Frontline Systems and Pintér Consulting Services (2001) LGO Global Solver Engine for

Excel – Premium Solver Platform. Frontline Systems, Inc., Incline Village, NV.
http://www.solver.com/xlslgoeng.htm.

GAMS Development Corporation and Pintér Consulting Services (2003) GAMS/LGO User
Guide. GAMS Development Corporation, Washington, DC.
See http://www.gams.com/solvers/lgo.pdf

Gershenfeld, N.A. (1999) The Nature of Mathematical Modeling. Cambridge University
Press, Cambridge, UK.

Grossmann, I., Ed. (1996) Global Optimization in Engineering Design. Kluwer Academic
Publishers, Dordrecht.

Hansen, P.E. and Jørgensen, S.E., Eds. (1991) Introduction to Environmental Management.
Elsevier, Amsterdam.

Horst, R. and Pardalos, P.M., Eds. (1995) Handbook of Global Optimization, Vol. 1. Kluwer
Academic Publishers, Dordrecht.

Hillier, F. and Lieberman, G.J. (2005) Introduction to Operations Research. (8th Edition.)
McGraw-Hill, New York.

Kampas, F.J. and Pintér, J.D. (2005) Advanced Optimization – Scientific, Engineering, and
Economic Applications with Mathematica Examples. Elsevier, Amsterdam. (To appear.)

Maplesoft (2004a) Maple. Maplesoft, Inc., Waterloo, ON. http://www.maplesoft.com.
Maplesoft (2004b) Global Optimization Toolbox. Maplesoft, Inc. Waterloo, ON.

http://www.maplesoft.com/products/toolboxes/globaloptimization/index.aspx.
MathWorks (2004) MATLAB. The MathWorks, Inc., Natick, MA.
Markót, M.Cs. (2004) http://www.inf.u-szeged.hu/~markot/publ.html.
Melissen, J.B.M. (1997) Packing and Covering with Circles. Ph.D. Dissertation, University of

Utrecht.

Murray, J.D. (1983) Mathematical Biology. Springer-Verlag, Berlin.
Neumaier, A. (2004) Global Optimization. http://www.mat.univie.ac.at/~neum/glopt.html.
Operations Research: 50th Anniversary Issue (2002) INFORMS, Linthicum, MD.
Papalambros, P.Y. and Wilde, D.J. (2000) Principles of Optimal Design. Cambridge

University Press, Cambridge, UK.
Pardalos, P.M. and Resende, M.G.C., Eds. (2002) Handbook of Applied Optimization. Oxford

University Press, Oxford.
Pardalos, P.M. and Romeijn, H.E., Eds. (2002) Handbook of Global Optimization, Vol. 2.

Kluwer Academic Publishers, Dordrecht.
Pardalos, P.M., Shalloway, D. and Xue, G. (1996) Global Minimization of Nonconvex Energy

Functions: Molecular Conformation and Protein Folding. DIMACS Series, Vol. 23,
American Mathematical Society, Providence, RI.

Parlar, M. (2000) Interactive Operations Research with Maple: Models and Methods.
Birkhäuser, Boston.

Pearson, C.E. (1986) Numerical Methods in Engineering and Science. Van Nostrand
Reinhold, New York.

Pintér, J.D. (1996) Global Optimization in Action. Kluwer Academic Publishers, Dordrecht.
Pintér, J.D. (2001) Computational Global Optimization in Nonlinear Systems: An Interactive

Tutorial. Lionheart Publishing, Atlanta, GA.
Pintér, J.D. (2002) Global optimization: software, test problems, and applications, Chapter 15

(pp. 515-569) in: Pardalos and Romeijn, Eds. Handbook of Global Optimization. Vol. 2.
Kluwer Academic Publishers, Dordrecht.

Pintér, J.D. (2003) GAMS/LGO nonlinear solver suite: key features, usage, and numerical
performance. (Submitted for publication.)
See also at http://www.gams.com/solvers/solvers.htm#LGO.

Pintér, J.D. (2004) LGO – An Integrated Model Development and Solver Environment for
Continuous Global Optimization. User Guide. Pintér Consulting Services, Inc., Halifax,
NS, Canada.

Pintér, J.D. (2005) Applied Nonlinear Optimization in Modeling Environments. CRC Press,
Boca Raton, FL. (To appear.)

Pintér, J.D. and Kampas, F.J. (2003) MathOptimizer Professiona.User Guide. Pintér
Consulting Services, Inc., Halifax, NS, Canada.

Rich, L.G. (1973) Environmental Systems Engineering. McGraw-Hill, Tokyo.
Salford Software (2004) Salford Fortran 95. http://www.salfordsoftware.co.uk/
Schittkowski, K. (2002) Numerical Data Fitting in Dynamical Systems. Kluwer Academic

Publishers, Boston / Dordrecht / London.
Specht, E. (2004) www.packomania.com.
Tawarmalani, M. and Sahinidis, N.V. (2002) Convexification and Global Optimization in

Continuous and Mixed-integer Nonlinear Programming. Kluwer Academic Publishers,
Dordrecht.

TOMLAB Optimization Inc. and Pintér Consulting Services (2004) TOMLAB /LGO User
Guide. http://tomlab.biz/docs/TOMLAB_LGO.pdf.

Wilson, H.B., Turcotte, L.H., and Halpern, D. (2003) Advanced Mathematics and Mechanics
Applications Using MATLAB. Chapman & Hall / CRC Press, Boca Raton, FL.

Wolfram Research (2004) Mathematica. Wolfram Research, Inc., Champaign, IL.
http://www.wolfram.com.

Zabinsky, Z.B. (2003) Stochastic Adaptive Search for Global Optimization. Kluwer
Academic Publishers, Dordrecht.

Zwillinger, D. (1989) Handbook of Differential Equations. (3rd Edn.) Academic Press, New
York.

	INTRODUCTION
	GLOBAL OPTIMIZATION
	LGO SOLVER SUITE
	MATHOPTIMIZER PROFESSIONAL
	ILLUSTRATIVE APPLICATIONS: SOLVING SPHERE PACKING MODE
	CONCLUSIONS

