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Abstract: Integrated scientific-technical computing (ISTC) environments play an 

increasing role in advanced systems modeling and optimization. 
MathOptimizer Professional (MOP) has been recently developed to solve 
nonlinear optimization problems formulated in the ISTC system Mathematica. 
We introduce this software package, and review its key functionality and 
options. MOP is then used to solve illustrative circle packing problems, 
including both well-frequented models and a new (more difficult) model-class.  

 
Key words: Integrated computing systems; Mathematica; global optimization; LGO solver 

suite; MathOptimizer Professional; uniform and arbitrary size circle packings; 
illustrative results. 

1. INTRODUCTION 

Operations Research (O.R.) provides a consistent quantitative framework 
and techniques, to assist analysts and decision-makers in finding “good” 
(feasible) or “best” (optimal) solutions in a large variety of contexts. For an 
overview of prominent O.R. application areas, consult e.g. the 50th 
anniversary issue of the journal Operations Research (2002). 

A formal procedure aimed at finding optimized decisions consists of the 
following key steps. 
• Conceptual description of the decision problem at a suitable level of 

abstraction that retains all essential attributes, but omits secondary details 
and circumstances. 

http://www.pinterconsulting.com/
http://www.wamsystems.com/


 
 
• Development of a quantitative model that captures the key elements of 

the decision problem, in terms of decision variables and functional 
relationships among them. 

• Development and/or adaptation of an algorithmic solution procedure, in 
order to explore the set of feasible solutions, and to select the best 
decision. 

• Numerical solution of the model and its verification; interpretation and 
summary of results. 

• Posterior analysis and implementation of the decision(s) selected.  
The problems tackled by O.R. are often so complex that the correct 

model and solution procedure may not be clear at the beginning. Therefore, 
decision makers often must carry out the steps outlined above in an iterative 
fashion. The analyst repeatedly modifies and refines the model formulation 
and solution procedure until the model captures the essence of the problem, 
is computationally tractable, and its numerical solution is applicable in the 
context of the problem studied.  

These considerations make a strong case for using high-level, integrated 
software tools that can effectively assist in performing all related tasks in a 
unified framework. This point is particularly valid in modeling nonlinear 
systems, since their analysis may involve the evaluation of computationally 
intensive functions, visualization, animation, and so on.  

Maple (Maplesoft, 2004a), Mathematica (Wolfram Research, 2004), and 
Matlab (MathWorks, 2004) are prominent, fully integrated scientific-
technical computing systems. The capabilities and range of applications of 
these software products and related application packages are documented in 
software manuals, hundreds of books, and many thousands of articles and 
presentations. The current user base of ISTC systems is several million 
people worldwide. 

A concise list of the most significant features and capabilities of ISTC 
environments includes the following (note that each feature listed below is 
currently supported by at least one – and sometimes by all – of the three 
ISTC systems mentioned):   
• A broad range of simple and advanced computations with high – or even 

with arbitrarily high, adjustable – precision  
• Support for symbolic calculations 
• Extensive set of readily available functions, from programming language 

standards to special functions and general-purpose, complete numerical 
procedures (examples of the latter are integration routines, differential 
equation solvers, and numerical optimization routines) 

• Context-specific “point and click” (essentially syntax-free) operations 
via GUI elements that help to execute various tasks 

• Support for concise, transparent code development and maintenance 



 
 
• Support for several programming styles (procedural, functional, and rule-

based paradigms)  
• Full programmability (i.e., extendibility by adding new functionality) 
• Posterior analysis and implementation of the decision(s) selected 
• Advanced technical documentation, desktop publishing, and presentation 

features 
• Interactive and multimedia tools (in-situ evaluation, visualization, 

animation, sound) 
• Built-in, fully integrated help system that includes portable application 

examples 
• Automatic code generation from a given ISTC language to more 

“traditional, lower-level” programming languages (such as Basic, C, 
Fortran, Java, and so on) 

• Automatic conversions of ISTC system documents to tex, html, xml, ps, 
pdf (and possibly other) file formats 

• Direct links to external application packages, to other software products, 
and to the Internet 

• Portability across a broad range of hardware platforms and operating 
systems (such as e.g., Windows, Macintosh, Linux, and Unix versions). 
Many of these features can be effectively used during the various stages 

of developing O.R. applications. In particular, data analysis, model 
formulation, solution strategy and algorithm development, numerical 
solution, and project documentation can all be put together from the 
beginning – even in a single unified work document, if the developer wishes 
to do so. Hence, ISTC environments can increasingly provide a “one-stop” 
solution, to meet a broad range of needs of researchers, educators and 
students. This tendency has been receiving growing attention also in the 
O.R. community: for example, Mathematica has been recently reviewed in 
ORMS Today (Sodhi, 2003).  

We emphasize here that, although all modeling and computational 
environments – from Excel spreadsheets, through optimization-specific 
algebraic modeling languages (such as AIMMS, AMPL, GAMS, LINGO, 
MPL, and others) to the more general-purpose computing (ISTC) systems – 
may have a lower program execution speed when compared to a compiled 
“pure number crunching” system, the overall application development time 
can often be massively reduced by using higher-level systems, especially 
when development can be started from scratch. It is instructive to recall in 
this context the debate that surrounded the early development of 
programming languages – such as Algol, Basic, C, Fortran, Pascal, etc. – as 
opposed to machine-level assembly programming.   

Within the broad category of modeling and optimization problems, we 
see particularly strong application potentials for ISTC systems in studying 



 
 
nonlinear systems. For discussions of nonlinear system models and a broad 
range of their applications, consult e.g. Aris (1999), Bazaraa, Sherali, and 
Shetty (1993), Beltrami (1993), Bertsekas (1999), Bracken and McCormick 
(1968), Chong and Zak (2001), Diwekar (2003), Edgar, Himmelblau and 
Lasdon (2001), Gershenfeld (1999), Grossmann (1996), Hansen and 
Jørgensen (1991), Hillier and Lieberman (2005), Kampas and Pintér (2005), 
Murray (1983), Papalambros and Wilde (2000), Pardalos, Shalloway, and 
Xue (1996), Parlar (2000), Pearson (1986), Pintér (1996, 2005), Rich (1973), 
Schittkowski (2002), Tawarmalani and Sahinidis (2002), Wilson, Turcotte 
and Halpern (2003), Zabinsky (2003), and Zwillinger (1989). 

2. GLOBAL OPTIMIZATION  

As the books listed above well illustrate, nonlinearity is literally 
ubiquitous in the development (and modeling) of objects, formations and 
processes, including also living organisms of all scales, as well as various 
man-made systems. Decision-making (optimization) models that incorporate 
such a nonlinear system description frequently lead to complex problems 
that may or provably do have multiple − local and global − optima. The 
objective of global optimization (GO) is to find the “absolutely best” 
solution of nonlinear optimization models under such circumstances.  

In order to formalize the general global optimization paradigm 
considered here, we shall use the following notation: 

• x decision vector, an element of the real Euclidean n-space Rn 

• f(x) objective function, f: Rn º R1 

• D non-empty set of admissible decisions. 

The set D is defined by   

• xl, xu explicit, finite bounds of x (an embedding “box” in Rn) 

• g(x) m-vector of constraint functions, g: Rn º Rm. 
 
Applying the notation given above, the GO model can be stated as 
 

(1) min f(x)     x ∈ D := {x:   xl ≤ x ≤ xu   g(x) ≤ 0}. 
 
Note that in (1) all inequalities are interpreted component-wise. Under 

fairly general analytical conditions, the GO model (1) has a global solution 
(set). (For example, if D is non-empty, and f, g are continuous functions, 
then the model has a non-empty set of global solutions X*). Note that –
although we know that X* exists – if we use “traditional” local scope 



 
 
optimization strategies, then – depending on the starting point of the search – 
we will find only the corresponding locally optimal solution. In order to find 
– i.e., to properly approximate) – the “true” solution, a genuine global scope 
search effort is needed.  

Global optimization is of great theoretical and practical importance, with 
significant existing and prospective applications. As of today (2004), a few 
hundred books, thousands of articles and dozens of web sites are devoted to 
the subject. For detailed discussions of the most prominent GO model types 
and solution approaches, consult, for example, Horst and Pardalos (1995), 
and Pardalos and Romeijn (2002), visit also Neumaier (2004). Among the 
earlier cited books on nonlinear systems models and optimization, e.g. 
Grossmann (1996), Kampas and Pintér (2005), Pardalos, Shalloway and Xue 
(1996), Pintér (1996, 2005), Tawarmalani and Sahinidis (2002), Zabinsky 
(2003) – as well as many others – discuss nonlinear models and real-world 
applications which require a global solution approach. 

3. LGO SOLVER SUITE 

The LGO (Lipschitz Global Optimizer) software package serves to find – 
i.e., to numerically approximate – global and local solutions to nonlinear 
optimization models. The current LGO implementation incorporates the 
following solver modules:  
• Branch-and-bound global search method (BB)  
• Global adaptive random search (single-start) (GARS)  
• Multi-start based global random search (MS)  
• Constrained local search (LS) by the reduced gradient method  

All three global search methods will generate one (BB, GARS) or 
several (MS) approximations of the global optimizer point(s), before LGO is 
automatically switched to local search. The LS option can also be used in 
stand-alone mode, when started from a user-supplied initial point. 

For theoretical details of the underlying global search methodology, 
consult Pintér (1996). The LS approach used is discussed in numerous 
textbooks: see for instance, Edgar et al. (2001). The LGO software system 
itself has been discussed in books and articles: consult e.g., Pintér, 2001, 
2002, 2004, and the peer review by Benson and Sun, 2000. Therefore here 
we provide only a brief summary of the solver components. (Since LGO is a 
commercial software product, many of the implementation details will be 
omitted.) 

The BB module is based on a theoretically established (rigorous) global 
optimization approach. BB combines set partition steps with deterministic 
and randomized sampling: this combination also enables a statistical 



 
 
bounding procedure. Note, however, the program runtimes can be expected 
to grow fast(er) for higher-dimensional and more difficult models, if we 
want to find a close approximation of the global solution solely by BB. (A 
similar comment applies also to all other theoretically rigorous global search 
methods.)  

Pure random search is a very simple, “folklore” approach to global 
optimization that converges to the global solution (set) with probability 1. 
GARS is an improvement over that passive search approach in the sense that 
it adaptively attempts to focus the global search effort in the region which – 
on the basis of the actual sample results – is estimated to contain the global 
solution point (or, in general, one of these points).  

Multi-start (MS) based global search applies a similar search strategy to 
GARS; however, the total sampling effort is distributed among several 
searches. Each of these leads to a “promising” starting point for subsequent 
local search. Typically, this approach takes the most computational effort 
(due to its multiple local searches); however – especially in more difficult 
models – it often finds the best numerical solution (Pintér, 2003).  

In all global search modes an exact penalty (merit) function serves to 
aggregate the objective and constraint functions. Obviously, this assumes 
that the model functions are “acceptably” scaled. (A constraint penalty 
parameter can be adjusted via an LGO solver options file, to assist scaling.) 

Ideally – and also in many actual model-instances – all three global 
search methods will give the same answer, except perhaps small numerical 
differences. In practice, especially when solving more difficult problems, the 
LGO user may wish to try all three global search options (in conjunction 
with the subsequent local search), to see which method gives the best results.  

The local search (LS) component is based on the generalized reduced 
gradient (GRG) algorithm. In general, this search strategy is “only” locally 
convergent: therefore its use is recommended following one of the global 
searches, except in local optimization contexts. The application of LS, as a 
rule, results in a solution that is feasible and satisfies the Karush-Kuhn-
Tucker local optimality conditions.  

The solver suite approach – based on three different global solvers –
supports the robust and efficient numerical solution of nonlinear models. 
The entirely derivative-free methods implemented in LGO enable the 
handling of merely computable model functions: this is of particular 
relevance with respect to applications, in which higher order (gradient, 
Hessian, etc.) information is impossible, difficult, or too costly to obtain. 
LGO can be used even to handle “black box” models provided (only) as 
object files, dynamic link libraries, or executable programs. 

The LGO solver suite is currently available for C and Fortran compiler 
platforms, with customized links to Excel, GAMS, Maple, Mathematica and 



 
 
Matlab (via TOMLAB). For specific descriptions of the versions not 
discussed here, see e.g. Frontline Systems and Pintér Consulting Services 
(2001), GAMS Development Corporation and Pintér Consulting Services 
(2003), Maplesoft (2004b), TOMLAB Optimization Inc. and Pintér 
Consulting Services (2004). LGO is also offered – in a demo (size-limited) 
version – with the latest edition of the classical O.R. textbook by Hillier and 
Lieberman (2005). LGO, in its various implementations, has been used in 
commercial applications, as well as in a variety of research and educational 
environments for more than a decade. 

4. MATHOPTIMIZER PROFESSIONAL 

The MathOptimizer Professional software product is based on an 
external LGO solver implementation that is seamlessly linked to the 
Mathematica platform. In other words, MathOptimizer Professional offers a 
combination of Mathematica's sophisticated application development tools 
with core LGO solver functionality. This leads to a numerical performance 
that – in terms of both solution quality and solver speed – is comparable to 
other (compiler-based or optimization modeling language-related) LGO 
implementations, especially when models are more difficult and/or 
computationally intensive. In this section, we review the key features of 
MOP. Further details and an extensive list of practically motivated examples 
are discussed in the user manual (Pintér and Kampas, 2003), as well as in 
our forthcoming book (Kampas and Pintér, 2005).  

The functionality of MOP can be summarized by the following steps: 
• Optimization model formulation, in a Mathematica document (notebook) 
• Automatic export and translation of the model into C or Fortran code  
• Compilation of the generated code into a dynamic link library (DLL) 
• Call to the external LGO engine: the latter is a “ready-made” executable 

program that is now linked to the model-dependent DLL 
• Automatic model solution and report generation by LGO 
• Import and display of results into the calling Mathematica notebook. 

We refer to the approximately 150-page (printed) manual for further 
details. 

It should be noted that the approach outlined supports automatically 
“only” the solution of models defined by Mathematica functions that can be 
directly converted into (C or Fortran) program code. This, however, still 
allows the handling of a fairly broad range of continuous nonlinear 
optimization models (including, of course, all models that could be directly 
written in C or Fortran). Other implementations (with extended 
functionality) are also possible.  



 
 

One “side benefit” of using MOP is that models built in Mathematica 
can be directly used to generate corresponding C or Fortran test models. This 
is particularly advantageous in case of larger model-instances. 

MathOptimizer Professional (MOP) – and its solver function callLGO 
– is launched by the Mathematica statement 

 
Needs["MathOptimizerPro`callLGO`"]; 

 
The basic functionality of callLGO can be queried by the following 

Mathematica statement: see the auto-generated reply immediately below. 
(The format of this reply is slightly edited for the present purposes.) 
 
?callLGO 
 
callLGO[obj_, cons_List, varswithbounds_List, 
opts___]:  
obj is the objective function,  
cons is a list of the constraints,  
varswithbounds are the variables and their bounds in 
the format {{variable, lower bound, initial value for 
local search, upper bound}...} or {variable, lower 
bound, upper bound}...}. 
 
Function return is the value of the objective 
function, a list of rules giving the solution, and 
the maximum constraint violation.   
 
See Options[callLGO] for the options and also see the 
usage statements of the various options for their 
possible values. For example, enter ?Method for the 
possible settings of the Method option. 
 
Table 1 (below) summarizes the current callLGO option list, with added 

notes. All options can be changed by users, following MOP specifications. 
 
Option Name and Default Settings, with Additional Notes  

 
ShowSummary→False      Display (or not) LGO report file 
Method→MSLS         Alternatives: BBLS, GARSLS, LS 
MaxEvals→ProblemDetermined  Global search effort, set by default to 

1000*(n + m); (global search phase 
stopping criterion) 

MaxNoImprov→ProblemDetermined Global search effort without sufficient 
improvement, set by default to   
200*(n + m) (global stopping criterion) 

PenaltyMul→1         Penalty multiplier 



 
 
ModelName→LGO Model  Model-dependent name (can be chosen 

by user) 
DllCompiler→BC  Supported compilers: Borland C, 

Lahey Fortran, Microsoft C, Salford 
Fortran 

ShowLGOInputs→False     Display (or not) LGO input files  
LGORandomSeed→0      Set internally (can be reset by user)  
TimeLimit→300  Seconds (global search phase stopping 

criterion) 
TOBJFGL→ –1000000  Target objective function value in 

global search phase (global search 
phase stopping criterion) 

TOBJFL→ –1000000  Target objective function value in local 
search phase (local search phase 
stopping criterion) 

MFPI→10-6  Merit function precision improvement 
tolerance (local search phase stopping 
criterion) 

CVT→10-6          Accepted constraint violation tolerance 
              (local search phase stopping criterion) 
KTT→10-6          Kuhn-Tucker condition tolerance 
              (local search phase stopping criterion) 

 
Table 1. MathOptimizer Professional: callLGO options 

 
As indicated above, callLGO is activated by a statement of the form 
  
callLGO[f,{g},{x,xl,xn,xu}, options].  
 
Here the notations f, g, x, xl and xu directly correspond to the symbols 

defined in (1). In addition, xn (xl≤xn≤xu) is a user-supplied nominal 
solution – or a default setting, if xn is absent – that is used by LGO in its 
initial local search mode; finally, options denotes the calling parameters 
of the function callLGO.  

The following simple example serves to illustrate the basic MOP 
functionality, as it appears to the user in default mode. Consider the model 

 
min x2 + 2 y2   x + y ≥ 1   –2 ≤ x ≤ 2   –2 ≤ y ≤ 2.    
 
This optimization problem is solved by the next Mathematica statement 

that leads to the answer shown immediately below: 
 
  



 
 

callLGO[x^2 + 2*y^2,  
{x + y >= 1}, {{x, (-2, 0, 2}, {y, -2, 0, 2}}] 

 
The answer received is a Mathematica list (as shown by the curly braces 

and comma separators): 
 
{0.6666666666666666, {x -> 0.6666666667,  
y -> 0.3333333333}, 5.551115123125783*^-17} 

 
Here the first list element is the optimal objective function value found, 

followed by the list of corresponding variable assignments, and the maximal 
constraint violation at the solution point. (More details are shown 
automatically in the generated LGO report that can also be displayed in the 
notebook.) An extensive set of interesting GO challenges and practically 
motivated numerical examples are discussed also in the MOP User Guide. 

In the numerical examples discussed here Mathematica versions 5.01 or 
5.1 are used in conjunction with the Microsoft Visual C/C++ (MSVC, 
version 6.0) or the Salford FORTRAN 95 (FTN95) compiler. Furthermore, 
in all cases Pentium 4 processor based machines running under Microsoft 
Windows XP Professional version are used. Let us also note here that the 
RAM requirements of MOP per se are rather modest, at least for small or 
mid-size models; e.g., a personal computer with 256 Mb RAM is certainly 
adequate to handle MOP models with up to (at least) 1000 variables and 
1000 constraints. In principle, arbitrarily large models can be handled using 
virtual memory, given sufficient hard drive space and time. 

5. ILLUSTRATIVE APPLICATIONS:       
SOLVING SPHERE PACKING MODELS  

Object packing models are aimed at finding the best non-overlapping 
arrangement of a set of objects in a container object. This general modeling 
paradigm can be specified in many ways, leading to interesting – and 
typically quite difficult – models. In addition to a more theoretical interest 
directed towards specific, analytically tractable problem-instances, there is 
also an obvious practical motivation to solve packing models.  

In our recent and ongoing studies, we have found that this general 
model-class can be used to test and benchmark global optimization software. 
Several special cases and model-instances will be discussed below, to 
illustrate the potentials of numerical global optimization in solving object 
packing problems.  

 
 



 
 
5.1  Packing Identical Size Circles in the Unit Square 

 
The problem can be stated as follows: given the unit square and a 

positive integer k, find the maximal radius r of k identical circles that can be 
placed into the square, without overlaps. (Evidently, r=r(k).)  

This problem, as well as some other related circle packing models, has 
become a fascinating subject for both professional researchers and amateurs, 
at least in recent decades. There exists a significant body of literature (books, 
articles, dissertations, and web sites) discussing uniform circle packings. 
This information available includes proofs (only) for a small number of 
special cases (namely, for k=2,…,9, 14, 16, 25, and 36 circles), or computer 
aided optimality proofs, with guaranteed bounds (for up to k=30). In many 
other cases, only “best known” constructions are known.  

To illustrate some rigorous bounding results, Csendes and his colleagues 
have applied interval arithmetic based GO methodology to prove bounds for 
best circle packings. The websites of Csendes (2004) and Markót (2004) list 
their related publications.  

Referring to the general case, Graham noted in an interview (Albers, 
1996) that he does not expect to know the true (i.e., proven optimal) solution 
for placing 1000 equal size circles in the unit square. The reason for his 
“learned skepticism” is that there is no unifying theory, and that intuition 
may fail: for example, in the k=49-circle case the seemingly obvious “seven-
by-seven” configuration is not optimal, consult e.g. Specht (2004).  

Without going into further details regarding this area of research, let us 
mention the thesis of Melissen (1997): he provides a detailed review of 
uniform circle packing model statements and key analytical results, with 
more than 350 topical references. The website of Specht (2004) is another 
rich source of information related to uniform size circle packings (in the unit 
square, the unit circle, and in rectangles): the site also includes references. 
We will compare our numerical results to those listed at this website as best 
(proved or postulated). 

We also wish to emphasize that our sole purpose here is to illustrate the 
applicability of numerical global optimization (specifically, of LGO and 
thereby of MathOptimizer Professional) to difficult packing models, even 
without specifying or postulating any prior structure. More extensive studies 
should be based on more detailed and sophisticated modeling than what we 
are presenting here. We will cite only some of our existing numerical results: 
more details are available upon request, and will appear elsewhere.  

Let us denote by ci=(xi yi) the center of circle i=1,…,k: the coordinate 
pairs (xi yi) and the radius r of these circles are the decision variables. The 
constraint that the circles i and j do not overlap means that the sum of their 
radii is less than the distance between the centers: 



 
 

 
(2) 2r ≤ || ci – cj ||;     here || ci – cj || := [(xi– xj)2 + (yi –yj)2 ]1/2     1≤i<j≤k.  
 

Note that each instance of the inequality in (2) is a non-convex constraint 
(since the norm function is convex). For k-circle configurations, we have 
k(k-1)/2 such constraints.  

We shall consider the unit square that is centered at the origin. 
Additional constraints postulate that the circles are inside the enclosing 
square. These are derived from simple geometrical considerations; a possible 
formulation is: 
 
(3) | xi | + r ≤ 0.5   and   | yi | + r ≤ 0.5     1≤i≤k. 
 

This way, in addition to the non-convex constraints we have 2k non-
linear convex constraints. (Alternative formulations are also possible, e.g. by 
replacing the latter constraints by linear ones. However, we have been using 
the constraints (3) in our numerical experiments.). Under the conditions (2)-
(3), our objective is to 

 
(4) maximize r. 
 

We have developed a Mathematica model (a function) that is directly 
based on relations (2) to (4). This function is parameterized by the number of 
circles: therefore inserting a positive integer value k in the function provides 
the corresponding k-circle model instance. As noted earlier, MathOptimizer 
Professional automatically translates this Mathematica model to C or Fortran 
form, and then the external LGO solver is invoked to solve it. For 
illustration, the 20-circle solution found is shown below. 

 
 
 
 
 
 
 
 
 
 

Figure 1. Packing 20 uniform size circles in the unit square  



 
 

Note that this figure is directly imported from the Mathematica notebook 
document where the model formulation and all calculations have also been 
done. The optimized value of the circle radius r=r(20) found by MOP is  

 
r  ~ 0.1113823476.  
 
The radius found agrees well (to about 10-10 absolute precision) with the 

value 0.111382347512 posted at http://www.packomania.com. Note that 
such – arguably minor – imprecision can be due to several factors: one of the 
significant factors is that LGO applies central finite-difference based 
gradient approximation in its local search phase. This adds some error to that 
of standard floating point precision calculations.  

The computer used to solve this example has a 3.2 GHz Pentium 4 
processor and is running Windows XP; we used the Salford Fortran 95 
compiler (Salford Software, 2004). The corresponding runtime is about 19 
seconds. Note that runtimes may change slightly even when repeating the 
same run, due to hardware and OS status changes: however, the timing cited 
gives an impression of the MOP solver speed. (LGO per se runs faster, of 
course.) Recall that the 20-circle model instance of (2)-(4) has 41 decision 
variables, and 230 nonlinear constraints of which 190 are non-convex. 
Further detailed numerical results will appear e.g. in our forthcoming book 
(Kampas and Pintér, 2005). 

 
5.2  Packing Identical Size Circles in the Unit Circle 
 

This problem can be stated as follows: given the unit circle and a 
positive integer k, find the maximal radius r=r(k) of k identical circles that 
can be placed into the circle, without overlaps.   

Applying straightforward modifications of model (2)-(4), the adapted 
model can be written as 

 
(5) maximize r 

2r ≤ || ci – cj ||  1≤i<j≤k  
r + || ci || ≤ 1  1≤i≤k. 
  

As above, || ci – cj ||= [(xi– xj)2 + (yi –yj)2 ]1/2 and || ci || := (xi
2 + yi

2 )1/2. The 
model (5) has 2k+1 decision variables, k convex nonlinear constraints, and 
k(k-1)/2 non-convex constraints. 

For illustration, we cite the solution of the 20-circle model instance (that 
has 41 decision variables and 210 constraints of which again 190 are non-
convex). The next figure shows the configuration obtained. 

 
 



 
 

  
 
 
 
 
 
                            

 
 
  
                           

Figure 2. Packing 20 uniform size circles in the unit circle  

The radius r=r(20) found by MOP in this example equals 0.1952240114. 
This value agrees to at least 10-9 absolute precision with the best known 
result cited at www.packomania.com (0.1952240110...)  The corresponding 
runtime is approximately 43 seconds, on the same computer as mentioned 
above. 
 
5.3  Packing Non-Uniform Size Circles in an Optimized Circle 
 

In this section, we introduce a new class of object packing models. Our 
objective is to find the minimal size circle that contains a given non-
overlapping circle configuration that is made up by (in principle, arbitrary 
size) circles. To our best knowledge, this model has not been studied before 
by others in a GO setting: we also think that such models can be 
significantly more difficult than the more specific cases discussed in the 
preceding two sections.  

We shall denote by ri the radius of circle i for i=1,…,k. With a 
straightforward generalization of (5), we obtain the model  

 
(6) minimize r 

ri + rj ≤ || ci – cj ||    1≤i<j≤k.  
ri + || ci || ≤ r       i=1,...,k. 
  

Notice that now r is the unknown radius of the circumscribing circle that 
is minimized: its value depends on the set of circle radii {ri}. Similarly to 
(5), model (6) has 2k+1 decision variables, k convex nonlinear constraints, 
and k(k-1)/2 non-convex constraints.  

To illustrate this model, in the last numerical example presented here we 
will pack circles of radius ri=i-1/2 i=1,...,k into a circumscribing circle. Notice 
that in this case the total area of the embedded circles is slowly divergent as 



 
 
k goes to infinity: therefore the optimized radius also will be unbounded as a 
function of k. (Packings with bounded total area may also be of interest, of 
course.) Figure 3 shows the optimized circle arrangement found for k=20.  

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Packing 20 non-uniform size circles in the unit circle: ri=i-1/2 i=1,...,20  

The radius of the circumscribing circle r=r(20) in this case approximately 
equals 2.12545. The corresponding runtime is about 47 seconds, on the 
machine mentioned before. Comparing this runtime with the previous one 
(that was 43 seconds for packing 20 identical size circles) one can see that 
MOP (i.e., LGO) handles the more general model with fairly little extra 
computational effort. 

Although obviously all numerical test results depend also on certain 
solver parameterizations, we think that the examples presented indicate the 
capabilities and potentials of MOP.  (The same default solver settings were 
used in all examples reviewed here, without any “tweaking”.)  

Let us remark finally that we have attempted to solve a large variety of 
circle packing model instances using also other “general purpose” 
commercial optimization software products (and applying all solver options 
with default settings, the same way MOP was used). The solvers tested 
specifically included Mathematica’s built-in constrained optimization 
function (NMinimize), and several third party packages. Our comparative 
results consistently have demonstrated the relative strength and efficiency of 
MOP, both in terms of solution quality and runtime. These results will 
appear in a forthcoming paper, as well as in Kampas and Pintér (2005).  



 
 
6. CONCLUSIONS 

In addition to perhaps more “traditional” development environments –
such as compiler platforms, spreadsheets, and algebraic modeling languages 
– integrated scientific-technical computing systems will play an increasing 
role in advanced systems modeling and optimization.  

In order to meet related user demands, MathOptimizer Professional has 
been recently developed to handle nonlinear optimization problems 
formulated in Mathematica. MOP operations are based on an easy-to-use 
Mathematica interface to the LGO solver suite. Following a brief 
introduction to the key features of MathOptimizer Professional, we illustrate 
its usage by solving relatively small, yet non-trivial circle packing problems. 
More detailed numerical results and comparative assessments will appear 
elsewhere.  

For over a decade, the core LGO solver suite has been applied in a large 
variety of research and professional contexts: consult, e.g., Pintér (1996, 
2001, 2002, 2003, 2004, 2005), with numerous further references to such 
applications. In recent years, LGO has become a solver engine option 
available for use with an increasing number of modeling environments. 
Currently these include essentially “all” C and Fortran compilers, Excel 
spreadsheets, the GAMS modeling language, and the integrated scientific-
technical computing systems Maple, Mathematica and MATLAB. (Further 
similar development is in progress.) The current LGO implementations have 
been used to solve models in up to a few thousand variables and constraints. 
We expect that MathOptimizer Professional will enable the solution of 
sizeable, sophisticated Mathematica models with efficiency comparable to 
that of compiler platform based nonlinear solvers.  
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