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Introduction

In our talk  we would like to briefly acquaint the audience with prototype problems studied in
our workgroup, to show how to use Mathematica in our problems, and finally we would like to
suggest improvements in Mathematica which would make our work more effective. 

Numerous phenomena in physics, chemistry, biology, and economy can be modelled by bound-
ary-value problems for differential equations. These boundary-value problems (BVPs for short)
can often be written in an operator form

L HuL + H Hu, pL = f ,

here

L (linear or nonlinear) mapping between appropriate function spaces X and Y ;

H: X ä  n Ø Y being an nonlinear operator ;

f œ Y being fixed ;

p œ n  being parameters . 

Solvability,  multiplicity  and  bifurcation  of  solutions  are  of  particular  interest  for  people  from
praxis.  Note that  the BVPs depending on parameters describe such important phenomena as
resonance, in which the real systems usually undergo drastic changes leading to their collapse
(suitable small  perturbations in  external  forcings effect  in  big changes in  their  corresponding
responses).
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Examples of problems:

Mathematical models of stationary processes from nonlinear heat trasfer,
nonlinear reaction-diffusion theory, magnetohydrodynamics and glaceology :

- div( » gradu »p-2 grad u) - l » u »p-2 u + g(l, x, u)= f ,          in W ;
                                                             u=0,            on ∑W 
or its one-dimensional variant

- ( » u ' »p- 2u')' - l » u »p-2 u + g(l, x, u)= f,               in  (0,1);
                     u(0)=0,  u(1)=0 . 

Mathematical models of one-degree-freedom oscillator:

u'' + l u + g(l, x, u, u' ) = f

subject to the preriodic b.c. :

u(0)=u(p),  u'(0)=u'(p)

or subject to the Dirichlet b.c. :

u(0)=0 , u(p)=0

or the Neuman b.c.:

u'(0)=0 ,  u'(p)=0 .

With  more  general  nonlinearities  involved  in  the  equations,  one  looses  idea  what  can  be
proved or disproved. For that reason, numerical experiments become an indispensable tool of
nonlinear analyst nowadays in the following way. In order to get at least rough idea about the
qualitative  behavior,  one  performs  a  set  of  numerical  experiments  by  discretizing  over  the
domain of parameters. This approach leads to an enormous amount of BVPs usually. To solve
such  a  number  of  BVPs  would  hardly  be  possible  without  parallelization.  The  parallelization
with  respect  to  the  discretized  set  of  parameters  can  be  considered  as  a  pure  data-parallel
approach (same code, different data). Parallel Computing Toolkit  (PCT for short) brings data-
parallel methods into Mathematica efficiently.

Example of an numerical experiment:

Given 1<p, let us investigate the set of all (l, u) œ äW1,pH0, 1L satisfying the following

- ( » u ' »p- 2u')' - l » u »p-2 u = f T + a j1  ,               in  (0,1);
                     u(0)=0,  u(1)=0 . 
                     

Petr Girg: Parallel Computing 3



boundary value problem with l being close to l1 .

Here l1  œ  and j1  œ W1,pH0, 1L satisfy

- ( » j1 ' »p- 2 j1 ')' - l1  » j1 »p-2 j1  = 0 ,               in  (0,1);

                     ϕ1 (0)=0,  ϕ1 (1)=0 ;

             

0

1

  » j1 »p=1.

Note that this problem is related with the so-called nonlinear Fredholm alternative.
Fredholm alternative is the necessary and sufficient condition for the solvability of 
abstract equations with compact linear operators. In 1960-ties atempts to extend 
this theory to nonlinear but still homogeneous operators have been started. "It is easy 
to see that the differential operator u # -( » u ' »p- 2 u')' - l » u »p-2u  "is (p-1)-homogeneous:         
     
-( » Ha uL ' »p- 2 Ha uL ')' - l » Ha uL »p-2 Ha uL = - » a »p-2 a {( » u ' »p- 2 u')' - l » u »p-2u}

Parallelization with NDSolve

For mathematically correct setting of the problem and thorough discussion of numerical experi-
ments, we kindly invite the reader to see [3], [4]. 

It  is  well  known  fact  that  the  shooting  method  is  very  robust  approach  of  solving  BVPs  for
ODE's. Corresponding initial-value problem for the first-order system of ODE's:

u'  =  » v »p'-2 v  ;
v'  = -l » u »p-2  u + f T + a j1  ;
j1 '=  » w »p'-2 w  ;
w' =  l » j1 »p-2 j1  

subject to

u(0)  = 0
v(0)  =  » uH0L »p-2  uH0L = » a  »p-2  a   
j1 (0) = 0
w(0)  = pp

p-1

Resulting system contains  nonlinearities which  are not  all  Lipschitz  continuous.  For  that  rea-
son,  uniqueness  of  solutions  is  not  guarranteed.  We  speak  of  numerical  experiment  rather
than of numerical computation of solutions.
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We are ready to apply numerical methods now.

General philosophy of problem solving in Mathematica

Use build-in Mathematica functions as much as possible. 

General philosophy of data-parallel approach:

Divide the  problem into  independent  parts  where  different  data  are   processed by  the  same
code. 

Solution:

Let u(l, a, a, 1) denote the value of the solution u to the initial boudary value problem.

It is not difficult to define corresponding numerical function in Mathematica using 
NDSolve . 

We parallelize with respect to the parameter a œ , i.e., we consider set of discrete values
 ai  œ   ,   i œ {1, 2, 3, ..., n}, where n œ  is an multiple of the number of processors avail-
able, typically. 

Value of ai  given, we use ContourPlot to function  u(#1, #2, ai , 1)&  with an option Contours
Ø {0}.
Complexity of this step is O(PlotPoints2 ) passed to ContourPlot. 

Nodes of contour lines are then refined using FindRoot ;  complexity being O(PlotPoints).

See figures attached in postscript files Fredholm.ps, LandesmanLazer.ps, Oscilatory.ps.

Parallelization for symbolic code

Given 1<p, let us find (l, u) œ äW1,pH0, 1L satisfying the following

- ( » u ' »p- 2u')' - l » u »p-2 u = f T + a j1  ,               in  (0,1);
                     u(0)=0,  u(1)=0 . 
                     
boundary  value  problem with  l  being  close  to  l1 .   Let  us  use  spectral  Ritz-Galerkin  method
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now. 

Corresponding potential:

0

1

(-
p
1 » u ' »p  - l -

p
1 » u »p  + (f T + a j1 ) u) „x ,

For p=2 k,  k œ  we can handle this problem symbolically (at least partially).

We take

uHxL = b1 sinHxL + b2 sinH2 xL + b3 sinH3 xL + b4 sinH4 xL

as the finite dimensional approximation of u.

For p=4 and f(x)=sin(2 x), the integrand in thepotential is computedby :

int =

ReleaseHold@
Hold@H1êp D@u@xD, xD^p − λ ê p Hu@xDL^p + f@xD u@xDLD ê.
8u@xD → b1 Sin@xD + b2 Sin@2 xD + b3 Sin@3 xD + b4 Sin@4 xD,

f@xD −> Sin@2 xD<
D

1cccc4 Hb1 Cos@xD + 2 b2 Cos@2 xD + 3 b3 Cos@3 xD + 4 b4 Cos@4 xDL4 +

Sin@2 xD Hb1 Sin@xD + b2 Sin@2 xD + b3 Sin@3 xD + b4 Sin@4 xDL −
1cccc4 λ Hb1 Sin@xD + b2 Sin@2 xD + b3 Sin@3 xD + b4 Sin@4 xDL4
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Calculatingthe potentialby direct integration :

Integrate@int, 8x, 0, Pi<D êê Timing

927.139 Second, 3 b14 πccccccccccccc32 + b2 πcccccccc2 + 3cccc2 b12 b22 π + 3 b24 πccccccccccccc2 + 3cccc8 b13 b3 π +
9cccc2 b1 b22 b3 π + 27cccccc8 b12 b32 π + 27cccccc2 b22 b32 π + 243 b34 πccccccccccccccccc32 + 3 b12 b2 b4 π +

18 b1 b2 b3 b4 π + 27 b2 b32 b4 π + 6 b12 b42 π + 24 b22 b42 π + 54 b32 b42 π +

24 b44 π − 3cccccc32 b14 π λ − 3cccc8 b12 b22 π λ − 3cccccc32 b24 π λ + 1cccc8 b13 b3 π λ − 3cccc8 b1 b22 b3 π λ −
3cccc8 b12 b32 π λ − 3cccc8 b22 b32 π λ − 3cccccc32 b34 π λ + 3cccc8 b12 b2 b4 π λ − 3cccc4 b1 b2 b3 b4 π λ −
3cccc8 b2 b32 b4 π λ − 3cccc8 b12 b42 π λ − 3cccc8 b22 b42 π λ − 3cccc8 b32 b42 π λ − 3cccccc32 b44 π λ=

Trickywayof integrationbyusing linearityof the integral :

Map@
Integrate@#, 8x, 0, Pi<D &, Expand@intD
D êê Timing

95.167 Second, 3 b14 πccccccccccccc32 + b2 πcccccccc2 + 3cccc2 b12 b22 π + 3 b24 πccccccccccccc2 + 3cccc8 b13 b3 π +
9cccc2 b1 b22 b3 π + 27cccccc8 b12 b32 π + 27cccccc2 b22 b32 π + 243 b34 πccccccccccccccccc32 + 3 b12 b2 b4 π +

18 b1 b2 b3 b4 π + 27 b2 b32 b4 π + 6 b12 b42 π + 24 b22 b42 π + 54 b32 b42 π +

24 b44 π − 3cccccc32 b14 π λ − 3cccc8 b12 b22 π λ − 3cccccc32 b24 π λ + 1cccc8 b13 b3 π λ − 3cccc8 b1 b22 b3 π λ −
3cccc8 b12 b32 π λ − 3cccc8 b22 b32 π λ − 3cccccc32 b34 π λ + 3cccc8 b12 b2 b4 π λ − 3cccc4 b1 b2 b3 b4 π λ −
3cccc8 b2 b32 b4 π λ − 3cccc8 b12 b42 π λ − 3cccc8 b22 b42 π λ − 3cccc8 b32 b42 π λ − 3cccccc32 b44 π λ=

Speed up :

27.139` ê5.167`
5.25237
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Here, weuse the fact thatexpanded integrandhas thehead Plus :

Expand@intD

1cccc4 b14 Cos@xD4 + 2 b13 b2 Cos@xD3 Cos@2 xD + 6 b12 b22 Cos@xD2 Cos@2 xD2 +

8 b1 b23 Cos@xD Cos@2 xD3 + 4 b24 Cos@2 xD4 + 3 b13 b3 Cos@xD3 Cos@3 xD +

18 b12 b2 b3 Cos@xD2 Cos@2 xD Cos@3 xD + 36 b1 b22 b3 Cos@xD Cos@2 xD2 Cos@3 xD +

24 b23 b3 Cos@2 xD3 Cos@3 xD + 27cccccc2 b12 b32 Cos@xD2 Cos@3 xD2 +

54 b1 b2 b32 Cos@xD Cos@2 xD Cos@3 xD2 + 54 b22 b32 Cos@2 xD2 Cos@3 xD2 +

27 b1 b33 Cos@xD Cos@3 xD3 + 54 b2 b33 Cos@2 xD Cos@3 xD3 + 81cccccc4 b34 Cos@3 xD4 +

4 b13 b4 Cos@xD3 Cos@4 xD + 24 b12 b2 b4 Cos@xD2 Cos@2 xD Cos@4 xD +

48 b1 b22 b4 Cos@xD Cos@2 xD2 Cos@4 xD + 32 b23 b4 Cos@2 xD3 Cos@4 xD +

36 b12 b3 b4 Cos@xD2 Cos@3 xD Cos@4 xD + 144 b1 b2 b3 b4 Cos@xD Cos@2 xD Cos@3 xD Cos@4 xD +

144 b22 b3 b4 Cos@2 xD2 Cos@3 xD Cos@4 xD + 108 b1 b32 b4 Cos@xD Cos@3 xD2 Cos@4 xD +

216 b2 b32 b4 Cos@2 xD Cos@3 xD2 Cos@4 xD + 108 b33 b4 Cos@3 xD3 Cos@4 xD +

24 b12 b42 Cos@xD2 Cos@4 xD2 + 96 b1 b2 b42 Cos@xD Cos@2 xD Cos@4 xD2 +

96 b22 b42 Cos@2 xD2 Cos@4 xD2 + 144 b1 b3 b42 Cos@xD Cos@3 xD Cos@4 xD2 +

288 b2 b3 b42 Cos@2 xD Cos@3 xD Cos@4 xD2 + 216 b32 b42 Cos@3 xD2 Cos@4 xD2 +

64 b1 b43 Cos@xD Cos@4 xD3 + 128 b2 b43 Cos@2 xD Cos@4 xD3 + 192 b3 b43 Cos@3 xD Cos@4 xD3 +

64 b44 Cos@4 xD4 − 1cccc4 b14 λ Sin@xD4 + b1 Sin@xD Sin@2 xD − b13 b2 λ Sin@xD3 Sin@2 xD +

b2 Sin@2 xD2 − 3cccc2 b12 b22 λ Sin@xD2 Sin@2 xD2 − b1 b23 λ Sin@xD Sin@2 xD3 −
1cccc4 b24 λ Sin@2 xD4 − b13 b3 λ Sin@xD3 Sin@3 xD + b3 Sin@2 xD Sin@3 xD −

3 b12 b2 b3 λ Sin@xD2 Sin@2 xD Sin@3 xD − 3 b1 b22 b3 λ Sin@xD Sin@2 xD2 Sin@3 xD −

b23 b3 λ Sin@2 xD3 Sin@3 xD − 3cccc2 b12 b32 λ Sin@xD2 Sin@3 xD2 −

3 b1 b2 b32 λ Sin@xD Sin@2 xD Sin@3 xD2 − 3cccc2 b22 b32 λ Sin@2 xD2 Sin@3 xD2 −

b1 b33 λ Sin@xD Sin@3 xD3 − b2 b33 λ Sin@2 xD Sin@3 xD3 − 1cccc4 b34 λ Sin@3 xD4 −

b13 b4 λ Sin@xD3 Sin@4 xD + b4 Sin@2 xD Sin@4 xD − 3 b12 b2 b4 λ Sin@xD2 Sin@2 xD Sin@4 xD −

3 b1 b22 b4 λ Sin@xD Sin@2 xD2 Sin@4 xD − b23 b4 λ Sin@2 xD3 Sin@4 xD −

3 b12 b3 b4 λ Sin@xD2 Sin@3 xD Sin@4 xD − 6 b1 b2 b3 b4 λ Sin@xD Sin@2 xD Sin@3 xD Sin@4 xD −

3 b22 b3 b4 λ Sin@2 xD2 Sin@3 xD Sin@4 xD − 3 b1 b32 b4 λ Sin@xD Sin@3 xD2 Sin@4 xD −

3 b2 b32 b4 λ Sin@2 xD Sin@3 xD2 Sin@4 xD − b33 b4 λ Sin@3 xD3 Sin@4 xD −
3cccc2 b12 b42 λ Sin@xD2 Sin@4 xD2 − 3 b1 b2 b42 λ Sin@xD Sin@2 xD Sin@4 xD2 −
3cccc2 b22 b42 λ Sin@2 xD2 Sin@4 xD2 − 3 b1 b3 b42 λ Sin@xD Sin@3 xD Sin@4 xD2 −

3 b2 b3 b42 λ Sin@2 xD Sin@3 xD Sin@4 xD2 − 3cccc2 b32 b42 λ Sin@3 xD2 Sin@4 xD2 −

b1 b43 λ Sin@xD Sin@4 xD3 − b2 b43 λ Sin@2 xD Sin@4 xD3 −

b3 b43 λ Sin@3 xD Sin@4 xD3 − 1cccc4 b44 λ Sin@4 xD4
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We can define:

pot@λ_, p_, f_, b1_, b2_, b3_, b4_, b5_D := Map@
Integrate@#, 8x, 0, Pi<D &,
Expand@

ReleaseHold@
Hold@H1êp D@u@xD, xD^p − λê p Hu@xDL^p + f@xD u@xDLD ê.

u@xD → b1 Sin@xD + b2 Sin@2 xD + b3 Sin@3 xD + b4 Sin@4 xD
D
D
D

Usage:

pot@λ, 3, Sin@2 #D &, b1, b2, b3, b4D

Parallelizationis usefullhere !

use ParallelMap instead of Map

To avoid a lot of communication, use partitioning.

Example of partitioning:

On a 5-node homogeneous cluster, do the following

ParallelMap@
Map@
HIntegrate@#, 8x, 0, Pi<D &L, #

D &,
With@8numberOfNodes = 5<,

Partition@List @@ Expand@
ReleaseHold@

Hold@H1êp D@u@xD, xD^p − λ êp Hu@xDL^p + f@xD u@xDLD ê.
8u@xD → b1 Sin@xD + b2 Sin@2 xD + b3 Sin@3 xD + b4 Sin@4 xD,

f@xD −> Sin@2 xD<
D
D, numberOfNodes, numberOfNodes, 81, 1<, 0D êê Transpose

D
D

Petr Girg: Parallel Computing 9



More clear explanation to partitioning:

With@8numberOfNodes = 5<,
Partition@
8int01, int02, int03, int04, int05,

int06, int07, int08, int09, int10,
int11<,
numberOfNodes, numberOfNodes, 81, 1<, 0D

êê Transpose
D
êê TableForm

processor 1 : int01 int06 int11
processor 2 : int02 int07 0
processor 3 : int03 int08 0
processor 4 : int04 int09 0
processor 5 : int05 int10 0

Equations to solve:

D[pot@λ, 3, Sin@2 #D &, b1, b2, b3, b4D, b1] == 0
D[pot@λ, 3, Sin@2 #D &, b1, b2, b3, b4D, b2] == 0
D[pot@λ, 3, Sin@2 #D &, b1, b2, b3, b4D, b3] == 0
D[pot@λ, 3, Sin@2 #D &, b1, b2, b3, b4D, b4] == 0

Using FindRoot (or Reduce if the number of variables is not very big) we can obtain bifurcation
diagram in 3-D  äW where W is spanned by {Sin(x), Sin(2 x)}:
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This methodworks also for partial differentialequations

Ionly prospectivedifficulty is to find basis functions in  W1,pHW LM.

Parameter Idetification in NonlinearModels

If a heat-exchanger tube array is subjected to a cross-flow  fluid-elastic instabilities occur for
some  range  of  velocities.  Since   the  resulting  amplitudes  of  tube  oscillations  may  become
large  causing  damage  of  the  heat  exchanger,this  phenomena  of  self-excitation  has  to  be
avoided  whenever  possible.  Lacking  satisfactory  theoretical  models   in  aeroelasticity  we  are
limited to semi-empirical models. On purpose, we employ a nonlinear model:

    m u'' + b u' + k u - V2  g (u-y-c)(u-y)(u-y+c)=0
    y'+b y = u
    uH0L = u0 , u ' H0L = v0,  yH0L = 0

introduced by Tondl [Tondl, Quenching of Self-Excited Vibrations, Academia, Prague, 1991] in
a slightly different context (here m, b, k are structural mass, damping, and stiffness, respec-
tively, u is the deflection of the tube, y is an auxiliary variable, V2  the free-stream velocity,  c,
b and g are parameters, ).   

Realistic values of parameters c, b and g are difficult to estimate theoretically. For that reason
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we have decided to estimate them using parameter identification from measured data. There
were several problems we encountered in doing so.We mention the most significant ones:

(i)  Ratio  of  the  time  needed  to  achieve  either  stable  equilibrium  or  the  limit  cycle  and  the
period of oscillations of the system is very high (about  30000). This forces to use  very small

integration  step  when  solving  the  system  numerically  (small  in  comparison  with  the  time
domain) and to use enormous amount of data to which the solution of the nonlinear problem
has to be fitted.This leads to possible accumulation of rounding errors.

(ii)  The  objective  function  has  many  local  critical  points.To  find  the  global  minimum is  very
difficult.

(iii) Fluctuations of the velocity of the free stream during the measurement.

We have partially solved problem (i) by using higher precision arithmetic supported by Mathe-
matica (if  it would not have been enough we can use multishooting methods). This approach
is  extremely  both  memory  and  time  consuming,  however.To  partially  overcome  problem
(ii),we use global optimization algorithms based on differential evolution (genetic algorithm) to
get near to the  prospective global minimum. Then we proceed by using standard local meth-
ods such as the Newton method to find the critical point. Finally,the problem (iii) was solved
by considering the velocity of the free stream as a function of t.

Conclusion - improvementssuggestions

In  processing  of  our  problems  we  often  use  shooting  method,  which  is  implemented  using
NDSolve  accompanied   with  FindRoot,  ContourPlot  or  NMinimize  in  Mathematica.  Since

NDSolve is called with the same equation and different initial conditions many times within the

shooting, we found NDSolve methods very useful (significant speed-up). In many of our prob-

lems parameters are present. However, NDSolve  methods are unable to process new choices

of  parameters.  For  that  reason  we  would  like  to  ask  developers  to  include  this  possibility  in
NDSolve  methods  together  with  initial  conditions  in  one  command  if  possible  (one  would
reduce  number  of  high-level  calls  resulting  in  increase  of  speed).  Finaly,  I  would  like  to
present an example where also options of NDSolve have to be changed in each step of compu-

tation of the bifurcation diagram. 

− I » u ' »p- 2 u 'M ' − l » u »p-2 u + Sin@uD = f T + a j1 , in H0, 1L;
u H0L = 0, u H1L = 0 .

Analogously as above, we employ shooting method for obtaining bifurcation diagrams. It is
known see e.g. [7,8] or references therein that  u/˛u˛ has its profile of the form Sin[p t] in
[0,1] for ˛u˛Ø +¶. For that reason,
we have to integrate initial value problem with highly oscillating term Sin[u]ºSin[˛u˛ Sin[p t]]:
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In[134]:=

Plot@Sin@100 ∗ Sin@Pi tDD, 8t, 0, 1<D
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1

Out[134]=

h Graphics h

In[136]:=

Plot@Sin@1000 ∗ Sin@Pi tDD, 8t, 0, 1<, PlotPoints → 3000D

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

Out[136]=

h Graphics h

In order to get reasonable results, we have to satisfy Nyquist criterion of the integrand sam-
pling. Since the frequency of oscillations is strongly depending on ˛u˛ which can be estimated
from u'(0), it would be nice to have possibility of  having NDSolve methods for changing Max-

StepSize together with processing initial values, (and hopefully with parameters; see above).

This would significantly speed-up our computations. 

Let me conclude this work advertising our project called CML (Central Mathematics Labora-
tory)  where  most  of  know-how  presented  in  contribution  will  be  accesible  through
web Mathematica interface.
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