
Translating Mathematica expressions to High PerformanceFortranAnton AntonovUNI-C, DTU, bldg.304, DK-2800 Lyngby, Denmarkemail: Anton.Antonov.Antonov@uni-c.dkphone: (+45) 3587 8965, fax: (+45) 3587 8990AbstractThis paper introduces some ideas for translating the functional lan-guage Mathematica to the data-parallel language High PerformanceFortran (HPF). It �rst discusses why we have the ability to do that.Then it gives some interpretations by Category Theory. Third thetranslating approach is presented for di�erent Mathematica expressionsthat could be interpreted as speci�cations for parallel independence,reduction, task parallelism and subprogram's data mapping. Last isshown a simple executable program generated by the translator.1 IntroductionProgramming by functions is very natural and completely suitable for specifying mathematical problemsquickly and elegantly. We can say that when we program with a functional language we directly use themathematical meaning of the process we want to model and that leads to concise, elegant programs. Thisis one of the main reasons the functional languages to be developed [3].Conciseness and elegance are highly desirable in the procedural languages too. That is why, for example,the modern FORTRAN 95 is more convenient for its users than the older FORTRAN versions. Considerthe array processing and the array intrinsics in FORTRAN 90 and FORTRAN 95 [4] we can say that theselanguages are like object-oriented ones with just one static class which de�nes an abstract type for arrays.We want also concise and elegant programs for the parallel computers. According to the two dual ap-proaches in the paradigm of parallel programming, namely - the functional decomposition and the datadecomposition, it seems natural from the functional languages to develop functional-parallel ones and fromthe "data" languages (like FORTRAN) to develop data-parallel ones. Examples for the �rst kind are Con-current ML, Clean, NESL. For the second are HPF, Open MP, CoArray FORTRAN.In this paper we will consider how we can translate expressions and programs written in a functionallanguage (Mathematica) to programs in a data-parallel language (High Performance Fortran). In Section 2we discuss the general reasons why the translation comes to us naturally. Then in Section 3 we give formalmathematical interpretation of these general reasons by Category theory. We show that the category1 thatmodels the programming code of High Performance Fortran could be imbeded in the category that models thefunctional languages2. The inverse image of this imbeding is the translator described in Section 4. In thatsection we show how typical constructions in functional programming correspond to typical constructionsin data-parallel programming. The translator is written in Mathematica. Since it is just a set of ruleshow di�erent types of Mathematica constructions are translated to HPF, Section 4 is naturally divided insubsections that show how are translated:� data manipulation constructions� pure functions� second order functions� function callsThe second order functions are translated to parallel loops. The translation of function calls should dealwith data mapping in subprogram interfaces. The way the translator is implemented allows user's programsbuilded in Mathematica to be just rerun in it, in order the corresponding HPF code to be generated. Everykind of translation we describe is accompanied with examples. Also we do not assume that the reader isfamiliar with functional languages.1category is a graph with special properties imposed on it.2the cartesian closed category



Finally, a simple program is shown generated by the translator.2 Why we have the ability to do that?First let us observe that we have an advantage of using a particular programming language because ofthe constructions it has but we appreciate or �nd that language useful because of the code which is not inthe programs written with it.On the other hand the languages converge - they give us advantages in di�erent ways but they becomeuseful in the same way. We have di�erent levels of that convergence. It could be convergence of paradigmsor it could be convergence of structures. Let us look at the following examples:Example 1. Object-Oriented(O-O) languages !Functional languages(FL)"A functional language may be described roughly as one that gives the user some primitivetypes and operations and some constructors from which one can produce complicated types andoperations."[1], page 19.If we try to describe roughly an object-oriented language we will end up with the same sentencequoted above. Of course the constructions we use in these languages are completely di�erent.Although they give as advantages in di�erent ways, obviously, the way they are useful is the same.We will call that paradigm convergence.Example 2. FORTRAN 95  !MathematicaThe following FORTRAN 95 code :DO I=1,SIZE(A,1)A(I,:,:)=TRANSPOSE(A(I,:,:))END DOis equivalent to the Mathematica code:A=Map[Transpose,A]We will call similarities like that structure convergence.As it was said, in the paradigm of parallel programming we have two dual approaches: functionaldecomposition and data decomposition. Because of this duality and the structure and paradigm convergenceof the programming languages, it is natural to expect that we have the ability relatively easy to translateprograms written in a functional language into programs of a data-parallel one.Because functional languages are focused on the functions they should have advanced mechanisms tohandle the data structures, since the domain and codomain of a function are parts of its de�nition. Let ustake, as example, a bijective function f : A ! B. Mathematically that could be written like f(A) = B orB = f(A) and here we do not care how the image of A will be produced or how the sets A and B should beprocessed for that bijective mapping. If in the environment of a functional language like Mathematica wewant the data structure B to be the image of the data structure A we can use a speci�cation like B=Map[f,A]which has the same appearance and meaning as the corresponding mathematical notation. The structure ofA and B is not re
ected in that speci�cation, they are handled implicitly. If it was not like that we wouldnot have the elegance of specifying our problems by a functional language. Because we use directly (just)the mathematical meaning of the processes we specify, their parallel nature, if they have it, is preserved inthe speci�cation.Similar observation can be made for the O-O languages. The objects of the abstract types we de�ne inthese languages process implicitly the operations speci�ed for them. Therefore we can de�ne abstract typesfor the sets A and B above in order to be able to write code like B.map(f,A). This is of course the paradigmconvergence introduced in Example 1. All the arrays in FORTRAN 95 are objects of an abstract type forthem. So great amount of the FORTRAN 95 code have common characteristics with the codes written withtrue O-O languages. One of the reasons that the translator is easy to implement is that HPF is based onFORTRAN 95.



3 Categorical InterpretationIn Section 2 we discussed the general reasons why the translation should be natural and easy. In thissection we interpret these reasons with Category theory to give formal description of the translation frommathematical or mathematician's point of view. Then the translator described in Section 4 can be consideredas a concrete implementation of that formal description.It is natural to model di�erent data types using cartesian products combined with corresponding mor-phisms and projections i.e. with cartesian category. On one hand FL have data types with operationsbetween them and constructors applied to them. Clearly, they can be modeled by cartesian category. Onthe other hand FL have operations to produce derived data types and derived operations. It will be nice ifwe can model the later operations and the data types by cartesian products. Such model exists and is calledcartesian closed category. It is derived from the cartesian category by addition of a new kind of set calledfunction space and two new morphisms implied by this addition. The morphisms are called application (thefunction space is in its domain) and curring (the function space is in its codomain). These notions and theirconnections to the FL are described by Field and Harrison in [3], Chapter 13, Section 4, and by Barr andWells in [1], Chapter 6. Their de�nitions can be found in the appendix of this paper.The curring is of special importance since it is the way we make abstractions and hierarchies in functionallanguages. (In O-O languages we make abstractions and hierarchies by the polymorphism.) As Field andHarrison explain in [3], we could interpret the notationf x y z = ...as f being a function of three arguments i.e. like f(x,y,z) but it could be also interpreted as((f[x])[y])[z]i.e. the result of applying f to x is a function denoted f[x], then this function is applied to y, then thefunction (f[x])[y] is applied to z. This idea of treating a function of n arguments as a concatenation of nsingle-argument functions is called curring after the mathematician H.B. Curry.One way to express formally the analogy between FL and HPF, is to characterize the later3 in terms ofthe notions above. As it was said FORTRAN 95 can be considered as an O-O language with just one classimplemented and in Example 1 in Section 2 was said that the O-O languages and the FL have the sameverbal (rough) formulation. Let us try to show that the category that models the FL, the cartesian closedcategory, could be used for description of an O-O language. An abstract type (a class) of an O-O languagecould be considered as a classical data record extended to one that can contain procedures called usuallymethods. The methods are applied to the data �elds of the record and if we consider them as functions, thedata �elds can be in their domains or in their codomains. It is natural to consider each of the methods insome appropriate exponential of domains. May be that way we can �nd a category which describes an O-Olanguage or, more precisely, a kind of the weaker "O-O-calculus" (by analogy with the �-calculus), but sincewe are interested in making a translator, that is a little bit away from our purposes. Rather we should beinterested in a category that models not the language we want to translate to, but the programming codewritten with it. So we should try to model the HPF code.Great amount of the FORTRAN code concerns changing the values of array elements. Let us considercode which assigns to each element of an array a function of its indices (the result of the function mightbe the value of an element from other array with corresponding indices). Example 3 shows that writingthat code in the context where the array and the function are de�ned could be considered as the result of afunction of just two arguments - the name of the array and the name of the function.Example 3.Let b be an array of dimension N. Since FORTRAN 95 has an intrinsic function SIZE(b,i) whichgives the size of b along the i-th axes, the code will beDO i1=1:SIZE(b,1)DO i2=1:SIZE(b,2)...DO iN=1:SIZE(b,SIZE(b,iN))b(i1,i2,...iN)=func(i1,i2,...,iN)END DO...3and FORTRAN 95 as a part of HPF



END DOEND DOor more shortlyFORALL(i1=1:SIZE(b,1),i2=1:SIZE(b,2),...,iN=1:SIZE(b,N)))b(i1,i2,...iN)=func(i1,i2,...,iN)END FORALL.To produce that code we should know the array b, the function func, and the dimension of b -N. The number N determines the size of the code as a text. If N is de�ned from the context via b,then the code above can be considered as a result of a function of two arguments (b and func).Since we can consider the code that do the assignment as a function of two arguments, then that functionis something like a speci�cation similar to the speci�cation for mapping a function to a structure in the FL.When we add HPF directives to that speci�cation, it becomes complete in terms of its parallel execution.Similarly, we can �nd out other kind of speci�cations for :� actions like reduction of a row of objects to an object of the same kind,� actions producing a reshaped copy of an array,� assignments with di�erent number of arrays,� assignments of the results of nested functions,� some useful combinations of the actions mentioned.The completing of the speci�cations by HPF directives recalls the curring.Example 4. an 5. bellow complete the analogy above. They show that there is a cartesian closed categorythat describes the HPF code that deal with assignments to array elements.Example 4.In this example we will use the notions shape and rank of an array. If the array a is de�ned inFORTRAN 95 as:double a(4,3,6),then the shape of a is the 3-tuple (4,3,6) and the rank of a is 3 (since a is 3 -dimensional).The notions from the Category theory used in this example are de�ned in the appendix.The assignment between the elements of two arrays can be described with the following category.An object of the category are all the arrays with the same shape. Since all arrays with the sameshape have the same rank we can de�ne the number rank(A) as the rank of the arrays thatconstitute A. An arrow f : A! B is de�ned if rank(A) = rank(B). Then f is a monomorphismfrom the index set of A in the index set of B. Composition of two arrows f : A ! B andg : B ! C is an arrow h : A ! C, h = g � f . We de�ne A � B to be the arrays with a shapeequal to the concatenation of the shape of A with the shape of B. It is easy to check, that at thispoint we have cartesian category. Bellow we will complete it to cartesian closed one.Let us de�ne A ) B in the following way. Every element bf of A ) B corresponds to an arrowf : A! B , and bf have one of the forms:FORALL(i1=l1:u1:s1, i2=l1:u1:s2)b(i1,i2)=a(m1(i1),m3(i2))END FORALLor ! some commentFORALL(i1=l1:u1:s1, i2=l1:u1:s2)b(i1,i2)=a(m1(i1),m3(i2))END FORALLwhere mi and the triplets l1:u1:s1 and l2:u2:s2 form the monomorphism f . Note that bf is apiece of programming code, a text. The arrow AppA;B : (A) B)�A! B applied to the coupleD bf ; aE, is de�ned to give f(a), where f is the arrow corresponding to bf . There is also an objectH=f"","!HPF$ INDEPENDENT"g. If bf 2 A) B there are just two corresponding to bf elements,bf 0 and bf 00, that belong to H ) (A ) B). The �rst one, bf 0, is equal to "" concatenated withbf , and the second one, bf 00, is equal to "!HPF$ INDEPENDENT" concatenated with bf . Obviouslybf 0 is equal to bf . Let every arrow � : H � A ! B be a monomorphism from the index set



of A to the index set of B. Obviously � corresponds to unique arrow f : A ! B. Let thearrow �(�) : H ! A ) B is de�ned as �(�)(H) = f bf 0; bf 00g. Now we have the property that� = AppA;B � h�(�) � Fst; Sndi. So we have a cartesian closed category that describes the actionof an assignment between two arrays in the HPF code.Example 5.In order to describe the reductions we could de�ne a category in which we have array objects likein Example 9 and an arrow f : A ! B is de�ned if rank(A) � 1 = rank(B). Clearly the twocategories could be combined. To the object H in that combined category should be added theHPF directive for reduction.We can say that FORTRAN 95 provides the �rst order speci�cations between the FORTRAN 95 arraydata structures and the HPF directives provide the second order speci�cations. These �rst order speci�ca-tions correspond, of course, to the �rst order functions in the FL and the second order speci�cations to thesecond order functions. By that analogy it could be seen that some class of HPF programs could be imbededin the cartesian closed category of a functional language since they could be described by category of thesame kind. Since it is an imbeding (monomorphism) its inverse exists with the imbeding's codomain as adomain. This inverse mapping is the translator. The presentation above gives very good reasons to believethat making the translator will be an easy task. And that belief is true - the basic part of the translatorwas made for one day. The presentation above suggests that the translator could have two separate parts- one that translates higher order functions to HPF directives, and another one that translates �rst orderfunctions to FORTRAN code. Well, it should be admitted that the current implementation is not like thatsince the translator was made �rst and the categorical interpretation last.4 The translatorThe ideal end result is a translator that takes a program written in Mathematica language, producesa corresponding HPF program, compiles it, and de�nes a Mathematica function which calls that (parallel)program. We will show bellow that we are close to that ideal end result - the translator bellow can providean environment, helpful for moving a speci�cation of a problem to a corresponding HPF program.The strategy adopted is very simple: For each type of expression is made an overloading de�nition of thestandard function FortranForm in order to get the corresponding HPF code. When a particular expressionis translated the result of FortranForm is added to a variable called FORTRANPROGRAM4. Since in HPF themapping directives should pass at the entry of a programming scope it is necessary to keep them in a variabledi�erent from that we accumulate the executive code to. That special variable is called HPFSPECIFICATIONS.Its contents will be prepended to the contents of FORTRANPROGRAM at the end of the translation. The executiveHPF code is accumulated via the "hook" $Pre. $Pre is a global Mathematica variable and any functionassigned to it will be automatically applied before the evaluation of any expression. The translation of anexpression depends on the values assigned to the symbols in it.A session with the translator could be the evaluation of the following steps:the initial step of the translationFORTRANPROGRAM=fg;HPFSPECIFICATIONS=fg; $Pre=PreFunction;some Mathematica programming codebsize=4image=Table[i,fi,1,8g,fj,1,8g]im1=Partition[image,bsize]im2=Map[Transpose,im1]the �nal step of the translation$Pre=.;FORTRANPROGRAM=Join[HPFSPECIFICATIONS,Drop[FORTRANPROGRAM,-1]];the generated programming code printed with Map[Print,FORTRANPROGRAM];4the translator is one-pass one.



!hpf$ PROCESSORS squad(2,1)!hpf$ DISTRIBUTE image(BLOCKS(4),BLOCKS(8)) ONTO squad!hpf$ ALIGN im1(i,*,:) WITH image((i-1)*4+1,:)bsize=4!hpf$ INDEPENDENTforall(i=1:8,j=1:8) image(i,j)=i!hpf$ INDEPENDENT, NEW(i)do i=1,size(image,1)/bsizeim1(i,*,:)=image((i-1)*4+1,:)end do!hpf$ INDEPENDENT, NEW(i)do i=1,size(im1,1)im2(i,:,:)=transpose(im1(i,:,:))end doNow we could save the variable FORTRANPROGRAM in a �le, to compile that �le5 and to use the compiled codeas a Mathematica function as it is shown by Janhunen in [6].The answer of Mathematica to some command (like MATLAB or Maple) is not necessarily assigned tosome symbol or variable de�ned by the user, or variable he or she is aware of. We assume that all theexpressions we will translate will be an assignments. This is the only restriction we take for the sake ofsimplicity of the translator. This assumption is very natural, nevertheless it can be overcome.The translator is described bellow by separate descriptions what code is generated for assignments ofdi�erent types. The notation Mathematica expression �! HPF directives / FORTRAN 95 con-structions is used to designate the descriptions. The lighter gray boxes of the accompanying examplescontain the user's input and the darker gray boxes contain the Mathematica response.4.1 Translation of data manipulating structures4.1.1 lhs=rhs �!lhs=rhsThe assignment of an atomic object inMathematica should be like the assignment in HPF. The de�nitionis straightforward - to the FORTRAN form of the left hand side expression is assigned the FORTRAN formof the right hand side.FortranForm[a1=5]a1=54.1.2 lhs=Table[expr, iterators] �!INDEPENDENT, FORALL statementWith the function Table we can make lists and lists of lists. We can do, for example, this:Table[Binomial[i,j],fi,1,3g,fj,1,ig]ff1g,f1,2g,f1,2,3gg,but we restrict ourself to consider just lists with elements of equal size on each level i.e. arrays. Thegeneration of such lists with Table could be done in parallel. Thus for the expressionimage=Table[i+Sin[j],fi,1,3g,fj,1,4g]ff1+Sin[1],1+Sin[2],1+Sin[3],1+Sin[4]g,f2+Sin[1],2+Sin[2],2+Sin[3],2+Sin[4]g,f3+Sin[1],3+Sin[2],3+Sin[3],3+Sin[4]ggthe corresponding HPF code is5for the code of this example we should put some additional work



FortranForm[image=Table[i+Sin[j],fi,1,3g,fj,1,4g]]!hpf$ INDEPENDENTforall(i=1:3,j=1:4) image(i,j)=i + Sin(j)4.1.3 Transpose �!TRANSPOSETranspose is translated directly:FortranForm[im2=Transpose[im1]]im2=transpose(im1)4.1.4 Partition�! PROCESSORS, DISTRIBUTE, ALIGN, INDEPENDENT, DOThe function Partition is very useful when we program with Mathematica because it gives the opportu-nity to make relevant domains for the functions we de�ne. For example, if we want to simulate the parallelsummation of a row of numbers, we can do that in Mathematica in the following way:1.First we de�ne a row of numbersrow=Table[i,fi,1,8g]f1,2,3,4,5,6,7,8g2.Second we partition it in lists of length 2row2=Partition[row,2]ff1,2g,f3,4g,f5,6g,f7,8gg3.Then we sum the elements of each of the lists of row 2 and assign it to the variable rowMyPlus[fx ,y g]:=x+yrow=Map[MyPlus,row2]f3,7,11,15g4.We should repeat steps 2. and 3. until the result of step 3. is one element list.The algorithm above could be expressed more concisely by the command:NestList[Map[Apply[Plus, #1]&,Partition[#1,2]]&,row,3]ff1,2,3,4,5,6,7,8g,f3,7,11,15g,f10,26g,f36ggWe can see the successive reductions of the row. In the last command are used pure functions. Theirtranslation to HPF is described in the subsection 4.2 bellow.The function Partition can be expressed in HPF by the executive directive INDEPENDENT and the map-ping directives DISTRIBUTE and ALIGN. It would be nice to express Partition to HPF just with INDEPENDENTand ALIGN. For example if we take the variable image to beimage=Table[i,fi,1,8g,fj,1,8g]bsize=4;ff1,1,1,1,1,1,1,1g, f2,2,2,2,2,2,2,2g,f3,3,3,3,3,3,3,3g, f4,4,4,4,4,4,4,4g,f5,5,5,5,5,5,5,5g, f6,6,6,6,6,6,6,6g,f7,7,7,7,7,7,7,7g, f8,8,8,8,8,8,8,8gg



and we want the translation of im1=Partition[image,bsize] to make the assignments to im1 withoutcommunication, the translation could be the following:FortranForm[im1=Partition[image,bsize]]!hpf$ ALIGN im1(i,:,:) WITH image(bsize*(i-1)+1:bsize*i,:)!hpf$ INDEPENDENT, NEW(i)do i=1,size(image,1)/bsizeim1(i,:,:)=image(bsize*(i-1)+1:bsize*i,:)end do,where bsize should be de�ned as a parameter or instead of it to use its value (in this case 4) . The problemwith translations of that kind is that the ALIGN constraints does not allow to specify a subscript triplet as afunction of one or more align-dummies. One way to get out of this is the align directive to be:!hpf$ ALIGN im1(i,*,:) WITH image((i-1)*bsize+1,:)where each subarray i of the new dimension in im1 is placed on the same processor with the elementof the initial array (image), that should be �rst in that subarray. Now we should make an appropriatedistribution of the initial array in order to be sure that no communications would arise in the assignment.This distribution is straightforward - Partition[array,stride] corresponds to the HPF's directive!HPF$ DISTRIBUTE array(BLOCK(stride), BLOCK(SIZE(array,2)),...,BLOCK(SIZE(array, SIZE(SHAPE(array))))) .If we have several partitions in the Mathematica code it is possible to have distributee clashes. Theseclashes can be easily checked with a table generated during the compilation. We are even able to de�nespecial processor arrangements for every distribution and to cope successfully with the processor arrangementclashes. So, for the partitioning above we could have the translation:FortranForm[im1=Partition[image,bsize]]!hpf$ PROCESSORS squad(8/bsize,1)!hpf$ DISTRIBUTE image(BLOCKS(bsize),BLOCKS(8)) ONTO squad!hpf$ ALIGN im1(i,*,:) WITH image((i-1)*bsize+1,:)!hpf$ INDEPENDENT, NEW(i)do i=1,size(image,1)/bsizeim1(i,:,:)=image(bsize*(i-1)+1:bsize*i,:)end doAs it was explained at the beginning of the section, the mapping directives should be accumulated toa variable, say HPFSPECIFICATIONS, di�erent from the variable FORTRANPROGRAM. So actually the resultof FortranForm[im1=Partition[image,bsize]] is added to FORTRANPROGRAM via $Pre function but thecorresponding mapping directives are added to HPFSPECIFICATIONS (by the function FortranForm itself).The code generated for FORTRANPROGRAM isHPFSPECIFICATIONS=fg; FortranForm[im1=Partition[image,bsize]]!hpf$ INDEPENDENT, NEW(i)do i=1,size(image,1)/bsizeim1(i,*,:)=image((i-1)*4+1,:)end doThe code generated for HPFSPECIFICATIONS isHPFForm[HPFSPECIFICATIONS]!hpf$ PROCESSORS squad(8/bsize,1)!hpf$ DISTRIBUTE image(BLOCK(bsize),BLOCK(8)) ONTO squad!hpf$ ALIGN im1(i,*,:) WITH image((i-1)*bsize+1,:)



4.2 Pure FunctionsPure functions give very convenient way for specifying calculations. For example if we want to square allthe elements in a list we can write the following:Map[#1^2&,f4,5,fm,6,7g,7,3,2,ag]f16, 25, fm^2, 36, 49g, 49, 9, 4, a^2ginstead of de�ning �rst a square function and then mapping the list via it.MySquare[x ]:=x^2Map[MySquare,f4,5,fm,6,7g,7,3,2,ag]f16, 25, fm^2, 36, 49g, 49, 9, 4, a^2gPure functions are also convenient for expressions that have multiple entries of the same subexpression. Forexample the expressionIf[Length[im1]==5,Rest[im1],im1];could be written with a pure function asIf[Length[#1]==5,Rest[#1],#1]&[im1];The bene�t is more obvious if we try to imagine that instead of im1 we have some complicated expressionIf[Length[#1]==5,Rest[#1],#1]&[Transpose[Reverse[im1]]];The examples above use one argument pure functions. We should distinguish between pure functions thatare listable i.e. automatically threaded over list arguments6, and nonlistable ones. Later ones are translatedstraightforward. Former ones, if they are applied to arrays, have a natural translation to FORTRAN 95 viathe statement FORALL as it is shown in the next example:FortranForm[im2=#1^2+Sin[#1]&[im1]]forall(i1=1:size(im1,1),i2=1:size(im1,2),i3=1:size(im1,3))im2(i1,i2,i3)=im1(i1,i2,i3)**2 + Sin(im1(i1,i2,i3))end forallThe current translator translates only one argument pure functions. As is it shown in the next examplenonlistable ones are not taken correctly.FortranForm[im2=Transpose[#1]&[im1]]im2=Function(transpose(Slot(1)))(im1)4.3 Second order functionsIt looks like there are two major kinds of loops - loops that have a body calculated independently of theother cycles in the loop and loops with a body calculated according to the previous one. May be any otherloop can be expressed in terms of these two. The �rst kind of loop corresponds to the mathematical notion ofmapping - we could consider it as mapping with a function de�ned by the loop's body depending of the controlvariables of the loop. The second one corresponds to the notion of superposition (or nesting) of a function.The Mathematica functions for specifying a mapping are Map, MapAll, MapThread. Those for specifying anesting are Fold, Nest, FixedPoint. These functions a second order functions. On one hand MapAll andMapThread can be expressed by Map, and on the other hand Nest and FixedPoint can be expressed byFold. Bellow are proposed HPF translations of Map, Fold and the combinations Map[Fold[...]...] andMap[Composition[f1,f2],...].6e.g. f[fa,bg] becomes ff[a],f[b]g



4.3.1 lhs=Map[func, array] �!INDEPENDENT, DOMap[f, fa,b,c,...g] gives ff[a],f[b],f[c],...g. It is natural to translate commands like that toindependent DO or FORALL loops - Map speci�es that f is applied separately to each of the elements in thelist. We can implement that separate application of f by DO loop and since it should be done separatelywe can put the INDEPENDENT directive. In Mathematica we can specify di�erent levels the function f to beapplied on. Since our general assumption is that all the structures in the Mathematica code we translateare arrays, in the implemented translation of Map[f,expr] the function f is applied to the last level of thestructure expr, i.e. to the elements of the array expr.The �rst example is the function Map with a pure function to be applied to.FortranForm[im2=Map[#1^2&,im1]]!hpf$ INDEPENDENT, NEW(i,i1,i2)do i=1,size(im1,1)forall(i1=1:size(im1(i,:,:),1),i2=1:size(im1(i,:,:),2))im2(i,i1,i2)=im1(i,i1,i2)**2end forallend doWe can take also some of the standard functions but their FORTRAN translation should be prede�ned.FortranForm[im2=Map[Transpose,im1]]!hpf$ INDEPENDENT, NEW(i)do i=1,size(im1,1)im2(i,:,:)=transpose(im1(i,:,:))end doThe compiler does not take, for example, correctly this:FortranForm[im2=Map[Sin,im1]]!hpf$ INDEPENDENT, NEW(i<>If[NewVariables[Sin[righthand$2535]]!= , ,<>NewVariables[Sin[righthand$2535]],NewVariables[Sin[righthand$2535]]]<>)do i=1,size(im1,1)Evaluate(lefthand$2535)=Sin(Evaluate(righthand$2535))end dobut it takes the following completely satisfying versionFortranForm[im2=Map[Sin[#1]&,im1]]!hpf$ INDEPENDENT, NEW(i,i1,i2)do i=1,size(im1,1)forall(i1=1:size(im1(i,:,:),1),i2=1:size(im1(i,:,:),2))im2(i,i1,i2)=Sin(im1(i,i1,i2))end forallend do.4.3.2 lhs=Fold[func, initial value, array] �!INDEPENDENT, REDUCE, DOSince the meaning of Fold[f,x0,fa,b,c,dg] is f[f[f[f[x0,a],b],c],d] we can translate it to anindependent, reduce loop if the function f is associative. The only reduction functions allowed in HPFare +, *, MAX, MIN, IAND, IOR, IEOR. So it is relevant the translator to check, does the function to befolded, is one of them. If it is not we can translate the whole expression as pipelining as it is described inthe sub-subsection 4.3.4. In the current translator this feature is not implemented.FortranForm[im3=Fold[Plus,x0,im1]]



im3(:,:)=x0!hpf$ INDEPENDENT, NEW(i), REDUCTION(im3)do i=1,size(im1,1)im3(:,:)=im1(i,:,:) + im3(:,:)end do4.3.3 lhs=Map[Fold[func, initial value, #1]&, array]�!INDEPENDENT, REDUCE, DOWe are lucky that HPF allows array variables to appear in the REDUCTION clause. We are lucky evenmore, because we are also able to put array sections as reduction variables. Because of the later feature wehave translations like the following:FortranForm[im4=Map[Fold[Plus,x0, #1]&,im1]]!hpf$ INDEPENDENT, NEW(i,i1,i2)do i=1,size(im1,1)im4(i1,:)=x0!hpf$ INDEPENDENT, NEW(i), REDUCTION(im4(i1,:))do i=1,size(im1(i1,:,:),1)im4(i1,:)=im1(i1,i,:) + im4(i1,:)end doend doIn the last example the variable x0 should be conformable with the array section im4(i,:).4.3.4 lhs=Map[Composition[func1,func2], array]�! TASK REGION, ONUntil now we have discussed just the translation to the standard HPF 2.0. Here we will consider theapproved extensions of HPF 2.0 for task parallelism, the directives TASK REGION and ON. We will take theapproach described by Schreiber in [7]. It is clear that Composition[f1,f2] stands for f1[f2[argument]].This composition is a fear invitation for pipelining - when f1 works on the result of f2, the later could workon the next piece of data to be processed. Apparently this approach could be extended to any amount ofcomposed functions. This generalization leads us to pipelined code when we translate Fold with an arbitraryfunction to be folded. Here is an example how the translator works on compositions. The Mathematica codeis very concise.FortranForm[r1=Composition[Sin[#1]&,Cos[#1]&,Tan[#1]&,#1^2&][im2]]!hpf$ TASK REGION!hpf$ ON HOME(v1Func), RESIDENT, BEGINforall(i1=1:size(im2,1),i2=1:size(im2,2),i3=1:size(im2,3))v1Func(i1,i2,i3)=Sin(im2(i1,i2,i3))end forall!hpf$ END ONv2Func=v1Func!hpf$ ON HOME(v2Func), RESIDENT, BEGINforall(i1=1:size(v1Func,1),i2=1:size(v1Func,2),i3=1:size(v1Func,3))v2Func(i1,i2,i3)=Cos(v1Func(i1,i2,i3))end forall!hpf$ END ONv3Func=v2Func!hpf$ ON HOME(v3Func), RESIDENT, BEGINforall(i1=1:size(v2Func,1),i2=1:size(v2Func,2),i3=1:size(v2Func,3))v3Func(i1,i2,i3)=Tan(v2Func(i1,i2,i3))



end forall!hpf$ END ONv4Func=v3Func!hpf$ ON HOME(v4Func), RESIDENT, BEGINforall(i1=1:size(v3Func,1),i2=1:size(v3Func,2),i3=1:size(v3Func,3))v4Func(i1,i2,i3)=v3Func(i1,i2,i3)**2end forall!hpf$ END ONr1=v4Func!hpf$ END TASK REGIONThe complete translation of Map[Composition[func1,func2], array] is not �nished yet but is close.4.3.5 Translating function callsThis feature is not implemented in the translator but clearly from the presentation above it is more thanreachable. For example, a Mathematica function de�ned asInhFunc[arg , dummy ]:= ...could be considered as a subprogram with inherited argument mapping.A function de�ned asDescrFunc[arg:ff , , g...g, dummy Number]:=...could be considered as a subprogram with descriptive argument mapping.Of course, there are some issues like: Where the code of the generated subprograms should be placed?Should translator have special de�nitions for the user de�ned functions, that appear in the main secondorder functions? These questions are postponed to be solved, eventually, in the future.5 Working ExampleWe translate the following Mathematica assignments into HPF code.bsize=4line=Table[i,fi,1,8g]image=Table[i,fi,1,8g,fj,1,8g]im1=Partition[image,bsize]im2=Map[Transpose,im1]im2=Map[#1^2&,im2]x0=Table[0,fi,1,Dimensions[im1][[2]]g,fj,1,Dimensions[im1][[3]]g]im3=Fold[Plus,x0,im1]x1=Table[0,fi,1,Dimensions[im1][[3]]g]im4=Map[Fold[Plus,x1, #1]&,im1]To the code generated we add the FORTRAN 95 de�nitions of the data structures line, image ,im1, im2, im3, im4, x0, x1and we get the program bellow.program fproginteger, parameter :: bsize=4integer :: i, i1, i2, i3, jinteger :: image(8,8), line(8)integer :: im1(2,4,8), im2(2,8,4), im3(4,8), x0(4,8)integer :: im4(2,8), x1(8)!hpf$ PROCESSORS squad(2,1)!hpf$ PROCESSORS cube(2,1,1) (1)!hpf$ DISTRIBUTE image(BLOCK(4),BLOCK(8)) ONTO squad!hpf$ DISTRIBUTE im1(BLOCK(1),BLOCK(4),BLOCK(8)) ONTO cube (2)!hpf$ ALIGN im1(i,*,*) WITH image((i-1)*4+1,1) (3)!hpf$ INDEPENDENTforall(i=1:8) line(i)=i!hpf$ INDEPENDENT



forall(i=1:8,j=1:8) image(i,j)=i!hpf$ INDEPENDENT, NEW(i)do i=1,size(image,1)/bsizeim1(i,:,:)=image(bsize*(i-1)+1:bsize*i,:)end do!hpf$ INDEPENDENT, NEW(i)do i=1,size(im1,1)im2(i,:,:)=transpose(im1(i,:,:))end do!hpf$ INDEPENDENT, NEW(i,i1,i2)do i=1,size(im1,1)forall(i1=1:size(im2(i,:,:),1),i2=1:size(im2(i,:,:),2))im2(i,i1,i2)=im2(i,i1,i2)**2end forallend do!hpf$ INDEPENDENTforall(i=1:4,j=1:8) x0(i,j)=0im3(:,:)=x0!hpf$ INDEPENDENT, NEW(i), REDUCTION(im3)do i=1,size(im1,1)im3(:,:)=im1(i,:,:) + im3(:,:)end do!hpf$ INDEPENDENTforall(i=1:8) x1(i)=0!hpf$ INDEPENDENT,NEW(i,i1,i2)do i1=1,size(im1,1)im4(i1,:)=x1(:)!hpf$ INDEPENDENT,NEW(i1), REDUCTION(im4(i1,:))do i=1,size(im1(i1,:,:),1)im4(i1,:)=im1(i1,i,:) + im4(i1,:)end doend doend program fprogThat programwas compiled on IBM SP with the HPF compiler pghpf,Rel 2.4, and started on two processors.It looks like the compiler does not handle row (2) of the program correctly. If we replace row (2) with therows (1) and (3) the program gives the same results as the corresponding expressions in Mathematica.6 ConclusionWe have shown how we can translate in a natural way expressions of a functional language to HPFstatements for parallel execution. The translator presented is implemented in Mathematica. It translatessecond order functions, pure functions and some procedural constructions for data manipulations. Ideas fortranslating function calls and compositions of functions had been also shown. In the translator should beadded some more features and one of them is the generation of the FORTRAN 95 de�nitions of the structuresused in the translated code. The translator could be programmed to respond to some contradictions duringthe translation. It should be pointed out how far we were able to go with this translator without manye�orts and the translator in its current stage can be used for generating tedious HPF code from some veryconcise Mathematica expressions. If the translator is made correctly we will have the additional bene�t thatthe code generated would be without errors.Acknowledgments: This paper is based on the author's report for the Ph.D. course \High-PerformanceProgramming", held at DTU, Denmark, organized by Prof. Per Christian Hansen during the period Sep-Dec,1998. More information about the course can be found at the site http://www.imm.dtu.dk/~pch/hpp.html.The lectures were held by leading experts in high-performance computing: Prof. Jack Dongarra, Dr. WilliamGropp, Dr. Sven Hammarling, Prof. Nicholas J. Higham, Prof. Bo K�agstr�om, Dr. Ramesh Menon, Prof.John Reid, Dr. Robert Schreiber. Prof. Stig Skelboe and Prof. Per Christian Hansen gave some introductory



lectures. The ideas in this paper was inspired by the lecture of Dr. Ramesh Menon for Open MP, and thelecture of Dr. Robert Schreiber for HPF. I consider myself lucky to have had the opportunity to attend thecourse therefore I am very grateful to Prof. Per Christian Hansen for organizing it.AppendixIn this appendix we de�ne category, cartesian category and cartesian closed category as Field and Harrisonin [3], Chapter 13, Section 4.A category is a collection of objects, obj(C) such that1. Given A;B 2 obj(C), here is a collection of arrows from A to B, denoted by A! B, and iff is in A! B we say that th domain of f is A, and the codomain of f is B, or dom(f) = A,cod(f) = B.2. For all objects A;B;C there is a composition operation, �, de�ned on the arrows, whichis associative, i.e. if f is in B ! C and g is in A ! B then f � g is in A ! C, and(f � g) � h = f � (g � h) for all arrows f; g; h such that cod(h) = dom(g), cod(g) = dom(f).3. For each object A there is an identity arrow, idA in A ! A, such that for all arrows f; gwith cod(f) = dom(g) = A, idA � f = f and g � idA = g.In a cartesian category, C, there is a product construction, de�ned as follows:For all objects A;B there exists an object A � B and arrows FstA;B : A � B ! A, SndA;B :A � B ! B, called projections, with he property that any object C and arrows f : C ! A,g : C ! B, there exists an unique arrow C ! A � B, denoted by hf; gi and called a pair of fand g, with the property that f = Fst � hf; gi, g = Snd � hf; gi.The cartesian closed category is cartesian category in which for all objects A;B, there exists anobject, A) B, and an arrow AppA;B : (A) B)�A! B, called application, with the propertythat for any object C and an arrow, f : C � A ! B there exists an unique arrow C ! A ) B,denoted �(f), and called curring of f , such that f = AppA;B � h�(f) � Fst; Sndi.The object A ) B represents the functional space de�ned on A and B, and the pair 
A! B;AppA;B�de�nes the exponential of A and B. The functional space is the set of all functions from A to B. If c 2 C,�(f)(c) is a function which for a 2 A is f(c; a) i.e. �(f)(c)(a) = f(c; a).References[1] Michael Barr, Charles Wells, Category Theory for Computer Science, second edition, Prentice Hall 1996.[3] A.J.Field, P.G.Harrison, Functional Programming, Addison-Wesley, 1988[4] Wilhelm Gehrke, Fortran 95, Language guide, Springer 1996[5] High Performance Fortran Forum, High Performance Fortran Language Speci�cation, January 31, 1997 ,Version2.0[6] Pekka Janhunen, Fortran De�nitions, Finnish Meteorological Institute Geophysics Dept. 14.06.90., available onhttp://www.mathsource.com/Content/Enhancements/Interfacing/Fortran/0202-172[7] Robert Schreiber, High Performance Fortran, Version 2, Parralel Processing Letters Vol.7 No.4(1997) 437-449


