Translating Mathematica expressions to High Performance
Fortran

Anton Antonov

UNI-C, DTU, bldg.304, DK-2800 Lyngby, Denmark
email: Anton.Antonov.Antonov@uni-c.dk
phone: (+45) 3587 8965, faz: (445) 3587 8990

Abstract

This paper introduces some ideas for translating the functional lan-
guage Mathematica to the data-parallel language High Performance
Fortran (HPF). It first discusses why we have the ability to do that.
Then it gives some interpretations by Category Theory. Third the
translating approach is presented for different Mathematica expressions
that could be interpreted as specifications for parallel independence,
reduction, task parallelism and subprogram’s data mapping. Last is
shown a simple executable program generated by the translator.

1 Introduction

Programming by functions is very natural and completely suitable for specifying mathematical problems
quickly and elegantly. We can say that when we program with a functional language we directly use the
mathematical meaning of the process we want to model and that leads to concise, elegant programs. This
is one of the main reasons the functional languages to be developed [3].

Conciseness and elegance are highly desirable in the procedural languages too. That is why, for example,
the modern FORTRAN 95 is more convenient for its users than the older FORTRAN versions. Consider
the array processing and the array intrinsics in FORTRAN 90 and FORTRAN 95 [4] we can say that these
languages are like object-oriented ones with just one static class which defines an abstract type for arrays.

We want also concise and elegant programs for the parallel computers. According to the two dual ap-
proaches in the paradigm of parallel programming, namely - the functional decomposition and the data
decomposition, it seems natural from the functional languages to develop functional-parallel ones and from
the ”"data” languages (like FORTRAN) to develop data-parallel ones. Examples for the first kind are Con-
current ML, Clean, NESL. For the second are HPF, Open MP, CoArray FORTRAN.

In this paper we will consider how we can translate expressions and programs written in a functional
language (Mathematica) to programs in a data-parallel language (High Performance Fortran). In Section 2
we discuss the general reasons why the translation comes to us naturally. Then in Section 3 we give formal
mathematical interpretation of these general reasons by Category theory. We show that the category' that
models the programming code of High Performance Fortran could be imbeded in the category that models the
functional languages?. The inverse image of this imbeding is the translator described in Section 4. In that
section we show how typical constructions in functional programming correspond to typical constructions
in data-parallel programming. The translator is written in Mathematica. Since it is just a set of rules
how different types of Mathematica constructions are translated to HPF, Section 4 is naturally divided in
subsections that show how are translated:

e data manipulation constructions
pure functions
second order functions
function calls

The second order functions are translated to parallel loops. The translation of function calls should deal
with data mapping in subprogram interfaces. The way the translator is implemented allows user’s programs
builded in Mathematica to be just rerun in it, in order the corresponding HPF code to be generated. Every
kind of translation we describe is accompanied with examples. Also we do not assume that the reader is
familiar with functional languages.

Lcategory is a graph with special properties imposed on it.
?the cartesian closed category

Finally, a simple program is shown generated by the translator.

2 Why we have the ability to do that?

First let us observe that we have an advantage of using a particular programming language because of
the constructions it has but we appreciate or find that language useful because of the code which is not in
the programs written with it.

On the other hand the languages converge - they give us advantages in different ways but they become
useful in the same way. We have different levels of that convergence. It could be convergence of paradigms
or it could be convergence of structures. Let us look at the following examples:

Example 1. Object-Oriented(0-0) languages«—Functional languages(FL)

” A functional language may be described roughly as one that gives the user some primitive
types and operations and some constructors from which one can produce complicated types and
operations.”[1], page 19.

If we try to describe roughly an object-oriented language we will end up with the same sentence
quoted above. Of course the constructions we use in these languages are completely different.
Although they give as advantages in different ways, obviously, the way they are useful is the same.
We will call that paradigm convergence.

Example 2. FORTRAN 95 +— Mathematica

The following FORTRAN 95 code :
DO I=1,SIZE(A,1)
A(I,:,:)=TRANSPOSE(A(I,:,:))
END DO
1s equivalent to the Mathematica code:
A=Map[Transpose,A]

We will call similarities like that structure convergence.

As it was said, in the paradigm of parallel programming we have two dual approaches: functional
decomposition and data decomposition. Because of this duality and the structure and paradigm convergence
of the programming languages, it is natural to expect that we have the ability relatively easy to translate
programs written in a functional language into programs of a data-parallel one.

Because functional languages are focused on the functions they should have advanced mechanisms to
handle the data structures, since the domain and codomain of a function are parts of its definition. Let us
take, as example, a bijective function f : A — B. Mathematically that could be written like f(A) = B or
B = f(A) and here we do not care how the image of A will be produced or how the sets A and B should be
processed for that bijective mapping. If in the environment of a functional language like Mathematica we
want the data structure B to be the image of the data structure A we can use a specification like B=Map [, A]
which has the same appearance and meaning as the corresponding mathematical notation. The structure of
A and B is not reflected in that specification, they are handled implicitly. If it was not like that we would
not have the elegance of specifying our problems by a functional language. Because we use directly (just)
the mathematical meaning of the processes we specify, their parallel nature, if they have it, is preserved in
the specification.

Similar observation can be made for the O-O languages. The objects of the abstract types we define in
these languages process implicitly the operations specified for them. Therefore we can define abstract types
for the sets A and B above in order to be able to write code like B.map(£f,4). This is of course the paradigm
convergence introduced in Example 1. All the arrays in FORTRAN 95 are objects of an abstract type for
them. So great amount of the FORTRAN 95 code have common characteristics with the codes written with
true O-O languages. One of the reasons that the translator is easy to implement is that HPF is based on
FORTRAN 95.

3 Categorical Interpretation

In Section 2 we discussed the general reasons why the translation should be natural and easy. In this
section we interpret these reasons with Category theory to give formal description of the translation from
mathematical or mathematician’s point of view. Then the translator described in Section 4 can be considered
as a concrete implementation of that formal description.

It is natural to model different data types using cartesian products combined with corresponding mor-
phisms and projections i.e. with cartesian category. On one hand FL have data types with operations
between them and constructors applied to them. Clearly, they can be modeled by cartesian category. On
the other hand FL have operations to produce derived data types and derived operations. It will be nice if
we can model the later operations and the data types by cartesian products. Such model exists and is called
cartesian closed category. It is derived from the cartesian category by addition of a new kind of set called
funetion space and two new morphisms implied by this addition. The morphisms are called application (the
function space is in its domain) and curring (the function space is in its codomain). These notions and their
connections to the FL are described by Field and Harrison in [3], Chapter 13, Section 4, and by Barr and
Wells in [1], Chapter 6. Their definitions can be found in the appendix of this paper.

The curring is of special importance since it is the way we make abstractions and hierarchies in functional
languages. (In O-O languages we make abstractions and hierarchies by the polymorphism.) As Field and
Harrison explain in [3], we could interpret the notation

fxyz-=...
as £ being a function of three arguments i.e. like £(x,y,z) but it could be also interpreted as

((£[x]1) [yl) [=]

i.e. the result of applying £ to x is a function denoted £ [x], then this function is applied to y, then the
function (£[x]) [y] is applied to z. This idea of treating a function of n arguments as a concatenation of n
single-argument functions is called curring after the mathematician H.B. Curry.

One way to express formally the analogy between FL and HPF, is to characterize the later® in terms of
the notions above. As it was said FORTRAN 95 can be considered as an O-O language with just one class
implemented and in Example 1 in Section 2 was said that the O-O languages and the FL have the same
verbal (rough) formulation. Let us try to show that the category that models the FL, the cartesian closed
category, could be used for description of an O-O language. An abstract type (a class) of an O-O language
could be considered as a classical data record extended to one that can contain procedures called usually
methods. The methods are applied to the data fields of the record and if we consider them as functions, the
data fields can be in their domains or in their codomains. It is natural to consider each of the methods in
some appropriate exponential of domains. May be that way we can find a category which describes an O-O
language or, more precisely, a kind of the weaker ”O-O-calculus” (by analogy with the A-calculus), but since
we are interested in making a translator, that is a little bit away from our purposes. Rather we should be
interested in a category that models not the language we want to translate to, but the programming code
written with 1t. So we should try to model the HPF code.

Great amount of the FORTRAN code concerns changing the values of array elements. Let us consider
code which assigns to each element of an array a function of its indices (the result of the function might
be the value of an element from other array with corresponding indices). Example 3 shows that writing
that code in the context where the array and the function are defined could be considered as the result of a
function of just two arguments - the name of the array and the name of the function.

Example 3.

Let b be an array of dimension N. Since FORTRAN 95 has an intrinsic function SIZE(b, i) which
gives the size of b along the i-th axes, the code will be
DO i1=1:SIZE(b,1)
DO i2=1:SIZE(b,2)

DO iN=1:SIZE(b,SIZE(b,iN))
b(il,i2,...iN)=func(il1,i2,...,iN)
END DO

3and FORTRAN 95 as a part of HPF

END DO
END DO
or more shortly
FORALL(i1=1:SIZE(b,1),i2=1:SIZE(b,2),...,iN=1:SIZE(b,N)))
b(i1,i2,...iN)=func(il,i2,...,iN)
END FORALL.
To produce that code we should know the array b, the function func, and the dimension of b -
N. The number N determines the size of the code as a text. If N is defined from the context via b,
then the code above can be considered as a result of a function of two arguments (b and func).

Since we can consider the code that do the assignment as a function of two arguments, then that function
1s something like a specification similar to the specification for mapping a function to a structure in the FL.
When we add HPF directives to that specification, it becomes complete in terms of its parallel execution.

Similarly, we can find out other kind of specifications for :

actions like reduction of a row of objects to an object of the same kind,
actions producing a reshaped copy of an array,

assignments with different number of arrays,

assignments of the results of nested functions,

some useful combinations of the actions mentioned.

The completing of the specifications by HPF directives recalls the curring.
Example 4. an 5. bellow complete the analogy above. They show that there is a cartesian closed category
that describes the HPF code that deal with assignments to array elements.

Example 4.

In this example we will use the notions shape and rank of an array. If the array a is defined in
FORTRAN 95 as:

double a(4,3,6),
then the shape of a is the 3-tuple (4,3,6) and the rank of a is 3 (since a is 3 -dimensional).
The notions from the Category theory used in this example are defined in the appendix.
The assignment between the elements of two arrays can be described with the following category.
An object of the category are all the arrays with the same shape. Since all arrays with the same
shape have the same rank we can define the number rank(A) as the rank of the arrays that
constitute A. An arrow f: A — B is defined if rank(A) = rank(B). Then f is a monomorphism
from the index set of A in the index set of B. Composition of two arrows f : A — B and
g: B —>Cisanarrow h: A — C, h=gof. Wedefine A x B to be the arrays with a shape
equal to the concatenation of the shape of A with the shape of B. It is easy to check, that at this
point we have cartesian category. Bellow we will complete it to cartesian closed one.
Let us define A = B in the following way. Every element f of A = B corresponds to an arrow
f:A— B and f have one of the forms:

FORALL(i1=11:ul:s1, i2=11:ul:s2)

b(i1,i2)=a(my(i1),ms(i2))

END FORALL

or

! some comment

FORALL(i1=11:ul:s1, i2=11:ul:s2)

b(il,i2)=a(my(il),m3(i2))

END FORALL
where m; and the triplets 11:ul:s1 and 12:u2:s2 form the monomorphism f. Note that fis a
piece of programming code, a text. The arrow App?® : (A = B) x A — B applied to the couple

<f, a>, is defined to give f(a), where f is the arrow corresponding to f There is also an object

H={"","'HPF$ INDEPENDENT"}. If fE A = B there are just two corresponding to felements,
f/and f”, that belong to I = (A = B). The first one, f’, is equal to """ concatenated with

[, and the second one, f”, is equal to " 'HPF$ INDEPENDENT" concatenated with f Obviously
/" is equal to f. Let every arrow a : H x A — B be a monomorphism from the index set

of A to the index set of B. Obviously a corresponds to unique arrow f : A — B. Let the
arrow A(a) : H — A = B is defined as A(a)(H) = {f', /}. Now we have the property that
a = App?B o (A(a)o Fst,Snd). So we have a cartesian closed category that describes the action
of an assignment between two arrays in the HPF code.

Example 5.

In order to describe the reductions we could define a category in which we have array objects like
in Example 9 and an arrow f : A — B is defined if rank(A) — 1 = rank(B). Clearly the two
categories could be combined. To the object H in that combined category should be added the
HPF directive for reduction.

We can say that FORTRAN 95 provides the first order specifications between the FORTRAN 95 array
data structures and the HPF directives provide the second order specifications. These first order specifica-
tions correspond, of course, to the first order functions in the FL and the second order specifications to the
second order functions. By that analogy it could be seen that some class of HPF programs could be imbeded
in the cartesian closed category of a functional language since they could be described by category of the
same kind. Since it is an imbeding (monomorphism) its inverse exists with the imbeding’s codomain as a
domain. This inverse mapping is the translator. The presentation above gives very good reasons to believe
that making the translator will be an easy task. And that belief is true - the basic part of the translator
was made for one day. The presentation above suggests that the translator could have two separate parts
- one that translates higher order functions to HPF directives, and another one that translates first order
functions to FORTRAN code. Well, it should be admitted that the current implementation is not like that
since the translator was made first and the categorical interpretation last.

4 The translator

The ideal end result is a translator that takes a program written in Mathematica language, produces
a corresponding HPF program, compiles it, and defines a Mathematica function which calls that (parallel)
program. We will show bellow that we are close to that ideal end result - the translator bellow can provide
an environment, helpful for moving a specification of a problem to a corresponding HPF program.

The strategy adopted is very simple: For each type of expression is made an overloading definition of the
standard function FortranForm in order to get the corresponding HPF code. When a particular expression
is translated the result of FortranForm is added to a variable called FORTRANPROGRAM*. Since in HPF the
mapping directives should pass at the entry of a programming scope it is necessary to keep them in a variable
different from that we accumulate the executive code to. That special variable is called HPFSPECIFICATIONS.
Its contents will be prepended to the contents of FORTRANPROGRAM at the end of the translation. The executive
HPF code is accumulated via the "hook” $Pre. $Pre is a global Mathematica variable and any function
assigned to it will be automatically applied before the evaluation of any expression. The translation of an
expression depends on the values assigned to the symbols in it.

A session with the translator could be the evaluation of the following steps:

the initial step of the translation

FORTRANPROGRAM={} ; HPFSPECIFICATIONS={}; $Pre=PreFunction;

some Mathematica programming code

bsize=4
image=Table[i,{i,1,8},{j,1,8}]
imi=Partition[image,bsizel
im2=Map[Transpose, imi]

the final step of the translation

$Pre=.;
FORTRANPROGRAM=Join [HPFSPECIFICATIONS,Drop [FORTRANPROGRAM,-1]];

the generated programming code printed with Map [Print , FORTRANPROGRAM] ;

4the translator is one-pass one.

thpf$ PROCESSORS squad(2,1)

thpf$ DISTRIBUTE image(BLOCKS(4),BLOCKS(S)) ONTO squad
thpf$ ALIGN imi1(i,*,:) WITH image((i-1)*4+1,:)
bsize=4

'hpf$ INDEPENDENT

forall(i=1:8,j=1:8) image(i,j)=1i

thpf$ INDEPENDENT, NEW(i)

do i=1,size(image,1)/bsize
im1(i,#*,:)=image((i-1)*4+1,:)

end do

thpf$ INDEPENDENT, NEW(i)

do i=1,size(imil,1)
im2(i,:,:)=transpose(imi(i,:,:))

end do

Now we could save the variable FORTRANPROGRAM in a file, to compile that file® and to use the compiled code
as a Mathematica function as it is shown by Janhunen in [6].

The answer of Mathematica to some command (like MATLAB or Maple) is not necessarily assigned to
some symbol or variable defined by the user, or variable he or she is aware of. We assume that all the
expressions we will translate will be an assignments. This is the only restriction we take for the sake of
simplicity of the translator. This assumption is very natural, nevertheless it can be overcome.

The translator is described bellow by separate descriptions what code is generated for assignments of
different types. The notation Mathematica expression — HPF directives / FORTRAN 95 con-
structions is used to designate the descriptions. The lighter gray boxes of the accompanying examples
contain the user’s input and the darker gray boxes contain the Mathematica response.

4.1 Translation of data manipulating structures
4.1.1 lhs=rhs —lhs=rhs

The assignment of an atomic object in Mathematica should be like the assignment in HPF. The definition
is straightforward - to the FORTRAN form of the left hand side expression is assigned the FORTRAN form
of the right hand side.

|FortranForm[a1=5] |

|a1=5

4.1.2 lhs=Table[expr, iterators] —INDEPENDENT, FORALL statement

With the function Table we can make lists and lists of lists. We can do, for example, this:

| Table[Binomialli,j1,{i,1,3},{j,1,i}] |

|{1},{1,2}.{¢,2,3}}, |

but we restrict ourself to consider just lists with elements of equal size on each level 1.e. arrays. The
generation of such lists with Table could be done in parallel. Thus for the expression

| image=Table[i+Sin[j],{i,1,3},{j,1,4}] |

{{1+Sin[1],1+Sin[2],1+Sin[3],1+Sin[4]},
{2+sin[1],2+Sin[2],2+Sin[3],2+Sin[4]},
{3+sin[1],3+Sin[2],3+Sin[3],3+Sin[4]}}

the corresponding HPF code is

5for the code of this example we should put some additional work

FortranForm[image=Table[i+Sin[j]1,{i,1,3},{j,1,4}]1]

'hpf$ INDEPENDENT
forall(i=1:3,j=1:4) image(i,j)=i + Sin(j)

4.1.3 Transpose —TRANSPOSE

Transpose is translated directly:

‘ FortranForm[im2=Transpose[im1]] ‘

‘im2=transpose(im1) ‘

4.1.4 Partition— PROCESSORS, DISTRIBUTE, ALIGN, INDEPENDENT, DO

The function Partition is very useful when we program with Mathematica because it gives the opportu-
nity to make relevant domains for the functions we define. For example, if we want to simulate the parallel
summation of a row of numbers, we can do that in Mathematica in the following way:

1.First we define a row of numbers

‘row=Tab1e[i,{i,1,8}] ‘

1{1,2,3,4,5,6,7,8} |

2.Second we partition it in lists of length 2

‘row2=Part ition[row, 2] ‘

[{{1,2},{3,4},{5.6},{7.8}} |

3.Then we sum the elements of each of the lists of row 2 and assign it to the variable row

MyPlus[{x_,y_}]1:=x+y
row=Map [MyPlus,row2]

{3,7,11,15} |

4.We should repeat steps 2. and 3. until the result of step 3. is one element list.

The algorithm above could be expressed more concisely by the command:

‘ NestList [Map[Apply[Plus, #1]&,Partition[#1,2]]&,row,3] ‘

1{{1,2,3,4,5,6,7,8},{3,7,11,15},{10,26} ,{36}} |

We can see the successive reductions of the row. In the last command are used pure functions. Their
translation to HPF is described in the subsection 4.2 bellow.

The function Partition can be expressed in HPF by the executive directive INDEPENDENT and the map-
ping directives DISTRIBUTE and ALIGN. It would be nice to express Partition to HPF just with INDEPENDENT
and ALIGN. For example if we take the variable image to be

image=Table[i,{i,1,8},{j,1,8}]
bsize=4;

and we want the translation of imi=Partition[image,bsize] to make the assignments to im1l without
communication, the translation could be the following:

FortranForm[imi=Partition[image,bsize]]

thpf$ ALIGN imi(i,:,:) WITH image(bsize*(i-1)+1:bsize*i,:)
thpf$ INDEPENDENT, NEW(i)

do i=1,size(image,1)/bsize
im1(i,:,:)=image(bsize*(i-1)+1:bsize*i,:)

end do,

where bsize should be defined as a parameter or instead of it to use its value (in this case 4) . The problem
with translations of that kind is that the ALIGN constraints does not allow to specify a subscript triplet as a
function of one or more align-dummies. One way to get out of this is the align directive to be:
thpf$ ALIGN imi(i,*,:) WITH image((i-1)*bsize+1,:)

where each subarray i of the new dimension in imil is placed on the same processor with the element
of the initial array (image), that should be first in that subarray. Now we should make an appropriate
distribution of the initial array in order to be sure that no communications would arise in the assignment.
This distribution is straightforward - Partition[array,stride] corresponds to the HPF’s directive

IHPF$ DISTRIBUTE array(BLOCK(stride), BLOCK(SIZE(array,2)),...,

BLOCK(SIZE(array, SIZE(SHAPE(array)))))
If we have several partitions in the Mathematica code it is possible to have distributee clashes. These
clashes can be easily checked with a table generated during the compilation. We are even able to define
special processor arrangements for every distribution and to cope successfully with the processor arrangement
clashes. So, for the partitioning above we could have the translation:

FortranForm[imi=Partition[image,bsize]]

thpf$ PROCESSORS squad(8/bsize,1)

thpf$ DISTRIBUTE image(BLOCKS(bsize),BLOCKS(8)) ONTO squad

thpf$ ALIGN imi(i,*,:) WITH image((i-1)*bsize+l,:)

thpf$ INDEPENDENT, NEW(i)

do i=1,size(image,1)/bsize

im1(i,:,:)=image(bsize*(i-1)+1:bsize*i,:)

end do

As it was explained at the beginning of the section, the mapping directives should be accumulated to

a variable, say HPFSPECIFICATIONS, different from the variable FORTRANPROGRAM. So actually the result

of FortranForm[imi=Partition[image,bsize]] is added to FORTRANPROGRAM via $Pre function but the

corresponding mapping directives are added to HPFSPECIFICATIONS (by the function FortranForm itself).
The code generated for FORTRANPROGRAM is

HPFSPECIFICATIONS={}; FortranForm[imi=Partition[image,bsizel] ‘

thpf$ INDEPENDENT, NEW(i)

do i=1,size(image,1)/bsize
im1(i,#*,:)=image((i-1)*4+1,:)
end do

The code generated for HPFSPECIFICATIONS is

|HPFForm[HPFSPECIFICATIONS]

thpf$ PROCESSORS squad(8/bsize,1)
thpt$ DISTRIBUTE image(BLOCK(bsize) ,BLOCK(8)) ONTO squad
thpf$ ALIGN imi(i,*,:) WITH image((i-1)*bsize+l,:)

4.2 Pure Functions

Pure functions give very convenient way for specifying calculations. For example if we want to square all
the elements in a list we can write the following:

‘Map[#1”2&,{4,5,{m,6,7},7,3,2,a}] ‘

‘{16, 25, {m"2, 36, 49}, 49, 9, 4, a2} ‘

instead of defining first a square function and then mapping the list via it.

MySquare[x.]:=x"2
Map[MySquare,{4,5,{m,6,7},7,3,2,a}]

‘{16, 25, {m"2, 36, 49}, 49, 9, 4, a"2}

Pure functions are also convenient for expressions that have multiple entries of the same subexpression. For
example the expression
If[Length[im1]==5,Rest[im1],im1];
could be written with a pure function as
If[Length[#1]==5,Rest [#1] ,#1]&[im1];
The benefit is more obvious if we try to imagine that instead of im1 we have some complicated expression
If[Length[#1]==5,Rest [#1],#1]&[Transpose[Reverse[imi]]];
The examples above use one argument pure functions. We should distinguish between pure functions that
are listable i.e. automatically threaded over list arguments®, and nonlistable ones. Later ones are translated
straightforward. Former ones, if they are applied to arrays, have a natural translation to FORTRAN 95 via
the statement FORALL as 1t is shown in the next example:

| FortranForm[im2=#1"2+Sin[#1]&[im1]]

forall(il=1:size(iml,1),i2=1:size(iml,2),i3=1:size(im1,3))
im2(i1,i2,i3)=im1(i1,i2,i3)**2 + Sin(im1(il,i2,i3))
end forall

The current translator translates only one argument pure functions. As is it shown in the next example
nonlistable ones are not taken correctly.

‘FortranForm[im2=Transpose [#1]1&[im1]] ‘

‘im2=Function(transpose(Slot(1)))(iml) ‘

4.3 Second order functions

It looks like there are two major kinds of loops - loops that have a body calculated independently of the
other cycles in the loop and loops with a body calculated according to the previous one. May be any other
loop can be expressed in terms of these two. The first kind of loop corresponds to the mathematical notion of
mapping - we could consider it as mapping with a function defined by the loop’s body depending of the control
variables of the loop. The second one corresponds to the notion of superposition (or nesting) of a function.
The Mathematica functions for specifying a mapping are Map, MapAll, MapThread. Those for specifying a
nesting are Fold, Nest, FixedPoint. These functions a second order functions. On one hand MapAll and
MapThread can be expressed by Map, and on the other hand Nest and FixedPoint can be expressed by
Fold. Bellow are proposed HPF translations of Map, Fold and the combinations Map[Fold[...]...] and
Map[Composition[f1,£2],...].

be.g. £[{a,b}] becomes {f[al,f[b]}

4.3.1 lhs=Map[func, array] — INDEPENDENT, DO

Map[f, {a,b,c,...}] gives {f[al,£f[b],f[c],...}. Tt is natural to translate commands like that to
independent DO or FORALL loops - Map specifies that £ is applied separately to each of the elements in the
list. We can implement that separate application of £ by DO loop and since it should be done separately
we can put the INDEPENDENT directive. In Mathematica we can specify different levels the function £ to be
applied on. Since our general assumption is that all the structures in the Mathematica code we translate
are arrays, in the implemented translation of Map[f,expr] the function £ is applied to the last level of the
structure expr, i.e. to the elements of the array expr.

The first example is the function Map with a pure function to be applied to.

FortranForm[im2=Map[#1~2&,im1]]

thpf$ INDEPENDENT, NEW(i,i1,i2)

do i=1,size(imil,1)
forall(il=1:size(im1(i,:,:),1),i2=1:size(im1(i,:,:),2))
im2(i,i1,i2)=im1(i,i1,1i2)**2

end forall

end do

We can take also some of the standard functions but their FORTRAN translation should be predefined.

FortranForm[im2=Map[Transpose, im1]]

thpf$ INDEPENDENT, NEW(i)

do i=1,size(imil,1)
im2(i,:,:)=transpose(imi(i,:,:))
end do

The compiler does not take, for example, correctly this:

FortranForm[im2=Map[Sin,im1]]

'hptf$ INDEPENDENT, NEW(i<>If [NewVariables[Sin[righthand$2535]]
I= , ,<>NewVariables[Sin[righthand$2535]],
NewVariables[Sin[righthand$2535]]]1<>)

do i=1,size(imil,1)
Evaluate(lefthand$2535)=Sin(Evaluate(righthand$2535))

end do

but it takes the following completely satisfying version

FortranForm[im2=Map[Sin[#1]&,im1]]

thpf$ INDEPENDENT, NEW(i,i1,i2)

do i=1,size(imil,1)
forall(il=1:size(im1(i,:,:),1),i2=1:size(im1(i,:,:),2))
im2(i,i1,12)=Sin(im1(i,i1,1i2))

end forall

end do.

4.3.2 lhs=Fold[func, initial value, array] — INDEPENDENT, REDUCE, DO

Since the meaning of Fold[f,x0,{a,b,c,d}] is £[£[f[£[x0,al,bl,c],d] we can translate it to an
independent, reduce loop if the function f 1s associative. The only reduction functions allowed in HPF
are +, *, MAX, MIN, IAND, IOR, IEOR. So it is relevant the translator to check, does the function to be
folded, is one of them. If it is not we can translate the whole expression as pipelining as it is described in
the sub-subsection 4.3.4. In the current translator this feature is not implemented.

FortranForm[im3=Fold[Plus,x0,im1]]

im3(:,:)=x0

thpf$ INDEPENDENT, NEW(i), REDUCTION(im3)
do i=1,size(imil,1)

im3(:,:)=im1(i,:,:) + im3(:,:)

end do

4.3.3 lhs=Map[Fold[func, initial value, #1]&, array] —INDEPENDENT, REDUCE, DO

We are lucky that HPF allows array variables to appear in the REDUCTION clause. We are lucky even
more, because we are also able to put array sections as reduction variables. Because of the later feature we

have translations like the following:

FortranForm[im4=Map[Fold[Plus,x0, #1]&,im1]]

thpf$ INDEPENDENT, NEW(i,i1,i2)

do i=1,size(imil,1)

im4 (i1, :)=x0

thpf$ INDEPENDENT, NEW(i), REDUCTION(im4(il,:))
do i=1,size(im1(il,:,:),1)
im4(il,:)=im1(i1,i,:) + im4(il,:)

end do

end do

In the last example the variable x0 should be conformable with the array section im4(i,:).

4.3.4 lhs=Map[Composition[funcl,func2], array]— TASK REGION, ON

Until now we have discussed just the translation to the standard HPF 2.0. Here we will consider the
approved extensions of HPF 2.0 for task parallelism, the directives TASK REGION and ON. We will take the
approach described by Schreiber in [7]. Tt is clear that Composition[f1,£2] stands for £1[f2[argument]].
This composition is a fear invitation for pipelining - when £1 works on the result of £2, the later could work
on the next piece of data to be processed. Apparently this approach could be extended to any amount of
composed functions. This generalization leads us to pipelined code when we translate Fold with an arbitrary
function to be folded. Here is an example how the translator works on compositions. The Mathematica code

18 very concise.

FortranForm[ri=Composition[Sin[#1]&,Cos[#1]&,Tan[#1]&,#1°2&] [im2]]

'hpf$ TASK REGION

thpf$ ON HOME(viFunc), RESIDENT, BEGIN
forall(il=1:size(im2,1),i2=1:size(im2,2),i3=1:size(im2,3))
viFunc(il,i2,i3)=Sin(im2(i1,i2,1i3))

end forall

'hpf$ END ON

v2Func=v1iFunc

thpf$ ON HOME(v2Func), RESIDENT, BEGIN
forall(il=1:size(v1iFunc,1),i2=1:size(v1Func,2),i3=1:size(v1Func,3))
v2Func(il,i2,i3)=Cos(viFunc(il,i2,1i3))

end forall

'hpf$ END ON

v3Func=v2Func

thpf$ ON HOME(v3Func), RESIDENT, BEGIN
forall(il=1:size(v2Func,1),i2=1:size(v2Func,2),i3=1:size(v2Func,3))
v3Func(il,i2,i3)=Tan(v2Func(il1,i2,1i3))

end forall

'hpf$ END ON

v4Func=v3Func

thpf$ ON HOME(v4Func), RESIDENT, BEGIN
forall(il=1:size(v3Func,1),i2=1:size(v3Func,2),i3=1:size(v3Func,3))
v4Func(il,i2,i3)=v3Func(il,i2,13)**2

end forall

'hpf$ END ON

ri=v4Func

thpf$ END TASK REGION

The complete translation of Map[Composition[funcl,func2], array] is not finished yet but is close.

4.3.5 Translating function calls

This feature is not implemented in the translator but clearly from the presentation above it is more than
reachable. For example, a Mathematica function defined as

InhFunclarg_, dummy.]:= ...

could be considered as a subprogram with inherited argument mapping.
A function defined as

DescrFunclarg:{{_,_,_}...}, dummy Number]:=...
could be considered as a subprogram with descriptive argument mapping.
Of course, there are some issues like: Where the code of the generated subprograms should be placed?

Should translator have special definitions for the user defined functions, that appear in the main second
order functions? These questions are postponed to be solved, eventually, in the future.

5 Working Example

We translate the following Mathematica assignments into HPF code.
bsize=4
line=Tablel[i,{i,1,8}]
image=Table[i,{i,1,8},{j,1,8}]
im1=Partition[image,bsize]
im2=Map[Transpose, im1]
im2=Map [#1~2&, im2]
x0=Table[0,{i,1,Dimensions[im1] [[2]]},{j,1,Dimensions[im1][[3]1]1}]
im3=Fold[Plus,x0,im1]
x1=Table[0,{i,1,Dimensions[im1] [[3]1]}]
im4=Map[Fold[Plus,x1, #1]&,im1]
To the code generated we add the FORTRAN 95 definitions of the data structures 1ine, image ,iml, im2, im3, im4, xO
and we get the program bellow.
program fprog
integer, parameter :: bsize=4
integer :: i, i1, i2, i3, j
integer :: image(8,8), 1line(8)
integer :: im1(2,4,8), im2(2,8,4), im3(4,8), x0(4,8)
integer :: im4(2,8), x1(8)
thpf$ PROCESSORS squad(2,1)
thpf$ PROCESSORS cube(2,1,1) (1)
thpf$ DISTRIBUTE image(BLOCK(4),BLOCK(8)) ONTO squad
thpf$ DISTRIBUTE iml(BLOCK(1),BLOCK(4),BLOCK(8)) ONTO cube (2)
thpf$ ALIGN imi(i,*,*) WITH image((i-1)%4+1,1) (3)
'hpf$ INDEPENDENT
forall(i=1:8) line(i)=i
'hpf$ INDEPENDENT

forall(i=1:8,j=1:8) image(i,j)=1i

thpf$ INDEPENDENT, NEW(i)

do i=1,size(image,1)/bsize

im1(i,:,:)=image(bsize*(i-1)+1:bsize*i,:)

end do

thpf$ INDEPENDENT, NEW(i)

do i=1,size(imil,1)

im2(i,:,:)=transpose(imi(i,:,:))

end do

thpf$ INDEPENDENT, NEW(i,i1,i2)

do i=1,size(imil,1)

forall(il=1:size(im2(i,:,:),1),i2=1:size(im2(i,:,:),2))

im2(i,1i1,1i2)=im2(i,i1,1i2)**2

end forall

end do

'hpf$ INDEPENDENT

forall(i=1:4,j=1:8) x0(1i,j)=0

im3(:,:)=x0

thpf$ INDEPENDENT, NEW(i), REDUCTION(im3)

do i=1,size(imil,1)

im3(:,:)=im1(i,:,:) + im3(:,:)

end do

'hpf$ INDEPENDENT

forall(i=1:8) x1(i)=0

thpf$ INDEPENDENT,NEW(i,i1,i2)

do i1=1,size(iml,1)

im4 (i1, :)=x1(:)

thpf$ INDEPENDENT,NEW(i1), REDUCTION(im4(i1,:))

do i=1,size(im1(itl,:,:),1)

im4(i1,:)=im1(i1,i,:) + im4(il,:)

end do

end do

end program fprog
That program was compiled on IBM SP with the HPF compiler pghpf, Rel 2.4, and started on two processors.
It looks like the compiler does not handle row (2) of the program correctly. If we replace row (2) with the
rows (1) and (3) the program gives the same results as the corresponding expressions in Mathematica.

6 Conclusion

We have shown how we can translate in a natural way expressions of a functional language to HPF
statements for parallel execution. The translator presented is implemented in Mathematica. It translates
second order functions, pure functions and some procedural constructions for data manipulations. Ideas for
translating function calls and compositions of functions had been also shown. In the translator should be
added some more features and one of them is the generation of the FORTRAN 95 definitions of the structures
used in the translated code. The translator could be programmed to respond to some contradictions during
the translation. It should be pointed out how far we were able to go with this translator without many
efforts and the translator in its current stage can be used for generating tedious HPF code from some very
concise Mathematica expressions. If the translator is made correctly we will have the additional benefit that
the code generated would be without errors.

Acknowledgments: This paper i1s based on the author’s report for the Ph.D. course “High-Performance
Programming” , held at DTU, Denmark, organized by Prof. Per Christian Hansen during the period Sep-Dec,
1998. More information about the course can be found at the site http://www.imm.dtu.dk/ pch/hpp.html.
The lectures were held by leading experts in high-performance computing: Prof. Jack Dongarra, Dr. William
Gropp, Dr. Sven Hammarling, Prof. Nicholas J. Higham, Prof. Bo Kagstrom, Dr. Ramesh Menon, Prof.
John Reid, Dr. Robert Schreiber. Prof. Stig Skelboe and Prof. Per Christian Hansen gave some introductory

lectures. The ideas in this paper was inspired by the lecture of Dr. Ramesh Menon for Open MP, and the
lecture of Dr. Robert Schreiber for HPF. I consider myself lucky to have had the opportunity to attend the
course therefore I am very grateful to Prof. Per Christian Hansen for organizing it.

Appendix

In this appendix we define category, cartesian category and cartesian closed category as Field and Harrison
in [3], Chapter 13, Section 4.
A category is a collection of objects, 0bj(C) such that

1. Given A, B € 0bj(C), here is a collection of arrows from A to B, denoted by A — B, and if
fisin A — B we say that th domain of f is A, and the codomain of f is B, or dom(f) = A,
cod(f) = B.

2. For all objects A, B, there is a composition operation, o, defined on the arrows, which
is associative, i.e. if fisin B — C and g isin A - B then fogisin A — C, and
(fog)oh= fo(goh)forall arrows f, g, h such that cod(h) = dom(yg), cod(g) = dom(f).

3. For each object A there is an identity arrow, id® in A — A, such that for all arrows f,g
with cod(f) = dom(g) = A, id* o f = f and goid* = g.

In a cartestan category, C, there is a product construction, defined as follows:

For all objects A, B there exists an object A x B and arrows F'st4? : A x B = A, Snd*P .
A x B — B, called projections, with he property that any object C' and arrows f : C' — A,
g : C'— B, there exists an unique arrow C' = A x B, denoted by (f,g) and called a pair of f
and g, with the property that f = Fsto (f, g}, ¢ = Sndo {(f,g).

The cartesian closed category is cartesian category in which for all objects A, B, there exists an
object, A = B, and an arrow App®®¥ : (4 = B) x A — B, called application, with the property
that for any object C' and an arrow, f : C' x A — B there exists an unique arrow ¢' =+ A = B,
denoted A(f), and called curring of f, such that f = App*® o (A(f) o Fst, Snd).

The object A = B represents the functional space defined on A and B, and the pair <A — B, AppA’B>
defines the exponential of A and B. The functional space 1s the set of all functions from A to B. If ¢ € |
A(f)(c) is a function which for a € A is f(e,a) i.e. A(f)(e)(a) = f(e, a).

References

[1] Michael Barr, Charles Wells, Category Theory for Computer Science, second edition, Prentice Hall 1996.

[3] A.J.Field, P.G.Harrison, Functional Programming, Addison-Wesley, 1988

[4] Wilhelm Gehrke, Fortran 95, Language guide, Springer 1996

[5] High Performance Fortran Forum, High Performance Fortran Language Specification, January 31, 1997 ,Version
2.0

[6] Pekka Janhunen, Fortran Definitions, Finnish Meteorological Institute Geophysics Dept. 14.06.90., available on
http://www.mathsource.com/Content/Enhancements/Interfacing/Fortran/0202-172

[7] Robert Schreiber, High Performance Fortran, Version 2, Parralel Processing Letters Vol.7 No.4(1997) 437-449

