
Getting Started

with SchematicSolver version 2.2
Miroslav D. Lutovac and Dejan V. Tosic

Copyright

Miroslav D. Lutovac and Dejan V. Tosic are the holders of the copyright to the
SchematicSolver software described in this document. ©2003-2009 by Lutovac & Tosic.

Getting Started Contents

Getting Started 1
Copyright 1
Getting Started Contents 2
What is SchematicSolver? 3
Who Is It For? 4
Overview 5
Features 6

Easy to Use and Learn 6
Powerful Modeling and Simulation Environment 6
Fast and Reliable 7
Implementation of Discrete-Time Systems 8
Teams up with Other Mathematica Applications 8

Documentation 9
Installing SchematicSolver 11
Starting SchematicSolver 12
Registering Your Copy of SchematicSolver 12
Using Online Help 13
SchematicSolver's Palettes for Interactive Drawing 14
Running Demo 21

Load SchematicSolver 21
Description of Demo System 22
Schematic of Demo System 23
Refining Schematic with Drawing Options 25
Solving Demo System 26
Frequency Response 27
Simulation 29
Software Implementation of Linear System 31
Generating Stimulus 34
Processing with Linear System 35
Nonlinear System 37
Processing with Nonlinear System 39

2 GettingStarted.nb

What is SchematicSolver?

Welcome to SchematicSolver, a powerful and easy-to-use schematic capture, symbolic
analysis, processing, and implementation tool in Mathematica. It is a convenient and
comprehensive environment in which to draw, solve, simulate, and design systems.

SchematicSolver has many unique features not available in other software: symbolic
signal processing brings you 1) computation of transfer functions as closed-form
expressions in terms of symbolic system parameters, 2) finding the closed-form response
from the schematic. The derived result is the most general because all system parameters,
inputs, and the initial conditions (states) can be given by symbols.

SchematicSolver features automated generation of software implementation of linear and
nonlinear discrete systems. The generated implementation function can symbolically
process symbolic samples: for a symbolic input sequence, you can compute the symbolic
output sequence with both the system parameters and the states specified by symbols.

Other important features include a) design of efficient multirate implementations by
working in the symbolic domain, b) modeling systems that work with symbolic complex
signals, such as the Hilbert transformer, c) symbolic derivations of important closed-form
relations between parameters of a system, such as the power-complementary property of
high-speed digital filters, d) symbolic optimization of the system response, and e)
functions that generate schematics for arbitrary symbolic system parameters.

SchematicSolver can perform signal processing in a traditional numeric way, too.

The SchematicSolver application package requires Mathematica 7.0 or later. It is
developed and supported by Prof. Dr. Miroslav Lutovac and Prof. Dr. Dejan Tosic.

Prof. Dr. Miroslav Lutovac

Bulevar Arsenija Carnojevica 219

11000 Belgrade, Serbia, Europe

phone: +381-64-1536934 fax: +381-11-137885 email: lutovac@etf.bg.ac.rs
http://www.wolfram.com/products/applications/schematicsolver/
http://www.SchematicSolver.com

GettingStarted.nb 3

Who Is It For?

Whether you are a student, an educator, an engineer, a system analyst, a researcher, or a
practitioner, SchematicSolver offers you an easy, convenient, and comprehensive
environment in which to draw, solve, and implement systems in Mathematica.

SchematicSolver is targeted at

è educators and students who want more efficient practical teaching and learning

è practitioners who are short of time to master theoretical background of the design
procedures, implementation details, processing algorithms, and Mathematica

è industry designers responsible for products with short time-to-market

è beginners who learn and experiment with system analysis, implementation, and design

è advanced users who explore and prototype new design algorithms and solutions

You don't have to be a skillful user of Mathematica, nor an expert in signal processing,
to fully exploit SchematicSolver. With just a minimum of basic system theory, you can
successfully use SchematicSolver to draw, solve, implement, and simulate various
systems, such as continuous-time (analog) systems, dynamic feedback and control
systems, or discrete-time (digital) multirate systems. SchematicSolver has intuitive
interface and comprehensive online documentation that leads you step-by-step through
the process of creating and analyzing the schematic of your system model.

If you are a signal-processing expert, SchematicSolver is a quick solution to your
frequently used systems. Moreover, you can use the power of Mathematica to full extent
for additional processing of symbolic results returned by SchematicSolver, such as mixed
symbolic-numeric optimization not available with other software.

The interactive online documentation contains a number of detailed real-life examples
that demonstrate the use of different schematics – system models – that make
SchematicSolver an excellent teaching tool either for independent study or for use in
Signal Processing, Control Systems, Filter Design, or Signals and Systems courses.

Go To Contents

4 GettingStarted.nb

Overview

SchematicSolver is a Mathematica application package for drawing, solving, and
implementing systems represented by schematics. It performs mixed symbolic-numeric
processing. It is the first mouse-driven interactive drawing tool in Mathematica.

Some SchematicSolver's unique drawing features not available in other software follow:
a) The graphical representation of a system is not a frozen picture (it is not a bitmap
image); it changes automatically when you change system parameters. b) A large
schematic, that is the system model, can consist of replicas of simpler schematics; you
can write a code to automate drawing for an arbitrary number of repeated parts. c)
Functions exist that generate schematics for arbitrary symbolic system parameters.

Using SchematicSolver you can perform fast and accurate simulations of discrete-time
(digital) and continuous-time (analog) systems, such as velocity servo systems, adaptive
LMS systems, automatic gain control (AGC) systems, quadrature amplitude modulation
(QAM) systems, square-law envelope detectors, thermodynamics of a house, high-speed
recursive filters, Hilbert transformer, efficient multirate systems, dynamic feedback and
control systems, digital filters, and nonlinear discrete-time systems.

Symbolic signal processing, a SchematicSolver's unique feature not available in other
software, brings you 1) computation of transfer functions as closed-form expressions in
terms of symbolic system parameters, 2) finding the closed-form response from the
schematic. The derived result is the most general because all system parameters, inputs,
and the initial conditions (states) can be given by symbols.

SchematicSolver features automated generation of software implementation of linear and
nonlinear discrete systems. The generated implementation function can symbolically
process symbolic samples: for a symbolic input sequence you can compute the symbolic
output sequence with both the system parameters and the states specified by symbols.

Special features include design of efficient multirate implementations by working in the
symbolic domain, and modeling systems that work with symbolic complex signals.

SchematicSolver is based on the Mathematica built-in functions, graphics primitives, and
palettes. It is designed for use with Mathematica 7.0 or later and for Windows XP/Vista.

GettingStarted.nb 5

Features

à Easy to Use and Learn

è Well-organized palettes for drawing and solving systems by single mouse click

è The first mouse-driven interactive drawing tool entirely based on the Mathematica
built-in functions, graphics primitives, and palettes

è Powerful functions constructed so that the minimum amount of information has to be
specified by the user when modeling or solving a system

è Functions exist that generate schematics for arbitrary symbolic system parameters

è Visualization tools for drawing publication-quality schematics and viewing system
models and response

è The graphical representation of a system is not a frozen picture (it is not a bitmap
image); it changes automatically when you change system parameters

è Large schematic can consist of replicas of simpler schematics; you can write a code to
automate drawing for an arbitrary number of repeated parts

è Extensive online documentation including illustrative application examples and
comprehensive reference with Help index

è Requires a minimum understanding of basic system theory and signal processing

à Powerful Modeling and Simulation Environment

è Symbolic signal processing, a SchematicSolver's unique feature not available in other
software, brings you computation of transfer functions as closed-form expressions in
terms of symbolic system parameters

è Computes transfer function matrix of a multiple-input multiple-output (MIMO) system

è Finds the closed-form response (signals at nodes of the system) directly from the
schematic; the derived result is the most general because all system parameters, inputs,
and the initial conditions (states) can be given by symbols

6 GettingStarted.nb

Performs fast and accurate simulations of discrete-time (digital) and continuous-time
(analog) systems, such as velocity servo systems, adaptive LMS systems, automatic
gain control (AGC) systems, quadrature amplitude modulation (QAM) systems,
square-law envelope detectors, thermodynamics of a house, high-speed recursive
filters, Hilbert transformer, efficient multirate systems, dynamic feedback and control
systems, digital filters, and nonlinear discrete-time systems

è Models systems that work with symbolic complex signals, such as the Hilbert
transformer

è Carries out symbolic optimization of the system response and mixed symbolic-
numeric signal processing

è Performs signal processing in a traditional numeric way

à Fast and Reliable

è By single mouse click symbolically solves, simulates, or implements a system directly
from the schematic: a) sets up the equations describing the system, b) computes the
system response and transfer functions, c) generates the implementation function

è Helps you generate efficient multirate implementations by working in the symbolic
domain

è Provides symbolic derivations of important closed-form relations between parameters
of a system, such as the power-complementary property of high-speed digital filters

è Finds closed-form expressions of output signals, for known stimuli given by closed-
form expressions, for certain classes of nonlinear systems

è Solves systems with unconnected elements: signals at unconnected element inputs are
automatically generated as unique symbols

è Helps you design systems: for known symbolic transfer function, impulse, or step
response, you can generate the schematic of the system and find the system parameters

à Implementation of Discrete-Time Systems

è Automated generation of software implementation of linear and nonlinear discrete
systems directly from the schematic

GettingStarted.nb 7

The generated implementation function can process symbolic samples one-by-one

è For a symbolic input sequence you can compute the symbolic output sequence with
both the system parameters and the initial conditions (states) specified by symbols

è Sets up symbolic implementation equations directly from the schematic

è You can process a list of data samples for a given transfer function; the transfer
function is automatically implemented as a single-input single-output Transposed
Direct Form 2 IIR discrete system

è Provides functions a) for upsampling and downsampling discrete signals and b) for
generating most common discrete signals, such as impulse sequences, step sequences,
ramp sequences, sinusoidal or exponential sequences, and random (noise) sequences.

è Includes functions to plot a) frequency response, b) sequences that represent discrete
signals, c) Discrete Fourier Transform spectrum, and d) Discrete-Time Fourier
Transform spectrum

à Teams up with Other Mathematica Applications

è Access to all of the capabilities of Mathematica to perform further manipulations on
results returned by SchematicSolver

è Complements Control System Professional with tools for drawing and solving systems
described by block-diagrams

è Provides objects, such as symbolic transfer functions, for further analysis by Signals
and Systems Pack

Go To Contents

8 GettingStarted.nb

Documentation

SchematicSolver has comprehensive online documentation that leads you step-by-step
through the process of creating and analyzing your schematic. The interactive online
documentation contains a number of detailed examples that demonstrate the use of
different schematics – system models.

Getting Started. A step-by-step tutorial and quick tour that demonstrates a) how to draw
the schematic of a system based on a given physical model, b) how to solve and
implement the system model represented by the schematic.

Introduction. Main features of SchematicSolver, required user background, and
technical support.

Quick Tour of SchematicSolver. A brief description of unique features not available in
other software.

System Representation. Basic definitions. Discrete, continuous-time, and nonlinear
elements. Drawing options. Showing schematics. Signals and transforms.

Solving Systems. Discrete and continuous-time linear systems (system equations,
response, transfer function, and frequency response). Nonlinear discrete systems.

Examples of Solving Systems. Diving submarine system, Unstable plant system, Supply
and demand system, Unity feedback system, Satellite elevation tracking system, CD-
media controller, Shuttle pitch controller, Direct form 2 transposed IIR filter, State-space
model of discrete system. Symbolic optimization of a continuous-time system. Design of
a continuous-time system from the step response. Automated drawing and solving of
general systems.

Solving Large Systems. Combining schematics to build a large system model.

Implementation of Discrete Systems. A step-by-step procedure to generate software
implementation of systems.

Nonlinear Discrete System Implementation. Nonlinear algebraic function element.
Nonlinear modulator element. Symbolic solving nonlinear system.

GettingStarted.nb 9

Examples of Discrete System Implementation. Adaptive LMS system. Automatic gain
control. Quadrature amplitude modulation (QAM). Square-law envelope detector.
Nonlinear system with hysteresis. High-speed recursive filters.

Hilbert Transformer. Real, complex, and analytic discrete signals. Spectrum of analytic
signals. Ideal discrete Hilbert transformer. Processing with Hilbert transformer system.
QAM with Hilbert transformer.

Multirate Systems. Decimation, Downsampling identity, interpolation, Upsampling
identity. Decimation FIR filter. Polyphase decimation. Efficient decimation and
interpolation filters. Symbolic multirate processing.

Hierarchical Systems. Draw and simulate composite systems. Implementation of
hierarchical systems.

Palettes for drawing and solving systems. Using palettes. Drawing and editing
schematics with palettes. Solving, simulating, and implementing systems with palettes.
Drawing large schematics.

Reference. Alphabetic list of all functions, options, and reserved symbols with short
description of each.

Processing with SchematicSolver. Symbolic impulse response. Block processing with
initial conditions. Processing signals with noise. Processing for given transfer functions.

Post-processing using Mathematica built-in functions. Representing signals and
systems by formulas and operators. Processing with ZTransform and
ListConvolve.

Post-processing using Control System Professional (CSP). Drawing and solving state-
space models using SchematicSolver. Simplifying realizations with SchematicSolver.
Step-by-step procedure for deriving state-space equations.

Post-processing using Signals and Systems Pack. General report on systems.

Literature. Table of Contents. Book Index with more than 200 terms.

Go To Contents

10 GettingStarted.nb

Installing SchematicSolver

SchematicSolver is distributed in compressed form as a file SchematicSolver.zip.

SchematicSolver.zip is a zip archive that contains the Mathematica packages and
notebooks for the SchematicSolver application.

Follow the basic instructions below to install SchematicSolver on your computer.

To install the SchematicSolver application, you will need to first determine the folder for
the files. In a typical Windows XP installation this folder is located at

C:\Documents and Settings\PeterSmith\Application Data\Mathematica\Applications

Unzip in the Applications directory the archive SchematicSolver.zip and make sure that
you checked the option "Use folder names" in your archiver utility.

After unpacking SchematicSolver.zip, new folders appear, e.g.,

..\Applications\SchematicSolver

..\Applications\SchematicSolver\Documentation

..\Applications\SchematicSolver\FrontEnd

..\Applications\SchematicSolver\Kernel

Go To Contents

GettingStarted.nb 11

Starting SchematicSolver

Start Mathematica 7.0 or later. Load SchematicSolver with the Get command

In[1]:= Get@"SchematicSolver`"D

or the Needs command

In[1]:= Needs@"SchematicSolver`"D

SchematicSolver is one of many available Mathematica applications and is normally
installed in a separate directory, SchematicSolver, in parallel to other applications. If
this has been done at the installation stage, the application package should be visible to
Mathematica without further effort on your part.

This also makes SchematicSolver available:

In[1]:= << SchematicSolver`

Registering Your Copy of SchematicSolver

Help us improve SchematicSolver by registering your copy. Knowing who uses
SchematicSolver helps us focus our development efforts and allows us to continue
making the kinds of products that will serve you best.

Additional benefits of registering are a) free installation support via email for 30 days,
b) free technical support via email for 6 months, and c) automatic notification about
SchematicSolver upgrades.

How to register? Send email to

lutovac@kondor.etf.bg.ac.rs

including your name, license number and postal address.

Go To Contents

12 GettingStarted.nb

Using Online Help

Pull down the Help menu to get immediate access to the SchematicSolver's
documentation, examples, Table of Contents, Index, and more in the Help Browser:

1. Click Help @ Documentation Center @ Installed Add-ons.
2. Click SchematicSolver.
3. Click a subcategory in other columns.

Use the Master Index to find information on a particular SchematicSolver's topic:

1. Open the Help Browser to the Master Index.
2. In the text field, start typing a keyword.
3. Press Û. The window lists all available help.
4. Click a SchematicSolver hyperlink. The Help Browser jumps to that topic and

displays the information.
Go To Contents

GettingStarted.nb 13

SchematicSolver's Palettes for Interactive Drawing

Palettes provide a simple way to access the full range of SchematicSolver's drawing and
solving capabilities.

The SchematicSolver's palettes provide an easy point-and-click interface for performing
the most common drawing tasks. However, advanced users might prefer to type and
evaluate functions directly. But for users who only want to perform the basic operations,
the SchematicSolver's palettes provide the simplest alternative.

SchematicSolver provides four palettes:

è Palette for drawing and solving continuous-time systems, the Continuous
Elements palette,

è Palette for drawing, solving, simulating, and implementing discrete systems, the
Discrete Elements palette,

è Palette for drawing, simulating, and implementing discrete nonlinear systems, the
Discrete Nonlinear palette, and

è Palette for specifying drawing options and schematic plot range, the Schematic
Options palette.

If the SchematicSolver's palettes are not open, choose them with

 Palettes @ DiscreteElements

 Palettes @ ContinuousElements

 Palettes @ DiscreteNonlinear

or

 Palettes @ SchematicOptions

14 GettingStarted.nb

Discrete Elements

Inputç——

Output –é

Node •

Text A

Arrow â

Adder ∆

Line —

Mult -@Ø

Delay

Block-ÑØ

PolylineÓ

8x, y<

Redraw ¿

¦ ` ê n ~

Simulate

Implement

Solve

Start Drawing

Initialize

Continuous Elements

Inputç——

Output –é

Node •

Text A

Arrow â

Adder ∆

Line —

Amp -@Ø

Integrator Ÿ

Block-ÑØ

PolylineÓ

8x, y<

Redraw ¿

Solve

Start Drawing

Initialize

To Start Drawing a new Schematic

1. Place the insertion point in a new empty cell in your notebook.

GettingStarted.nb 15

2. Click the button Initialize on the palette to load SchematicSolver. Palette footer, below
the button Initialize, indicates the function of this button.

Initialize

Load SchematicSolver

An input cell will be opened with pasted text and then the whole cell will be evaluated:

Needs@"SchematicSolver`"D;
SetOptions@InputNotebook@D,

ImageSize → 8350, 300<, WindowSize → 8500, 600<D;

3. Click the Start button

Start Drawing

A new input cell will be opened with pasted text. Then the whole cell will be evaluated
producing a new graphic output cell below the input cell:

In[2]:= mySchematic = 8

8"Polyline", 88−1, −1<, 8−1, 21<, 828, 21<, 828, −1<, 8−1, −1<<<<;
ShowSchematic@%D;

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0

2

4

6

8

10

12

14

16

18

20

16 GettingStarted.nb

By clicking the Start button, a new schematic (typically, a system specification) is
generated with only one annotation element — Polyline. The ShowSchematic
function shows the drawing workspace with grid lines. By default, the list of elements
that describe the schematic is named mySchematic. We call this list the schematic
specification.

4. Place the insertion point in the empty line in your schematic specification, above the
drawing workspace.

5. To draw an input, click the Input button

Input Á——

Move the mouse over the drawing workspace. Click once, say when the mouse position
is over the coordinate {5, 10}. The coordinate {5,10} is selected, and it appears in the
Input element specification.

The Input element specification is pasted at the current insertion point:

8"Input", 85, 10<, X, "", TextOffset → 81, 0<<,

The schematic specification changes and it has a new element above the empty line.

The insertion point remains in the empty line. The drawing workspace does not change
until you evaluate the cell with the schematic specification.

6. Click the Redraw button

Redraw ↵

to redraw the schematic:

GettingStarted.nb 17

In[4]:= mySchematic = 8
8"Input", 85, 10<, X, "", TextOffset → 81, 0<<,

8"Polyline", 88−1, −1<, 8−1, 21<, 828, 21<, 828, −1<, 8−1, −1<<<<;
ShowSchematic@%D;

X

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0

2

4

6

8

10

12

14

16

18

20

The cell insertion bar appears below the drawing workspace.

7. Place the insertion point in the empty line in your schematic specification, above the
drawing workspace.

8. You can continue filling in your schematic specification with other elements. For
example, to add the Block element, click the Block button. Move the mouse over the
drawing workspace. Press and hold the mouse button, say when the mouse position is
over the coordinate {5, 10}. Drag the mouse to specify the second coordinate. Release
the mouse button, say at {15, 5}. The schematic specification changes and it has a new
element above the empty line.

In a similar way, you can add the Output element at {15, 5}.

18 GettingStarted.nb

Here is the corresponding schematic specification:

In[6]:= mySchematic = 8
8"Input", 85, 10<, X, "", TextOffset → 81, 0<<,
8"Block", 885, 10<, 815, 5<<, G, "block"<,
8"Output", 815, 5<, Y, "", TextOffset → 8−1, 0<<,

8"Polyline", 88−1, −1<, 8−1, 21<, 828, 21<, 828, −1<, 8−1, −1<<<<;
ShowSchematic@%D;

X G
block

Y

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0

2

4

6

8

10

12

14

16

18

20

Typically, we want to solve the system: to find the system response, or to compute the
transfer function. The palette button Solve pastes and evaluates a template for general
solving a system. The Solve button assumes that the name of the schematic specification
is mySchematic:

GettingStarted.nb 19

In[8]:= Print@"Equations of the System:"D;
8myEquations, myVars< = DiscreteSystemEquations@mySchematicD;
myEquations êê Column
Print@"Response of the System:"D;
8myResponse, myVars< = DiscreteSystemResponse@mySchematicD;
myResponse êê Column
Print@"Signals of the System:"D;
8mySignals, myVars< = DiscreteSystemSignals@mySchematicD;
% êê Transpose êê TableForm
Print@"Transfer Function Matrix:"D;
8myTF, myInputs, myOutputs< =

DiscreteSystemTransferFunction@mySchematicD;
myTF êê MatrixForm
Print@"Inputs of the System:"D;
myInputs
Print@"Outputs of the System:"D;
myOutputs

Equations of the System:

Out[10]=
Y@85, 10<D m X
Y@815, 5<D m G Y@85, 10<D

Response of the System:

Out[13]=
Y@815, 5<D → G X
Y@85, 10<D → X

Signals of the System:

Out[16]//TableForm=
G X Y@815, 5<D
X Y@85, 10<D

Transfer Function Matrix:

Out[19]//MatrixForm=

H G L

Inputs of the System:

Out[21]= 8Y@85, 10<D<

Outputs of the System:

Out[23]= 8Y@815, 5<D<

Further processing can be applied to the results returned by Solve, say by using Control
System Professional.

20 GettingStarted.nb

Running Demo

à Load SchematicSolver

This makes SchematicSolver available:

In[24]:= Needs@"SchematicSolver`"D;

We specify some options to better present a demo system:

In[25]:= SetOptions@InputNotebook@D,
ImageSize → 8350, 250<,
ImageMargins → 880, 0<, 80, 0<<D;

In[26]:= SetOptions@ShowSchematic,
ElementScale → 1,
FontSize → Automatic,
Frame → True,
GridLines → Automatic,
PlotRange → AllD;

In[27]:= SetOptions@DrawElement, ElementSize → 81, 1<, PlotStyle →

88RGBColor@0, 0, 0.7`D, Thickness@0.005`D, PointSize@0.012`D<,
8RGBColor@0, 0, 1D, Thickness@0.0035`D, PointSize@0.01`D<<,

ShowArrowTail → True, ShowNodes → False, TextOffset → Automatic,
BaseStyle → 8FontFamily → Times, FontSize → 10<D;

In[28]:= SetOptions@SequencePlot,
StemPlot → False,
Joined → TrueD;

Go To Contents

GettingStarted.nb 21

à Description of Demo System

Let us consider a simple model of the thermodynamics of a house. Here is the system
lineart created with SchematicSolver:

In[29]:= ShowSchematic@
SchematicSolverFigureImplementationExamplesHouseHeating,
GridLines → None, Frame → FalseD

Outside
Temperature Inside

Temperature

Heat Cost

Heating
System

Heating
On

The out-door thermometer measures the outside temperature, tempOut, and the in-door
thermometer measures the inside temperature, tempIn. The temperatures have been
obtained by taking samples at discrete instants of time. We are concerned with uniform
samples by sampling every T units of time.

The next sample of the inside temperature is obtained by adding two terms to the current
sample of the inside temperature tempIn:

(tempOut - tempIn) * coefHouse

and

heatOn * coefHeat

coefHouse denotes a parameter of the house, coefHeat denotes a parameter of the
heating system, and heatOn can be 1 (heating system turned on) or 0 (heating system
turned off). The next sample of the cumulative heating cost is computed by adding
unitCost to the cumulative heating cost if the heating system is turned on.

22 GettingStarted.nb

à Schematic of Demo System

The schematic of the demo system can be drawn according to the system description.

è First, we use the Input element to describe the outside temperature tempOut.

è We employ the Adder element to perform the operation of subtraction of the outside
temperature and the inside temperature.

è The difference of those two temperatures is multiplied by coefHouse using the
Multiplier element.

è Another Input element is used for heatOn.

è The Multiplier element is used for multiplying heatOn by coefHeat.

è The Adder element sums the outputs of the multipliers. This value is added to the
current inside temperature tempIn by using another Adder element.

è The computed value becomes the next sample of the inside temperature, therefore we
use the Delay element.

è The output of the Delay element is fed back to the adders as the value of the current
inside temperature – it is represented by the Output element.

è The value of heatOn is multiplied by unitCost using the Multiplier element.

è This value is added to the current cumulative heating cost by using the Adder
element.

è The computed cost becomes the next sample of the cumulative heating cost, therefore
we use another Delay element.

è The output of the delay element has the value of the current cumulative heating cost –
it is represented by the Output element.

SchematicSolver describes a system as a list of elements; this list specifies what elements
are in the system and how they are interconnected. A list describing a system will be
referred to as the system specification. Each element in the system is also described as a
list that states what the element is, to which other elements it is connected, and what its
value is. A list describing an element will be referred to as the element specification.

GettingStarted.nb 23

Here is the schematic specification of the thermodynamics of a house:

In[30]:= heatingSchematic = 8
8"Adder", 882, 14<, 83, 13<, 84, 14<, 810, 17<<, 81, 0, 2, −1<<,
8"Adder", 887, 14<, 88, 10<, 89, 14<, 88, 17<<, 81, 1, 2, 0<<,
8"Adder", 889, 14<, 89, 10<, 811, 14<, 810, 17<<, 81, 0, 2, 1<<,
8"Adder", 8812, 7<, 813, 6<, 814, 7<, 813, 10<<, 81, 0, 2, 1<<,
8"Multiplier", 884, 14<, 87, 14<<, coefHouse<,
8"Multiplier", 882, 10<, 88, 10<<, coefHeat<,
8"Multiplier", 882, 7<, 812, 7<<, unitCost<,
8"Delay", 8811, 14<, 819, 14<<,

1, "", ElementSize → 82, 3 ê 2<<,
8"Delay", 8814, 7<, 819, 7<<, 1, "", ElementSize → 82, 3 ê 2<<,
8"Line", 8810, 17<, 819, 17<, 819, 14<<<,
8"Line", 882, 7<, 82, 10<<<,
8"Line", 8813, 10<, 819, 10<, 819, 7<<<,
8"Arrow", 8810, 15<, 810, 17<<<,
8"Arrow", 883, 15<, 83, 17<<<,
8"Arrow", 8813, 8<, 813, 10<<<<;

In[31]:= heatingInOut = 8
8"Input", 82, 14<, tempOut<,
8"Input", 82, 10<, heatOn<,
8"Output", 819, 14<, tempIn<,
8"Output", 819, 7<, heatCost, "", TextOffset → 8−1, 0<<<;

In[32]:= linearHeatingSystem = Join@heatingSchematic, heatingInOutD;

ShowSchematic shows the system schematic:

In[33]:= ShowSchematic@linearHeatingSystem,
PlotRange → 88−2, 23<, 85, 18<<D;

coefHouse

coefHeat

unitCost

z-1

z-1

tempOut

heatOn

tempIn

heatCost

−2 0 2 4 6 8 10 12 14 16 18 20 22
5

7

9

11

13

15

17

24 GettingStarted.nb

à Refining Schematic with Drawing Options

Schematic can be drawn without grid and frame:

In[34]:= ShowSchematic@linearHeatingSystem,
Frame → False, GridLines → NoneD;

coefHouse

coefHeat

unitCost

z-1

z-1

tempOut

heatOn

tempIn

heatCost

You can increase the size of all elements by 25% using the option ElementScale→
1.25:

In[35]:= ShowSchematic@linearHeatingSystem,
Frame → False, GridLines → None, ElementScale → 1.25D;

coefHouse

coefHeat

unitCost

z-1

z-1

tempOut

heatOn

tempIn

heatCost

Go To Contents

GettingStarted.nb 25

à Solving Demo System

DiscreteSystemEquations sets up the equations directly from the schematic:

In[36]:= 8heatingEqns, vars< =

DiscreteSystemEquations@linearHeatingSystemD;
heatingEqns êê Column

Out[37]=

Y@84, 14<D m Y@82, 14<D − Y@810, 17<D
Y@89, 14<D m Y@87, 14<D + Y@88, 10<D
Y@811, 14<D m Y@89, 14<D + Y@810, 17<D
Y@814, 7<D m Y@812, 7<D + Y@813, 10<D
Y@87, 14<D m coefHouse Y@84, 14<D
Y@88, 10<D m coefHeat Y@82, 7<D
Y@812, 7<D m unitCost Y@82, 7<D
Y@810, 17<D m

Y@811,14<D
z

Y@813, 10<D m
Y@814,7<D

z

Y@82, 14<D m tempOut
Y@82, 7<D m heatOn

DiscreteSystemTransferFunction finds the transfer function:

In[38]:= 8tfMatrix, systemInps, systemOuts< =

DiscreteSystemTransferFunction@linearHeatingSystemD

Out[38]= :::
coefHouse

−1 + coefHouse + z
,

coefHeat

−1 + coefHouse + z
>, :0,

unitCost

−1 + z
>>,

8Y@82, 14<D, Y@82, 7<D<, 8Y@810, 17<D, Y@813, 10<D<>

The system has two inputs and two outputs, so SchematicSolver computes the transfer
function matrix

In[39]:= tfMatrix êê MatrixForm

Out[39]//MatrixForm=
coefHouse

−1+coefHouse+z

coefHeat

−1+coefHouse+z

0 unitCost

−1+z

Each row of this matrix corresponds to a system output and each column of the matrix
corresponds to a system input. The first input corresponds to the first Input element in
linearHeatingSystem, the second input corresponds to the second Input element
in linearHeatingSystem, and so on. The same convention applies to the
numbering of outputs.

26 GettingStarted.nb

à Frequency Response

Transfer function of the inside temperature with respect to the outside temperature is

In[40]:= tempInTF = tfMatrix@@1, 1DD

Out[40]=
coefHouse

−1 + coefHouse + z

For specific values of system parameters

In[41]:= parameterSubstitution = 8
coefHeat → 1.022,
coefHouse → 0.022,
unitCost → 0.025<

Out[41]= 8coefHeat → 1.022, coefHouse → 0.022, unitCost → 0.025<

the transfer function becomes

In[42]:= tempInTFspecific = tempInTF ê. parameterSubstitution

Out[42]=
0.022

−0.978 + z

and can be displayed in the more convenient form

In[43]:= DiscreteSystemDisplayForm@tempInTFspecificD

Out[43]//DisplayForm=

0.022 z−1

1. − 0.978 z−1

GettingStarted.nb 27

Here is the frequency response of the system:

In[44]:= DiscreteSystemFrequencyResponse@tempInTFspecificD;

0.1 0.2 0.3 0.4 0.5
Frequency

−40

−30

−20

−10

Magnitude HdBL

0.1 0.2 0.3 0.4 0.5
Frequency

−150

−100

−50

Phase HdegreesL

Go To Contents

28 GettingStarted.nb

à Simulation

Assume that the outside temperature abruptly changes from zero to 70

In[45]:= tempOutMax = 70;

Here are the first 200 samples of the outside temperature:

In[46]:= numberOfSamples = 200;

In[47]:= inpSeq1 = tempOutMax ∗ UnitStepSequence@numberOfSamplesD;

Assume no heating

In[48]:= inpSeq2 = 0 ∗ inpSeq1;

MultiplexSequence forms the input sequence to the system:

In[49]:= inputSequence = MultiplexSequence@inpSeq1, inpSeq2D;

For given system parameters

In[50]:= parameterSubstitution

Out[50]= 8coefHeat → 1.022, coefHouse → 0.022, unitCost → 0.025<

DiscreteSystemSimulation finds the system output, for zero initial conditions,
as follows

In[51]:= outputSequence =

DiscreteSystemSimulation@
linearHeatingSystem ê. parameterSubstitution, inputSequenceD;

SequencePlot plots outputSequence:

GettingStarted.nb 29

In[52]:= SequencePlot@outputSequence,
AxesLabel → 8"Sample", "Inside Temperature"<,
GridLines → 88numberOfSamples<, 8tempOutMax<<D;

50 100 150 200
Sample

10

20

30

40

50

60

70

Inside Temperature

After 200 samples, the inside temperature is practically equal to the outside temperature.

You can easily change system parameters on the fly and make a new simulation:

In[53]:= outSeq = DiscreteSystemSimulation@linearHeatingSystem ê.
8coefHeat → 1.02, coefHouse → 0.01<, inputSequenceD;

SequencePlot@%, AxesLabel → 8"Sample", "Inside Temperature"<D;

50 100 150 200
Sample

10

20

30

40

50

60

Inside Temperature

30 GettingStarted.nb

à Software Implementation of Linear System

Software implementation is a sequence of statements that are executed on a general-
purpose computer or on a dedicated hardware.

DiscreteSystemImplementationSummary points out the system input, initial
state, parameter set, output, and final state:

In[55]:= DiscreteSystemImplementationSummary@linearHeatingSystemD

Input: 8Y@82, 14<D, Y@82, 7<D<

Initial state: 8Y@810, 17<D, Y@813, 10<D<

Parameter: 8coefHeat, coefHouse, unitCost<

Output: 8Y@810, 17<D, Y@813, 10<D<

Final state: 8Y@811, 14<D, Y@814, 7<D<

DiscreteSystemImplementation creates a Mathematica function that
implements the system.

In[56]:= DiscreteSystemImplementation@
linearHeatingSystem, "linearSystemImplementation"D;

Implementation procedure name: linearSystemImplementation

Implementation procedure usage:

88Y10p17, Y13p10<, 8Y11p14, Y14p7<<
= linearSystemImplementation@8Y2p14,

Y2p7<,8Y10p17, Y13p10<,8coefHeat, coefHouse,

unitCost<D is the template for calling the procedure.

The general template is 8outputSamples,

finalConditions< = procedureName@inputSamples,

initialConditions, systemParametersD. See

also: DiscreteSystemImplementationProcessing

We can use ?? to get full information about the implementation procedure:

GettingStarted.nb 31

In[57]:= ?? linearSystemImplementation

88Y10p17, Y13p10<, 8Y11p14, Y14p7<<
= linearSystemImplementation@8Y2p14,

Y2p7<,8Y10p17, Y13p10<,8coefHeat, coefHouse,

unitCost<D is the template for calling the procedure.

The general template is 8outputSamples,

finalConditions< = procedureName@inputSamples,

initialConditions, systemParametersD. See

also: DiscreteSystemImplementationProcessing

linearSystemImplementation@D := 82, 2, 3, 11, 2, 2<

linearSystemImplementation@dataSamples_List,
initialConditions_List, systemParameters_ListD :=

Module@8Y2p14, Y2p7, Y10p17, Y13p10, Y4p14, Y7p14, Y8p10,
Y9p14, Y11p14, Y12p7, Y14p7, coefHeat, coefHouse, unitCost<,

8coefHeat, coefHouse, unitCost< = systemParameters;
8Y2p14, Y2p7< = dataSamples;
8Y10p17, Y13p10< = initialConditions;
Y4p14 = −Y10p17 + Y2p14; Y7p14 = coefHouse Y4p14;
Y8p10 = coefHeat Y2p7; Y9p14 = Y7p14 + Y8p10;
Y11p14 = Y10p17 + Y9p14; Y12p7 = unitCost Y2p7;
Y14p7 = Y12p7 + Y13p10; 88Y10p17, Y13p10<, 8Y11p14, Y14p7<<D

DiscreteSystemImplementationEquations is used to extract the system
input, initial state, parameter names, implementation equations, output, and final state:

In[58]:= 8systemInput, initialConditions, parameterNames,
implementationEquations, systemOutput, finalState< =

DiscreteSystemImplementationEquations@linearHeatingSystemD;

In[59]:= systemInput

Out[59]= 8Y@82, 14<D, Y@82, 7<D<

In[60]:= initialConditions

Out[60]= 8Y@810, 17<D, Y@813, 10<D<

In[61]:= parameterNames

Out[61]= 8coefHeat, coefHouse, unitCost<

32 GettingStarted.nb

In[62]:= systemOutput

Out[62]= 8Y@810, 17<D, Y@813, 10<D<

In[63]:= Column@implementationEquationsD

Out[63]=

Y@82, 14<D m tempOut
Y@82, 7<D m heatOn
Y@810, 17<D m previousSample@Y@811, 14<DD
Y@813, 10<D m previousSample@Y@814, 7<DD
Y@84, 14<D m Y@82, 14<D − Y@810, 17<D
Y@87, 14<D m coefHouse Y@84, 14<D
Y@88, 10<D m coefHeat Y@82, 7<D
Y@89, 14<D m Y@87, 14<D + Y@88, 10<D
Y@811, 14<D m Y@89, 14<D + Y@810, 17<D
Y@812, 7<D m unitCost Y@82, 7<D
Y@814, 7<D m Y@812, 7<D + Y@813, 10<D

It is better typeset with

In[64]:= typoSubstYkn = 9Y@8k_Integer, n_Integer<D � Yk,n=;

In[65]:= typoSubst = 8coefHouse → α"house",
coefHeat → γ"heat", heatOn → Γ"on", previousSample → ,
systemOuts@@1DD → Θ"inside", systemOuts@@2DD → C"total",
tempOut → Θ"outside", unitCost → c"unit"<;

In[66]:= implementationEquations ê. typoSubst ê. typoSubstYkn êê Column êê
TraditionalForm

Out[66]//TraditionalForm=

Y2,14 Qoutside

Y2,7 Gon

Qinside IY11,14M
Ctotal IY14,7M
Y4,14 Y2,14 - Qinside

Y7,14 Y4,14 ahouse

Y8,10 Y2,7 gheat

Y9,14 Y7,14 + Y8,10

Y11,14 Y9,14 + Qinside

Y12,7 Y2,7 cunit

Y14,7 Y12,7 + Ctotal

Go To Contents

GettingStarted.nb 33

à Generating Stimulus

We can simulate daily temperature fluctuations applying a sinusoidal term with
amplitude of 12 to a base temperature of 55. Assume that we sample temperature every
minute, and that we observe an interval of two days.

In[67]:= baseTemperature = 55; amplitudeTemperature = 12;
sinePeriod = 60 ∗ 24; numberOfSamples = 60 ∗ 24 ∗ 2;

In[69]:= inpSeq1 = baseTemperature + amplitudeTemperature ∗

UnitSineSequence@numberOfSamples, 1 ê sinePeriodD;

Assume that heating is periodically turned on for 1 minute, and then turned off for 2
minutes:

In[70]:= inpSeq2 =

H1 − Sign@H0.1 + UnitSineSequence@numberOfSamples, H24 ∗ 20L ê
sinePeriodDLDL ê 2;

MultiplexSequence forms the input sequence to the system:

In[71]:= inputSequence = MultiplexSequence@inpSeq1, inpSeq2D;

In[72]:= SequencePlot@inpSeq2@@Range@21DDD,
AxesLabel → 8"Sample", "Heating On"<,
StemPlot → True, Joined → FalseD;

5 10 15 20
Sample

0.2

0.4

0.6

0.8

1.0

Heating On

34 GettingStarted.nb

à Processing with Linear System

Assume the following initial conditions (inside temperature of 60 and zero cumulative
heating cost):

In[73]:= initialSubstitutions =

8tempInitialCondition → 60, costInitialCondition → 0<;
initialConditions = 8tempInitialCondition,

costInitialCondition< ê. initialSubstitutions

Out[74]= 860, 0<

Assume the following values for the system parameters:

In[75]:= parameterSubstitution

Out[75]= 8coefHeat → 1.022, coefHouse → 0.022, unitCost → 0.025<

In[76]:= systemParameters = parameterNames ê. parameterSubstitution

Out[76]= 81.022, 0.022, 0.025<

DiscreteSystemImplementationProcessing processes inputSequence
for created linearSystemImplementation.

In[77]:= 8outputSequence, finalConditions< =

DiscreteSystemImplementationProcessing@
inputSequence, initialConditions,
systemParameters, linearSystemImplementationD;

GettingStarted.nb 35

In[78]:= MultiplexSequence@inpSeq1, outputSequenceD;
SequencePlot@%,

AxesLabel →

8"Sample", "Inside, Outside Temp\n& Cumulative Cost"<D;

500 1000 1500 2000 2500
Sample

20

40

60

80

Inside, Outside Temp
& Cumulative Cost

Outside temperature is plotted in blue, inside temperature is plotted in red, and
cumulative heating cost appears in green.

DemultiplexSequence extracts individual output sequences:

In[80]:= 8insideTemperatureSeq, costSeq< =

DemultiplexSequence@outputSequenceD;

Here is the final value of the cumulative heating cost:

In[81]:= finalCost = Last@costSeqD

Out[81]= 823.975<

Go To Contents

36 GettingStarted.nb

à Nonlinear System

Here is a nonlinear model of the heating system:

In[82]:= nonlinearInOutSchematic = 8
8"Input", 82, 14<, tempOut<,
8"Node", 82, 10<, "heatOn ", "", TextOffset → 81, 0<<,
8"Output", 819, 14<, tempIn<,
8"Output", 819, 7<, heatCost, "", TextOffset → 8−1, 0<<,
8"Function", 8819, 12<, 811, 12<<,

F, "", ElementSize → 82, 1.5<<,
8"Line", 8819, 12<, 819, 14<<<,
8"Line", 882, 10<, 84, 9<, 811, 9<, 811, 12<<<<;

In[83]:= nonlinearHeatingSystem =

Join@heatingSchematic, nonlinearInOutSchematicD;
ShowSchematic@%, PlotRange → 88−2, 23<, 85, 18<<D;

coefHouse

coefHeat

unitCost

z-1

z-1

tempOut

heatOn

tempIn

heatCost

F

−2 0 2 4 6 8 10 12 14 16 18 20 22
5

7

9

11

13

15

17

DiscreteSystemImplementationSummary points out the nonlinear system
input, initial state, parameter set, output, and final state:

In[85]:= DiscreteSystemImplementationSummary@nonlinearHeatingSystemD

Input: 8Y@82, 14<D<

Initial state: 8Y@819, 12<D, Y@813, 10<D<

Parameter: 8coefHeat, coefHouse, F, unitCost<

Output: 8Y@819, 12<D, Y@813, 10<D<

Final state: 8Y@811, 14<D, Y@814, 7<D<

DiscreteSystemImplementation creates a Mathematica function that

GettingStarted.nb 37

implements the nonlinear system.

In[86]:= DiscreteSystemImplementation@
nonlinearHeatingSystem, "nonlinearSystemImplementation"D;

Implementation procedure name: nonlinearSystemImplementation

Implementation procedure usage:

88Y19p12, Y13p10<, 8Y11p14, Y14p7<< =
nonlinearSystemImplementation@8Y2p14<,8Y19p12,

Y13p10<,8coefHeat, coefHouse, F, unitCost<D
is the template for calling the procedure.

The general template is 8outputSamples,

finalConditions< = procedureName@inputSamples,

initialConditions, systemParametersD. See

also: DiscreteSystemImplementationProcessing

SchematicSolver can process symbolic samples for symbolic system parameters:

In[87]:= outSymbSeq = DiscreteSystemSimulation@
nonlinearHeatingSystem ê. parameterSubstitution, 88x1<, 8x2<<D

Out[87]= 880, 0<, 80.022 x1 + 1.022 F@0D, 0.025 F@0D<<

You can assign numeric values to the result after processing:

In[88]:= outSymbSeq ê. 8x1 → 50, F → Cos<

Out[88]= 880, 0<, 82.122, 0.025<<

Go To Contents

38 GettingStarted.nb

à Processing with Nonlinear System

Consider a function that should keep the inside temperature within a predefined
temperature range:

In[89]:= tempThermostat = 70;
tempDelta = 5;
tempHeatOn = tempThermostat − tempDelta;
tempHeatOff = tempThermostat + tempDelta;
heatingFlag = 0;

In[94]:= Clear@FhysteresisD;
Fhysteresis@t_D := Module@8heatingSwitch<,

If@heatingFlag m 0,
If@t < tempHeatOn, heatingFlag = 1;

heatingSwitch = 1, heatingSwitch = heatingFlagD,
If@t > tempHeatOff, heatingFlag = 0; heatingSwitch = 0,

heatingSwitch = heatingFlagDD;
heatingSwitchD

The function Fhysteresis uses the global variable heatingFlag and changes its value
during processing.

If temperature increases from 20 to 90, the heating switch is off after 75. If temperature
decreases from 90 to 20, the heating switch is on below 65.

Assume the following initial conditions (inside temperature of 60 and zero cumulative
heating cost):

In[96]:= initialConditions

Out[96]= 860, 0<

The system parameters now contain the function name F:

In[97]:= eqnsObject = DiscreteSystemImplementationEquations@
nonlinearHeatingSystemD;

systemParameters = eqnsObject@@3DD ê. parameterSubstitution ê.
F → Fhysteresis

Out[98]= 81.022, 0.022, Fhysteresis, 0.025<

The system input is the previously generated stimulus inpSeq1.

In[99]:= inputSequence = inpSeq1;

GettingStarted.nb 39

DiscreteSystemImplementationProcessing processes inputSequence
for created nonlinearSystemImplementation.

In[100]:=

8outputSequence, finalConditions< =

DiscreteSystemImplementationProcessing@
inputSequence, initialConditions,
systemParameters, nonlinearSystemImplementationD;

In[101]:=

MultiplexSequence@inpSeq1, outputSequenceD;
SequencePlot@%,

AxesLabel →

8"Sample", "Inside, Outside Temp\n& Cumulative Cost"<,
GridLines → 88numberOfSamples<, 8tempThermostat<<,
AxesOrigin → 80, 0<D;

500 1000 1500 2000 2500
Sample

20

40

60

Inside, Outside Temp
& Cumulative Cost

Outside temperature is plotted in blue, inside temperature is plotted in red, and
cumulative heating cost appears in green.

DemultiplexSequence extracts individual output sequences:

In[103]:=

8insideTemperatureSeq, costSeq< =

DemultiplexSequence@outputSequenceD;

Here is the final value of the cumulative heating cost:

In[104]:=

finalCostNonlinear = Last@costSeqD

Out[104]=

822.1<

40 GettingStarted.nb

