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Startup

First, we load the Master package, which will load in all of the names that are used in the
AbstractAlgebra packages.

Needs [" Abstract Al gebra” Master ™ "]

Since we will first consider groups, we switch the structure to Group.

Swi tchStructureTo[G oup]

G oup

The Basic Structures

There are three basic Mathematica data structures used in AbstractAlgebra: the Groupoid, Ringoid, and
Morphoid. These are generalizations of groups, rings and morphisms. We will use groupoid, ringoid and
function when we refer to the mathematical counterparts to the corresponding Mathematica data
structures.
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= Groupoids

A Groupoid consists of a set of elements and a "binary" operation (two inputs from the space whose
images do not need to belong to this space). One means of creating one of these is with the
FormGroupoid option.

G = Forntzoupoi d[{0, 2, 1, 4, 6}, Tines, G oupoi dNane £ "ex.1"]

Groupoid[{0, 2, 1, 4, 6}, -Operation-]
We can easily extract the operation and elements of any groupoid.

Operation[G]
El ement s [G]

Ti mes
{OY 2! 11 4! 6}

We are often interested in whether a groupoid has an identity element or not.

Hasl dentityQ[G]

True
Many functions can take on additional Modes, such as Textual or Visual.

Hasl dentityQ[G Mde £ Textual ]

W say a Groupoid G has an identity e if for all other el enents
gin Gw have e *g =g *e =g (where * indicates the
operation).

In this case, ex.1l has the identity 1.

True
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Hasl dentityQ[G Mde £ Visual ]

ex.1 X *y ex.1 X *y
Nlo|[2]|1(4]|6s Nlo|z2 . 4|6
ojofojojofo 0Ojojfojojofo
210]141]12]8](12 2101412 8|12
. 0[2]1]4]|6 110(2]11]4]|6
410 8]4]|16]|24 41084 |16]24
6]0(12]6|24|36 6 10 (12| 6 |24(36
red->left identity red->right identity

True

Another group axiom to consider is whether all the elements have inverses.

Hasl nversesQ[G Mde £ Textual ]

Gven a Goupoid G we say an elenent g in G has an inverse
hif Ghas an identity e and g * h =h * g =e (where *
i ndi cates the operation).

The Groupoid ex.1 contains sonme el enents w thout inverses.
For exanple, 0 does NOT have an inverse.

Fal se

Closure is another required property of being agroup. Hereis the Visual mode of this Boolean function.
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C osedQ[G Mbode £ Visual ]

Al the elenents marked with Yellow are original elenents
in the set. Those in red are from outside.

ex. 1 X *y
Y 0 2 1 4 6
X
0 0 0 0 0 0

2 0
1 0
4 0
6 0

Fal se

Finaly, the last required property is associativity. This visualization chooses a random triple and pursues
whether these three elements obey this property.

Associ ati veQ[G, Modde £ Vi sual ]
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(a* b)) *c a* (b* ¢

/N RN

* 6 4 *
/ N\ /N
4 6 6 6

Values for a, b and c selected at random

(a* b)) *c a* (b* ¢
RN VAN
4% 6 6 4 6* 6
(a* b)) *c a* (b* ¢

N /N

24 6 4 36
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(a* b)) *c a* (b* ¢
24*6 4* 36
(a* b)) *c a* (b* ¢
144 144

The two results are equal.

Associativity is possible.

True

The Grouplnfo function returns all the information learned about a groupoid from tests that have been
performed.

G oupl nfo[G]
{ex.1, the left identity is 1, the right identity is 1,
the identity is 1, there are elenents wi thout inverses,

the set is not closed under the operation,
the operation is associative with these el enents}

Instead of testing the axiomatic properties individually, we can also test these together with one function.

G oupQ[G]

Fal se

The Cayley tableisatool that can reveal a number of interesting properties regarding a group.
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Cayl eyTabl e[G, Mode £ Visual ]

For each elenent, a different color is used. The entries in
the table corresponding to the elenents are then col ored
and | abel ed accordingly.

ex.1 X *y
Y 0 2 1 4 6
X

0 0 0 0 0 0
2 0 4 2 8 12
1 0 2 1 4 6
4 0 8 4 16 24
6 0 12 6 24 36

{{o0, o, o, 0, 03}, {0, 4, 2, 8, 12}, {0, 2, 1, 4, 6}, {0, 8, 4, 16, 24},
{0, 12, 6, 24, 36}}

= Ringoids

Since we now wish to consider rings, we switch our structure.
Swi t chStruct ureTo[ Ri ng]
Ri ng

FormRingoid works in a fashion analogous to FormGroupoid. The required parameters are the list of
elements, the addition operation and the multiplication operation. Options can be added afterwards.
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R = FornRingoid[ {0, 2, 1, 4, 6}, Plus, Tinmes, FormatQperator £
Fal se, FormatEl enents £ True]

Ri ngoi d[ {-El enents-}, Plus, Tines]

RingQ is similar to GroupQ; upon the first failure, it returns False.

Ri ngQ[R]

Fal se

Similarly, Ringlnfo is similar to Grouplnfo.

Ri ngl nf o [R]
{TheRing, the set is not closed under this addition,

the set is not closed under this nultiplication,
this is NOT a ring}

Since there are two operations, we need to view the Cayley tables of both operations.

Cayl eyTabl es[R, Mdde £ Visual ]

For each elenent, a different color is used. The entries in
the table corresponding to the elenents are then col ored
and | abel ed accordingly.

Addi tion X +y Multiplication x * vy
Njol2|1]4]6 NJjol2|1|4f6e6
oJo|2|1]|4]6 oJojo|o|o|o
212(4(3]|6|8 2104|2812
1y1({3([2]|5]7 1jJo|2|1]|4]|6s6
414|6|5]|8]10 41084 (16|24
616 (8|7]|10]12 6]0|12|6 |24]|36

{{{0, 2, 1, 4, 63}, {2, 4, 3, 6, 8}, {1, 3, 2, 5, 7}, {4, 6, 5, 8, 10},
{6, 8, 7, 10, 123}}, {{0, O, O, O, O}, {O, 4, 2, 8, 12},
{0, 2, 1, 4, 6}, {0, 8, 4, 16, 24}, {0, 12, 6, 24, 36}}}

Here we form the extension ring of polynomials over the Boolean ring on {1, 2, 3} and choose arandom
polynomial of degree 2 that is monic (leading coefficient is the unity).
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Randontl enent [Pol ynomi al sOver [Bool eanRi ng[3]1], 2, Monic £ True]

8} + {2} x + {1, 2, 3} x?
Next we consider arandom 3 by 3 matrix whose elements come from the lattice ring on the divisors of
12 (with operation LCM/GCD for the addition and GCD for the multiplication.

Randontl enent [Matri cesOver [LatticeRing[12], 311 // Matri xForm

1 4 3
4 6 6
12 2 3

The third type of ring extension isthe ring of functions over aring; hereweuseZ .

Randontl erent [Functi onsOver [ZR[12]]]

Func[9, 10, 6, 8, 3, 2, 3, 1, 8, 9, 3, 10]

Asalast example here, we form the Galois field of order 9.

GF[9]

Ringoid[{0, x, 2x, 1, 1+x, 1+2x, 2, 2+x, 2+2x}, -Addition-,
-Mul tiplication-]

= Morphoids

To form aMorphoid, the parameters are a (pure) function and then either two groupoids or two ringoids.
(The function has the first structure as the domain and the second as the codomain.)

f = Form\vbr phoi d[ Mod[ #, 6] &, Z[12], Z[6]]

Mor phoi d [Mod [#1, 61&, -Z[12]-, -Z[6]-]

The MorphismQ function determinesiif thisis a (ring) homomorphism.

Mor phi sn(J f ]

True

To seevisually why the operation is preserved for the pair (3, 5), try the following.
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PreservesQ[f, {3, 5}, Mde £ Visual ]

A 1 R P (1)
ol e

+ + *
f (a)tf ( b) f(a)xf(b)
atb f f a*b ¢ fH
+
Additioa ) Mul tiplica Fon)

True

We now switch back to groups.

Swi tchStructureTo[G oup]

G oup

At this point, we now build a group homomorphism.

g = For m\Vbr phoi d[ Mod[ #, 6]& 2Z[12], Z[6]]

Mor phoi d [Mod [#1, 61&, -Z[12]-, -Z[6]-]

We see different results now that we are working with groups.
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PreservesQ[g, {3, 5}, Mdde £ Visual ]
Z[ 12] Z[ 6]
f(b)
: =
f(a)

=
.

f (a) +f (b)

mem -

f (a+b)

True

Sometimes morphisms are more easily set up by matching how we want the elementsto line up.

For mvbr phoi dSet up[D[4], Z[8]1];

Donai n Codormai n
1
Rot
Rot A2
Rot ~3
Ref
Rot ** Ref
Rot A 2* * Ref
Rot ~3* * Ref

0O N O WDN PR
0o ~NOO O WDN P
N o ok WN PP

We want to send the first element in the domain to the first element in the codomain, the second element
in the domain to the third e ement in the codomain, the third to the fifth etc.
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h =FornVorphoid[{1, 3, 5, 7, 2, 4, 6, 8}, D[4], Z[8]]

Mor phoi d[{1 £0, Rot £2, Rot? £4, Rot® £6, Ref £1,
Rot **Ref £3, Rot?**Ref £5, Rot®**Ref £7}, -D[4]-,
-Z(8]-]

Here we see that this is not a homomorphism on the whole group, but note that we can see a
homormorphism from the rotational subgroup to the set {0, 2, 4, 6}.

Mor phi smQ[h, Mode £ Vi sual ]

The table entry corresponding to the conputation a*b in the domain
of the norphoid is colored if and only if the pair ({a,
b} is preserved by the norphiod; i.e., f (a*b) = f (a)*f (b)

KEY for D[4]: |abel used £ elenment: {gl £ 1, g2 £ Rot,
g3 £ Rot"2, g4 £ Rot”"3, g5 £ Ref, g6 £ Rot**Ref, g7 £
Rot "2**Ref, g8 £ Rot *3**Ref }

O 4] X *y

N o1 |02 |93 |g4|95(|a6]|0g7|qs

91 ol | 92 93| g4 |95 | g6 | g7 |98

92 1 92 | 93 [ g4 | g1 | g6 | g7 | g8 [ 95

93 1 93 |94 | 91 | 92 (g7 | g8 | g5 | g6

g4 | 94 | 91 | 92 [ 93 [ 98 | 95 | g6 | g7

95 | 95 | 98 | g7 [ 96 [ g1 | g4 | g3 | g2

g6 1 96 | 95 [ g8 | g7 | 92 | g1 | g4 [ g3

g7 1 97 | 96 [ g5 | g8 | g3 | g2 | gl | g4

98 1 98 [ g7 | 96 | g5 [ g4 | g3 | 92 | 0l

Fal se
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Help Browser

We have implemented full documentation into the Help Browser. Before using, you need to download
and install from http://www.central .edu/eaam.html, choose Rebuild Help Index from the Help menu and
then access it from the AddOns button.

Exploring Abstract Algebra with Mathematica

m description

The packagesin Abst r act Al gebr a form the foundation for a series of 14 group labs and 13 ring labs
designed to help students conceptualize abstract algebra. These are combined with documentation for
Abstract Al gebra in a book entitted Exploring Abstract Algebra with Mathematica (EAAM)
published by TEL OS/Springer-Verlag (fall/winter 1998).
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= group labs

Group Lab 1. Using symmetry to uncover a group -- Thislab explores the underlying definitions of a
group by looking at the symmetries of an equilateral triangle.

Group Lab 2. Determining the symmetry group of a given figure -- The focus of this lab is to determine
the symmetry group of afigure chosen randomly from alist of regular polygons and "cyclic" objects.

Group Lab 3. Is thisa group? -- Thislab randomly presents a Cayley table of one of 20 "possible
groups.” The goal is to determine which of the defining properties of a group are reflected in the Cayley
tableto seeif it represents a group.

Group Lab 4. Let's get these orders straight! -- Thislab looks at the order of an element and itsinverse,
the distribution of the orders of the elementsin Z,,, investigates the probability that an element in Z,, has
order n and also explores the group Uy, (the unitsin Z,).

Group Lab 5. Subversively grouping our elements -- This lab explores the notion of a subgroup,
including looking at the subgroups of Z,, and U, calculating the probability that a random subset of 7,
is a subgroup and determining what elements in a subset are necessary so that the closure yields the
whole group.

Group Lab 6. Cycling through the groups -- Here we focus on the notion of a cyclic group and its
subgroup structure. We also look at the determining when the direct sum of Z,, and Z,, yieldsacyclic

group.

Group Lab 7. Permutations -- This lab looks at the definition of a permutation, how to perform
computations and explore properties. We also look at some applications of permutations.

Group Lab 8. Isomorphisms -- Here we look at the definition of an isomorphism and then use various
visual mechanismsto try to determine when two groups are or are not isomorphic.

Group Lab 9. Automorphisms -- In this lab, we look at the group of automorphisms of Z, and aso look
at inner automorphisms.

Group Lab 10. Direct Products -- The notion of direct products (sums) are introduced and we determine
the order of elementsin adirect product. We also try to determine when the direct product of cyclic
groupsis still cyclic. We also look for isomorphisms between some U,, groups.

Group Lab 11. Cosets -- This lab explores the definition and properties of cosets.

Group Lab 12. Normality and Factor groups -- A normal group is defined and explored and then used to
define and explore factor groups.
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Group Lab 13. Homomorphisms-- This lab explores group homomorphisms.

Group Lab 14: Rotational groups of regular polyhedra -- Here we look at how to generate the rotational
groups of several polyhedra

ring labs

Ring Lab 1. An Introduction to Ringoidsand Rings -- This introduces some of the definitions and
properties of rings.

Ring Lab 2. An Introduction to Rings: part two -- Guess what this is about!
Ring Lab 3. Anideal part of rings-- This explores the notion of an ideal and properties related to it.

Ring Lab 4. What does Z[i]/{(a+ bi) look like? -- This lab focuses on the Gaussian integers mod an
ideal generated by some Gaussian integer.

Ring Lab 5. Ring homomorphisms -- Thislab looks at ring homomorphisms, the First |somorphism
Theorem, and the Chinese Remainder Theorem.

Ring Lab 6. Polynomial rings -- Some basic properties of polynomial rings are introduced and explored.

Ring Lab 7. Factoring and irreducibility -- What does it mean to factor a polynomia? Various
definitions and techniques are introduced.

Ring Lab 8. Roots of unity -- Thislab focuses on the polynomial x" - 1 and explores graphically the
zeros of this polynomial, in particular seeing how the zeros are related to the factors and how the group
U, springs out of this.

Ring Lab 9. Cyclotomic polynomials -- This lab focuses on cyclotomic polynomials and the many
properties related to them.

Ring Lab 10. Quotient rings of polynomials -- The notion of a quotient ring over a polynomia is
introduced in this|ab.

Ring Lab 11. Quadratic field extensions -- This ab continues the last by looking more closely at quotient
rings modulo a quadratic polynomial where the result isafield.

Ring Lab 12. Factoring in Z[v'd | -- Thislab focuses on the rings Z[+/d | and pursues the notion of
divisibility and factoring in such rings. Several rings are illustrated as failing being a UFD.

Ring Lab 13. Finite Fields -- This lab continues the ideas formulated in lab 11 by looking at Galois fields
and properties related to them.
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GroupCalculator

See our web page for a group calculator to download it. (For now, start with a clean kernel, clearing out
any previous AbstractAlgebra definitions.)

More Groupoids

There are anumber of options for controlling how groupoids, ringoids and morphoids are formed.

Opt i ons[ For m& oupoi d]
{Cayl eyFor m& Qut put Form For mat El enent s £ Fal se,
For mat Oper at or £ True, Generators £ {}, G oupoi dDescri ption £,

Groupoi dNane £ TheG oup, | sAG oup £ Fal se, KeyFor m& | nput Form
MaxEl ement sToLi st £50, W deEl enents £ Fal se}

We can form the permutation group on any set of elements.

H = PermutationGoup[{a, b, g}]

Groupoi d|
{{a, b, g}, {a g, b}, {b, a g}, {b, g, a}, {9, a b}, {9, b, a}},
-QOperation-]

Here is the Cayley table of the group just formed, using a Key since the elements are too wide for the
table.
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Cayl eyTabl e[H, Mode £ Visual, KeyForm £ StandardForm];
KEY for TheGroup: |abel used £ elenent: {gl £ {a, b, g}, g2 £

{a, g, b}, 93 £ {b, a, g}, g4 £ (b, g, a}, g5 £ {g, a, b},
g6 £ {g, b, a}}

TheG oup X *y

gl 92 g6

We form alist of some groups, to be used below.

sonmeG oups = {Z[5], Dihedral [4], Symmetric[3], U[15]}

{Goupoid[{0, 1, 2, 3, 4}, Mod[#1+#2, 5]&],
Groupoi d[{1, Rot, Rot?, Rot3, Ref, Rot **Ref, Rot?**Ref, Rot3**Ref},
-Qperation-], Goupoid[{{1, 2, 3}, {1, 3, 2},
{2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}}, -Operation-],
Goupoid[{l, 2, 4, 7, 8, 11, 13, 14}, Mod[#1#2, 15]&]}

Most functions can take alist of arguments, as shown here with CayleyTable.
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Cayl eyTabl e [sonmeG oups,

KEY for D[4]: |abel

g3 £ Rot”~2, g4 £ Rot”~3, g5 £ Ref,

Mode £ Visual J;

used £ elenent: {gl £ 1, g2 £ Rot,

Rot A2**Ref, g8 £ Rot"3**Ref }

KEY for S[3]: |abel
(1, 3, 2}, g3 £ {2,
2}, 096 £ {3, 2, 1}}

Z[ 5]

used £ elenent: (gl £ {1, 2, 3},
g4 /E {21 31 1}1

1, 33,

g6 £ Rot **Ref,

y

X

g7 K

g2 £

g5 £ {3, 1,

ArlW|IN]|FL]|O

AlW|IN|FPL,]|OJ]O

Ol | WIN|FPL]LPRP

Pl O|l PRl WINEDN

S[ 3]

X
gl

gl

g2

g3

g4

gl

g2

93

g4

g5

g6

g2

g2

gl

g5

g6

g3

g4

g3

g4

g2

g6

g5

g4

g4

g3

g6

g5

gl

g2

g5

g5

g6

g2

gl

g4

g3

g6

g6

g5

g4

g3

g2

gl

Hereisavisualization of why the following groups are or are not cyclic.
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CyclicQ[sonmeG oups, Mde £ Visual ]

KEY for D[4]: |abel used £ elenment: {gl £ 1, g2 £ Rot,
g3 £ Rot™2, g4 £ Rot~3, g5 £ Ref, g6 £ Rot**Ref, g7 £
Rot "2**Ref, g8 £ Rot *"3**Ref )}

KEY for S[3]: l|label used £ elerent: {gl £ {1, 2, 3}, g2 £
{1, 3, 2}, 93 £ {2, 1, 33}, 094 E {2, 3, 1}, g5 £ {3, 1,
2}, 96 £ (3, 2, 1}}

Z[ 5] X +y
ol1]2[3(2
ofol1[2[3]4
2123|424
31340
4falof1
n 1 2 3
ol 2 3
X *vy
lo4lg5 N i 718 7
g4ig5 1] ! J4
d (A2 L4711
0296 cINAIE
0591 E L1413147
9154 1] ARMEDR
17 14842
9392 i 8[7[42[1
23456 n 45678
B o [ |

{True, Fal se, Fal se, Fal se}

Loops indicate self-inversive elements, while lines connect other inverses.
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I nverses [U[15], Mdde £ Visual ]

14 2

13 4

11 7

({1, 13}, (2, 8}, {4, 43}, {7, 13}, {11, 113, {14, 14})

We can form the direct product of any number of groupoids.

G = DirectProduct[Z[5], U4]]

Groupoid[{{0, 13}, {0, 3}, {1, 13,
{1, 3}, {2, 1}, {2, 3}, {3, 1}, {3, 3}, {4, 1}, {4, 3}},
-Operation-]

Here we choose 2 random elements from this group, each of which are pairs.

{9, h} = RandonEl ements[G 2]

{{2, 3}, {4, 1}}

We can apply the group operation to these elements as follows.
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Qperation[ Q[ g, h]

{1, 3}
Here is a nonsense groupoid formed by specifying the "group” table.

H = For nGr oupoi dByTabl e[{b, a, a**b, a}, {{a, a**b, b, a°},
(b, a, a®, a**b}, {a**b, a®, b, a}, {a®, a**b, a, b}}, "*",
W deEl ement's £ True]

Groupoi d[{b, a, a**b, a”}, -Operation-]

The CayleyTable function has alarge number of options, aswell as the ability to take Graphics options.
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Cayl eyTabl e [H, Mode £ Vi sual ,
ShowNane £ Fal se, VarToUse £ "hi", KeyForm & Full Form
Background £ Cyan, Cayl eyForm £ Characters, Epilog £
{R@&Col or [1, 0, 0], Thi ckness[0.02], Line[{{-1, 0}, {5, 6}}1}]

KEY for TheG oup: |abel used £ elenment: (hil £ b, hi2 £
a, hi3 £ NonConmutativeMultiply[a, b], hi4 £ Power[a, b]}

{{a, a**b, b, a®}, {b, a, a®, a**b}, {a**b, a®, b, a},
{a®, a**b, a, b})

Each groupoid in CayleyTable can receive different options.
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Cayl eyTabl e[{G H}, {{ShowBodyText £ Fal se}, {ShowKey £ Fal se}},
Mode £ Vi sual 7;

KEY for Z[5] x U[4]: |abel used £ elenent: {gl £ {0, 1}, g2 £
{0, 3}, g3 £ {1, 1}, o4 £ {1, 3}, g5 £ {2, 1}, g6 £ {2,
3}, g7 E {3, 1}, 98 £ {3, 3}, g9 £ {4, 1}, gl0 £ {4, 3}}

TheG oup X *y

We can work with Gaussian integers reduced some modulus.

2[4, 1]

Goupoid[{0O, I, 21, 31, 1, 1+, 1+21,
1+31, 2, 2+1, 2+21, 2+31, 3, 3+, 3+21, 3+31},
-QOperation-]

The TwistedZ is an interesting groupoid that is sometimes a group.

SubgroupQ[ {0, 2, 8}, TwistedZ[13]]

True

The SubgroupQ function takes multiple requests in the following fashion.



WRI ChicagoEval.nb 24

SubgroupQ[{{ {0, 33}, Z[51}, { {1, 4}, U[9]}}, Mdde £ Visual ]

Al the elenents marked with Yellow are original elenents
in the set. Those in red are from outside.

Z[ 5] X +y U 9] X *y
Nlo|[3[|1]|2]4 XJ1|4[2[5]7]8
ololzlzlzla 1lalal2]s]7]s

4 4.8 2[1]s
3 3.4 02

212184157
il Il I I sls(2(1|7]|8]|4
212(0(3]4]1 7171|5842
alal2]0]1]3 gls|s|7|4al2]1

(Fal se, Fal se}

Given the set { 1,4} of the group Z, the following shows how the closure of this set is built up in three
iterations.

Closure[Z[9], {1, 4}, Reportlterations £ True]

(Groupoid[{1, 4, 2, 5, 8, 3, 6, 0, 7}, Mod[#1+#2, 9]&],
(3, ({1, 4}, {1, 4, 2,5 8}, (1,4, 2,5 83,6, 0, 7}}}}

One may want the elements to be canonically sorted.

Closure[Z[9], {1, 4}, Sort £ True]

Groupoid[{0, 1, 2, 3, 4, 5, 6, 7, 8}, Mod[#1+#2, 9]&]
Here is a animation indicating the subgroup generated by 6 in the group Zs.

Subgr oupGener ated[Z[8], 6, Mde £ Visual ]
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1*6

1*6

2*6
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Groupoid[{6, 4, 2, 0}, Mod[#1+#2, 8]&]
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Here is the same but using a GraphicsArray for its display.

Subgr oupGenerated[Z[8], 6, Mde £ Visual, Qutput £ G aphicsArray]

1*6

1*6
o
2*6
4*6
1*6 3*6 1*6 / 3*6
o S
2*6 2*6
We can find all cyclic subgroups of any group.

Cycl i cSubgroups [D[4]]

{Groupoid[{1l}, -Operation-],

G oupoi d[ {1, Ref}, -Operation-], Groupoid[{1l, Rot?}, -Cperation-],
Groupoid[ {1, Rot **Ref }, -Operation-],

Groupoi d[ {1, Rot?**Ref }, -Operation-],

Groupoi d[ {1, Rot3**Ref}, -Qperation-],

Groupoi d[ {1, Rot, Rot?, Rot3}, -Operation-]}

Here is avisualization showing the left coset 7 + {0, 4} inthe group Zs.
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Left Coset [Z[8], {0, 4}, 7, Mdde £ Visual ]

subgr oup

coset

{7, 3}

Thisillustrates how an operation makes sense on the following right cosets. This also shows a quotient
group.
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grl = Right Cosets[Z[8], {0, 4}, Mde £ Visual, Qutput £ G aphics];

Z[ 8] X +y

y
» 0 4 1 5

0

By specifying Output £ Graphics, we indicate that we want the graphic as the output, not the actual
Cayley table.
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gr2 = Cayl eyTabl e[Z[4], Mode £ Visual, CQutput £ G aphics];

Z[ 4] Xty

Putting the two side-by-side makes it clear to what group this quotient group Zg /{0, 4} isisomorphic.

Show[G aphi csArray [{grl, gr2}11;

Z[ 8] X +y
3|7
3|7
713

3[7]4]0

713(0[4

3|1714[0]5]|1

713|0(4]1]|5
313|(7(4|0|5]1
707(3(0|4|1|5

Thefollowing indicates that ({3, 2, 1}) in S3 isnot normal.
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Nor mal Q[H = Subgr oupGenerated[Symetric[3], {3, 2, 1}],
Synmmetric[3]]

Fal se

Because of thislack of normality, the product of cosetsis not awell-defined operation, asillustrated here
by the failure of having square blocks for products.

Left Cosets[Symmetric[3], H, Mde £ Visual ];

KEY for S[3]: |label used £ element: {gl £ {3, 2, 1}, g2 £
(1, 2, 3}, 93 £ {2, 3, 1}, g4 £ {1, 3, 2}, g5 £ {3, 1,
2}, 96 £ {2, 1, 3}}

S[ 3] X *y

Since {0, 4} isnormal in Zg, we can form the quotient group.

QuotientGoup[Z[8], {0, 4}]

— QuotientGoup::NS: This quotient group uses NS to represent the nornal
subgroup {0, 4} that you specified. Use CosetToList to convert this
coset representationto a list of elenents.

Goupoid[{NS, 1+NS, 2+NS, 3+NS}, -Operation-]
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Here is a Cayley table of this group, using a different form and set of representatives for the
representation of the elements.

Cayl eyTabl e[Quoti ent Group[Z[8], {0, 4},
Form £ Representatives, Representatives £ {4, 1, 6, 3}],
Mode £ Visual ]

Z[ 8]/ NS X +y

{{4, 1, 6, 3}, {1, 6, 3, 4}, {6, 3, 4, 1}, {3, 4, 1, 6}}

The same group is shown here using a coset list for each element.
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Cayl eyTabl e[Quoti ent Goup[Z[8], {0, 4}, Form £ CosetlLists],

Mode A Visual ]

KEY for Z[8]/NS: |abel used £ elenment: {gl £ {0, 4}, 02 £

{1, 5}, 93 £ {2, 6}, g4 £ {3, 7}}

Z[ 8]/ NS

{{{0, 4}, {1, 5}, {2, 6}, {3, 73}, {{1, 5}, {2, 6},
{{2, 6}, {3, 7}, {0, 4}, {1, 5}}, {{3, 7}, {0, 4},

This visulalization shows that 4 is the group exponent for the group Uss.

{3, 7}, {0, 431},
{1, 5}, {2, 6}}}
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GroupExponent [U[15], Mode £ Visual ]

w

»W—DSCT
N

el enent s

GenerateGroupoid is another means of forming a groupoid.

G = GenerateGoupoi d[{{{2, 1}, {1, 13}}}, Mod[#1l.#2, 3]1&

W deEl emrents -> True]
Groupoid[{{{1, 0}, {0, 1}3,

{{1, 23, {2, 2}3}, {{2, 0}, {0, 2}}, ({2, 1}, {1, 1}}3},
-Qperation-]

More Ringoids

Before working with rings, we switch our dominant structure.

SwitchStructureTo[Ri ng]
Ri ng
Here we see which rings 7, arefields.

Map [{#, Fiel dQ[Z[#]]1}& Range[3, 9]]

({3, True}, {4, False}, {5, True}, {6, False}, {7, True},
(8, Fal se}, {9, False}}

This shows that this quotient ring is also afield.
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Fi el dQ[Quoti ent Ring[Z[3], Pol y[Z[3], x® +X +2]]]

True
Thisgives usalist of powers of the element (3, 6) in the direct product ZgaZ,.

Tabl eFor m[
Map [ {#, El ement ToPower [Di rect Product [Z[6], Z[9]1], {3, 6}, #]1}&,
Range[-1, 4]1,
Tabl eHeadi ngs £ {None, {"n", " (3,6)"\n"}},
Tabl eDepth £ 2]

— Inverse::fail : {3, 6} does not have an inverse in Miult (Z[6] X Z[9]).

n (3,6)"

-1 $Fai | ed
{1, 1}
{3, 6}
{3, 0}
{3, 0}
{3, 0}

A WODNPEFL O

Here we have a simple polynomial.

p=Poly[Z[5], t?+2t +3]

3+2t +t?
We can also form apolynomial by giving the list of coefficients.

g="Poly[Z[5], 4, 3, 2, 1]

4+3x+2x%+x3

Since the list of coefficients have an ordering, we can specify how this should be interpreted if we don't
want to assume we are working from |eft to right.

Pol y[Z[5], 4, 3, 2, 1, Powerslncrease £ R ght ToLeft]

4 x3 +3x2+2x+1

When we are over Z,,, we have more flexibility is the choices of our coefficientsin that they do not have
to strictly be in the prescribed set, but are reduced first.
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Pol y[Z[5], X% -x +11]

1+4x+x2
In this case, we choose 8 polynomials of degree 2, but alow lower degrees as well
(LowerDegreeOKAETrue). We allow any type of polynmial (SelectFrom &£ Any), but we do not want

repeats (Replacement £ False).

Randontl erment s [Pol ynoni al sOver [Z[2]], 2, 8, Lower DegreeOK £ Tr ue,
Sel ect From £ Any, Repl acenment £ Fal se]

(1, x+x2, 1+x, x, 0, x2, 1+x2, 1+x +x?}
Here isabasic polynomial.

q = Poly[Z[12], x?®-3Xx + 8]

8+9x+x2
We can ask for the zeros of this polynomial.

Zer os [q]

(4, 7, 8, 11}

Finding zerosis equivalent to finding out when the polynomial is equal to the zero; the Solve command
generalizesthis (as an extension of the built-in Solve command).

Solve[q == 6]

{{xEL1l}, {xXAEZ2}, {XAES5}, {xE10}}
We can verify that these are indeed solutions.

q/. %

{6, 6, 6, 6}
The polynomials formed with Poly may look like ordinary polynomials, but they are not.

p = Poly[Z[7], X?-8X + 44]

2+6x +x2
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In most cases, they can be converted to standard polynomials, although there is rarely a need for this
since there are standard polynomial functions to work with the Poly-type form.

ToOr di naryPol ynomi al [p]

2+6 X +x2

In this example, we form a 5-by-5 matrix with elements from Z3, but restricted to using only the nonzero
elements.

RandonEl enent [
MatricesOver [Z[3], 5], Sel ect BaseEl enent sFr om& NonZer o] //

Mat ri xForm
22112
12121
11111
12121
21122

We can specify anumber of different types of matrices when we want arandom matrix.

Map [Tr adi ti onal For m
exanpl es = Map[Randomvatri x[Z[5], 3, Matri xType £ #]&,
{G, SL, Diag, UT, LT, UTD, LTD, Al}]]

3 21 4 1 3 4 0 0 011 0 0O 4 10
{004,210,010,004,300,033,

0 21 4 0 4 0 0 4 00O 120 0 0 2

100 210

320,300}

0 3 4 4 0 3

We can calculate the determinant of any of these as follows.

Map [Det [Z[5], #]& exanpl es]

{11 1! 11 0! 0! 41 3’ 1}

Any of these matrix extensions (if not too large) can be converted to a groupoid.

ToGroupoi d[A[Z[3], 2]]

Groupoi d[ {-El ement s-}, -Operation-]
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Hereisthe Galoisfield of order 16.

GF[16]

Ringoid[{0, x3, x2, x2+x3, x, x+x3, x+x?, x+x2+x3, 1, 1+x3,
1+x%, 1+x%2+x3, 1+x, 1+x+x3, 1+x+x?, 1+x+x%+x3},
-Addi tion-, -Mul tiplication-]

It has afourth degree extension.

Ext ensi onDegree [GF[16]]

4

This gives us atable to compare the multiplicative form using the generator x, against the additive form.

Tabl eOf Power s [GF[2, 4]1] // Matri xForm

0 0

X X

x2 x2

x3 x3

x4 1+x3
x5 1+x+x3
x6 1+x+x%+x3
x7 1+X+x2
x8 X +x2 +x3
x° 1 +x2
x10 X +x3
Xll 1+X2 +X3
x12 1+x
x13 X + x2
Xl4 X2+X3
1 1

Instead of using the table, we can use the following function to make conversions (and another one to go
the other direction).

Addi ti veToMul tiplicative[GF[16], 1+x? +x3]

Xll
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More Morphoids

We mostly work with groups here.

Swi tchStructureTo[G oup]

G oup
This gives an animation of the mapsfromZ, to Z, fromk=2tok = 13.
Do [Vi sual i zeMor phoi d[ZMap[12, k11, {k, 2, 13}]

Z[12]
0o 1 2 3 4 5 6 7 8 9 10 11

Z[ 2]

Z[ 12]
o 1 2 3 4 5 6 7 8 9 10 11

Z[ 3]
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Z[ 12]
5 6 7 8 9 10 11

o
=
N
w
I

O 1 2 3 4 5 6 7 8 9 10 11 12
Z[ 13]

Thisisasimple example showing that two cyclic groups of order 5 are indeed isomorphic.

Cl ear [g]
f =Formvorphoid[g £ 3, Cyclic[5, Generator £ g], ZG[5],
Mode £ Visual ]

Cyclic[ 5]
1 g gnh2 g3 gh¢
0 1 2 3 4
Z[ 5]

Morphoid[g £ 3, -Cyclic[5]-, -Z[5]-]

We can calculate the kernel and image of any Morphoid.
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Ker nel [f]
| mage[f]

Groupoid[ {1}, -Operation-]

Groupoid[{0, 1, 2, 3, 4}, Mod[#1 +#2, 5]&]

We can also test for an isomorphism.

| sonor phi smQIf ]

True

The automorphism group of any cyclic group is readily available.

Aut onor phi snroup [Z[8]]

Groupoid[{Morphoid[l £ 1, -Z[8]-, -Z[8]-],

Morphoid[1l £ 3, -Z[8]-, -Z[8]-], Morphoid[1l £ 5, -Z[8]-, -Z[8]-]1,
Morphoid[1l £ 7, -Z[8]-, -Z[8]1-1},
-Qperation-]

Similarly, the inner automorphism group for any group can be obtained.

I nner Aut onor phi sniar oup [Di hedr al [5]]

Groupoi d[ {-El ement s-}, -Operation-]
Since the elements were suppressed, we use the Elements function to reveal them.

El ement s [%

{Mor phoi d [Conj ugation by 1, -D[5 -1,

Mor phoi d [Conj ugation by Rot, -D[5]- 5]-

Mor phoi d [Conj ugat i on by Rot”~2, -D[5 D[5

Mor phoi d [Conj ugation by Rot”~3, -D[5]-, -D[5]-],
Mor phoi d [Conj ugat i on by Rot”~4, -D[5 D5

Mor phoi d [Conj ugati on by Ref, -D[5]- 51-
Mor phoi d [Conj ugati on by Rot **Ref, -D[5]- 51-]
Mor phoi d [Conj ugati on by Rot*2**Ref, -D[5]-, -D[5]
Mor phoi d [Conj ugat i on by Rot*3**Ref, -D[5]-, -D[5]-7,
Mor phoi d [Conj ugati on by Rot*4**Ref, -D[5 D[5]
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And other stuff

Here is arandom permutation.

g = RandonPermut ati on[8]

{6, 5 1, 2, 3,8, 7, 4}
Here is another permutation.

p={126, 2 4,7 3,5, 8, 9}

{1, 6, 2, 4, 7, 3, 5, 8, 9}
We can multiply the permutations in either directions, depending on your convention.

Mul ti pl yPernmnutations[p, q]
Mul ti pl yPermutations[p, q, ProductOrder £ LeftToRi ght]

{31 7! 11 6! 2! 81 5! 47 9}

{61 81 5! 21 77 11 31 41 9}
Any permutation is readily converted to cycles.

ToCycl es[p]

{Cycle[2, 6, 3], Cycle[b5, 7], Cycle[9]}

And back.

FromCycl es [%

{1, 6, 2, 4, 7, 3, 5, 8, 9}
If you like the form found in the standard packages, thisis available, although not as clear.

ToCycl es[p, CycleAs £ List]

{{1}, {6, 3, 2}, {4}, {7, 5}, {8}, {9}}

Cycles can be multiplied.
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Mul tiplyCycl es[Cycle[3, 6, 4], Cycle[l, 6, 5, 3]]

{4, 2, 1, 3, 6, 5}

The product is not commutative unless they are digjoint, so the following function can be used to test this.

Di sj oi nt Cycl esQ[Cycl e[3, 6, 4], Cycle[l, 6, 5, 3]1]

Fal se

Transpositions are just two-cycles and one can find a representation in terms of these.

ToTransposi tions[p]

{Cycle[2, 3], Cycle[2, 6], Cycle[5, 7], Cycle[l, 9], Cycle[9, 1]}

It is the number of transpositions that isimportant (determining if the permutation is odd or even).

Parity[p]
QddPer mut at i onQ[p]

-1
True

Here we form a groupoid from alist of cycles or products of cycles (using @ as an infix operator for
this).

G = For nr oupoi dFronCycl es [
{Cycle[l], Cycle[l, 3, 2] G Cycle[4, 6, 5] G Cycle[7, 8],
Cycle[l, 3, 2] G Cycle[4, 6, 57,
Cycle[l, 2, 31 G Cycle[4, 5, 671,
Cycle[l, 2, 31 G Cycle[4, 5, 6] O Cycle[7, 8],

Cycle[7, 8]}]
Goupoid[{{1, 2, 3, 4, 5,6, 7, 8}, {3, 1, 2, 6, 4,5, 8, 7},
(3,1, 2, 6, 4,5, 7, 8}, {2,3, 1,5, 6, 4,7, 8},
{2, 3,1, 5,6, 4,8, 7}, {1, 2, 3, 4, 5, 6, 8, 7}},
-Qperation-]

Given this group, we can find the orbit of the element 4.
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O bit [G Range[8], 4]

{4, 6, 5}
Which of the following are units over Z| V2 |?

Map [ZdUni t Q[2, #1& {1++2, -1, 2++/2, 1 - V/2}]

{True, True, Fal se, True}

Not satisfied? Some Morel

This gives the commutators for Ds.

Conmut at or s [Di hedral [3], Mde -> Visual ]

KEY for D[3]: |abel used £ elenent: (gl £ 1, g2 £ Rot,
g3 £ Rot"2, g4 £ Ref, g5 £ Rot**Ref, g6 £ Rot”"2**Ref}

Ol 3] X *y

gl
g2 Rot

g3 Rot 72

{1, Rot, Rot?}
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G
H

Z[16, Structure -> G oup]
Subgr oupGenerated[G 4]

Goupoid[{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
Mod [#1 + #2, 16]&]

G oupoid[{4, 8, 12, 0}, Md[#1 +#2, 16]&]

A quotient group is evident here.

Subgr oupQ[H, G Mde -> Visual 2]

Al the elenents marked with Yellow are el enents in
the subgroup. The others are col ored according to the
various |eft cosets of the subgroup in the group.

Z[ 16]
N
a]s
8 |12
12] o
ol4
519
9

True

This gives us the order of al elements.

Uri1oy /77 OderO Al I El ement s

({1, 1}, {3, 4}, {7, 4}, {9, 2}}



WRI ChicagoEval.nb

Using the above, we can rearrange the elements when making the table, if we so desire. Compare thisto
the above table.

Cayl eyTabl e[U[10], TheSet -> {1, 3, 9, 7}, Mde -> Visual,
Qut put -> Graphi cs]

U 10] X *y

O Graphics O
The conjugacy class of elementsin various groups can be found.

Conj ugacyd ass[Symmetric[3], {2, 3, 1}]

{{2, 3, 1}, (3, 1, 2}}
Here are the generators of Uys.

CyclicCGenerators[U[25]]

{2, 3, 8, 12, 13, 17, 22, 23}

This gives us the center of agroup.
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G oupCent er [Di hedral [4]]

{1, Rot?}



