This file is a Word 6 document template. It contains a macro called MathEvaluate that demonstrates how to call the Mathematica kernel from Microsoft Word for Windows.

This macro is not intended to be particularly useful in its present from, but merely as a demonstration of how easy it is to use Mathematica from a macro language like Word's. You can use it as a starting point for your own explorations.

You can edit or invoke the macro by selecting Macro from the Tools menu. Note that it has pathnames embedded in it that may need to be changed for your system. In each of the Declare Function lines there is a pathname to the mlink16.dll file, and in the line that opens the link there is a pathname to the kernel file (math.exe). If you have an incorrect path for mlink16.dll, you will get a message saying that ìthe specified library cannot be foundî, and if you have an incorrect path for the kernel, you will get a dialog saying that the link failed.

This macro launches and quits the kernel each time it is called. Obviously, this is not desirable for doing multiple calculations. A first step might be to split this up into three macros: OpenLink, Evaluate, and CloseLink. You need to save the link variable's value somewhere (like in a document variable) after it is opened, so it can be referred to in subsequent macros.

The simple "packet loop" implemented here will be familiar to MathLink programmers (see MathSource item #0206-693, A MathLink Tutorial, for more information). There is one complication, however. After the ReturnTextPacket is detected, we know that it contains a string, and we would normally call MLGetString to read it. However, MLGetString takes the address of a string (i.e., a char**) as an argument, and we cannot pass such a critter from WordBasic. The MathLink function MLGetData, in contrast, takes a string (i.e., a char *) that it then fills with the result, and this is something we can pass from WordBasic. Thus, we need to use MLGetData, which in turn requires that we know how big the string is. To figure that out, we call MLBytesToGet, the result of which must be received as a string, again due to limitations of WordBasic, and his string is then turned into an integer with a short but ugly-looking loop (in case you were wondering, WordBasic's Val command won't work because the byte order needs to be flipped).

Another feature that MathLink programmers may have noted is the MLOpenS function used to open the link. This is an undocumented but useful MathLink function that has been present since version 2.2. It takes a single string as its argument, giving a complete command line for opening the link. This is often easier to provide than the argc/argv combination required by MLOpen, and it is necessary to use here since WordBasic cannot pass an argv-type array of strings.

MACINTOSH USERS: This macro takes advantage of Word's ability under Windows to call directly into DLLs. MathLink is packaged as a DLL for Windows, so you can call MathLink functions from WordBasic, with no layer of C code required. On the Macintosh, dynamic-link libraries are a new phenomenon, and Word has no ability to communicate with them. To call external functions, you need to package them in a special kind of code resource called a WLL. The documentation for the WLL format is available from Microsoft, and they must be written in C. It is straightforward to write this extra layer of C, but beyond the scope of this simple example. W
