(*^ ::[ Information = "This is a Mathematica Notebook file. It contains ASCII text, and can be transferred by email, ftp, or other text-file transfer utility. It should be read or edited using a copy of Mathematica or MathReader. If you received this as email, use your mail application or copy/paste to save everything from the line containing (*^ down to the line containing ^*) into a plain text file. On some systems you may have to give the file a name ending with ".ma" to allow Mathematica to recognize it as a Notebook. The line below identifies what version of Mathematica created this file, but it can be opened using any other version as well."; FrontEndVersion = "Macintosh Mathematica Notebook Front End Version 2.2"; MacintoshStandardFontEncoding; fontset = title, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeTitle, center, M7, e8, 20, "B Univers 65 Bold"; fontset = subtitle, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeTitle, center, M7, bold, e6, 18, "AGaramond"; fontset = subsubtitle, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeTitle, center, M7, italic, e6, 14, "AGaramond"; fontset = section, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeSection, grayBox, M22, a20, 18, "B Univers 65 Bold"; fontset = subsection, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeSection, blackBox, M19, a15, 14, "AGaramond Semibold"; fontset = subsubsection, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeSection, whiteBox, M18, bold, a12, 12, "AGaramond"; fontset = text, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, 12, "AGaramond"; fontset = smalltext, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, 10, "AGaramond"; fontset = input, noPageBreakInGroup, nowordwrap, preserveAspect, groupLikeInput, M42, N23, bold, L-5, 12, "Courier"; fontset = output, output, inactive, noPageBreakInGroup, nowordwrap, preserveAspect, groupLikeOutput, M42, N23, L-5, 12, "Courier"; fontset = message, inactive, noPageBreakInGroup, nowordwrap, preserveAspect, groupLikeOutput, M42, N23, R65535, L-5, 12, "Courier"; fontset = print, inactive, noPageBreakInGroup, nowordwrap, preserveAspect, groupLikeOutput, M42, N23, L-5, 12, "Courier"; fontset = info, inactive, noPageBreakInGroup, nowordwrap, preserveAspect, groupLikeOutput, M42, N23, B65535, L-5, 12, "Courier"; fontset = postscript, PostScript, formatAsPostScript, output, inactive, noPageBreakInGroup, nowordwrap, preserveAspect, groupLikeGraphics, M7, l34, w282, h287, 12, "Courier"; fontset = name, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, italic, 10, "Geneva"; fontset = header, inactive, noKeepOnOnePage, preserveAspect, M7, 12, "AGaramond"; fontset = leftheader, inactive, L2, 12, "AGaramond"; fontset = footer, inactive, noKeepOnOnePage, preserveAspect, center, M7, 12, "AGaramond"; fontset = leftfooter, inactive, L2, 12, "AGaramond"; fontset = help, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, 10, "Times"; fontset = clipboard, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, 12, "Courier"; fontset = completions, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, 12, "Courier"; fontset = special1, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M40, 12, "AGaramond"; fontset = special2, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, 12, "Times"; fontset = special3, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, 12, "Times"; fontset = special4, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, 12, "Times"; fontset = special5, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, 12, "Times"; paletteColors = 256; showRuler; currentKernel; ] :[font = text; inactive; preserveAspect; leftWrapOffset = 17; leftNameWrapOffset = 1] Mathematics 263 Laboratory 5 October 13, 1993 Name: _____________________________ Lab Partner: ___________________________ Consulted with: ____________________________________________________________ :[font = title; inactive; preserveAspect] Critical Points for Scalar Fields :[font = text; inactive; preserveAspect] In this lab we will investigate scalar fields, using partial derivatives and the Plot3D command. ;[s] 3:0,0;82,1;88,0;98,-1; 2:2,14,10,AGaramond,0,12,0,0,0;1,13,10,Courier,1,12,0,0,0; :[font = section; inactive; preserveAspect] Part 1: Partial Derivatives in Mathematica ;[s] 3:0,0;32,1;43,0;44,-1; 2:2,21,16,B Univers 65 Bold,0,18,0,0,0;1,21,16,B Univers 65 Bold,2,18,0,0,0; :[font = text; inactive; preserveAspect] Mathematica can compute partial derivatives as easily as it can ordinary derivatives. Consider the function f(x, y) = sin(xy) + ex+y. Compute the first partial derivatives of this function by hand: ;[s] 13:0,1;11,0;109,1;110,0;111,1;112,0;114,1;115,0;123,1;125,0;129,1;130,2;133,0;199,-1; 3:6,14,10,AGaramond,0,12,0,0,0;6,14,10,AGaramond,2,12,0,0,0;1,18,12,AGaramond,34,10,0,0,0; :[font = text; inactive; preserveAspect] :[font = text; inactive; preserveAspect] We can define this function in Mathematica: ;[s] 3:0,0;31,1;42,0;44,-1; 2:2,14,10,AGaramond,0,12,0,0,0;1,14,10,AGaramond,2,12,0,0,0; :[font = input; preserveAspect] f[x_,y_] := Sin[x y] + E^(x + y) :[font = text; inactive; preserveAspect] and compute the partial derivatives using the commands :[font = input; preserveAspect] D[f[x,y],x] :[font = input; preserveAspect] D[f[x,y],y] :[font = text; inactive; preserveAspect] Check that your partial derivatives match those computed by Mathematica. In the space below, compute the second order partial derivatives of f. Use the commands below to check your results against Mathematica. ;[s] 7:0,0;60,1;71,0;141,1;142,0;197,1;208,0;210,-1; 2:4,14,10,AGaramond,0,12,0,0,0;3,14,10,AGaramond,2,12,0,0,0; :[font = text; inactive; preserveAspect] :[font = input; preserveAspect] D[f[x,y],{x,2}] :[font = input; preserveAspect] D[f[x,y],x,y] :[font = input; preserveAspect] D[f[x,y],{y,2}] :[font = text; inactive; preserveAspect] Finally use Mathematica to compute the third order partial derivatives of f. Write your results below. How many distinct third order derivatives does a function of two variables have? (Distinct means having different values; remember that fxy and fyx are not distinct.) ;[s] 13:0,0;12,1;23,0;74,1;75,0;114,1;122,0;241,1;242,2;244,0;249,1;250,2;252,0;272,-1; 3:6,14,10,AGaramond,0,12,0,0,0;5,14,10,AGaramond,2,12,0,0,0;2,18,12,AGaramond,66,10,0,0,0; :[font = text; inactive; preserveAspect] :[font = section; inactive; preserveAspect] Part 2: Critical Points in Two Dimensions :[font = text; inactive; preserveAspect] Recall that in Calculus I we called a point on a function's graph where its derivative is 0 or failed to exist a critical point. We call such points critical since local (or relative) maximum and minimum values of the function can only occur at such points. We seek an analogue in more than one dimension. The scalar field r(x, y) = 1 Ð x2 Ð y2 has only one local maximum, as we can tell by plotting its graph; where (in the domain) does the maximum of this function fall? ;[s] 15:0,0;113,1;127,0;326,1;327,0;328,1;329,0;331,1;332,0;340,1;341,2;342,0;345,1;346,2;347,0;476,-1; 3:7,14,10,AGaramond,0,12,0,0,0;6,14,10,AGaramond,2,12,0,0,0;2,18,12,AGaramond,32,10,0,0,0; :[font = text; inactive; preserveAspect] :[font = input; preserveAspect] r[x_,y_] := 1 - x^2 - y^2 :[font = input; preserveAspect] Plot3D[r[x,y],{x,-3,3},{y,-3,3}, AxesLabel->{"x","y","z"}, ViewPoint->{3.244, 0.813, 0.514}] :[font = text; inactive; preserveAspect] Notice on the graph there is one just point where the surface is higher than anywhere else (the maximum of the function). If we look at its first partial derivatives, they are zero at many more than one point. Describe the set of points where each of the first partials is zero below. :[font = text; inactive; preserveAspect] The set of all (x, y) for which rx(x, y) = 0 is: ;[s] 12:0,0;16,1;17,0;19,1;20,0;32,1;33,2;34,0;35,1;36,0;38,1;39,0;49,-1; 3:6,14,10,AGaramond,0,12,0,0,0;5,14,10,AGaramond,2,12,0,0,0;1,18,12,AGaramond,66,10,0,0,0; :[font = text; inactive; preserveAspect] The set of all (x, y) for which ry(x, y) = 0 is: ;[s] 12:0,0;16,1;17,0;19,1;20,0;32,1;33,2;34,0;35,1;36,0;38,1;39,0;49,-1; 3:6,14,10,AGaramond,0,12,0,0,0;5,14,10,AGaramond,2,12,0,0,0;1,18,12,AGaramond,66,10,0,0,0; :[font = text; inactive; preserveAspect] But the intersection of these two sets is one point, and it is the point giving r its maximum value. ;[s] 3:0,0;80,1;81,0;101,-1; 2:2,14,10,AGaramond,0,12,0,0,0;1,14,10,AGaramond,2,12,0,0,0; :[font = text; inactive; preserveAspect] The intersection of the two sets above is: :[font = text; inactive; preserveAspect] So we call points where all the first partial derivatives of a function are zero a critical point for that function. Of course, critical points are not always local extrema. Consider the function h(x, y) = (x Ð 2)3 Ð (y + 1)2, where is its critical point? We can define the function and its derivatives as follows (Note that the derivatives don't have colons in their defining equal signs!): ;[s] 17:0,0;24,1;27,0;197,1;198,0;199,1;200,0;202,1;203,0;208,1;209,0;214,2;215,0;219,1;220,0;225,2;226,0;394,-1; 3:9,14,10,AGaramond,0,12,0,0,0;6,14,10,AGaramond,2,12,0,0,0;2,18,12,AGaramond,32,10,0,0,0; :[font = input; preserveAspect] h[x_,y_] := (x - 2)^3 - (y + 1)^2 :[font = input; preserveAspect] hx[x_,y_] = D[h[x,y],x] :[font = input; preserveAspect] hy[x_,y_] = D[h[x,y],y] :[font = text; inactive; preserveAspect] At what point will both these derivatives be zero? Plot a graph of this function that shows there is not a maximum or a minimum at this point. Choose an appropriate view point, and explain in a sentence how you plot supports this contention. :[font = text; inactive; preserveAspect] :[font = text; inactive; preserveAspect] Show that c(x, y) = x2 - 2y2 - 3xy has a critical point that is not a local minimum or maximum. Find the critical point. Create a plot of the function that shows the critical point of this function is not an extremum, and describe on the same sheet (in a sentence or two) what happens at this critical point. ;[s] 15:0,0;10,1;11,0;12,1;13,0;15,1;16,0;20,1;21,2;22,0;26,1;27,2;28,0;32,1;34,0;310,-1; 3:7,14,10,AGaramond,0,12,0,0,0;6,14,10,AGaramond,2,12,0,0,0;2,18,12,AGaramond,32,10,0,0,0; :[font = section; inactive; preserveAspect] Part 3: Finding Critical Points :[font = text; inactive; preserveAspect; plain; italic] Sometimes it is hard to find the critical point(s) of a function. Consider the function ;[s] 1:0,1;89,-1; 2:0,14,10,AGaramond,2,12,0,0,0;1,14,10,AGaramond,0,12,0,0,0; :[font = postscript; PostScript; formatAsPostScript; output; inactive; preserveAspect; pictureLeft = 96; pictureWidth = 264; pictureHeight = 26] %! %%Creator: Mathematica MathPictureStart % Start of picture % Scaling calculations 0 1 0 1 [ [ 0.000000 0.000000 0 0 ] [ 1.000000 0.098485 0 0 ] ] MathScale % Start of Graphics 0 setgray 0 setlinewidth gsave 0.000000 0.000000 translate 1.000000 0.098485 scale 1 string 264 26 1 [264 0 0 26 0 0] { currentfile 1 index readhexstring pop } false 3 colorimage FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF803FFC0FFF 03FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC7FC7E3F1F8 FC7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF81FFE07 FF8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF81FFE07 FF8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC71FFE07 FF8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF03F1FFE07 FF8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFC01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE3F1FFE07 FF8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFF FFF1FFFFFFFFFF8FFFE3FE3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC7E3F1F8 FC7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFF FFFE3FFFF1FFFFF1FFFFFFC7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC0000FC0FFF 03FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFF FFFE001F8FF8FF81FFFF8000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFF FFFFC7FC0FFF1FF1FFFF8FF8FFFE0003FFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFF FFFFC7FC7FFFE38FFFFF8FF81FFFFFFFFE00000000000000000000000000 000000000000000000000000000000000000000000000000000000000000 000000000000000000000000000000000000000000000000000000000000 000000000000000000 FFFFF8FC0FFFFF8FFFFFF1FF1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFF FFFFF8FC0FFFFC71FFFFF1FF1FFE0003FFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFF007FFFFFFFFFFFFFFFFFFFFFFFFFFF007FFFFFFFFFFFF FFFFFFFFFFF803FFFF FFFFFF1C71FFFC7FC7FFFE3F03FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFF8FF8FFFFFFFFFFFFFFFFFFFFFFFFFF8FF8FFFFFFFFFFFF FFFFFFFFFFC7FC7FFF FFFFFF000FFFFC7FC7FFFE3F03FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFF1FFFFFFFFFFFFFFFFFFFFFFFFFFFFF1FFFFFFFFFFF FFFFFFFFFFFFFF8FFF FFFFFFFF8FFFFFFFFFFFFFF8FFFFFFFFFFFFE3FFFFE38007E001FFFFFFFF E001FFFF8FFFE38FF8FFFFFFFFFFC7FC003F000FC7FC7FFFFFFFFFFFFFC7 FF81FFFC7FF8FFFE001FFFFFFFF00003FE3FE001F8FF8E001FFFFFFFF000 03FE3FE00FFF000FFF FFFFFFFF8FFFFFFFFFFFFFF8FFFFFFFFFFFFE3FFFFE07FF81FFE3FFFFFFF 1FFE3FFF8FFFE3F1FF1FFFFFFFFFC7E3FFC0FFF1F8FF8FFFFFFFFFFFFFC7 FC7E3FFC7FF8FFFE3FE3FFFFFFFE3FFFFE3F1FFE3F1FF03FE3FFFFFFFE3F FFFE3FFFF1FF1FF1FF FFFFFFFFF1FFFFFFFFFFFFC7FFFFFFFFFFFFE3F000007FF81FFE3FFFFFFF 1FFE00000000007E38FFF1FFFFFFC7FFFFC0FFF1FF1C7FFFFFF1FFFFFFC7 E3FFC7FC7FF8FFFE3FE3FFFFFFFFC7FFFE3F1FFE3FE38E3FE3FE3FFFFFC7 FFFE3FFFFE3F1FF1FF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE3F1FFE07FF81FFE3FFFFFFF 1FFE07FF81FFE3FFF8FFF1FFFFFFC7FFFFC0FFF1FFFC0007FFF1FFFFFFC7 E3FFC7FC7FFF1FFFC7FC0007FFFFF8FFFE3F1FFE3FFF8FC7FC7E3FFFFFF8 FFFE3FE0003FE38000 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE3FE3FE07FF81FFE3FE0003F 1FFE38FF8E3FE3FFC71C0007FFFFC7FFFFC0FFF1FFE38FFFFC0007FFFFC7 E3FFC7FC7FFF1FFFC7FC7FFFFFFFFF1FFE3F1FFE3FFC71C7FC0000FFFFFF 1FFE3F1FFE3FE3F03F FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE3FFC7E000070001FFFFFFFF E001FF1F8FC7E3FFC7FC71FFFFFFC7E00038000FFFE3F03FFFF1FFFFFFC7 E3FFC7FC7FFFE3FFF8FF8FFFFFFFFFE3FE3F0001FFFC7FC0FF8E3FFFFFFF E3FE3F1FFE3FFC7E07 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE3FFF8E07FFF1FFFFFFFFFFF 1FFE3FE38FF8E3FFC7FC71FFFFFFC7E3FFF8FFFFFFE3FE3FFFF1FFFFFFC7 E3FFC7FC7FFFE3FFF8FF8FFFFFF1FFE3FE3F1FFFFFFC7FC0FF8E3FFFF1FF E3FE3F1FFE3FFC7FC7 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF03FFFF038FFFE3FFFFFFFFFF 1FFE3FFC0FFF03FFFFFFFFFFFFFE07E3FFFF1FFFFFFFFFC7FFFFFFFFFE07 FC7E3FE07FFFFC7FFFFFFFFFFFFE3FE3F03FE3FFFFFFFFFFFFFFFFFFFE3F E3F03F1FFE3FFFFFF8 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE3FFFFE3F007FC01FFFFFFFF E001FFFF8FFFE3FFFFFFFFFFFFFFC7E00007E00FFFFC7FC7FFFFFFFFFFC7 FF81FFFC7E00007FFFFFFFFFFFFFC01FFE3FFC01FFFFFFFFFFFFFFFFFFC0 1FFE3FE001FFFF8FF8 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF803FFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFF007 pop grestore %% End of Graphics MathPictureEnd %% End of picture :[font = text; inactive; preserveAspect] We can use Mathematica to tame this awful looking function, and find its extreme value. First we define the function in Mathematica: ;[s] 5:0,0;11,1;22,0;121,1;132,0;134,-1; 2:3,16,12,Chicago,0,12,0,0,0;2,16,12,Chicago,2,12,0,0,0; :[font = input; preserveAspect] p[x_,y_] := (1466 - 844*x + 156*x^2 + 1017*y - 216*x*y + 219*y^2)/300 :[font = text; inactive; preserveAspect] We can plot this function to see what it looks like: :[font = input; preserveAspect] Plot3D[p[x,y],{x,-3,3},{y,-3,3}, AxesLabel->{"x","y","z"}] :[font = text; inactive; preserveAspect] Note that the function appears to have a minimum somewherein the domain shown in this plot. The partial derivatives are pretty ugly: :[font = input; preserveAspect] px[x_,y_] = D[p[x,y],x] :[font = input; preserveAspect] py[x_,y_] = D[p[x,y],y] :[font = text; inactive; preserveAspect] but Mathematica can easily find where they both equal zero: ;[s] 3:0,0;4,1;15,0;60,-1; 2:2,16,12,Chicago,0,12,0,0,0;1,16,12,Chicago,2,12,0,0,0; :[font = input; preserveAspect] critpt = Solve[{px[x,y]==0,py[x,y]==0},{x,y}] :[font = text; inactive; preserveAspect] We could get numerical approximations to the coordinates using the NSolve command: ;[s] 3:0,0;67,1;73,0;83,-1; 2:2,16,12,Chicago,0,12,0,0,0;1,13,10,Courier,1,12,0,0,0; :[font = input; preserveAspect] ncritpt = NSolve[{px[x,y]==0,py[x,y]==0},{x,y}] :[font = text; inactive; preserveAspect] To find the corresponding value of the function, we can substitute these coordinates into p. ;[s] 3:0,0;90,1;91,0;93,-1; 2:2,16,12,Chicago,0,12,0,0,0;1,16,12,Chicago,2,12,0,0,0; :[font = input; preserveAspect] p[x,y] /. critpt (*exact value*) :[font = input; preserveAspect] p[x,y] /. ncritpt (*decimal approximation*) :[font = text; inactive; preserveAspect] From the plot we can see that this is the minimum value of p. ;[s] 3:0,0;59,1;60,0;62,-1; 2:2,16,12,Chicago,0,12,0,0,0;1,16,12,Chicago,2,12,0,0,0; :[font = text; inactive; preserveAspect] Find all the critical points of the function q given below. (There are three of them.) describe whether each critcal point is a minimum, maximum, or neither. Give the minimum or maximum value of q. ;[s] 5:0,0;45,1;46,0;197,1;198,0;200,-1; 2:3,16,12,Chicago,0,12,0,0,0;2,16,12,Chicago,2,12,0,0,0; :[font = postscript; PostScript; formatAsPostScript; output; inactive; preserveAspect; pictureLeft = 44; pictureWidth = 366; pictureHeight = 37] %! %%Creator: Mathematica MathPictureStart % Start of picture % Scaling calculations 0 1 0 1 [ [ 0.000000 0.000000 0 0 ] [ 1.000000 0.101093 0 0 ] ] MathScale % Start of Graphics 0 setgray 0 setlinewidth gsave 0.000000 0.000000 translate 1.000000 0.101093 scale 1 string 366 37 1 [366 0 0 37 0 0] { currentfile 1 index readhexstring pop } false 3 colorimage FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFE00FFFFFFFFFFFFFFFFFFFFFFFF007FFFFFFFFFFFF FFFFFFFFFFFFFFFFFFE00FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF803F FFFFFFFFFFFFFFFFFFFFFFFFFF803FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 007FFFFFFFFFFFFFFFFFFFFFFC01FFFFFFC0 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFF1FF1FFFFFFFFFFFFFFFFFFFFFF8FF8FFFFFFFFFFFF FFFFFFFFFFFFFFFFFF1FF1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC7FC7 FFFFFFFFFFFFFFFFFFFFFFFFFC7FC7FFFFFFFFFFFFFFFFFFFFFFFFFFFFF8 FF8FFFFFFFFFFFFFFFFFFFFFE3FE3FFFFFC0 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFE3FFFFFFFFFFFFFFFFFFFFFFFFF1FFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFE3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8 FFFFFFFFFFFFFFFFFFFFFFFFFFFFF8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFF1FFFFFFFFFFFFFFFFFFFFFFFFC7FF8FC0 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000 03FE3FE001F8FF8FFFFC003FFFFFFFFC003F007FFF1FFE001FFFFFFFFFFF FC003FFFF1F81FF1FF1C003FFFFFFFFFFFF803F00003FFF8E3FE3FFFF000 FFFFFFFFFFFFFF8FF8007FC0FFF000FFFFFFFFFFFF00003FE3FE001F8FF8 E001FFFFFFFFFFFFC003FFFF1F8007FFF1C0 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE3F FFFE3F1FFE3F1FF1FFFC7FC7FFFFFFE3FFC0FF8FFF1FFE3FE3FFFFFFFFFF E3FFC7FFF1C7E3FE3FE07FC7FFFFFFFFFFC7FC7E3FFFFFF8FC7FC7FFF1FF 1FFFFFFFFFFFFF8FC7FF8E3F1FF1FF1FFFFFFFFFFFE3FFFFE3F1FFE3F1FF 03FE3FFFFFFFFFFE3FFC7FFF1F8FF8FFF1C0 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC7 FFFE3F1FFE3FE38FFFFC7FC7FC7FFFFFFFC7FFF1FF1FFE3FE3FFFFFFFFFF FFFFC000003FFC7FC71C7FC7FFFFFFFFFFFFFF8FC7FC00001F8E3FFFF1FF 1FFFFFE3FFFFFF8FC7FF81FFE3F1FF1FFFFFE3FFFFFC7FFFE3F1FFE3FE38 E3FE3FFFFFFFFFFFFFFC0000038FF8FFFE00 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8 FFFE3F1FFE3FFF8007FF8FF8FC7FFFFFFFC7FFF1FF1FFFC70001FF000FFF FFFFC0FFF03FFC7FFF1F8E0003FE001FFFFFFF8FF8FC7FF8FFFE0003FE38 000FFFE3FFFFFF8FC7FF81FFE3FE3F007FFFE3FFFFFF8FFFE3F1FFE3FFF8 FC7E00FFF000FFFFFFFC0FFF1FF1FF03FE00 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 1FFE3F1FFE3FFC01F8FF8FF80001FFFFFFC7FF8FFF1FFFC7E07FFFFFFFFF FFFFC71FF03FFC7FF8E38FC0FFFFFFFFFFFFFC7FFF1F8FF8FFF1C7FFFE3F 03FFF8000FFFFF8FC7FF81FFE3FE38E38FF8000FFFFFF1FFE3F1FFE3FFC7 1C71C71FFFFFFFFFFFFC71FF1FF1FF03FE00 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF E3FE3F0001FFFC7FC0FFF1FF1C7FFFE0003FE07FFF1FFFF8FC0FFFFFFFFF E0003FE3F03FFC7FF8FF81F81FFFFFFFFFFF03FFFFE3F1F8FFF1F81FFFC7 E07FFFE3FFFFFF8FF80071FFE3FFC7FC0FFFE3FFFFFFFE3FE3F0001FFFC7 FC0FF81FFFFFFFFE0003FE3F1FFE00007E00 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1FF E3FE3F1FFFFFFC7007FFF1FF1C7FFFE3FFFFFC7FFF1FFFF8FF8FFFFFFFFF E3FFFFFC703FFC7FF8FF81FF1FFFFFFFFFFFE3F1FFE3FE38FFF1FF1FFFC7 FC7FFFE3FFFFFF8FC7FF81FFE3FFC7007FFFE3FFFF1FFE3FE3F1FFFFFFC7 FC0E00FFFFFFFFFE3FFFFFC71FFE07E3FE00 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE3F E3F03FE3FFFFFFFE3FFFFFFFFFFFFFE3FFFFFF8FF81FFFFFFFF1FFFFFFFF E3FFFFFF81C7E3FFFFFFFFFFE3FFFFFFFFFFFC7E3FE3FFC0FFFFFFE3FFFF FF8FFFFFFFFFFC0FC7FF8E3F1FFFFFE3FFFFFFFFFFE3FE3F03FE3FFFFFFF FFFFC7FFFFFFFFFE3FFFFFF81FFFF8E3F1C0 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC0 1FFE3FFC01FFFFFFC7FFFFFFFFFFFFE000000001FF1FFFFF1FF1FFFFFFFF E00007FFF1F81FFFFFFFFE3FE3FFFFFFFFC0000FC01FFFF8FFFE3FE3FFF8 FF8FFFFFFFFFFF8FF8007FC0FFFFFFFC7FFFFFFFFFFC01FFE3FFC01FFFFF FFFFF8FFFFFFFFFE00007FFF1FFFFF03F1C0 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFF8000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE00FFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFC01FFFFFFFFFFFFFFFFFFFFFFFFFFFC01FFFFF 007FFFFFFFFFFFFFFFFFFFFFFFFFF8000FFFFFFFFFFFFFFFFFFFFFFFFFFF FFF0001FFFFFFFFFFFFFFFFFFFFFFFE38FC0 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC0 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00003FE3FE001FFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC0 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE3FFFFE3F1FFE3FFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC0 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC7FFFE3F1FFE3FFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC0 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8FFFE3F1FFE3FFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC0 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1FFE3F1FFE3FFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC0 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE3FE3F0001FFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC0 FFFFFFFFFFFFFFFFFFFFFFFF007FFFFFFFFFFFF1FFE3FE3F1FFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFF803FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE00FFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFC01FFFFFFFFFFFFC0 FFFFFFFFFFC7FFFFFFE3FFF8FF8FFFFFFFFFFFFE3FE3F03FE3FFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFC7FC7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1FF1FFFFFFFFFFF FFFFFFFFFFFFFFFFFFE3FE3FFFFFFFFFFFC0 FFFFFFFFFFF8FC7FFFFC7FFFFFF1FFFFFFFFFFFFC01FFE3FFC01FFE3FFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFF8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE3FFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFC7FFFFFFFFFFC0 FFFFFFFFF000E3FE3FE07FFFE0003FFFFFFFFFFFFFFFFFFFFFFFFF1FFFC7 FFFFC00001C01FF1FF1FFFFFFFFE001F803FFF8FF8FF8FFFFFFFFFFFFFF8 FF8007FC0FF8FF8FFFFFFFFFFFFE001FFFF8E3FE3FFFFFFFFFFFFFE3FE00 1F8007FC7FFF000FFFFFFFFFFC7FC01F80001C003F1FF1C003FFFFFFFFC0 03FFFF1F81FF1FF1FFFF8007FFFFFFFFFFC0 FFFFFFFFF1FF03FFC7FC7FFFE3FE3FFF8000FFFFFFFFFFFFFFFFFF1FFFC7 FFFFC71FFE3FE3FE3FE3FFFFFFF1FFE07FC7FF8FFF1FF1FFFFFFFFFFFFF8 FC7FF8E3F1FF1FF1FFFFFFFFFFF1FFE3FFF8FC7FC7FFFFFFFFFFFFE3F1FF E07FF8FC7FFF1FF1FFFFFFFFFC7FFFE3F1FFE3FFC7E3FE07FC7FFFFFFE3F FC7FFF1C7E3FE3FE3FFF8FF8FFFFFFFFFFC0 FFFFFFFFF1FF1FFFF8E3FFFFE3FE07FFFFFFFF8000000000000000FFFFC7 E00000E3FFFFFC7FC71FFE3FFFFFFFE3FFF8FF8FFFE38FFFFFFFFFFFFFF8 FC7FF81FFE3FE38FFFFFFFFFFFFFFFE000001F8E3FFFFFFFFFFFFFE3FFFF E07FF8FC7FFF1FF1FFFFFFFFFC7FFFFC7E3FE3FFC7FC71C7FC7FC7FFFFFF FC000003FFC7FC71FFFF8FF8FF8FFFFFFFC0 FFFFFFFFFE3F03FFFFE3FFFFFC7FC7FFFFFFFFFFFFFFFFFFFFFFF8FFFFC7 E3FFC7FC7FFFFC7FFF1FFE3FFFFFFFE3FFF8FF8FFFFF8000FF8007FFFFF8 FC7FF81FFE3FFF8007FF8007FFFFFFE07FF8FFFE3F1FFE001FFFFFE3FFFF E07FF8FF8FFFE3FE0003FFFFFC7FC0007FC7E3FFC7FFF1F8FF8FC7FFFFFF FC0FFF03FFC7FFF0001FF1FF1F8FFFFFFFC0 FFFFFFFFFE3F03FFFF1C7FFFFC7FC7FF8000FFFFFFFFFE3FFFFFF8FFFFC7 FC7FC7FF8FFFE3FFF8E38000FFFFFFE3FFC7FF8FFFFC71FFFFFFFFFFFFF8 FC7FF81FFE3FFC01F8FFFFFFFFFFFFE38FF8FFF1C71FFFFFFFFFFFE3FFFF E07FF8FF8FFFE3FE3FFFFFFFFC7E3FFC7FF8E3FFC7FF8E38FF80001FFFFF FC71FF03FFC7FF8E3FFFF1FF00003FFFFFC0 FFFFFFFFFFC71C7FFF1FF1FFFF8FC0FFFFFFFFFFFFFFFE3FFFFFF8FFFFC7 FF8FC7FFF1F81FFFF8FF8E3FFFF0001FF03FFF8FFFFC7E07FFFFFFFFFFF8 FF80071FFE3FFC7FC0FFFFFFFFF0001FF1F8FFF00003FFFFFFFFFFE3F000 1C0007FFF1FFFC7FC7FFFFFFFC7E3FFC7FFF00003FFF8FF81FF1C7FFFE00 03FE3F03FFC7FF8FC0FFFE3FE38FFFFFFFC0 FFFFFFFFFFF8007FFF1FF1FFFF8FC0FFFFFFFFFFFFFFFE3FFFFFF8FFFFC7 FFF1C0FFF1FF1FFFF8FF8E3FFFF1FFFFFE3FFF8FFFFC7FC7FFFFFFFFFFF8 FC7FF81FFE3FFC7007FFFFFFFFF1FFFFFE38FFF03F1FFFFFFFFFFFE3F1FF FC7FFFFFF1FFFC7FC7FFFFFFFC7E3FFC0FFF03FFFFFF8FF81FF1C7FFFE3F FFFFC703FFC7FF8FF8FFFE3FE38FFFFFFFC0 FFFFFFFFFFFFE3FFFFFFFFFFFFFE3FFFFFFFFFFFFFFFFE3FFFFFFF1FFE07 FFFE071FF1FFE3FFFFFFFFFFFFF1FFFFFFC7FC0FFFFFFFF8FFFFFFFFFFC0 FC7FF8E3F1FFFFFE3FFFFFFFFFF1FFFFFFC0FFFFC71FFFFFFFFFFF03F1FF FF8FFFFFFE3FFFFFFFFFFFFFE07E3FFC71FF1C7FFFFFFFFFFFFFFFFFFE3F FFFFF81C7E3FFFFFFF1FFFFFFFFFFFFFFFC0 FFFFFFFFFFFFE3FFFFFFFFFFFFFE3FFFFFFFFFFFFFFFFE3FFFFFFF1FFFC7 FFFFC7E00E00007FFFFFFFFFFFF000000000FF8FFFFF8FF8FFFFFFFFFFF8 FF8007FC0FFFFFFFC7FFFFFFFFF00003FFF8FFFFF81FFFFFFFFFFFE3F000 03F00700003FFFFFFFFFFFFFFC7FC003FE00FF803FFFFFFFFFFFFFFFFE00 007FFF1F81FFFFF1FF1FFFFFFFFFFFFFFFC0 FFFFFFFFFFFFFC7FFFFFFFFFFFF1FFFFFFFFFFFFFFFFFE3FFFFFFFE3FFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF007FFFFFFFFFFFF FFFFFFFFFFFFFF8000FFFFFFFFFFFFFFFFFFFFFFFF1FFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFE00FFFFFFFFFFFFFFFFC0 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE3FFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC0 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF03FFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC0 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE3FFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC0 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC0 pop grestore %% End of Graphics MathPictureEnd %% End of picture ^*)