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ABSTRACT.  We  discuss  computation  of  approximate  Gröbner  bases  at  high  but
finite  precision. We show how this can  be  used  to  deduce exact  results for  various
applications.  Examples  include  implicitizing  surfaces,  finding  multivariate
polynomial  greatest  common  divisors  and  factorizations  over  the  rational  and
complex number fields.

This is an extended version of a paper for SYNASC 2010, titled úPolynomial GCD and
Factorization  Via  Approximate  Gröbner  Basesø,  to  appear  in  IEEE  conference
proceedings.
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and Algebraic Manipulation]: Algorithms--- Algebraic Algorithms; 
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1. INTRODUCTION

Since their  introduction more than 40 years ago, usage of Gröbner bases has become pervasive in the realm  of
computational algebra. As is well known, most  common  applications are in  algebraic  manipulation  of polyno-
mial ideals. Less known is that they also can be used in the setting of classical polynomial algebra, specifically in
finding multivariate  polynomial greatest  common  divisors and  factorizations. Some approaches are  presented
in [1, 2, 3, 9] but they are not regarded as being competitive with more commonly used methods. The primary
aim of this paper is to offer alternative methods to the classical polynomial algebra algorithms, building them on
simple Gröbner basis computations. The methods we will describe and demonstrate seem to be more efficient,
in practice, than those that have appeared in past.

A relatively  more  recent  thread  in  the  literature  on  Gröbner  bases  involves  computation  using  approximate
coefficients. This gives rise to an important issue, recognition of cancellation, without which the algorithm might
either give poor results or even fail to terminate. Shirayanagi [24] gave the first indication of how to handle this.
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coefficients. This gives rise to an important issue, recognition of cancellation, without which the algorithm might
either give poor results or even fail to terminate. Shirayanagi [24] gave the first indication of how to handle this.
Since that time several other approaches have appeared [15, 18, 22, 27]. In [18] there is discussed an implementa-
tion,  parts  of  which  have  been  in  Mathematica since  1996  [17].  In  contrast  to  [18],  the  present  article  uses
approximation at high precision, as a means for later recovering exact results.

One point  of the present  work is to  illustrate known methods for  recovering rational or  algebraic results from
good approximations for  Gröbner bases. For this we rely on results in section 2 that allow us to conclude such
approximations can be attained. We give simple examples in  section 3. Our  main  application will be in  polyno-
mial  algebra,  specifically,  finding  greatest  common divisors  and  factorization.  Sections  4  and  5  provide  the
relevant  theory. They cover  how to  recover  common  divisors or  factors from  certain  Gröbner  bases that  use
substitution  homomorphisms.  For  factorization,  we  remark  that  there  is  no  step  involving  combination  of
factor images in this approach.

Typical experience is that  classical methods for  computing common divisors or  factorizations are much  faster
than  those methods that  rely on  Gröbner  bases. This, however, is predicated  on  usage of exact  Gröbner  basis
computations.  We  will  propose  methods  involving  approximate  basis  computation  that  seem  to  be  more
competitive,  due  to  avoidance  of  both  coefficient  swell  and  explicit  algebraic  numbers.  We  illustrate  in  this
setting with  several examples  in  section  6.  Specifically,  we  use  approximate  bases  to  obtain  exact  results.  We
then discuss failure modes. Last we summarize and indicate a number of useful directions for further work.
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2. COMPUTATION OF APPROXIMATE GRÖBNER BASES

We briefly summarize the model of computation we use in  this paper. In  contrast to  empirical polynomials (as
encountered  e.g.  in  [8,  18]),  we  assume  inputs  are  known  exactly.  We  also  assume  that  we  can  do  coefficient
arithmetic at arbitrary finite precision (in practice, this might involve several hundred digits).

The model used  for  coefficients, and  operations thereon, is significance arithmetic, as described  in  [14, 25]. In
brief,  numbers  have  a  value  and  also  an  approximation  of  their  maximal error.  Standard  arithmetic  such as
addition  and  multiplication  of  such  numbers  propagates  the  error  via  first  order  approximations.  At  low
precision  this tends not  to  be reliable. The (unknown) contributions to  error  from  higher  order  terms (e.g. the
product  of  the  errors,  if  doing  multiplication)  can simply  overwhelm  the  error  estimate.  At  high  precision,
however,  this  model tends  to  be  quite  robust  and  in practice  it  is  reliable.  See  [25] for  further  details.  In  this
paper  we will typically work at  precisions of dozens to  hundreds of digits. This suffices to  make the computa-
tions reliable, while  not  being so  large as to  detract  from  the efficiency offered  by using finite  precision  arith-
metic. 

Recall that  in  computing Gröbner  bases, it  is  of paramount  importance  in  polynomial reduction  to  recognize
when sums of like terms cancel, as this is how we obtain new leading coefficients. In our model of arithmetic we
regard a sum as zero when there is full cancellation of all digits, that is, the result is less than the approximated
error interval.

When  using  significance  arithmetic,  over  the  course of  many  operations  there  will  be  a  (typically  gradual)
erosion  of  precision.  In  practical  usage  one  simply starts  with  a  finite  approximation  of  exact  input  that  is
sufficiently high  as to  allow the  algorithm  to  run  to  completion  without  encountering loss of too  much preci-
sion. What this means will be explained in more detail below. First we state a result that has appeared before in
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sufficiently high  as to  allow the  algorithm  to  run  to  completion  without  encountering loss of too  much preci-
sion. What this means will be explained in more detail below. First we state a result that has appeared before in
various forms. We tailor it to the needs of our arithmetic model.

Theorem  1. We are given  a  set  F of  polynom ials in  some set  of  indeterm inates over the rationals, a  term  order,
and  an  outcome  precision  s.  Also  we  assume  we  use  a specific  algorithm  to  compute  its  reduced,  m inimal
Gröbner basis (Buchberger’s algorithm , say), and we call that basis G. Then there exists a finite precision r such
that  if  we use that  algorithm  to  compute a  Gröbner  basis  for  F,  begin  with  r  or  more digits,  and  use finite
precision significance arithmetic on coefficient sums, products, and reciprocals, then the result will agree with G
to s digits in all coefficients.

Proof.  In  running  the  algorithm  to  obtain  G  from  F,  there  will  occur  a  maximal  integer  coefficient  size  M.
Moreover there occurs a certain number A of arithmetic operations on coefficients, and a maximal cancellation
K of digits in operations that do not yield zero (this cancellation is what causes loss of precision when repeating
the  process in  finite  precision; clearly K £ M ).  Given  these  parameters, and  a  desired  precision  s for  the  out-
come,  we  assert  the  following.  One  can  find  a  start precision,  and  repeat  the  algorithm  using  significance
arithmetic, with all steps having the following properties.

(i) The precision of intermediate values is always larger than s.

(ii) Cancellations of more than K  digits will correctly be regarded as resulting in  zero. Smaller  cancellations will
retain significant digits and hence not be regarded as zero.

To see that  this assertion is correct, we first  observe that  multiplications lose at  most M + 1 digits of precision,
and additions at  most K + 1 (1 from  roundoff and K, by assumption, from  cancellation). See [25] for  details on
how this loss of precision is modelled to first order in significance arithmetic. The salient point is that we have a
means to  recognize when  a  full cancellation  has taken  place, that  is, when  two  terms sum  to  zero. It  happens
precisely when there is cancellation  of all significant  digits. We need only guarantee that  the initial precision be
sufficiently high in order to deduce such cancellation (that is, recognize zero) correctly. This in turn implies that
the finite  precision  algorithm, if given  sufficient precision  of input, will correctly emulate the exact  case. From
the preceding remarks we see that a starting precision of A HM + 1L + s digits suffices.  á

We remark that  the sufficient  initial precision  of the above theorem  is generally far  larger  than  necessary (and
also  cannot  be computed  a priori, since it  depends on  information  specific  to  running the code in  exact  arith-
metic). While the proposition  sheds no  light  on  what  will be a realistic  precision  in  which  to  begin  a computa-
tion, we will show examples that might be regarded as typical of actual practice.

3. EXACT RESULTS FROM APPROXIMATE GRÖBNER BASES

Given  a  set  of  polynomials  with  rational  coefficients,  we  might  find  an  approximate  Gröbner  basis  to  high
precision and then attempt to recover the exact basis from the approximation. The point of such an endeavor is
that it can be faster to do this, and validate the result, than to compute the exact basis by exact methods.

At this point it is helpful to see an actual example where use of approximate numbers gives a substantial improve-
ment over exact computation. This example is mentioned in [26]. It is an implicitization of a polynomial paramet-
ric  surface.  To  find  the  implicit  form  we  compute  a Gröbner  basis  using a  term  ordering that  eliminates  the
parameters [9]. The timing shown is in  seconds; an  exact  computation  of the implicit  form  took several hours.
Here we do the computation at 500 digits; this will suffice to recover the exact form.
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Example 1

surfacePolys=

9-17-27 s+36 s2 -19 s3 -45 s t2 +81 s2 t2 -54 s3 t2 +30 s t3 -54 s2 t3 +36 s3 t3 +10 x,
198 s-369 s2 t+246 s3 t-198 t2 +369 s2 t2 -246 s3 t2 +100 y,-57-81 s2 +42 s3 +

99 t2 -81 s t2 -108 s2 t2 +90 s3 t2 -66 t3 +54 s t3 +72 s2 t3 -60 s3 t3 +40 z=;
elims= 8s, t<;
vars = 8x, y, z<;
Timing@gbapprox= GroebnerBasis@surfacePolys, vars, elims,

MonomialOrder® EliminationOrder, CoefficientDomain® InexactNumbers@500D,
Method® 8"GroebnerWalk", "EarlyEliminate"® True<D;D

8168.239, Null<

We  recover  the  exact  form  simply  by  rationalizing  the  approximate  values.  This  well  known  technique  uses
continued  fraction  approximation.  Since  it  might  fail  to  find  rationals  sufficiently  úcloseø  to  the  approximate
numbers, we will verify explicitly that we indeed obtained rational values.

Timing@implicit= Rationalize@gbapprox@@1DDD; Precision@implicitDD
80.346947, ¥<

One also should verify that the polynomial obtained is the correct one. This is straightforward (plug the paramet-
ric values for the variables into the implicit polynomial, and check that it expands to zero); we omit the details.

Using similar methods we can implicitize the four difficult patches of the iconic Newell teapot (these four cover
its spout). To the best of my knowledge this is the only way in which their implicit forms have been found using
Gröbner  bases. (The remaining 28 patches can  all readily be handled  via  Gröbner  bases using exact  computa-
tion; the timings vary from a fraction of a second to a few seconds).

One can  do  more  than  just  recover  rational numbers. Suppose, for  example, we have a  system  of polynomial
equations over the rationals, and seek exact solutions. We know from general theory that these solutions will be
algebraic  numbers. One approach  to  obtaining them  is to  find  numeric  approximations to  high  precision, and
then deduce the algebraic numbers using, say, an algorithm based on PSLQ or lattice reduction [10, 16]. Unfortu-
nately, preliminary results in this direction are not promising, except in cases of low degree algebraic numbers.
This is because typical solutions require large integers in the algebraics, and so a tactic of recovering exact from
approximate tends to be slower than a direct computation using exact methods (that possibly use approximate
arithmetic  in  the  process  of computing a  Gröbner  basis,  as  was done  above).  But  such  methods  of algebraic
recovery will be useful to us in the context of factorization, as will be seen in a later example.

4. BIVARIATE POLYNOMIAL GCD COMPUTATION

For simplicity we restrict our attention to bivariate polynomials. Generalizing to the multivariate case is straight-
forward (though making it computationally efficient might pose a serious challenge). We will use a result related
to material in [12]. We develop the relevant theory in a series of propositions.

Proposition  1. Suppose we have f1= g h and  f2 = g k with  g , h , k bivariate polynom ials  in  Q Ax, yE,  and  h , k

relatively  prime.  Suppose y0 Î Q  is  a  generic  value.  For  our  purposes  of  genericity we require  the following

conditions.

(1) g and Hy - y0L are relatively prime (that is,  Hy - y0L I g)

(2) degxHgHx, yLL = degxHgHx, y0LL, where degxHpL denotes the degree in x of p.

(3) The variety V Hh, k, y- y0L is empty (this is a generic condition from the hypothesis that gcdHh, kL = 1).
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 Then for all positive integers n, we have equality of ideals Hf1, f2, Hy - y0Ln L = Hg, Hy - y0Ln L. 

Proof. Set In = Hf1, f2, Hy - y0Ln L  and Jn = Hg, Hy - y0Ln L. Since g  divides both f1 and f2, clearly for all n  we have

In Ì Jn .  For  the  reverse  inclusion  we  proceed  by  induction.  In  the  base  case,  n = 1,  we  are  in  the  setting  of

univariate  polynomials (since  y  is  now equivalent  to  the  constant  y0). Since  h0= hHx, y0L  and  k0= kHx, y0L  are

univariate  and  relatively  prime,  the  extended  gcd  provides  cofactors  aHxL  and  bHxL  with  a h0+ b k0= 1.  Thus

aHxL f1Hx, y0L + b HxL f2Hx, y0L = gHx, y0L, proving that J1Ì I1.

Now we assume the result  for  n  and  look at  the case n + 1. Since by assumption  In = Jn , there exist  (bivariate)

polynomials  s, t  with  s f1+ t f2º g  modulo  Hy - y0Ln .  Multiplying  through  by  Hy - y0L  we  see  that

gHy - y0L Î In+1.  The  extended  gcd  above  implies  the  existence  of w Hx, yL  such  that  a h + b k +w Hy - y0L = 1

(since  by  construction  a h + b k = 1+ p  where  Hy - y0L ý p).  Thus

g = g Ha h + b k +w Hy - y0LL = a f1+ b f2+ Hw gL Hy - y0L Î In+1, showing the inclusion Jn+1Ì In+1. á

Proposition  2.  Suppose  g , h , k, y0  satisfy  the  same  hypotheses  as  in  proposition  1.  Suppose  moreover  that

degxHgL  is m  and  degHgL  is n, where degHpL  is the total  degree of  p. Also we now assume the content  of  g  with

respect  to x is  1 (that  is, g  has no factor in  y  alone). For any  positive integer r > `n2�mp, let  Gr  be a  Gröbner

basis for the ideal Ir = Hf1, f2, Hy - y0Lr L  with graded lexicographic term  order using variable order x � y. Let g
�

be the m inimal polynom ial in Gr  with respect to this term  order. Then g
�
 is an associate of g, that is, it is a gcd of

Hf1, f2L.

Note  that  this  simply means g  and  g
�
 agree  up  to  invertible  factor  which, in  our  setting, would  be  a  nonzero

rational number. The greatest common divisor is of course only unique up to such factors.

Proof.  We  adapt  an  argument  from  [20],  based  on  sizes  of  certain  zero  sets.  Suppose  there  is  a  polynomial
g2ÎGr  with  leading  power  product  strictly  smaller  than  that  of  g.  We  take  g2  to  be  of  minimal  degree.  Let

Ig2denote the ideal Hg, g2L.  Let #I  denote the cardinality of the zero set, counted by multiplicity, of a finite ideal

I .

We first  claim  we do not have g2 ý g. If that happened we would have g = g2g3 for  some g3 a nontrivial polyno-

mial in x (recall g  is assumed primitive in x). Hence #Hg3, Hy - y0Lr L > 0, and it follows that #Hg2, Hy - y0Lr L <#Ir .
But  g2ÎGr  implies  g2Î Ir  and  divisibility  of  g  by  g2  would  further  imply  Hg2, Hy - y0Lr L = Hg, Hy - y0Lr L = Ir ,

contradicting the size inequality.

As g2 I g, the gcd of g2 and g  (call it g4) must be of lower degree than g2. Replacing 9f1, f2= by 9g, g2= in proposi-

tion 1, we see that g4 Î Ir . This contradicts the minimality of leading term of g2. á

Observe that a generic linear change of coordinates (that is, a shear transformation of the form y ® y + a x) will

make degxHgL = n. This means there will be a pure term  in  x of maximal (total) degree. In  this situation we can

use  a  Gröbner  basis  for  the  ideal  Hf1, f2, Hy - y0Ln+1L,  and  we  can  learn  the  value  for  n  from  the  univariate

polynomial  gcdHf1Hx, y0L, f2Hx, y0LL.  There  is  now,  moreover,  a  simpler  proof  of  proposition  2.  If  the  leading

power  product  of g,  in  the  specified  term  order,  is  xn ,  then  the  gcd  of the  leading power  products  of g  and

Hy - y0Ln+1 is 1. Hence by the Buchberger criterion on independent leading terms, 9g, Hy - y0Ln+1= is a Gröbner

basis. As all terms in g  are of degree no larger than n, neither polynomial can be used to reduce the other. Thus

this basis is reduced.

These propositions taken together give the results we will use in the sequel. We first state the general case.

Theorem  2.  Suppose  we have  f1= g h  and  f2 = g k  with  g , h , k bivariate  polynom ials  in  Q Ax, yE,  and  h , k

relatively  prime.  Suppose  y0 Î Q  is  a  value  satisfying  the  three  generic  conditions from  the  hypotheses  of

proposition  1.  Suppose  H LL  is  n.  Then  the  m inimal  polynom ial  in  the  Gröbner  basis  for

M y

L= m x

LL p + 1
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proposition  1.  Suppose  minHdegHf1L, degHf2LL  is  n.  Then  the  m inimal  polynom ial  in  the  Gröbner  basis  for

If1, f2, Hy - y0Ln
2+1M, computed with respect to the graded lexicographic term  order using variable order x � y, is

a  gcd  of  the  pair  9f1Hx, yL, f2Hx, yL=.  Letting  m  be  the  degree  in  x  of  the  univariate  polynom ial

gcdHf1Hx, y0L, f2Hx, y0LL, we can instead use the (in general smaller) exponent ̀ n2�mp + 1.

An  important  special case, immediate  from  the  observation  following the  proof of proposition  2, is  that  after
generic  change  of coordinates we  may use  the  (in  general smaller) exponent  n + 1. Moreover  we  can  deduce
that value from the degree of the univariate greatest common divisor obtained by a generic substitution value y0.

Theorem  3. Again using the hypotheses of Theorem  2, suppose we perform  a generic linear change of coordinates.
Suppose moreover that  the degree of  (the univariate) gcdHf1Hx, y0L, f2Hx, y0LL  is n. Then the smallest  polynom ial

in the Gröbner basis for Hf1, f2, Hy - y0Ln +1L, computed with respect to the term  order of theorem  2, is a gcd of the

pair {f1, f2=.

It  should  be mentioned that  this generic change is not  disasterous for  the computations. While general experi-
ence with  Gröbner  bases suggests that  sets of sparse polynomial are more efficiently handled  than  their  dense
counterparts, we  have  two  things in  our  favor. One  is  that  we  are  in  a  bivariate  setting, hence  the  number  of
monomials for a given total degree grows only quadratically. The other is that we will not suffer from explosive
coefficient  growth  (either  from  the  basis  change  itself,  or  in  the  process  of  computing the  required  Gröbner
basis),  since  we  work  in  finite  precision.  Nevertheless,  it  remains  to  be  determined  whether  the  benefits  of
reducing the  necessary  lifting  degree  outweighs  the possible  loss  of  efficiency  from  making the  input  dense.
Empirical evidence suggests that it does, but this is by no means definitive.

5. BIVARIATE FACTORIZATION

We use the following setup throughout this section. We are given a square free bivariate polynomial f Hx, yL  over

the rationals, and a value y0 Î Q  such that Hy - y0L I f . We assume f  has no factors in y  alone. Let x0 be a root

of f Hx, y0L, that  is, f Hx0, y0L = 0. Again we assume y0 is generic, specifically f Hx, y0L  has the same degree in  x as

f Hx, yL, and it  remains square free. We will note other  generic requirements as we proceed. Let  gHx, yL  be the

irreducible factor of f Hx, yL  in KAx, yE for which gHx0, y0L = 0. By K we allow for working over the rationals Q or

their  algebraic closure Q or (a numeric approximation to) the complex numbers C. Let g0 denote gHx, y0L; here

we impose the generic condition on y0 that g  and g0 have the same degree in x. For each positive integer n  we

define In = Hf , g0
n , Hy - y0Ln L .

Theorem 4. For all n we have g Î In .

Outline of proof: First  observe that  g  and g0 agree up to  a term  with  factor  Hy - y0L. That is, g = g0+ s Hy - y0L
for  some polynomial sHx, yL. So  the result  holds for  n = 1. It  suffices to  show that  it  holds for  all powers of 2,

since these ideals are descending (that is, In É In+k  for  k > 0). Moreover we may assume g0¹ g  since otherwise

the result follows from proposition 1.

We proceed by introducing a family of "conjugate"  factors to  powers of g. We define g = Hg0- s Hy - y0LL  and

next  observe  that  g g = g0
2
- s2Hy - y0L2º g0

2  modulo  Hy - y0L2.  Thus  Hf , g0
2, Hy - y0L2L = If , g g , Hy - y0L2M.

Irreducibility of g  implies it  is relatively prime to g . We next claim  that g  is relatively prime to f  (we show this

below). So the greatest common divisor  of f  and g g  is g. By Proposition 1 we conclude g Î I2. (It  is here that

we impose a further assumption on genericity of y0, per requirement (3) of that proposition.)

To  go  from  n = 2 to  n = 4  and  thence  to  higher  powers  of  2,  observe  that  we  can  repeat  this  multiplication
tactic. The last paragraph tells us we can write g = t g0

2
+ u Hy - y0L2+ v f  for some polynomials t , u, and v. This

f L 4 L 4=

I I
6
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time we take as cofactor  g = t g0
2
- HuHy - y0L2+ v f L  and  observe that  g g º t2g0

4 modulo  9f , Hy - y0L 4=. Thus

g g Î I4. We deduce as before that g Î I4. We omit the formal induction details.

To  complete  the  proof we need  to  show that  g  and  f  are  relatively prime. Observe that  we may treat  y0 as a

variable, and when viewed that  way g0 is an  analytic function  in  y0. (It  is of course a polynomial in  x, but  if we

treat  y0 as a variable then  it  is well known that  the coefficients of this polynomial are analytic functions of y0.)

Since g0 is not constant in y0, whereas g  is constant (with respect to y0) , we see that g  is likewise not constant in

y0. Now suppose that for each y0 there is a polynomial hHx, yL  (a priori with coefficients dependent on y0) such

that h ý f  and h ý g . As f  has but finitely many factors, it is easy to show that for a dense set of values y0, h  is the

same factor. In other words, we may assume h  is also constant with respect to y0. Recalling the definition of g ,

we have h ý Hg - 2s Hy - y0LL  (where s is function of Hx, y, y0L). As this holds for  any y0, it  holds for  y0= y, and

so  h ý g.  Thus  h  must  be  constant  since  g  is  relatively prime  to  g.  This  finishes  the  proof that  g  is  relatively

prime to f . á

Corollary 1. If  degx IgM = degHgL = n then g is the polynom ial of m inimal degree in In+1.

Note that a generic linear change of coordinates guarantees the hypotheses of this corollary will be satisfied. We
also  remark that  these ideals in  effect  provide lifts of factors that  are  correct  modulo  powers of Hy - y0L. This

corollary thus gives an effective lifting bound.

Proof:  This  follows  from  the  counting  argument  of  the  preceding  section  for  greatest  common  divisiors  in
certain ideals, coupled with the proof of Theorem 4 which shows that we find g in exactly that setting. á

Corollary  2: In  the setting of  absolute factorization  over C, the m inimal  degree factor of  f  that  vanishes at  the
point Hx0, y0L is in the ideal Hf , Hx- x0Ln , Hy - y0Ln L for all n.

Proof: Simply note that we can replace g0 by the irreducible factor of gHx, y0L  vanishing at Hx0, y0L  and still have

the desired ideal inclusion of theorem 4. Clearly Hx- x0L is that factor of g0. Now apply Theorem 4. á

Indeed, a minor variation of this corollary holds for base field of Q as well, but it is of less use in that case due to
corollary 1, along with  the fact  that  working with  Hx- x0L  entails a  need  to  lift  further  than  if we work with  g0

(which, when the base field is Q, is a product of Hx- x0L  and its algebraic conjugates). That is to say, Hx- x0L  is in

general  a  proper  divisor  of  g0.  We  remark  that  the  irreducible  factor  modulo  Hy - y0L  of  g,  that  we  obtain

computationally,  might  in  principle  be  a  proper  factor  of  g0.  This  does  not  affect  the  lifting  bounds  in  our

analysis above. We also  note that  for  generic  y0 our  factor  will indeed  be g0 when  we work over  the rationals.

This follows from Hilbert÷s irreducibility theorem [29].

From  a practical standpoint  we get  too  many low degree polynomials in  our  ideals unless we go to  sufficiently
high powers of Hx- x0L  and Hy - y0L. One must then ask what degree suffices for  lifting. This is provided in the

next theorem.

Theorem  5. Suppose degHf L = n, and f Hx0, y0L = 0. Let m = n2
+ 1. In the setting of factoring over C, the m inimal

degree  factor  of  f  that  vanishes  at  the  point  Hx0, y0L  is  the  m inimal  polynom ial  in  a  Gröbner  basis  for

Hf , Hx- x0Lm, Hy - y0LmL, where the term  order is graded reverse lexicographic with x� y.

This  can  be  proved  with  a  zero  set  size  argument  along the  lines  of  the  proof of  Proposition  2.  We  omit  the
details.

We  point  out  that  there  is  a  large  body of  literature  in  the  realm  of  absolute  factorization.  For  some of  the
existing methods see  [4,  5,  6,  7,  8,  11,  13,  21,  23] and  references therein.  In  particular  [5]  provides  substantial
detail about a few of these methods. We do not claim  that our approach is as efficient as some of these others.
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existing methods see  [4,  5,  6,  7,  8,  11,  13,  21,  23] and  references therein.  In  particular  [5]  provides  substantial
detail about a few of these methods. We do not claim  that our approach is as efficient as some of these others.
Its main advantage is that it requires but little code. Moreover as it rests on fundamental technology in symbolic
computation  (i.e.  Gröbner  bases),  general  improvements  in  that  area  can  have  a  beneficial  impact  on  our
method.

6. BIVARIATE GCD AND FACTORIZATION EXAMPLES

We now show several examples that serve to illustrate the methods. We use precisions based on trial and error;
this aspect to the methods is not automated. For simplicity of exposition we also avail ourselves of a minor short
cut. To wit, we perform no change of variables. It turns out that all the examples either already are of full degree
in  the unsubstituted variable, or  still work at  degree bounds assumed by that  case. One should  realize that  this
also  confers  a  slight  speed  advantage  because  coefficients  remain  of  modest  size  (thus  slightly  reducing  the
precision  needed  in  the approximate basis computations), and  moreover  any sparseness we might  have in  the
computations will not be destroyed.

All timings are in seconds. These were run on a 3.2 GHz processor, using version 7 of Mathematica [28] running
under Linux.

GCD

We  first  show  an  example  from  [8]  that  factors  over the  rationals.  We  remark  that  their  variant  had  some
numerical noise (they were illustrating an  approximate factorization  method), whereas we work with  the exact
input.

Example 2

g = -84+41 x+23 y+99 x2 y5 -61 x2 y4 -50 x2 y3 -12 x2 y2 -18 x2 y-

26 x y7 -62 x y6 +x y5 -47 x y4 -91 x y3 -47 x y2 +66 x3 y-55 x7 y-35 x6 y2 +

97 x6 y+79 x5 y3 +56 x5 y2 +49 x5 y+57 x4 y4 -59 x4 y3 +45 x4 y2 -8 x4 y+

92 x3 y5 +77 x3 y2 +54 x3 +53 y6 +31 x2 -90 y7 -58 y8 -85 x8 -37 x7 -86 y2 +

50 x6 +83 y3 +63 x5 +94 y4 -93 x4 -y5 -5 x2 y6 -61 x y+43 x3 y4 -62 x3 y3;

h = -76-53 x+88 y+66 x2 y5 -29 x2 y4 -91 x2 y3 -53 x2 y2 -19 x2 y+68 x y6 -

72 x y5 -87 x y4 +79 x y3 +43 x y2 +80 x3 y-50 x6 y-53 x5 y2 +85 x5 y+

78 x4 y3 +17 x4 y2 +72 x4 y+30 x3 y2 +72 x3 -23 y6 -47 x2 -61 y7 +19 x7 -

42 y2 +88 x6 -34 y3 +49 x5 +31 y4 -99 x4 -37 y5 -66 x y-85 x3 y4 -86 x3 y3;

f = Expand@g hD;

We begin by forming another polynomial, e, as the product of g and a random bivariate k of similar degree.

randomPoly@deg_, vars_D := Module@8n = Length@varsD, t, poly, terms<,
poly = RandomInteger@8-10, 10<, 8deg+1<D.t^Range@0, degD;
Expand@poly �. t^j_.¦ HRandomInteger@8-5, 5<, 8Length@varsD<D.varsL^jDD

SeedRandom@1111D;
k = randomPoly@7, 8x, y<D;
e = Expand@g kD;

We  now compute  an  approximate  Gröbner  basis  for  the ideal  consisting  of  9f , e, Hy - y0Ld =  for  a  randomly

selected y0 and d =minHdegHf L, degHeLL +1. Shown below is the timing, in seconds.

First@Timing@gby = GroebnerBasis@8f, e, Hy-RandomInteger@820, 40<DL^9<,
8x, y<, MonomialOrder® DegreeReverseLexicographic,
CoefficientDomain® InexactNumbers@200DD;DD

0.168975

We check that the recovered common factor agrees with g up to multiplicative factor.
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Together@Numerator@Together@Rationalize@First@gbyDDDD�gD
-1

Fa ctoriza tion

The code below is based on the theory presented for bivariate factorization over the rationals. For efficiency we
use quadratic lifting rather  than trying to  do the full lift  in  one step. We do this by squaring polynomials in  the
preceding  basis  and  augmenting  with  the  polynomial  whose  factorization  we  seek.  In  practice  this  makes a
tremendous difference in speed. Moreover it allows us to work with lower initial precision than would otherwise
be the case, because overall precision loss is less when done in quadratic stages rather than all at once.

At each step we print  the time in  seconds it  took for  the Gröbner  basis computation of that  lift, and the preci-
sion of the result. We give up if the initial precision is insufficient  to  obtain  the approximate numeric bases for
the  full number  of lifting steps required  for  this task. In  this case  we  use  the  best  result  we  have  prior  to  this
failure, in  the hope that  it  might  have been  sufficiently lifted  to  form  a correct  factor. An  improvement  we do
not implement would be to perform trial division tests along the way.

factorBivariate@f_, x_, y_, y0_, prec_D := Catch@Module@
8rts, gb, n, fax, fac<,
fax = Select@FactorList@f �. y ® y0D, !NumberQ@ð@@1DDD &D;
fac = fax@@1, 1DD;
gb@0D = N@8fac, y-y0<, precD;
n = Ceiling@Log@2, Exponent@fac, xD+1DD;
Print@"lift ", n, " times"D;
Do@Print@8First@Timing@gb@jD =

GroebnerBasis@Flatten@8f, gb@j-1D^2<D,
8x, y<, MonomialOrder® DegreeReverseLexicographic,
CoefficientDomain® InexactNumbersD;DD, Precision@gb@jDD<D;

If@Head@gb@jDD === GroebnerBasis, Throw@Numerator@
Together@Rationalize@First@gb@j-1DDDDDDD;

, 8j, n<D;
fac = First@gb@nDD;
Clear@gbD;
Numerator@Together@Rationalize@facDDDDD

Example 3

We will continue with  the  previous example, this time factoring f . We first  find  roots in  x upon  setting y  to  a

fixed  value  (we  use  5 in  this  case). We will work with  the  first  such  root  to  develop  a  full bivariate factor. We
begin with 500 digits of precision.

Timing@factor= factorBivariate@f, x, y, 5, 500DD
lift 3 times

80.016997, 469.763<
80.052992, 421.616<
80.212968, 331.525<
80.288956, -76-53 x-47 x2 +72 x3 -99 x4 +49 x5 +88 x6 +19 x7 +88 y-
66 x y-19 x2 y+80 x3 y+72 x4 y+85 x5 y-50 x6 y-42 y2 +43 x y2 -53 x2 y2 +

30 x3 y2 +17 x4 y2 -53 x5 y2 -34 y3 +79 x y3 -91 x2 y3 -86 x3 y3 +78 x4 y3 +31 y4 -

87 x y4 -29 x2 y4 -85 x3 y4 -37 y5 -72 x y5 +66 x2 y5 -23 y6 +68 x y6 -61 y7<

Observe that we indeed recovered a correct factor, specifically hHx, yL.
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Together@factor� hD
1

In  the code above we use yet  another  short  cut, which  is to  assume the univariate factor  lifts to  a multivariate
factor  (that  is,  no  recombination  is  needed).  That  this  is  reasonable  is  due  to  Hilbert’s  irreducibility theorem,
which shows that most integer substitutions for one variable preserve irreducibility over the rationals [29]. Were
our  factor  not  to  lift  in  such  a  way,  the  algorithm would  still  work except  we  might  need  to  lift  to  a higher
degree; this is the same situation  as that  described  in  the remark following Corollary 2 in  the previous section.
An alternative would be to lift  to  half the total degree of the input, and be willing to try all univariate factors of
degree less or equal to that. The point of either short cut is to reduce the lifting degree, as the higher ones clearly
make  for  more  strenuous  Gröbner  basis  computations  both  in  terms of  polynomial degree  and  likelihood  of
encountering inadequate precision (the raising of which would incur a time penalty on all steps).

The next example is from [11].

Example 4

p1 = 48 x y2 +12 x2 y2 +11 x2 +6 x3 -11 x7 y2 -63 x3 y2 +54 x2 y3 -23 x10 y3 +

58 x4 y4 +18 x9 y2 -42 x5 y5 -80 x11 y2 +10 y10 x4 +14 x4 y+47 y15 +18 x12 y2 +

36 y13 -23 x3 y12 -68 x8 y3 -41 x4 y7 +72 x3 y11 +22 x y13 -76 x2 y13 -54 y10 -

18 y9 +79 x7 y3 -49 x7 y4 +9 x5 -75 x6 y-46 x3 y5 -17 x4 y5 +3 x2 y7 +21 y5;

p2 = -40 x2 y2 +55 x y2 +36 x3 y-82 x6 y2 -73 x9 y-27 x5 y5 +18 x7 y2 +31 x2 y3 +54 y7 y3 -

16 x3 y5 -96 y4 +13 y3 +40 x2 -99 y2 -20 y6 +44 x9 -65 y10 +39 x6 +66 x y5 -34 x3 y3 +

99 x6 y4 -9 x3 y4 -83 x3 y7 +76 x4 y3 +28 x8 -89 y8 +71 x y8 +38 x y9 -40 x2 y6 -12 x2 y5;

prod = Expand@p1 p2D;
Timing@factor = factorBivariate@prod, x, y, 2, 600DD

lift 4 times

80.034994, 539.508<
80.103985, 470.659<
80.537917, 359.285<
82.50162, 128.572<

83.19152, -40 x2 -39 x6 -28 x8 -44 x9 -36 x3 y+73 x9 y+99 y2 -55 x y2 +40 x2 y2 +82 x6 y2 -
18 x7 y2 -13 y3 -31 x2 y3 +34 x3 y3 -76 x4 y3 +96 y4 +9 x3 y4 -99 x6 y4 -66 x y5 +

12 x2 y5 +16 x3 y5 +27 x5 y5 +20 y6 +40 x2 y6 +83 x3 y7 +89 y8 -71 x y8 -38 x y9 +11 y10<

We see that this recovers (up to sign) the factor p2.

Together@factor�p2D
-1

Example 5

Our  final example  is  a  modification  of one  appearing in  [7]. The  goal is  to  find  the  absolute  factorization  of a
certain bivariate polynomial. Our modification subtracts x5 y + x4

+ x3 from  the polynomial in the reference, so

that it will factor nontrivially over some extension field (which is to be determined in the process).

poly = -3-16 x-20 x2 -11 x3 -2 x4 -4 x5 -8 x7 -3 x9 +7 y-16 x2 y-

16 x3 y+5 x4 y-4 x5 y+8 x6 y-4 x7 y+3 y2 +4 x y2 -x2 y2 -11 x3 y2 +

3 x4 y2 -x5 y2 +8 y3 +8 x y3 +5 x2 y3 -5 x3 y3 +6 x4 y3 +8 x6 y3 +6 y4 +

4 x y4 +4 x2 y4 -10 x3 y4 +3 x4 y4 +3 y5 +x2 y5 +3 y6 -5 x3 y6 +3 y7 +y9;

One can check that this polynomial is irreducible over the rationals. To proceed with the absolute factorization,
we first substitute a value for one variable (we use x), and solve numerically to high precision for the roots of the
resulting univariate. We show a low precision approximation to the first root in the list.
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x0 = 11�7;
roots = y �. NSolve@poly �. x ® x0, WorkingPrecision® 400D;
root1= First@rootsD;
N@root1D
-1.31386-1.39338 ä

We now attempt to reconstruct the factor containing the first of our roots. We will just do a direct lift to degree
10, that is, modulo 9Hx - x0L10, Hy - root1L10=. This suffices because any nontrivial factor must have a degree that

divides 9 (since it gives the full polynomial when multiplied by its equal-degree conjugates). The only candidates
are 1 and 3, so by prior theory a lift to degree 32

+ 1= 10 suffices.

Timing@fac = First@ GroebnerBasis@8poly,Hy-root1L^10, Hx-x0L^10<, 8y, x<,
MonomialOrder-> DegreeReverseLexicographic,

CoefficientDomain-> InexactNumbersDD;D
80.542917, Null<

Here is a low precision version of our candidate factor.

Chop@N@facDD
H1.68233+2.32308 äL+H0.682328+2.32308 äL x-
H2.23279-0.792552 äL x3 +1. y+H0.341164+1.16154 äL x y+1. y3

Before we proceed to deduce the exact form  of this result, we should check that it  is a viable candidate factor.
Specifically, it must divide our polynomial. We may verify this using generalized division. In Mathematica this is
accomplished with PolynomialReduce.

PolynomialReduce@poly, fac, 8y, x<,
CoefficientDomain-> InexactNumbers,

MonomialOrder-> DegreeReverseLexicographicD@@2DD
0

This is promising. We now take the numeric coefficients of our  factor  and  attempt  to  recast  them  as algebraic
numbers. For  this we use RootApproximant along with a small amount of code to convert representations to
all  use  a  common  algebraic  number  (RootApproximant  uses  functionality  based  on  [10,  16]).  We  show the
timing in seconds.

Timing@
dtl = Chop@GroebnerBasis‘DistributedTermsList@fac, 8y, x<DD;
newdtl= MapAt@RootApproximant, dtl, Thread@81, Range@Length@dtl@@1DDDD, 2<DD;
rtlist= Cases@newdtl, Root@__D, InfinityD;
firstrt= First@rtlistD;
newroots= Join@8firstrt<, ToNumberField@Rest@rtlistD, firstrtDD;
newroots= newroots�. AlgebraicNumber@aa_, bb_D :>

AlgebraicNumberPolynomial@AlgebraicNumber@aa, bbD, aaD;
newdtl= newdtl�. Thread@rtlist® newrootsD;
algfactor= GroebnerBasis‘FromDistributedTermsList@newdtlDD
90.388941, 1+y+y3 +2 Root@1+ð1+ð13 &, 3D+2 x Root@1+ð1+ð13 &, 3D+
x y Root@1+ð1+ð13 &, 3D+x3 I-1+Root@1+ð1+ð13 &, 3D2M=

We can check the result  as follows. Irreducibility of poly over  the rationals implies that all algebraic factors are

conjugates of one another. We can explicitly form  the product of these conjugates, then check that their  prod-
uct recovers the polynomial up to an invertible (that is, rational) factor. We show this below.
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algprod= Product@algfactor�. Root@a_, 3, b___D ¦ Root@a, j, bD, 8j, 3<D
I1+y+y3 +2 Root@1+ð1+ð13 &, 1D+2 x Root@1+ð1+ð13 &, 1D+

x y Root@1+ð1+ð13 &, 1D+x3 I-1+Root@1+ð1+ð13 &, 1D2MM
I1+y+y3 +2 Root@1+ð1+ð13 &, 2D+2 x Root@1+ð1+ð13 &, 2D+
x y Root@1+ð1+ð13 &, 2D+x3 I-1+Root@1+ð1+ð13 &, 2D2MM

I1+y+y3 +2 Root@1+ð1+ð13 &, 3D+2 x Root@1+ð1+ð13 &, 3D+
x y Root@1+ð1+ð13 &, 3D+x3 I-1+Root@1+ð1+ð13 &, 3D2MM

Next we collect all terms in the polynomial, operating on the coefficients to obtain reduced forms. These will be
algebraics of minimal degree; what  we hope to  get  for  all coefficients are  rationals. We do, because the  result
cancels perfectly with poly.

Together@Expand@RootReduce@Collect@Expand@algprodD, 8x, y<DDD�polyD
1

We remark that there are other good ways to recover exact algebraic coefficients, if one first finds the set of all
approximate factors. One such is presented in [6], where an analysis of needed precision is also provided.

We also observe that the method shown above, while perhaps not as efficient as those of [4, 21], is nonetheless
faster  than Mathematica’s current built  in  capabilities. Moreover these latter  require that one know in advance
the extension field. We show this explicitly below (the method will only split  off one full factor, but that suffices
to recover its conjugates).

TimingAfax = FactorListApoly, Extension® RootA1+ð1+ð13 &, 3EE;E
80.678896, Null<

We also  note that  while this might  not  provide a multivariate absolute factorization  method  that  scales well as
the number of variables grows, it can at least quickly determine irreducibility (with high probability). This would
be effected simply by deciding whether there are numeric approximate factors after substitution for all but two
variables. Lifting of all variables and exact  recovery of nontrivial factors, if any, would  not  be needed in  such a
scenario; we only need lift  in  one variable, and that only approximately, in  order  to  determine whether  a given
input is irreducible. A practical, nontrivial example from constraint geometry may be found in [19]. The polyno-
mial in  question  is  trivariate, of total degree  16 and  with  all exponents even. It  is  dense  subject  to those  con-
straints, and has coefficients ranging from two to ten digits in size.

7. FAILURE MODES AND VERIFICATION OF RESULTS

There are three failure modes for our use of finite precision. One is to run out of precision in the Gröbner basis
phase, and  abort  computation. Another  is to  compute a Gröbner  basis that  has the wrong structure, and  thus
either fail to find an approximately correct factor or else find a putative factor that is entirely wrong. A last type
of failure is to  find a factor  that  is approximately correct, but  does not have sufficient precision from  which to
recover an exact form thereof.

The first form of failure is typically handled by increasing the initial precision a few times, until either we obtain
a result  or  else reach some upper bound. In this case we have a "do not know the result"  situation, which is at
least preferable to an incorrect result.

Now suppose we have obtained a putative approximate factor  or  gcd. A first question is to decide whether it  is
in fact a viable approximation to an exact one. This determination can typically be made by polynomial division,
checking that  coefficients in  any remainder  are  suitably small. If we have a  reasonable  approximation, we can
often improve it by local numerical optimization methods. One uses the coefficients of the approximated factor
as a  starting point  in  order  to  improve  the  precision. The  objective  function  could  be, for  example, a sum  of
squares of coefficients in the remainder on division.
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If we have an approximate factor or gcd that, on division, is clearly seen to be not viable, this also can be treated
as an  inconclusive  case. We now remark on  how this case can  arise. In  the process of computing an  approxi-
mate Gröbner  basis, we might  err  in  a cancellation  of terms, such  that  we decide a leading coefficient is zero.
This is the only way to  get a result  that  is structurally incorrect, that  is, has the wrong polynomial skeleton. We
do not have a theoretical argument to quantify how rare this might be. We can, however, say a bit about practi-
cal experience. In over a decade of operation, the numeric Gröbner basis capabilities of Mathematica’s NSolve
have  never  shown  this  type  of  failure  in  problems  that  arise  in-house,  from  users  of  the  software,  or  from
testing done on benchmark problems from the literature.

As with any numeric method one can likely create a problem  for  which it  will fail if run at too low precision. It
seems that such problems do not arise with any frequency in practice. We can offer  a tentative explanation for
this. Recall theorem 1: For a give problem and a given output precision, there exists an input precision such that
computing a Gröbner basis at that initial precision, using significance arithmetic, will give a result that is correct
to  the  specified  output  precision.  While  it  is  impractically  high  for  realistic  problems  it  seems  that a  more
modest precision typically suffices. And when it does not suffice we almost always lose too much precision and
abort.  In  order  to  obtain  a  skeletally incorrect  result  we  would  have  to  have  a  catastrophic  cancellation. This
means that what should be a nonzero term  (e.g. in  an exact or  at least sufficiently high precision computation)
appeared to be zero. In order for cancellation at all significant places to occur we effectively require polynomi-
als with  coefficients that  are commensurately far  apart  in  scale. When  the precision  is in, say, the hundreds of
digits, we simply do not see such polynomials in practical settings. As precision in the computation degrades it is
of course more likely that  we might  encounter  such  a scale difference. But  there is only a narrow window for
this error  to  manifest  as an  incorrect  cancellation; at  sufficiently low precision  (a few digits, say) the algorithm
will go into the first mentioned failure mode, and abort. The conclusion is that we are much more likely to abort
than to give an incorrect result.

We also observe that, should such a problematic case arise, the most likely manifestation in our setting would be
a nontrivial result  that is demonstrably wrong. This is because a leading term  catastrophic cancellation is more
likely to yield polynomials in the result that are too small  in term order rather than too large. Hence we obtain
a nontrivial putative result that fails to verify, rather than a claim that there is no nontrivial result.

These various observations support  the view that  an unverifiable wrong result  (say, a proper  divisor  that  is not
greatest, or a factorization that is further factorizable) will be quite rare.

8. SUMMARY AND FURTHER DIRECTIONS

We  have  indicated  several  ways  in  which  approximate Gröbner  bases  might  be  used  to  advantage  to  obtain
exact, verifiable results to  problems in  computational algebra. Applications include finding polynomial greatest
common divisors and multivariate polynomial factorization. For this latter we indicate how to proceed both for
ordinary  factorization  over  the  rationals,  and  for  absolute  factorization  over  the  algebraic  closure  of  the
rationals.

While our methods seem to be slower than those of e.g. [4, 6] and subsequent refinements thereof, they are still
useful in practice. An added advantage is that they are straightforward to implement. Indeed, the Mathematica
code used for the examples was, in total, but a few dozen a few lines. The quadratic lifting time seems to approxi-
mately double with  each step. This is in  accord  with  what one might  expect  using standard lift  methods. There
are at least two caveats. One is that we have no proof that the lifting complexity will behave this way in general.
Another  is  that  use  of  finite  precision  and  significance  arithmetic  means  our  approach  can  fail  and  abort
computation should we lose too much precision.

There  are  many open  areas  that  seem  worthy of  further  investigation.  We  indicate  several and  also  mention
some preliminary findings.
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è Automate selection of precision or at least develop some useful heuristic to assess in advance an amount 
that will likely succeed for the computation at hand. This is currently a wide open topic.

è Modify these methods so that they might be used to tackle problems of an approximate nature. Inputs 
might only be known to a few digits, and we seek solutions to únearbyø problems that have nontrivial 
results (e.g. common divisors larger than 1, or more than one factor). Methods such as those shown in 
[18] can find approximate gcds in this setting. But they tend to be slower than the methods of this paper 
and they rely on heuristic choices of tolerance. A small amount of testing to date has indicated that some 
of the approximate Gröbner basis ideas from [18] might carry over to the setting of the present work. 
This is a topic that needs further experimentation.

è Apply these methods to the setting of finite fields, in such a way that they remain reasonably fast even 
when the characteristic is small. The problem, in this case, is that one might need to work in an algebraic 
extension. This can be costly for Gröbner basis computations. When such an extension is needed it is by 
no means clear that this approach can be made practical (it involves another variable and another 
polynomial, and this will typically make the computation of the needed Gröbner bases slower). In cases 
where no extension is required (that is to say, hypotheses of theorems can be satisfied with appropriate 
substitutions from the finite field itself), one would expect behavior better than that indicated in this 
paper. The reason is that the coefficient arithmetic is now bounded by the modulus size and moreover 
there is no possibility of loss of precision.

è In the reverse direction, it might be possible to work over a large finite field and then lift to a result over 
the rationals. This would allow one to avoid approximate arithmetic although there is then the issue of 
avoiding primes that are unlucky for the given input.

è During lifting steps many of the Gröbner basis inputs seem to be close, in some sense, to bases with 
respect to a lexicographic term order. It would be interesting to see if conversion methods such as the 
Gröbner walk are effective for the computation that takes us to the desired term order. Preliminary tests 
show that the walk can be faster than what we did in our examples, but that it is subject to more extreme 
loss of precision. This, presumably, is from the conversion steps that occur at each cone traversal during 
the walk. It is an open problem to determine if this loss of precision can be avoided or at least curtailed.

è One possibility for alleviating precision loss in intermediate lift steps is to recompute, from the 
approximate bases, their exact counterparts. When precision is sufficient for this task, we might then 
numericize anew at the original precision. Our preliminary finding is that this tactic does help, but only 
to a small extent when using the Gröbner walk. All the same, this provides some improvement in that it 
allows for a lower initial precision, regardless of what method is used to compute the Gröbner bases for 
the lifting steps. Also one could try heuristics that gauge the precision loss at a given lifting step, and 
ratchet to accordingly higher precision in preparing for the next step. We must also observe that this 
tactic is far more likely to succeed when working over rationals than when doing absolute factorization. 
The reason is as follows. Given the same initial input, one will typically require far less precision to 
recover rationals for the bases produced in lift steps, than that which would be needed for algebraic 
number recovery.

è As a referee observed, using a shear transformation to obtain a monic polynomial will destroy sparsity of 
input. We can avoid such transformations, in some of the algorithms presented above, at the cost of 
requiring higher degrees for lifting. It would be useful to understand the tradeoffs in efficiency between 
retaining sparsity vs. having lower lift bounds. It would be particularly useful to find ways to avoid the 
linear coordinate change and still have optimal lifting degree bounds.

è We discussed various modes of failure. It would be useful, though probably quite difficult, to have a 
better theoretical understanding of the interplay between initial precision and erroneous results.

è The examples of this paper, together with their timings, provide a proof of concept that the methods 
presented are viable. It would of course be nice to further improve on speed (above and beyond ideas 
noted in the preceding items). A recent line of inquiry, in regard to the absolute irreducibility testing 
discussed in the previous section, is to understand situations in which we might have an early 
termination during the quadratic lift process. This is under current investigation.
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