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1. INTRODUCTION

Since their introduction more than 40 years agagaesof Grobner bases has become pervasive in tim r&f
computational algebra. As is well known, most commapplications are in algebraic manipulation ofypot
mial ideals. Less known is that they also can ks the setting of classical polynomial algelsecifically in
finding multivariate polynomial greatest commonisiars and factorizations. Some approaches are pred
in [1, 2, 3, 9] but they are not regarded as beiogpetitive with more commonly used methods. Thiempry
aim of this paper is to offer alternative methodshe classical polynomial algebra algorithms, ding them ot
simple Grébner basis computations. The methods Weegcribe and demonstrate seem to be more effig
in practice, than those that have appeared in past.

A relatively more recent thread in the literature Grobner bases involves computation using apprater
coefficients. This gives rise to an important issueeognition of cancellation, without which thgalithm migh!



either give poor results or even fail to termina@birayanagi [24] gave the first indication of htavhandle this
Since that time several other approaches have apg¢#5, 18, 22, 27]. In [18] there is discussedmnaplementa
tion, parts of which have been Mathematicasince 1996 [17]. In contrast to [18], the presanticle uses
approximation at high precision, as a means farla¢covering exact results.

One point of the present work is to illustrate kmomethods for recovering rational or algebraic tessfrom
good approximations for Grobner bases. For thigelgon results in section 2 that allow us to caoml@ suct
approximations can be attained. We give simple gx{amin section 3. Our main application will bepnlyno-
mial algebra, specifically, finding greatest commadnisors and factorization. Sections 4 and 5 pdevthe
relevant theory. They cover how to recover commaisadrs or factors from certain Grobner bases thse
substitution homomorphisms. For factorization, veanark that there is no step involving combination
factor images in this approach.

Typical experience is that classical methods fompoting common divisors or factorizations are mdaster
than those methods that rely on Grobner bases, fbisever, is predicated on usage of exact Gro taeis
computations. We will propose methods involving epdimate basis computation that seem to be
competitive, due to avoidance of both coefficiemel and explicit algebraic numbers. We illustranethis
setting with several examples in section 6. Speadifi, we use approximate bases to obtain exaatltsediVe
then discuss failure modes. Last we summarize adidate a number of useful directions for furtherriu
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2. COMPUTATION OF APPROXIMATE GROBNER BASES

We briefly summarize the model of computation we ursthis paper. In contrast to empirical polynols i@s
encountered e.g. in [8, 18]), we assume inputskamvn exactly. We also assume that we can do cwsiti
arithmetic at arbitrary finite precision (in praagi this might involve several hundred digits).

The model used for coefficients, and operationsebe, is significance arithmetic, as describedlit, P5]. In
brief, numbers have a value and also an approximadif their maximal error. Standard arithmetic sud
addition and multiplication of such numbers propagathe error via first order approximations. Awlc
precision this tends not to be reliable. The (unknpcontributions to error from higher order terifesg. the
product of the errors, if doing multiplication) cammply overwhelm the error estimate. At high psam,
however, this model tends to be quite robust andrarctice it is reliable. See [25] for further digaln this
paper we will typically work at precisions of dozeto hundreds of digits. This suffices to make tbhenputa
tions reliable, while not being so large as to detrfrom the efficiency offered by using finite pigon arith
metic.

Recall that in computing Grobner bases, it is ofggaount importance in polynomial reduction to reciag
when sums of like terms cancel, as this is how &in new leading coefficients. In our model otlam etic we
regard a sum as zero when there is full cancetiadiball digits, that is, the result is less thae approximate
error interval.

When using significance arithmetic, over the couo$enany operations there will be a (typically guad)
erosion of precision. In practical usage one singiyrts with a finite approximation of exact inptinat is
sufficiently high as to allow the algorithm to ria completion without encountering loss of too mumiect



sion. What this means will be explained in moreaddtelow. First we state a result that has appadwefore ir
various forms. We tailor it to the needs of outlam etic model.

Theorem 1. We are given a set F of polynomialsomeset of indeterminates over the rationals, anterder,
and an outcome precision s. Also we assume we wsgedfic algorithm to compute its reduced, minin
Grobner basis (Buchberger’s algorithm, say), andoak that basis G. Then there exists a finite mien r suct
that if we use that algorithm to compute a Grobhesis for F, begin with r or more digits, and usgeite
precision significance arithmetic on coefficientrss, products, and reciprocals, then the result agtee with C
to s digits in all coefficients.

Proof. In running the algorithm to obtaf from F, there will occur a maximal integer coefficienzesiM.
Moreover there occurs a certain numbeof arithmetic operations on coefficients, and aximal cancellatiol
K of digits in operations that do not yield zeroi§tbancellation is what causes loss of precisioemwrepeatin
the process in finite precision; clealy< M). Given these parameters, and a desired precssion the out
come, we assert the following. One can find a spadcision, and repeat the algorithm using sigaifice
arithmetic, with all steps having the following prerties.

() The precision of intermediate values is alwkyger thars.

(i) Cancellations of more thaK digits will correctly be regarded as resultingziero. Smaller cancellations v
retain significant digits and hence not be regardedero.

To see that this assertion is correct, we firstesbe that multiplications lose at molst + 1 digits of precision
and additions at mo#t + 1 (1 from roundoff and, by assumption, from cancellation). See [25] fetadls on
how this loss of precision is modelled to first erdn significance arithmetic. The salient pointhsit we have
means to recognize when a full cancellation hasrtgdace, that is, when two terms sum to zeroafigens
precisely when there is cancellation of all sigrfit digits. We need only guarantee that the Imtiacision be
sufficiently high in order to deduce such cancdallat(that is, recognize zero) correctly. This imriumplies tha
the finite precision algorithm, if given sufficieptrecision of input, will correctly emulate the exaase. Fron
the preceding remarks we see that a starting poecif A(M + 1) + s digits suffices.O

We remark that the sufficient initial precision thife above theorem is generally far larger than ssmey (anc
also cannot be computed a priori, since it deperds;formation specific to running the code in exadth-
metic). While the proposition sheds no light on whal be a realistic precision in which to begincamputa
tion, we will show examples that might be regardsdypical of actual practice.

3. EXACT RESULTS FROM APPROXIMATE GROBNER BASES

Given a set of polynomials with rational coefficisnwe might find an approximate Grébner basis ighl
precision and then attempt to recover the exadstiaenm the approximation. The point of such an embr i
that it can be faster to do this, and validaterdsilt, than to compute the exact basis by exathots.

At this point it is helpful to see an actual examwhere use of approximate numbers gives a suliatanprove
ment over exact computation. This example is mer@ibin [26]. It is an implicitization of a polynoaiiparame
ric surface. To find the implicit form we computeGébner basis using a term ordering that eliminates
parameters [9]. The timing shown is in secondsesact computation of the implicit form took sevehalurs.
Here we do the computation at 500 digits; this suilffice to recover the exact form.



Examplel

sur f acePol ys =
{-17-275+365?-195%-4551t2+81s?t2-545%t2+30st3-5452t3+36s%t3+10x,
1985-3695%t +246s%t -198t2+3695%t2-246s%t2+100y, -57-81s2+42s%+
99t%-81st?-1085?t?+90s%t2-661t3+545t3+7252t3-60s%t3%+402};
elims={s, t};
vars = {X, Yy, z};
Ti m ng[gbappr ox = G oebner Basi s[sur f acePol ys, vars, eli s,
Monom al Order - El i mi nati onOrder, CoefficientDomai ps | nexact Nunber s[500],
Met hod - {" G- oebner VIl k", "Earl| yE i m nat e'> True}]; ]
(168.239, Null}

We recover the exact form simply by rationalizifgetapproximate values. This well known techniques
continued fraction approximation. Since it mighil fa find rationals sufficiently‘close’ to the approximat
numbers, we will verify explicitly that we indeedtained rational values.

Timng[inplicit =Rationalize[gbapprox[[1]1]1]; Precision[inplicit]]

{0. 346947, o}

One also should verify that the polynomial obtaiigethe correct one. This is straightforward (plbg parame
ric values for the variables into the implicit ppymial, and check that it expands to zero); we dhgtdetails.

Using similar methods we can implicitize the fouifficlilt patches of the iconic Newell teapot (thdeer cover
its spout). To the best of my knowledge this is timdy way in which their implicit forms have beemuind using
Grobner bases. (The remaining 28 patches canadilygebe handled via Grébner bases using exact edes|
tion; the timings vary from a fraction of a secatoda few seconds).

One can do more than just recover rational numb®rppose, for example, we have a system of polyat
equations over the rationals, and seek exact swolstiWe know from general theory that these sohstiwill be
algebraic numbers. One approach to obtaining theto find numeric approximations to high precisiand
then deduce the algebraic numbers using, sayganithim based on PSLQ or lattice reduction [10, Wslfortu-
nately, preliminary results in this direction aretrpromising, except in cases of low degree algebhrambers
This is because typical solutions require largegets in the algebraics, and so a tactic of redogexact fromr
approximate tends to be slower than a direct comtmrt using exact methods (that possibly use apprate
arithmetic in the process of computing a Grobnesidiaas was done above). But such methods of age
recovery will be useful to us in the context oftfazation, as will be seen in a later example.

4. BIVARIATE POLYNOMIAL GCD COMPUTATION

For simplicity we restrict our attention to bivaigapolynomials. Generalizing to the multivariateseds straigh
forward (though making it computationally efficiemtight pose a serious challenge). We will use alteslatec
to material in [12]. We develop the relevant themrg series of propositions.

Proposition 1. Suppose we hafte= g h and f, = g k with g, h, k bivariate polynomials inQ[x, y], andh, k
relatively prime. Supposg € Q is a generic value. For our purposes of genericity require the followiny
conditions.

(1) g and(y — yo) arerelatively prime (that is(y — yo) Q)
(2)deg(g(x, y)) =deg(g(x, Yo)), wheredeg(p) denotes the degree kof p.
(3) The variety/ (h, k, y— yp) is empty (this is a generic condition from the diyyesis thagcd(h, k) = 1).



Then for all positive integers, we have equality of ideal;, f2, (y — yo)") = (@, (Y — Yo)™).

Proof. Setl,, = (f1, f, (y — yo)™) and J, = (g, (Y — Yo)"). Sinceg divides bothf; andf,, clearly for alln we have
In c 4. For the reverse inclusion we proceed by inductionthe base cas@,=1, we are in the setting ¢
univariate polynomials (sincg is now equivalent to the constap). Sincehg=h(x, yo) andko=Kk(x, yo) are
univariate and relatively prime, the extended gedvimles cofactora(x) and b(x) with a hg+ b ko=1. Thus
aM) fi(x, yo) + b (X) fa(X, Yo) =g(X, Yo), proving that} c I;.

Now we assume the result farand look at the case+ 1. Since by assumptioh, = J,, there exist (bivariate
polynomials s,t with sfi+tf,=g modulo (y - yo)". Multiplying through by (y -y, we see that
gy — Yo) € Ins1. The extended gcd above implies the existence @f y) such thah+bk+w (y—yg) =1
(since by construction ah+bk=1+p where (Y = Yo) 1p). Thus
g=g@h+bk+w((y—-yg)=afi+bfo+WwQg)(y - Yo € ln:1, showing the inclusiod, ;1 c 1. O

Proposition 2. Suppose, h, k, y satisfy the same hypotheses as in propositionupp&e moreover the
deg(g) ism anddeg(g) is n, wherededp) is the total degree of p. Also we now assum edhtent ofg with
respect tox is 1 (that is,g has no factor iny alone). For any positive integer> [n?/m1, let G, be a Grébne
basis for the ideal, = (f1, f2, (y — yo)") with graded lexicographic term order using varialoielerx > y. Letg
be the minimal polynomial i@, with respect to this term order. Thgns an associate af, that is, it is a gcd «
(fa, f2).

Note that this simply mearg andg agree up to invertible factor which, in our segtinvould be a nonzer
rational number. The greatest common divisor isafrse only unique up to such factors.

Proof. We adapt an argument from [20], based oassf certain zero sets. Suppose there is a poliaic
0. € G; with leading power product strictly smaller thamat ofg. We takeg, to be of minimal degree. Le¢
Igdenote the idedl, gp). Let#l denote the cardinality of the zero set, countednltiplicity, of a finite idea
l.

We first claim we do not hawg, 1 g. If that happened we would hage= g, g3 for somegz a nontrivial polyne
mial in x (recallg is assumed primitive ix). Hence#(gs, (Y — Yo)") >0, and it follows that# (g, (y — yo)") < #I;.
But g, G, implies g, € I, and divisibility of g by g, would further imply(g, (y - yo)") =g, (¥ = Yo)") = I,
contradicting the size inequality.

As g r g, the ged ofy, andg (call it gs) must be of lower degree thap Replacingf;, .} by{g, &} in proposi
tion 1, we see thay, € |,. This contradicts the minimality of leading terrhge. O

Observe that a generic linear change of coordinglbed is, a shear transformation of the foyms y + a x) will
makedeg(g) =n. This means there will be a pure termxiof maximal (total) degree. In this situation wen
use a Grobner basis for the idefl o, (y — yo)"*Y), and we can learn the value forfrom the univariate
polynomialgcd(fi(x, Yo), f2(X, Yo)). There is now, moreover, a simpler proof of propos 2. If the leading
power product ofy, in the specified term order, i§, then the gcd of the leading power productgaind
(y - yo"*!is 1. Hence by the Buchberger criterion on indefsett leading termdg, (y - yo)"*} is a Grébne
basis. As allterms ig are of degree no larger thanneither polynomial can be used to reduce theroffteus
this basis is reduced.

These propositions taken together give the reswdtsiill use in the sequel. We first state the gahease.

Theorem 2. Suppose we halye- g h and f, = g k with g, h, k bivariate polynomials inQ[x, yJ, andh, k
relatively prime. Supposg, € Q is a value satisfying the three generic conditidrsm the hypotheses



proposition 1. Supposmin(dedf;), dedf,)) is n. Then the minimal polynomial in the Grébner basis
(fl, fa, (y — yo)”z”), computed with respect the graded lexicographic term order using variabtderx > vy, is
a ged of the pair{fi(x, y), fax, y)}. Letting m be the degree inx of the univariate polynomial
ged(fi(x, Yo), fa(X, Yo)), we can instead use the (in general smaller) expoivé/m7 + 1.

An important special case, inmediate from the obetion following the proof of proposition 2, is thafter
generic change of coordinates we may use the (rergg smaller) exponent + 1. Moreover we can dedut
that value from the degree of the univariate gretatemmon divisor obtained by a generic substitutialueyy.

Theorem 3. Again using the hypotheses of Theoreuappose we perform a generic linear change ofdioates
Suppose moreover that the degree of (the univargatd(f1(X, Yo), f2(X, Yo)) is n. Then the smallest polynom

in the Grobner basis faify, f2, (y — yo)" *+1) com puted with respect to the term order of theof is a ged of tt
pair {fy, fa}.

It should be mentioned that this generic changeoisdisasterous for the computations. While genexpkeri
ence with Grébner bases suggests that sets ofespafgnomial are more efficiently handled than thoense
counterparts, we have two things in our favor. @Gnthat we are in a bivariate setting, hence thember of
monomials for a given total degree grows only q@didally. The other is that we will not suffer froexplosive
coefficient growth (either from the basis changeelit or in the process of computing the requirediier
basis), since we work in finite precision. Neveldss, it remains to be determined whether the btsnef
reducing the necessary liting degree outweighsphssible loss of efficiency from making the inplgnse
Empirical evidence suggests that it does, butisiyy no means definitive.

5. BIVARIATE FACTORIZATION

We use the following setup throughout this sectie.are given a square free bivariate polynorfi@al y) over
the rationals, and a valug € Q such thaty — yg) « f. We assumé has no factors ity alone. Letxg be a roo
of f(X, yo), that is,f(Xq, Yo) = 0. Again we assum#y is generic, specificallj (x, yo) has the same degreexras
f(x, y), and it remains square free. We will note othemegi& requirements as we proceed. gét, y) be the
irreducible factor off (x, y) in [K[x, y] for which g(xo, Yo) = 0. By K we allow for working over the rationa® or
their algebraic closur® or (a numeric approximation to) the complex nuns@rLet g, denoteg(x, yo); here
we impose the generic condition ggthatg andgy have the same degreexnFor each positive integer we
definel, =(f, go", (y - yo").

Theorem 4. For alh we have € |,,.

Outline of proof: First observe thgtandgy agree up to a term with factgy — yo). That is,g =go+S(Y — Yo)
for some polynomias(x, y). So the result holds far = 1. It suffices to show that it holds for all powesE2,
since these ideals are descending (thdtis, I,k for k > 0). Moreover we may assungg+ g since otherwis
the result follows from proposition 1.

We proceed by introducing a family of "conjugatettors to powers af. We defineg = (go— s(y — Yo)) and
next observe thay g =go>— sy - Yo)* =g’ modulo (y - yo>. Thus (f, g%, (y - yod =(f. 9 3. (¥ - y0)?).
Irreducibility of g implies it is relatively prime t@. We next claim thag is relatively prime tof (we show thi
below). So the greatest common divisorfadndg g is g. By Proposition 1 we concludge I,. (It is here tha
we impose a further assumption on genericitygper requirement (3) of that proposition.)

To go fromn =2to n=4 and thence to higher powers of 2, observe thatare repeat this multiplicatio
tactic. The last paragraph tells us we can wgitet g + u (y — yo)2 + Vv f for some polynomials, u, andv. This



time we take as cofact@y =t g? - (u(y - yo)*>+Vv f) and observe thag g =t?go* modulo{f, (y - yo)*}. Thus

g g € 4. We deduce as before that 14. We omit the formalinduction details.

To complete the proof we need to show thaandf are relatively prime. Observe that we may trgats a
variable, and when viewed that wgyis an analytic function iry,. (It is of course a polynomial ir, but if we
treatyp as a variable then it is well known that the cio@ffts of this polynomial are analytic functionkyg.)
Sincegg is not constant iryp, whereag is constant (with respect @) , we see thag is likewise not constant
Yo- Now suppose that for eagly there is a polynomidi(x, y) (a priori with coefficients dependent gg) such
thath 1 f andh 1 g. Asf has but finitely many factors, it is easy to shitnat for a dense set of valugsg h is the
same factor. In other words, we may assunig also constant with respect yg. Recalling the definition o,
we haveh 1 (g —2s(y — Yo)) (wheres is function of(x, y, yo)). As this holds for anyy, it holds foryg =y, and
so h1g. Thush must be constant singg is relatively prime tog. This finishes the proof thaf is relatively
prime tof.O

Corollary 1. If deg((g) =deg(g) = n then gis the polynomial of minimal degred,n;.

Note that a generic linear change of coordinates@nutees the hypotheses of this corollary will @esfied. We
also remark that these ideals in effect provids liff factors that are correct modulo powergyf¥ yg). This

corollary thus gives an effective lifting bound.

Proof: This follows from the counting argument diet preceding section for greatest common divisiar
certain ideals, coupled with the proof of Theoremhdch shows that we fing in exactly that settingl

Corollary 2: In the setting of absolute factorizeri overC, the minimal degree factor of f that vanishes a
point (xg, Yo) is in theidealf, (x — xo)", (y — yo)™) for all n.

Proof: Simply note that we can replaggby the irreducible factor af(x, yo) vanishing ai{xo, yo) and still hawve
the desired ideal inclusion of theorem 4. Cle&xly xo) is that factor ofp. Now apply Theorem 41

Indeed, a minor variation of this corollary holds base field o) as well, but it is of less use in that case dt
corollary 1, along with the fact that working witk — xg) entails a need to lift further than if we work it

(which, when the base field @, is a product ofx — Xp) and its algebraic conjugates). That is to gay, Xp) is in
general a proper divisor ay. We remark that the irreducible factor moduylp- yo) of g, that we obtair
computationally, might in principle be a proper tfac of gop. This does not affect the lifting bounds in ¢
analysis above. We also note that for genggiour factor will indeed bey when we work over the rationa
This follows from Hilberts irreducibility theorem [29].

From a practical standpoint we get too many lowrdegpolynomials in our ideals unless we go to sieffitly
high powers ofx — xg) and(y — yp). One must then ask what degree suffices for djftifhis is provided in th

next theorem.

Theorem 5. Supposeg(f) =n, and f(Xg, Yo) =0. Letm = nZ+1. In the setting of factoring ove, the minima
degree factor of f that vanishes at the poirs, yo) is the minimal polynomial in a Grébner basis f
(f, x=%)™, (y — Yo)™), where the term order is graded reverse lexicogiaptith x > y.

This can be proved with a zero set size argumenrigathe lines of the proof of Proposition 2. We biie
details.

We point out that there is a large body of literatin the realm of absolute factorization. For soafdhe
existing methods see [4, 5, 6, 7, 8, 11, 13, 21 aR8 references therein. In particular [5] prowdaibstantis



detail about a few of these methods. We do notncthiat our approach is as efficient as some ofealthers
Its main advantage is that it requires but litteele. Moreover as it rests on fundamental technoilogymbolic
computation (i.e. Grébner bases), general improvesién that area can have a beneficial impact on
method.

6. BIVARIATE GCD AND FACTORIZATION EXAMPLES

We now show several examples that serve to illisttae methods. We use precisions based on triakaror;
this aspect to the methods is not automated. Ropl&ity of exposition we also avail ourselves ah@nor shor
cut. To wit, we perform no change of variablegultns out that all the examples either alreadyddriall degree
in the unsubstituted variable, or still work at degbounds assumed by that case. One should réfadizehis
also confers a slight speed advantage becauseicie®ff remain of modest size (thus slightly redgcthe
precision needed in the approximate basis compmuts)j and moreover any sparseness we might hathe
computations will not be destroyed.

All timings are in seconds. These were run on &34 processor, using version 7Mathem atica[28] running
under Linux.

GCD

We first show an example from [8] that factors ovke rationals. We remark that their variant hadnec
numerical noise (they were illustrating an approximfactorization method), whereas we work with éxact
input.

Example2

g=-84+41x+23y+99x2y®-61x2y4-50x2y3-12x2y?2-18x%x%y -
26Xy -62X Y0 +Xxy? -47xy*-91xy3-47xy?+66x3y-55x"y-35x8y2+
97 x8y +79x°y3 +56x5y2+49x5y +57 x4 y4-59x4y3 +45x4y?2 -8x*y +
92x3y® + 77 x3y?2 +54x3+53y® +31x2-90y’ -58y8 -85x8-37x" -86y% +
50x5+83y3+63x>+94y*-93x4-y®-5x2y6 _61xy+43x3y*-62x3y3;

h=-76-53x+88y+66x2y®>-29x2y*-91x2y3-53x2y2-19x2y +68xy° -
72Xy -87xy*+79xy3+43xy?+80x3y -50x8y -53x5y?2 +85x5y +
78x4y3 +17x4y2+72x%y +30x3y2 +72x3-23y8 -47x2-61y" +19X’ -
42y2 +88x8-34y3+49x5+31y*-99x*-37y°-66xy-85x3y*-86x3y5;

f = Expand[g h];

We begin by forming another polynomig),as the product af and a random bivariateof similar degree.

randonPol y[deg_, vars_] : = Mddul e[{n = Lengt h[vars], t, poly, terns},
pol y = Randomi nt eger[{-10, 10}, {deg+1}].t ~Range[0, deq];
Expand[pol y /. t *j _. > (Randonl nt eger[{-5, 5}, {Length[vars]}].vars)”j1]
SeedRandoni1111];
k = randonPol y[7, {X, Y}]I;
e = Expand[g k1;
We now compute an approximate Grobner basis foridkal consisting off, e, (y- yo)d} for a randomly
selectedyy andd = min(dedf), deg(e)) +1. Shown below is the timing, in seconds.
Fi rst [Ti m ng[gby = G oebner Basi s[{f, e, (y-Random nt eger[{20, 40}]) "9},
{X, y}, Monom al Or der - Degr eeRever seLexi cogr aphi c,

Coef fi ci ent Donmai n- | nexact Nunber s[200]1; 11
0. 168975

We check that the recovered common factor agretasgniip to multiplicative factor.



Toget her [Nurrer at or [Toget her [Rat i onal i ze[Fi r st [gby]1]1]1] /9]
-1

Factorization

The code below is based on the theory presentelifariate factorization over the rationals. Foficncy we
use quadratic lifting rather than trying to do tlud lift in one step. We do this by squaring podmials in the
preceding basis and augmenting with the polynomtabse factorization we seek. In practice this mak
tremendous difference in speed. Moreover it allowdo work with lower initial precision than wouddherwise
be the case, because overall precision loss islees done in quadratic stages rather than alhato

At each step we print the time in seconds it tomkthe Grobner basis computation of that lift, ahd preci
sion of the result. We give up if the initial prsioin is insufficient to obtain the approximate nuindases fo
the full number of lifting steps required for th&sk. In this case we use the best result we hawe @ this
failure, in the hope that it might have been sidfitly lited to form a correct factor. An improveant we dc
not implement would be to perform trial divisiorsts along the way.
factorBivariatef _, x_, y_, yO_, prec] :=Catch[Mdul e[
{rts, gb, n, fax, fag,
fax = Sel ect [FactorList[f /. y-»y0], ! Nunber Q#[[1]1]] &];
fac =fax[[1, 111;
gb[0] = N[{fac, y-yO0}, prec];
n = Ceil i ng[Log[2, Exponent[fac, x] +11];
Print["lift ", n, " tinmes";
Do[Print [{First[Timng[gb[j] =
Q oebner Basi s[Fl atten[{f, gb[j -1]1"2}]1,
{X, y}, Mononi al O der - Degr eeRever seLexi cogr aphi c,
Coef fi ci ent Domai n- | nexact Nunber s]; 11, Preci sion[gb[j 11}];
| f [Head[gb[j 11 === G oebner Basi s, Thr owyNuner at or [
Toget her [Rati onal i ze[Fi rst [gb[j -1]1111111;
s Al N
fac =First[gb[n]];
d ear [gh];
Nurrer at or [Toget her [Rati onal i ze[fac]]]1]1]
Example3

We will continue with the previous example, thimé factoringf. We first find roots inx upon settingy to a
fixed value (we use 5 in this case). We will workhathe first such root to develop a full bivariaector. We
begin with 500 digitef precision.
Timng[factor =factorBivariatef, x, y, 5 500]
lift 3 times
{0. 016997, 469. 763}
{0. 052992, 421.616}
{0. 212968, 331.525}
{0.288956, -76-53x -47x%2+72x3-99x*+49x5+88x5+19x" +88y -
66xy-19x2y +80x3y +72x%y +85x5y -50x8y -42y? + 43x y2 -53x2y? +
30x3y2 +17x%y2-53x5y2_34y3 .+ 79xy3-91x2y3-86x3y3 +78x%y3 +31y4-
87xy*-29x2y*-85x3y*-37y5-72xy®>+66x%y°>-23y6+68xyb-61y’}
Observe that we indeed recovered a correct fasfcificallyh(x, y).



Toget her [fact or / h]
1

In the code above we use yet another short cughwisito assume the univariate factor lifts to altivariate
factor (that is, no recombination is needed). Tthag is reasonable is due to Hilbert's irreduciiiiheorem
which shows that most integer substitutions for sagable preserve irreducibility over the ratios§29]. Were
our factor not to lift in such a way, the algorithwould still work except we might need to lift toragher
degree; this is the same situation as that degstiiibéhe remark following Corollary 2 in the preuis section
An alternative would be to lift to half the totaégree of the input, and be willing to try all uriede factors o
degree less or equal to that. The point of eitfrscut is to reduce the lifting degree, as thghbi ones clear
make for more strenuous Grdbner basis computatianbk in terms of polynomial degree and likelihoofd
encountering inadequate precision (the raisingli€tvwould incur a time penalty on all steps).

The next example is from [11].

Example4

PL=48xy2+12x2y2+11x2+6x3-11x"y?2-63x3y2 +54x2y3 23 x10y3 4
58 x4y4 +18x%y2-42x5y>-80xMy? +10y0x4+ 14 x%y + 47y + 18 x12y? 4+
36y -23x3y2_68x8y3 -41x4y" +72x3yl 422 x Yy 76 x2y8 _54y10_
18y2 +79x7y3 —49x y4+9x5 -75x8y 46 x3y® - 17 x*y® + 3 X2y’ +21y5;

P2 = -40x2y2 +55xy? +36x3y -82x8y? - 73x%y - 27 x5 y5 +18x"y? +31x%y3 + 54 y7 y3 -
16x3y°-96y*+13y3+40x%-99y?2-20y0+44x%-65y10+39x5+66xy°-34x3y3+
99x8y4-9x3y4-83x3y" +76x*y3 +28x8-89y8 +71xyB +38xy?-40x2y6 -12x2y5;

prod = Expand[pl p2];

Timng[factor = factorBivariateprod, x, y, 2, 600]

lift 4 times

{0. 034994, 539. 508}
(0. 103985, 470. 659}
{0.537917, 359. 285}
(2.50162, 128.572}

{3.19152, -40x2-39x5-28x8-44x°-36x3y+73x%2y+99y?-55xy2+40x%y?+82x8y? -
18x7y2 -13y3 -31x2y3 +34x3y3 —76x*y3+96y* +9x3y* - 99 x8y* 66 x y° +
12x2y5 +16x3y> +27x5y® +20y® +40x2y6 +83x3y7 +89y8 - 71 xy8 -38xy? +11y10y

We see that this recovers (up to sign) the faptor

Toget her [f act or / p2]
-1
Example 5

Our final example is a modification of one appegrim [7]. The goal is to find the absolute factatibn of a
certain bivariate polynomial. Our modification stdttsx®y + x*+ x2 from the polynomial in the reference,

that it will factor nontrivially over some extensidield (which is to be determined in the process).
poly =-3-16x-20x2-11x3-2x%-4x>-8x"-3x2+7y-16x%y -
16 X3y +5x4y -4x3y +8x8y-4x"y +3y2 +4xy?-x2y2-11x3y? +
3x*y?2-x5y?21+8y3 +8xyP+5x2y3 -5x3y3 +6x?y3+8x0y3 4Byt
Axy*+4x2y*-10x3y4+3 x4yt +3yo 4 x2yo+3y0 53y 43y 4yY;
One can check that this polynomial is irreduciblemthe rationals. To proceed with the absolutedEeation,

we first substitute a value for one variable (we xjs and solve numerically to high precision for tto@ts of the
resulting univariate. We show a low precision apgimmation to the first root in the list.
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x0=11/7;

roots =y /. NSolve[poly /. x -x0, Wrki ngPreci si on»400];
root 1 = Fi rst [root s];

NI[r oot 1]

-1.31386 - 1. 39338 i

We now attempt to reconstruct the factor contairimgfirst of our roots. We will just do a diredt to degree
10, that is, moduld(x — x0)*°, (y - root1)*%}. This suffices because any nontrivial factor mheste a degree th

divides 9 (since it gives the full polynomial wherultiplied by its equategree conjugates). The only candid:
are 1 and 3, so by prior theory a lift to degBe 1= 1C suffices.
Ti m ng[fac = First[ G oebnerBasi s[{poly, (y-rootl)”10, (x-x0)"10}, {y, X},
Monom al O der -> Degr eeRever selLexi cogr aphi c,
Coef fi ci ent Domai n-> | nexact Nunber §]]; ]
{0.542917, Nul'l }

Here is a low precision version of our candidateda.

Chop[NI[fac]]
(1. 68233+ 2.32308 1) + (0. 682328+ 2. 32308 1) X -
(2.23279-0.792552 1) x3 +1. y + (0. 341164+ 1. 16154 1) xy + 1. y3

Before we proceed to deduce the exact form ofrdmsilt, we should check that it is a viable cantidfactor.
Specifically, it must divide our polynomial. We muagrify this using generalized division. Mathem aticathis is
accomplished wittPol ynom al Reduce.
Pol ynom al Reducgpol y, fac, {y, x},
Coef f i ci ent Domai n-> | nexact Nunber s,
Monom al Or der -> Degr eeRever seLexi cogr aphi ¢[[2]1]
0

This is promising. We now take the numeric coddfids of our factor and attempt to recast them gebahic
numbers. For this we ug®ot Appr oxi mant along with a small amount of code to convert respreations ti
all use a common algebraic numb&odt Appr oxi mant uses functionality based on [10, 16]). We show
timing in seconds.
Ti m ng[
dt| = Chop[G oebnerBasi s Di stri but edTer nsLi sffac, {y, x}11;
newdt | = MapAt [Root Approxi mant, dtl, Thread{l, Range[Lengt h[dtl [[1]1]1]], 2}11;
rtlist =Cases[newdt|, Root[__1, Infinity];
firstrt =First[rtlist];
new oot s =Joi n[{firstrt}, ToNunberFi el dRest [rtlist], firstrt]];
new oot s = new oots /. A gebrai cNunber[aa_, bb_]:>
Al gebr ai cNunber Pol ynom al[Al gebr ai cNunber[aa, bb], aa];
newdt| = newdt!| /. Thread[rtli st - new oot s];
al gf act or = @ oebner Basi s* FronDi stri but edTer nsLi stnewdt | 1]
{0.388941, 1+y+y3+2Root [1+nl+11° & 3] +2x Root [1+01+71% & 3]+

xy Root [1+111+1:1% & 3] +x3 (~1+Root [1+11+u1° & 317}

We can check the result as follows. Irreducibitifypoly over the rationals implies that all algebraic tastare

conjugates of one another. We can explicitly fotre product of these conjugates, then check that pmed-
uct recovers the polynomial up to an invertibleaftfs, rational) factor. We show this below.
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al gprod = Product [al gf actor /. Root[a_, 3, b__]=Root[a, j, bl, {j, 3}]
(1+y+y®+2Root [1+11+11° & 1] +2x Root [1+#l+11° & 1] +
xy Root [1+71+51%& 1] +x3 (-1 +Root [1+51+:1° & 11%))
(1+y+y3+2Root [1+01+11° & 2] +2x Root [1+#1+51% & 2] +
xy Root [1+11+51% & 2] +x3 (-1 +Root [1+51+:1° & 217))
(1+y+y3+2Root [1+n1+11° & 3] +2x Root [1+#1+11%& 3] +
xy Root [1++1+51% & 3] +x3 (-1 +Root [1+51+:1° & 31%))

Next we collect all terms in the polynomial, opamgton the coefficients to obtain reduced formsegé will be
algebraics of minimal degree; what we hope to getall coefficients are rationals. We do, because tesulf
cancels perfectly witipoly.

Toget her [Expand[Root Reduce[Col | ect [Expand[al gprod], {X, y}11]1 /poly]
1

We remark that there are other good ways to recexact algebraic coefficients, if one first findetset of a
approximate factors. One such is presented imfégre an analysis of needed precision is also gdeaki

We also observe that the method shown above, whkitbaps not as efficient as those of [4, 21], inatbeles
faster tharMathematicd current built in capabilities. Moreover thesétda require that one know in advar
the extension field. We show this explicitly belgtve method will only split off one full factor, bahat suffice:
to recover its conjugates).

Ti mi ng[f ax = Fact or Li st [pol y, Extension- Root [1+#1+#1%& 3]]; ]
[0. 678896, Nul | }

We also note that while this might not provide altiwariate absolute factorization method that ssaiell as
the number of variables grows, it can at least kjpidetermine irreducibility (with high probabiliyy This woulc
be effected simply by deciding whether there areetic approximate factors after substitution fdrbait two
variables. Lifting of all variables and exact reeoy of nontrivial factors, if any, would not be risal in such .
scenario; we only need lift in one variable, andtthnly approximately, in order to determine whethegiven
input is irreducible. A practical, nontrivial exategdrom constraint geometry may be found in [1%jeTpolyne
mial in question is trivariate, of total degree dfd with all exponents even. It is dense subjedhtise con
straints, and has coefficients ranging from twaeto digits in size.

7. FAILURE MODES AND VERIFICATION OF RESULTS

There are three failure modes for our use of fipitecision. One is to run out of precision in thener basi
phase, and abort computation. Another is to compu@ dbner basis that has the wrong structure,thnd
either fail to find an approximately correct factor else find a putative factor that is entirelyowg. A last typ:
of failure is to find a factor that is approximatelorrect, but does not have sufficient precisioonf which to
recover an exact form thereof.

The first form of failure is typically handled bydreasing the initial precision a few times, uetiher we obtail
a result or else reach some upper bound. In tise @& have a "do not know the result" situationictvlis at
least preferable to an incorrect result.

Now suppose we have obtained a putative approxifaater or gcd. A first question is to decide whetlit is
in fact a viable approximation to an exact onesTgtermination can typically be made by polynordiakion,
checking that coefficients in any remainder areahly small. If we have a reasonable approximatiea,can
often improve it by local numerical optimization theds. One uses the coefficients of the approxich éetor
as a starting point in order to improve the preecisiThe objective function could be, for examplesuan of
squares of coefficients in the remainder on divisio
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If we have an approximate factor or gcd that, onsatin, is clearly seen to be not viable, this alsm be treate
as an inconclusive case. We now remark on howdase can arise. In the process of computing anceg@f
mate Groébner basis, we might err in a cancellatbterms, such that we decide a leading coefficisrgero.
This is the only way to get a result that is sturelly incorrect, that is, has the wrong polynonsitleton. Wk
do not have a theoretical argument to quantify mare this might be. We can, however, say a bit alpoacti
cal experience. In over a decade of operationntimeric Grobner basis capabilitiesMathem aticas NSol ve
have never shown this type of failure in problerhattarise inRhouse, from users of the software, or frc
testing done on benchmark problems from the literet

As with any numeric method one can likely creatgrablem for which it will fail if run at too low pecision. It
seems that such problems do not arise with anyufaqy in practice. We can offer a tentative exptemafor
this. Recall theorem 1: For a give problem andvargioutput precision, there exists an input preniguch the
computing a Grobner basis at that initial precisiosing significance arithmetic, will give a resthat is correc
to the specified output precision. While it is inagtically high for realistic problems it seems tteatmore
modest precision typically suffices. And when itedot suffice we almost always lose too much gi@tianc
abort. In order to obtain a skeletally incorrecsult we would have to have a catastrophic canaatiafThis
means that what should be a nonzero term (e.qn iexact or at least sufficiently high precision qmuation)
appeared to be zero. In order for cancellationllaignificant places to occur we effectively recpipolynomi
als with coefficients that are commensurately fparm in scale. When the precision is in, say, thedreds o
digits, we simply do not see such polynomials iagiical settings. As precision in the computati@yrhdes it i
of course more likely that we might encounter sacécale difference. But there is only a narrow wwdor
this error to manifest as an incorrect cancellgtmtnsufficiently low precision (a few digits, say)e algorithn
will go into the first mentioned failure mode, aaldort. The conclusion is that we are much moreylitee abort
than to give an incorrect result.

We also observe that, should such a problematie agse, the most likely manifestation in our setivould be
a nontrivial result that is demonstrably wrong.sTtsi because a leading term catastrophic canoellagimore
likely to yield polynomials in the result that atieo smal-in term orderrather than too large. Hence we ob
a nontrivial putative result that fails to verifgther than a claim that there is no nontrivialies

These various observations support the view thatirarerifiable wrong result (say, a proper divisbat is not
greatest, or a factorization that is further faczable) will be quite rare.

8. SUMMARY AND FURTHER DIRECTIONS

We have indicated several ways in which approxima@tébner bases might be used to advantage to o
exact, verifiable results to problems in computaéibalgebra. Applications include finding polynoingaeates
common divisors and multivariate polynomial fackation. For this latter we indicate how to procéweadh for
ordinary factorization over the rationals, and falbsolute factorization over the algebraic closufetie
rationals.

While our methods seem to be slower than thosego{4 6] and subsequent refinements thereof, tHreystil
useful in practice. An added advantage is that #reystraightforward to implement. Indeed, Mathem atice
code used for the examples was, in total, but adiexen a few lines. The quadratic lifting time seseim approx
mately double with each step. This is in accorchwihat one might expect using standard lift methdt&re
are at least two caveats. One is that we have noffithat the lifting complexity will behave this win general
Another is that use of finite precision and sigrdfice arithmetic means our approach can fail anarte
computation should we lose too much precision.

There are many open areas that seem worthy of duarithvestigation. We indicate several and also roar
some preliminary findings.
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Automate selection of precision or at least develome useful heuristic to assess in advance an atr
that will likely succeed for the computation at ldaifihis is currently a wide open topic.

Modify these methods so that they might be usedd&le problems of an approximate nature. Inpu
might only be known to a few digits, and we sedktons to“nearby problems that have nontrivial
results (e.g. common divisors larger than 1, or enthran one factor). Methods such as those shown
[18] can find approximate gcds in this setting. Bugy tend to be slower than the methods of thisepa
and they rely on heuristic choices of tolerancemfallamount of testing to date has indicated soate
of the approximate Grébner basis ideas from [1&]hcarry over to the setting of the present work.
This is a topic that needs further experimentation.

Apply these methods to the setting of finite fieltissuch a way that they remain reasonably fashev
when the characteristic is small. The problembhis tase, is that one might need to work in anbalge
extension. This can be costly for Grébner basis gotations. When such an extension is needed \t i
no means clear that this approach can be madeigak@tinvolves another variable and another
polynomial, and this will typically make the comptibn of the needed Grobner bases slower). In ca
where no extension is required (that is to saygtlgpses of theorems can be satisfied with apprteori
substitutions from the finite field itself), one wid expect behavior better than that indicatechis t
paper. The reason is that the coefficient arithmisthow bounded by the modulus size and moreo\
there is no possibility of loss of precision.

In the reverse direction, it might be possible trkvover a large finite field and then lift to askdt over
the rationals. This would allow one to avoid appmoate arithmetic although there is then the issue
avoiding primes that are unlucky for the given itpu

During lifting steps many of the Grébner basis itgpseem to be close, in some sense, to bases witr
respect to a lexicographic term order. It wouldifteresting to see if conversion methods such as tl
Grobner walk are effective for the computation ttedes us to the desired term order. Preliminasyst
show that the walk can be faster than what werdiouir examples, but that it is subject to more exte
loss of precision. This, presumably, is from th@wersion steps that occur at each cone traversalgl
the walk. It is an open problem to determine istloiss of precision can be avoided or at leastailed.

One possibility for alleviating precision loss mteérmediate lift steps is to recompute, from the
approximate bases, their exact counterparts. Wheaigion is sufficient for this task, we might then
numericize anew at the original precision. Our pnélary finding is that this tactic does help, kurtly
to a small extent when using the Grobner walkthidl same, this provides some improvement in tha
allows for a lower initial precision, regardlesswatiat method is used to compute the Grébner base:
the liting steps. Also one could try heuristicatlyauge the precision loss at a given lifting staql
ratchet to accordingly higher precision in prepgtior the next step. We must also observe that this
tactic is far more likely to succeed when workingprationals than when doing absolute factorizatic
The reason is as follows. Given the same initialih one will typically require far less precisitm
recover rationals for the bases produced in lépst than that which would be needed for algebraic
number recovery.

As a referee observed, using a shear transformépiaitain a monic polynomial will destroy sparsitfy
input. We can avoid such transformations, in sofitb@ algorithms presented above, at the cost of
requiring higher degrees for lifting. It would beeful to understand the tradeoffs in efficiencyimesn
retaining sparsity vs. having lower lift boundswibuld be particularly useful to find ways to avalte
linear coordinate change and still have optimahbf degree bounds.

We discussed various modes of failure. It wouldubeful, though probably quite difficult, to have a
better theoretical understanding of the interplag®een initial precision and erroneous results.

The examples of this paper, together with theiirigs, provide a proof of concept that the methods
presented are viable. It would of course be niciitther improve on speed (above and beyond ide:
noted in the preceding items). Arecent line ofimg, in regard to the absolute irreducibility tiest
discussed in the previous section, is to underssitndtions in which we might have an early
termination during the quadratic lift process. TiBisnder current investigation.
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