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ABSTRACT . We discuss computation of Gröbner bases using approximate arithmetic for coefficients. We 
show how certain considerations of tolerance, corresponding roughly to accuracy and precision from numeric 
computation, allow us to obtain good approximate solutions to problems that are overdetermined. We provide 
examples of solving  overdetermined systems of polynomial equations. As a secondary feature we show 
handling of approximate polynomial GCD computations, using benchmarks from the literature.

Categories and Subject Descriptors

G.1.0  [Numerical  Analysis]:  General−−−  Multiple  precision  arithmetic;  Numerical  algorithms;  G.1.5  [Numerical
Analysis]:  Roots  of  Nonlinear  Equations−−−  Systems  of  equations;  I.1.2  [Symbolic  and  Algebraic  Manipulation]:
Algorithms−−− Algebraic Algorithms; 

General Terms

 Algorithms
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1. INTRODUCTION
Gröbner bases provide a means for solving a myriad of problems in computational algebra. In their original form, all
arithmetic was carried through exactly, on rational numbers. This was necessary in order to know when combinations of
polynomial  coefficients  cancel.  In  1993  Shirayanagi  [26]  indicated  a  means  to  use  approximate  arithmetic  and  still
handle this "zero recognition" problem. Since that time several approaches have appeared that use approximate arith−
metic [4, 5, 19, 24, 27, 29, 32]. The advantages to approximate arithmetic are several. First is that it avoids intermediate
coefficient swell one often observes in exact Gröbner basis computations. A second reason is that, in many problems,
one works with approximate data and does not have access to exact values. Moreover, approximation by rationals might
lead to intermediate swell, and still not improve on a solution based on the original approximate input values.

Work on numeric Gröbner bases begins with [26, 27]. The method therein for controlling error is a bit similar to what
we will describe in section 2. It uses bookkeeping to measure loss of precision from arithmetic operations (similar ideas
are  discussed  in  [24]).  The  handling  of  coefficients  can  thus  be  viewed  as  an  extension  of  floating  point  arithmetic.
Traverso and  Zanoni  [30]  describe use  of  both  a  modular  image and  a  numeric  approximation for  coefficients.  Only
when  both  forms  give  zero  (approximate,  in  the  latter  case)  do  we  regard  an  apparent  cancellation  as  truly  zero.  A
drawback is  this  requires exact  input  initially,  or  else  a  system that  is  not  overdetermined. Other  approaches include
extending the notion of Gröbner bases to allow head terms with small coefficients to become non−head terms [17, 18,
29]. References [4, 30] contain some discussion of the overdetermined case. Use of syzygies to determine vanishing of
coefficients is described in [4, 5], with the latter describing a possible algorithmic treatment.

A typical situation in which one might desire to work with approximate coefficients is in solving polynomial systems of
equations. A common method for this utilizes Gröbner bases [2, 7, 9, 11, 20] (the NSolve  function of Mathematica is
based on this approach). We start by discussing in brief some of the issues associated with the Gröbner basis part of the
computation, when carried out using approximate arithmetic. We go on to point out weaknesses that appear when such
systems are overdetermined. We then describe precision and accuracy tolerancing, and show how they can be used to
address such weaknesses. 

This  work provides a description and empirical  study of  methods that  extend Gröbner bases to  handle approximately
consistent polynomial systems. Many of the ideas we show have been developed independently in the cited literature.
Our main contribution is to show how they can be made to work quite effectively on challenging problems. We provide
examples,  many  considered  difficult,  from  the  literature  on  numerical  polynomial  system  solving  and  approximate
GCD computation. These serve to indicate the merit of the methods we describe.
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2. APPROXIMATE GRÖBNER BASES IN POLYNOMIAL SYSTEMS
We  begin  with  the  observation  that  there  are  two  variants  of  approximate  Gröbner  basis  computations.  In  one  we
assume that coefficients of input are exactly known, and we use approximate numbers in order to avoid either intermedi−
ate  swell  of  integers,  or  difficult  computations  with  algebraic  numbers.  Here  we  are  interested  in  a  different  setting:
coefficients  are  known  only  approximately,  and  moreover  we  may  have  an  overdetermined  system.  The  rest  of  this
section pertains to both settings. The sequel is then devoted to the case of interest. The first scenario is discussed in a
companion paper to the present one [21].

Gröbner bases computation using approximate arithmetic can be subject to several problems. First, as noted above, is
the issue of  recognizing when a cancellation has occurred. The model of  approximate arithmetic we use, significance
arithmetic, turns out to be quite good at handling this. Indeed, over a decade of experience suggests this is not, in and of
itself,  a  problem,  provided  we  do  not  work  with  an  overdetermined  system  [20].  The  essential  idea  [16,  28]  is  that
numbers carry with them an estimate of error. Standard arithmetic such as addition and multiplication of such numbers
propagates error via first order approximations. We regard a sum as zero when there is full cancellation of all digits, that
is, the result is less than the approximated error interval. (Use of "approximated" to describe the error is intentional; this
is effectively a first order approximation to interval arithmetic.) The upshot is that, in contrast to the approach of [26],
we require no careful bookkeeping; the internal arithmetic does this automatically.

A secondary issue is that, with this choice of arithmetic, precision gradually erodes over the course of a computation (as
first order error estimates grow). What this means in practice is that often one must start with high precision input (say,
a few hundred digits). Clearly this is well beyond the precision one can expect from input that arises as measurements
of  data.  Again,  when  the  problem at  hand  is  not  overdetermined, this  is  not  a  serious issue.  One simply  adds  digits,
arbitrarily, to the input coefficients. If the problem is not ill conditioned then when finished we know we have solved a
nearby  system.  In  practice  one  observes  that  residuals  from such  a  solution,  used  in  the  original  input,  are  typically
small. If so desired, they can be further improved via local refinement methods.

Yet another problem, one particularly associated to use of significance arithmetic, is that in rare cases a decision might
be made that a full cancellation took place, when in an exact computation perhaps a small but nonzero value would be
obtained. This is discussed in [20]. It turns out to be a relatively unimportant issue in that it is uncommon, it is usually
correctable  by  moving  to  higher  precision,  and  generally  only  causes  loss  of  huge  solutions  (consider  the  difference

between solutions of x2
= 1 and 1

1040
x5
+ x2
= 1).

We end this  section with a brief  historical  note.  As mentioned earlier, the first  reported implementation of  numerical
Gröbner bases (of which this author is aware) is due to Shirayanagi [26] from 1993. This article discusses a bookkeep−
ing approach to precision control that involves what are called "bracket coefficients". This approach is similar in spirit,
if not details, to significance arithmetic. It was this article (both methodology and results) that motivated the author to
implement  numerical  Gröbner  bases  in  late  1993,  in  what  would  eventually  become version  3  of  Mathematica.  This
implementation is  discussed briefly in  [19].  We point  out  that  it  in  effect  requires either exact  or at  least  "nice"  (e.g.
high precision) input. It will not handle input that is known only to a few digits of precision and also overdetermined.
To handle these situations we require the tolerancing approach of the present article.

3. OVERDETERMINED SYSTEMS
We have just given a brief overview of how we can manage approximate coefficient arithmetic reliably when handling
non−overdetermined (and reasonably well conditioned) systems. Indeed this suffices for many practical sorts of compu−
tations.  But  there  is  a  growing  body  of  literature  involving  overdetermined  systems.  It  thus  becomes  important  to
consider ways in which Gröbner bases can be extended to address them. To motivate this we begin by describing a few
sources of such systems.

One place where overdetermined problems are encountered is in best−fitting of data. While local methods are typically
used, there are cases where one might not have adequate information to give a starting point such that convergence will
be  attained.  For  these  situations  one  can  utilize  an  approximate solution  to  an  overdetermined system,  obtained  with
help of a Gröbner basis computation.

A related common scenario  is  when one uses  an  overdetermined system in  order to  rule  out  undesired solutions.  An
example is in camera pose estimation [22], where one or more extra reference points are used in order to remove from
consideration  undesired  solutions  to  a  possibly  ill  conditioned  problem.  The  problem encountered  is  that,  due  to  the
approximate nature of coefficients, use of arithmetic as described in section 2 would often lead to an empty solution set.
What we require, and will describe, are more tools to decide that coefficients are "small enough" to be regarded as zero.

Another source of overdetermined problems arises in trying to find "approximate" polynomial greatest common divi−
sors  [8,  12,  14,  15,  23,  25].  In  this  setting  one  typically  wants  a  result  that  is  of  highest  possible  degree,  subject  to
constraints  on  coefficient  sizes  in  remainders (after  normalizing  say,  by  making  all  leading  coefficients  unity).  Most
approaches in the literature use matrix methods (i.e. singular value decompositions) or remainder sequences for this sort

2



constraints  on  coefficient  sizes  in  remainders (after  normalizing  say,  by  making  all  leading  coefficients  unity).  Most
approaches in the literature use matrix methods (i.e. singular value decompositions) or remainder sequences for this sort
of computation. We will instead adapt Gröbner basis methods from the exact realm to do these.

4. ARITHMETIC CONSIDERATIONS IN SOLVING OVERDETERMINED SYSTEMS
Once  we  go  from  an  exactly  determined  to  an  overdetermined  systems,  high  precision  approximate  arithmetic  in
computing a Gröbner basis no longer alone suffices to catch cancellation of coefficients. The problem is that we need to
expand the size of what we might regard to be zero, as it is now on a scale with the precision of our input.

We  are  thus  faced  with  a  situation  where  we  need  to  "coarsen"  our  classification  of  what  will  be  regarded  as  full
cancellation.  We  note  that  one  must  be  a  bit  careful  in  terminology  at  this  point;  "zeros"  can  refer  to  approximate
solutions to a system of equations, or to coefficient combinations that cancelled (see [13] for discussion of approximate
zeros, also referred to as "pseudozeros"). Typically our interest is in the former, and the latter appear as a byproduct to a
successful navigation of the computation.

We discuss  in  brief  notions  of  tolerance,  accuracy,  and  precision.  This  is  entirely  informal;  the  purpose is  simply  to
motivate our approach to zero recognition. By tolerance we typically have in mind a small threshhold, below which we
regard values as zero. Precision is a relative concept, in which one considers ratio of (estimated) error to value (often
this is referred to as "relative" error). Accuracy, by contrast, refers to the absolute magnitude of error.

Recall that the key operations in Gröbner basis computations are forming of S−polynomials and reduction thereof [1, 3,
6,  10].  Our  main  concerns  are  twofold.  We  do  not  want  to  retain  leading  coefficients  that,  in  an  exact  computation,
would have vanished. And we do not want polynomials that should have vanished in their entirety. In practice, each of
these can happen if we do not employ some tactics for recognizing cancellation. We emphasize that the second situation
is not a special case of the first; this indeed gets to the heart of the double−tolerance approach we will describe. Loss of
a  leading  coefficient  is  analogous  to  a  precision  issue:  one  coefficient  is  notably  smaller  than  most  or  all  others.  In
contrast, an entire polynomial might be regarded as a full cancellation in a situation where all coefficients are compara−
ble in size, but small in an absolute sense when compared with normalized inputs that gave rise to them.

Our approach to handling these cases is simple. We will have a "precision" tolerance and an "accuracy" tolerance. All
manipulations involve addition of pairs of polynomials. Prior to that we find the average magnitude of the coefficients
in  these  polynomials  (we’ll  call  this  IPCA,  for  "input  polynomial  coefficient  average").  If,  after  addition,  a  resulting
coefficient is less than the precision tolerance times IPCA, we regard it as zero and remove it. If instead all coefficients
are smaller than the accuracy tolerance times IPCA, then we regard the entire resulting polynomial as zero. We employ
the "precision" mode to remove coefficients that are small relative to other coefficients. We use the "accuracy" notion to
justify  removing  an  entire  polynomial  when  all  coefficients  are  small  in  absolute  magnitude  (this  does,  however,
assume some sort of normalization is in place for the polynomials that gave rise to it).

As a practical matter working with these tolerances can be troublesome. For example there are many problems where,
even  after  scaling  of  variables,  coefficient  sizes  will  be  orders  of  magnitude  apart.  Thus  a  precision  tolerance  can
remove  coefficients  that  are  actually  needed.  Cases  where  no  precison  can  discern  between  coefficients  to  keep  and
ones to discard are, for this method, ill conditioned.

The accuracy tolerance is typically less prone to misuse, at least in the sorts of examples we show. That said, some of
the examples required trial−and−error selection of tolerances in order to attain good results. On a brighter note, many
do not, and one can often base a sensible setting on the precision of the input. Typical values for the sort of problems in

the examples, with machine numbers for input, tend to be around 10-8 for precision and 10-3 for the accuracy tolerance.

We mention that Kondratyev and coauthors [17, 18, 29] have a different way of handling the problem of small leading
coefficients. Their "stabilized Gröbner bases" retain such terms but bypass them for purposes of forming S−polynomi−
als.  Also  Traverso and  Zanoni  [30]  describe  a  hybrid  arithmetic  in  terms of  what  they  call  t1  and  t2  tolerances.  The
second  appears  to  serve  the  same  purpose  as  the  precision  tolerance  discussed  above,  and  the  first  is  similar  to  the
accuracy tolerance. Moreover, Sasaki and Kako [24] used ideas similar to our accuracy tolerancing for the detection of
zero polynomials.

5. EXAMPLES
All examples were run using the version of Mathematica under development at the time of this writing. Auxiliary code
is provided in an appendix, as are inputs for several of the longer examples. Where we use pairs of tolerance values, the
first denotes precision and the second accuracy. When one appears alone, it is interpreted as a precision tolerance.

EXACTLY DETERMINED SYSTEMS

We begin with some classical numeric systems that are not overdetermined, in order to indicate that no special handling
is needed (at least for the Gröbner basis phase of the computations). These provides a sort of baseline for contrast with
later computations. First we will show the Cassou−Noguès system. We require high precision for the eigensystem phase
of the solver, hence the nondefault WorkingPrecision  specification.
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Timing@Length@solnsCassou = NSolve@polysCassou � 0, WorkingPrecision ® 200DDD
80.236015, 10 <

We check that the residuals are indeed small.

Max@Abs@polysCassou �. solnsCassouDD
0. ´ 10-145

Observe that  the resulting residuals, while small,  are many times larger than the precision. This simply indicates that
precision  loss  occurred in  parts  of  the  computation.  We  show  another  example,  one  that  is  considerably  slower:  the
Caprasse  system.  It  is  troublesome  because  it  has  multiplicity  of  several  roots,  and  moreover  the  multiplication
(endomorphism) matrices utilized in the solver are derogatory.

Timing@Length@solnsCaprasse = NSolve@polysCaprasseDDD
814.7329, 56 <

Max@Abs@polysCaprasse �. solnsCaprasseDD
2.84217 ´ 10-14

Last  we  show  a  small  perturbation  of  this  troublesome system.  This  moves  the  system  to  one  that  is  nearly  but  not
exactly derogatory. The numerical solver again obtains good results in reasonable time.

Timing@Length@solnsCaprasseModified = NSolve@polysCaprasseModifiedDDD
83.53622, 56 <

Max@Abs@polysCaprasseModified �. solnsCaprasseModifiedDD
2.80977 ´ 10-10

We now describe a system that is exactly determined, but shows quite interesting behavior if not handled with toleranc−
ing. It comes from [31]. As the input is long we will not show it, but simply describe the problem. It has nine polynomi−
als in nine variables, and describes configurations of a certain type of Stewart platform. The coefficients are machine
double precision complex numbers.

With default settings, NSolve  will  find 80 solutions. This is twice the number claimed at [31], and moreover half of
the  solutions  give  large  residuals  and  are  themselves  large.  This  makes  one  suspect  they  are  erroneous.  However,
raising the precision of the input and solving then gives 80 solutions, now all with modest residuals; this tells us there is
indeed a "nearby" system for which all 80 solutions are valid.

The crux is that the input describes a numerically unstable situation, wherein coefficients need to satisfy certain hidden
constraints in order to properly specify the type of platform in question. In making numerical coefficients, they become
perturbed slightly and now we have a system with more solutions. Those that give large residuals, at machine precision,
are in fact not wanted; they are the artifacts of having approximated the polynomial coefficients.

The tolerancing that  repairs this is  quite straightforward. We use a precision value of  10-10 and an accuracy of  10-3.
The overall result: we get the desired 40 solutions, and  a factor of 6 speed improvement because extra work is needed
internally to get the "large" solutions to have acceptable residuals..

OVERDETERMINED AND ILL CONDITIONED SYSTEMS

We start with an example presented in [8]. We seek approximate singular points on a curve given implicitly as the zero
set of a certain polynomial. This is simply a matter of finding points for which the polynomial and its two first deriva−
tives all (approximately) vanish.

poly = 4.0 y4 + 17.0 x2 y2 + 13.07 x y2 -

19.572938 y2 + 4.0 x4 + 5.228 x3 - 18.29175 x2 - 5.228 x+ 15.29175;

NSolveB8poly, ¶xpoly, ¶ypoly<, 8x, y<, Tolerance ®
1

102
F

{{x −> 1.18339, y −> 0.}}

We now show an overdetermined camera pose problem from [22].  Here we need to raise precision artificially so that
the GroebnerBasis  step can run to completion (when precision of any coefficients becomes too low, it  gives up).
We postprocess by chopping off smallish imaginary parts.

4



coords = 881, 2, 1.49071, 4<, 81, 3, .400000, 8<, 81, 4, .894427, 4<,
82, 3, 1.49071, 4<, 82, 4, .666667, 8<, 83, 4, .894427, 4<<;

vars = Array@x, 4D;
polys = MapThreadAx@ð1D2 + x@ð2D2 - ð3 x@ð1D x@ð2D - ð4 &, Transpose@coordsDE
9-4 + x@1D2

- 1.49071 x @1D x@2D + x@2D2 , -8 + x@1D2
- 0.4 x @1D x@3D + x@3D2 ,

-4 + x@1D2
- 0.894427 x @1D x@4D + x@4D2 , -4 + x@2D2

- 1.49071 x @2D x@3D + x@3D2 ,

-8 + x@2D2
- 0.666667 x @2D x@4D + x@4D2 , -4 + x@3D2

- 0.894427 x @3D x@4D + x@4D2=

Chop@soln = NSolve@polys, vars, Tolerance® 810^H-3L, 0<, WorkingPrecision ® 8D,
10^H-3LD
88x@1D ® 2.23606, x @2D ® 2.99999, x @3D ® 2.23607, x @4D ® 0.999999 <,
8x@1D ® 2.23606, x @2D ® 2.99999, x @3D ® 2.23607, x @4D ® 0.999999 <,
8x@1D ® -2.23606, x @2D ® -2.99999, x @3D ® -2.23607, x @4D ® -0.999999 <,
8x@1D ® -2.23606, x @2D ® -2.99999, x @3D ® -2.23607, x @4D ® -0.999999 <<

We check that the worst residual is not terribly large.

Max@Abs@polys �. solnDD
0.000064876

UNIVARIATE APPROXIMATE GCD

There  is  a  vast  literature on  ways  to  compute  approximate  polynomial  GCDs.  Most  involve  reformulations as  linear
algebra problems, and make use of numeric algorithms well suited to computing matrix rank reliably in the presence of
approximation input. For background on such methods, see [8, 12, 14, 15] and references therein. We do not propose
that the methods to be shown below are faster or more reliable. But they are to an extent automated (once the working
precision and tolerances are selected), use very simple code, and give reasonable results quite quickly.

For univariate polynomials it is well known that we can extract a GCD via simple Gröbner basis computation. This is in
effect  a  form of  polynomial  remainder  sequence,  and  thus  bears  similarity  to  the  univariate  case  of  the  method  dis−
cussed by Sasaki and Sasaki in [25].

Here is an example from [8] . With a precision tolerance of two digits we recover a nontrivial approximate GCD.

p1 = x14 + 3.00001 x10 - 7.99998 x7 - 25.00002 x6 + 3.00001 x13 +

9.00006 x9 - 3.00001 x5 - 2.00001 x8 - 6.00005 x4 + 16.00004 x+ 2.00001;
p2 = x13 - 3.00003 x9 - 2.99999 x6 + 2.99999 x12 - 9.00006 x8 -

8.99997 x5 - 1.99998 x7 + 5.99999 x3 + 5.99994;

FirstBNBGroebnerBasisBsetCoefficientPrecision@8p1, p2<, 50D,

x, CoefficientDomain ® InexactNumbers , Tolerance®
1

102
FFF

-2.00015 + 3.00024 x 5
+ 1. x 6

We see it corresponds closely to the GCD of the "obvious" polynomial pair formed by rounding coefficients.

First@GroebnerBasis@8p1, p2< �. a_Real ¦ Round@aD, xDD
-2 + 3 x 5

+ x6

Now we show an example from [12], wherein we look for approximate multiple factors by taking the GCD of a polyno−
mial with its derivative. Using coarse tolerancing we get a common factor of degree 6, in agreement with that reference.

poly = x9 - H5.833333 + 2.333333 äL x8 + H12.888889 + 11.7222222 äL x7 +
H-13.416667 - 24.694444 äL x6 + H5.293210 + 28.703704 äL x5 +
H2.389403 - 20.183642 äL x4 + H-3.790123 + 8.750857 äL x3 +
H1.880630 - 2.247914 äL x2 + H-.452884 + .299535 äL x + H.045217 - .013868 äL;
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ChopBNBFirstBGroebnerBasisBsetCoefficientPrecision@8poly, D@poly, xD<, 40D,

x, CoefficientDomain ® InexactNumbers , Tolerance® :
1

104
,

1

102
>FFFF

H0.013033486039440238 + 0.24739461042947114 äL -
H0.3199779084192973 + 1.7517086950261698 äL x +
H1.9659824714996788 + 5.134785008354451 äL x2

-

H5.221808113608173 + 7.66519441636273 äL x3
+

H6.888250445595586 + 5.721144296886046 äL x4
-

H4.33302767357858 + 1.6663679299044327 äL x5
+ 1. x 6

MULTIVARIATE APPROXIMATE GCD

Multivariate polynomial approximate GCDs algorithms are presented in [8, 12, 14, 15, 23, 33]. They tend to use matrix
methods or polynomial sequences,. We instead take an elimination ideal method from [1], using approximate Gröbner
bases as the main computational engine to get the (approximate) LCM. We follow with generalized division to extract
the GCD. Note that we make no effort to locally improve the result, e.g. by Newton’s method.

We first  show example  exF07 from [14].  This  is  relatively  straightforward insofar  as  the  input,  if  rationalized,  has  a
nontrivial (exact) GCD. The actual inputs are a bit long to display, but are available as the set cleanF7_list  at the
URL in the references.

TimingBfgcd = floatPolynomialGCDBexF07polys@@1DD, exF07polys@@2DD, :
1

108
,

1

104
>FF

90.816051,

2. + 6. x + 10. x 2
+ 8. x 3

- 2. x 4
+ 7.64022 ´ 10-11 y + 8. x y + 2.54509 ´ 10-13 x2 y -

8. x 3 y - 8. y 2
- 8. x y 2

- 10. x 2 y2
+ 8. y 3

- 4. x y 3
- 6. y 4

+ 6. z - 10. x z - 10. x 2 z +

2.09215 ´ 10-14 x3 z + 10. y z + 8. x y z + 4. x 2 y z - 4. y 2 z + 2. x y 2 z - 8. y 3 z + 6. z 2
-

4. x z 2
+ 2. x 2 z2

- 10. y z 2
- 10. x y z 2

- 10. y 2 z2
- 2. z 3

+ 4. x z 3
- 6. y z 3

- 2. z 4=

Here is an example from [23].

c@x_, u_, n_D := x +â
j

n

u@jDj + 1
2

f2@x_, u_, n_D := x2 -â
j

n

u@jD - .5
2

g2@x_, u_, n_D := x2 +â
j

n

u@jD + .5
2

We create a pair of polynomials with proscribed GCD. We readily recover it using approximate arithmetic.

f@5D = Expand@f2@x, u, 5D * c@x, u, 5DD;
g@5D = Expand@g2@x, u, 5D * c@x, u, 5DD;
Timing@floatPolynomialGCD@f@5D, g@5D, 81 � 10^6, 1� 10^2<DD
98.27652, 1. + 2. x + 1. x 2

+ 2. u @1D + 2. x u @1D + 1. u @1D2
+ 2. u @2D2

+

2. x u @2D2
+ 2. u @1D u@2D2

+ 1. u @2D4
+ 2. u @3D3

+ 2. x u @3D3
+ 2. u @1D u@3D3

+

2. u @2D2 u@3D3
+ 1. u @3D6

+ 2. u @4D4
+ 2. x u @4D4

+ 2. u @1D u@4D4
+

2. u @2D2 u@4D4
+ 2. u @3D3 u@4D4

+ 1. u @4D8
+ 2. u @5D5

+ 2. x u @5D5
+

2. u @1D u@5D5
+ 2. u @2D2 u@5D5

+ 2. u @3D3 u@5D5
+ 2. u @4D4 u@5D5

+ 1. u @5D10=

Here we see that, with some amount of noise thrown in, we can still recover a reasonable approximate GCD.
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fnoise@5D = Expand@f2@x, u, 5D * Hc@x, u, 5D + .001L + .002D;
gnoise@5D = Expand@g2@x, u, 5D * Hc@x, u, 5D - .004L - .007D;
Timing@floatPolynomialGCD@fnoise@5D, gnoise@5D, 810^H-2L, 10^H-1L<DD
98.85655, 0.997 + 2. x + 1. x 2

+ 2. u @1D + 2. x u @1D + 1. u @1D2
+ 2. u @2D2

+

2. x u @2D2
+ 2. u @1D u@2D2

+ 1. u @2D4
+ 2. u @3D3

+ 2. x u @3D3
+ 2. u @1D u@3D3

+

2. u @2D2 u@3D3
+ 1. u @3D6

+ 2. u @4D4
+ 2. x u @4D4

+ 2. u @1D u@4D4
+

2. u @2D2 u@4D4
+ 2. u @3D3 u@4D4

+ 1. u @4D8
+ 2. u @5D5

+ 2. x u @5D5
+

2. u @1D u@5D5
+ 2. u @2D2 u@5D5

+ 2. u @3D3 u@5D5
+ 2. u @4D4 u@5D5

+ 1. u @5D10=

6. SUMMARY
We have demonstrated how precision and accuracy ideas from numerical computation can be adapted to the setting of
numerical  Gröbner  bases.  While  by  no  means  flawless,  we  see  from numerous  examples  that  these  approaches  hold
promise for handling overdetermined systems of algebraic equations. These computational methods also apply to other
problems from hybrid symbolic−numeric computation, such as finding approximate polynomial GCDs.

While most examples covered seem to work efficiently and give reasonable results, it  remains an open question as to
how  competitive  these  methods  are  in  regard  to  speed  and  quality  of  results,  as  compared  to  other  approaches.  An
advantage to Gröbner bases is that polynomial algebra is carried out in a sparse setting; many methods based on linear
algebra require dense  matrix  manipulation.  The  examples  presented offer  evidence  that,  when  working with  input  of
modest degree, Gröbner bases methods are viable. That the coding is simple makes them all the more attractive.

An open area for further work is in determining, in some automated fashion (perhaps based on problem type), what are
reasonable  tolerances  for  a  specific  problem.  A  possible  approach  would  be  to  set  up  an  outer  level  optimization,
wherein one strives to maximize a degree of a candidate GCD, or the (finite) number of solutions to an overdetermined
system,  and has  for  parameters these tolerances.  This  is  another  place  where SVD−based matrix  approaches have an
advantage:  a  "natural"  tolerance  is  generally  revealed  from the  largest  ratio  in  consecutuve  singular  values  (possibly
excepting cases where a jump is from a very small singular value to zero). At present all Gröbner basis methods need
some prespecification of tolerance.

Another avenue for future work is to adapt methods from [21] to handle overdetermined systems at modest precision.
Those methods for polynomial  GCD,  say,  tend to  be faster than what  we indicate in  this  paper.  But  we have not  yet
succeeded in  making  them work for  fuzzy  systems where a  GCD or  factorization is  only  correct up  to  some modest
tolerance. 

It is also an open question whether symbolic "epsilon" powers can be used to improve the methods of this paper. The
idea, roughly, is to replace coefficients that are deemed "small" (according to some precision tolerance, say) by suitable
powers  of  a  variable  that  is  local  in  the  term  ordering  sense  (hence  monomials  having  powers  of  this  variable  are
smaller than any monomial not containing it, including constants). Variants of this idea are discussed in [17, 24, 29, 30,
32].

Based on experimentation and comparison of timings with other methods reported, we state a tentative conclusion. The
methods  of  this  paper  are  viable  and  effective  when  the  problem  at  hand  is  unperturbed  from  an  exactly  solvable
variant. They often give good results when the problem is overdetermined, provided the noise is modest relative to an
exactly solvable nearby problem, and the scale of coefficients does not vary too much. In other situations it is not clear
whether our methods can be adapted so readily.

7. CODE APPENDIX 
Below is code used in computations in this paper.

setCoefficientPrecision@a_?NumberQ, prec_D :=
If@Abs@aD < 10^H-precL, 0, SetPrecision@a, precDD

setCoefficientPrecision@a_?NumberQ* b_?H! NumberQ@ðD &L, prec_D :=
setCoefficientPrecision@a, precD * b

setCoefficientPrecision@Ha_Plus a_Times a_ListL, prec_D :=
Map@setCoefficientPrecision@ð, precD &, aD

setCoefficientPrecision@a_, _D := a

7



floatPolynomialLCM@poly1_, poly2_, tol_D := Module@
8vars, mat, v, cvars, newpolys, rels, gb, rul<, vars = Variables@8poly1, poly2<D;
mat = 881, 1, 1<, 8poly1, 0, 0<, 80, poly2, 0<<;
cvars = Array@v, 3D;
newpolys = mat.cvars;
rels = Flatten@Union@Outer@Times, cvars, cvarsDDD;
newpolys = Join@newpolys, relsD;
gb = GroebnerBasis@newpolys, Prepend@vars, Last@cvarsDD,

Most@cvarsD, MonomialOrder ® EliminationOrder , Tolerance® tol,
CoefficientDomain ® InexactNumbers@Precision@newpolysDD, Sort ® TrueD;

rul = Map@Hð ® 8<L &, relsD;
gb = Flatten@gb �. rulD;
First@gbD �. Last@cvarsD ® 1D

floatPolynomialGCD@p1_, p2_, tol_D :=
Expand@PolynomialReduce@p1 * p2, floatPolynomialLCM@p1, p2, tolD,

CoefficientDomain ® InexactNumbersD@@1, 1DDD
Here are the longer examples we used.

polysCassou =

915 b2 c d2 + 6 b2 c3 + 21 b2 c2 d - 144 b c- 8 b c2 e - 28 b c d e- 648 b d+ b d2 e + 9 b2 d3 - 120,

30 b2 c3 d - 32 c d e2 - 720 b c d- 24 b c3 e - 432 b c2 + 576 c e- 576 d e+ 16 b c d2 e + 16 d2 e2 +
16 c2 e2 + 9 b2 c4 + 5184 + 39 b2 c2 d2 + 18 b2 c d3 - 432 b d2 + 24 b d3 e - 16 b c2 d e - 240 c,

216 b c d- 162 b d2 - 81 b c2 + 5184 + 1008 c e- 1008 d e+ 15 b c2 d e - 15 b c3 e -
80 c d e2 + 40 d2 e2 + 40 c2 e2, 261 + 4 b c d- 3 b d2 - 4 b c2 + 22 c e- 22 d e=;

polysCaprasse =

9-2 x + 2 t x y- z + y2 z, 2 + 4 x2 - 10 t y+ 4 t x2 y - 10 y2 + 2 t y3 + 4 x z - x3 z + 4 x y2 z,

-x + t2 x - 2 z + 2 t y z, 2- 10 t2 - 10 t y+ 2 t3 y + 4 x z + 4 t2 x z + 4 z2 + 4 t y z2 - x z3=;

polysCaprasseModified = :-2 x + 2 t x y-
100 001 z

100 000
+ y2 z,

2 000 001

1 000 000
+ 4 x2 - 10 t y+ 4 t x2 y - 10 y2 + 2 t y3 + 4 x z - x3 z + 4 x y2 z,

-x + t2 x - 2 z + 2 t y z, 2- 10 t2 - 10 t y+ 2 t3 y + 4 x z + 4 t2 x z + 4 z2 + 4 t y z2 - x z3>;
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