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ABSTRACT

We discuss computation of Gröbner bases using approximate arithmetic for coefficients. We show how certain considerations of tolerance, corre−
sponding roughly to accuracy and precision from numeric computation, allow us to obtain good approximate solutions to problems that are overdeter−
mined. We provide examples of solving  overdetermined systems of polynomial equations. As a secondary feature we show handling of approximate 
polynomial GCD computations, using benchmarks from the literature.

¢ | £

2



Numeric Gröbner Bases

èGröbner bases in original form: only supports exact computation.

éReason: Must know when sums of coefficients cancel.

èAdvantages to approximate arithmetic:

éNo coefficient swell.

éCan work with approximate input e.g. from scientific measurement.

èNumeric Gröbner Bases appear around 15 years ago.

é1993: Shirayanagi indicates way to use approximate arithmetic and handle  "zero recognition" problem.

éSince 1993: Several approaches have appeared that use approximate arithmetic.

èTypical applications:

éSolve a system of polynomial equations (NSolve in Mathematica relies on numeric GBs).

éCompute approximate greatest common divisor (this can be cast as an overdetermined system of equations).
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Issues

èLow input precision.

éFor exactly determined systems one can artificially raise precision (solving a nearby system).

èOverdetermined systems.

é  Raising precision does not suffice (though might still be needed).

èFalse zero recognition (exact case would give small nonzero value).

é  Rare in practice.

èSystems is overdetermined AND has low precision (i.e. has only "pseudozeros").

é  Camera pose.

é  Approximate gcds.

Of these issues, the one we focus on is the last. Overdetermined systems that are only approximately solvable cause difficulty because
we need a way to decide what to regard as zero, and full cancellation no longer (alone) suffices.
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Overdetermined Systems

How to avoid empty solution set?

We need tools to decide when coefficients are "small enough" to be regarded as zero.

Idea: Coarsen our classification of what to consider as full cancellation.
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Various Computation Methods

èUse bookkeeping to keep track of precision. Regard a sum as zero if all significant digits have cancelled. Reduce precision of sums and products based 
on first order estimates of error propagation. (Shirayanagi, L.)

èWork in two different fixed precisions. Use a threshold (of relative size, say) for deciding a sum is zero. (Traverso and Zanoni)

è If a system has exact input, use a finite modulus (Gröbner trace) as an oracle to determine when terms vanish. Can be used in conjunction with other 
methods above. (Traverso and Zanoni)

éThey describe a hybrid arithmetic in terms of what they call t1 and t2 tolerances. The second appears to serve the same purpose as our precision 
tolerance, and the first is similar to the accuracy tolerance (to be discussed later). 

èExtend Gröbner basis definition and algorithm to distinguish and handle "small" head terms. (Stetter and Kondratyev)

éA different way of handling the problem of small leading coefficients. Their "stabilized Gröbner bases" retain such terms but bypass them for 
purposes of forming S−polynomials.

èUse tolerances (Sasaki and Kako, Traverso and Zanoni, L.)

éSasaki and Kako used ideas similar to our accuracy tolerancing for the detection of zero polynomials.
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Precision and Accuracy, Informally

èPrecision: Relative concept.

éOne considers ratio of estimated error to value.

èAccuracy: Absolute magnitude of error.
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Arithmetic Considerations for Numeric Gröbner Bases

Recall that the key operations in Gröbner basis computations are forming of S−polynomials and reduction thereof.

èOur main concerns

éDo not want to retain leading coefficients that, in an exact computation, would have vanished.

éDo not want polynomials that should have vanished in their entirety.

éConclusion: Must employ some tactics for recognizing cancellation.

èObservations

éLoss of a leading coefficient is analogous to a precision issue: one coefficient is notably smaller than most or all others.

éAn entire polynomial of "small" coefficients is analogous to an accuracy issue: a pair of two polynomials, summed, approximately cancels.
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Tolerancing the Arithmetic

We will have a "precision" tolerance and an "accuracy" tolerance.

All manipulations involve addition of pairs of polynomials.

Find average magnitude of coefficients in these polynomials (IPCA, for "input polynomial coefficient average").

If a coefficient in the sum is less than the precision tolerance times IPCA, call it zero.

If all coefficients are smaller than the accuracy tolerance times IPCA then call the entire polynomial zero.

è  Upshot:

éPrecision mode removes coefficients that are small relative to other coefficients. Typical value: 10-8

éAccuracy mode removes an entire polynomial when all coefficients are small in absolute magnitude. Typical value: 10-3
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A SImple Tolerancing Example

Let p= x2
+ 2.2x y+ 3.7y, q= 2.x2

+ 4.2x y+ 7.5y, and r = x2
+ 2.23x y- y2.

éNotice that the coefficient averages are approximately 2.3, 4.6, and 1.4 respectively.

Is 2 p- q equal to zero?

éThe operation gives 0.2x y- 0.1y.

é If our accuracy tolerance is, say,1�10, then we would regard this as zero becaue all coefficients arfe less than the threshhold times the IPCA of 
the two polynomials used in the operation (obeserve that of course the IPCAs of 2 p and q must be similar, so it does not really matter which we 
use).

Now look at the leading coefficient of p- r, using lexicographic term order with x� y.

éThe difference is -0.03x y+ y2
+ 3.7y.

éThe IPCA of the result is about 2.4 and the leading coefficient is 0.03.

é If our precision tolerance is, say,10-5, then we would retain it.

éBut if it is, say, 10-2, then that coefficient would be regarded as zero (since .03< 2.4´10-2).
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Example 1: Cassou−Noguès Numeric System

It is exactly determined, hence provides a sort of "baseline" behavior. Requires high precision for the eigensystem phase of the solver.

polysCassou = 915 b2 c d2 + 6 b2 c3 + 21 b2 c2 d - 144 b c- 8 b c2 e - 28 b c d e- 648 b d+ b d2 e + 9 b2 d3 - 120,

30 b2 c3 d - 32 c d e2 - 720 b c d- 24 b c3 e - 432 b c2 + 576 c e- 576 d e+ 16 b c d2 e + 16 d2 e2 +
16 c2 e2 + 9 b2 c4 + 5184 + 39 b2 c2 d2 + 18 b2 c d3 - 432 b d2 + 24 b d3 e - 16 b c2 d e - 240 c,

216 b c d- 162 b d2 - 81 b c2 + 5184 + 1008 c e- 1008 d e+ 15 b c2 d e - 15 b c3 e -
80 c d e2 + 40 d2 e2 + 40 c2 e2, 261 + 4 b c d- 3 b d2 - 4 b c2 + 22 c e- 22 d e=;

Timing@Length@solnsCassou = NSolve@polysCassou � 0, WorkingPrecision ® 200DDD

80.236015, 10<

We check that the residuals are indeed small.

Max@Abs@polysCassou �. solnsCassouDD

0. ´ 10-145
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Example 2: Overdetermined Camera Pose System

An overdetermined camera pose problem from the literature.

We need to raise precision artificially so that the GroebnerBasis step can run to completion.

We postprocess by chopping off smallish imaginary parts.

coords = 881, 2, 1.49071, 4<, 81, 3, .400000, 8<,
81, 4, .894427, 4<, 82, 3, 1.49071, 4<, 82, 4, .666667, 8<, 83, 4, .894427, 4<<;

vars = Array@x, 4D;
polys = MapThreadAx@ð1D2 + x@ð2D2 - ð3 x@ð1D x@ð2D - ð4 &, Transpose@coordsDE

9-4 + x@1D2 - 1.49071 x@1D x@2D + x@2D2, -8 + x@1D2 - 0.4 x@1D x@3D + x@3D2,

-4 + x@1D2 - 0.894427 x@1D x@4D + x@4D2, -4 + x@2D2 - 1.49071 x@2D x@3D + x@3D2,
-8 + x@2D2 - 0.666667 x@2D x@4D + x@4D2, -4 + x@3D2 - 0.894427 x@3D x@4D + x@4D2=

Chop@soln = NSolve@polys, vars, Tolerance® 10^H-3L, WorkingPrecision ® 8D, 10^H-3LD

88x@1D ® 2.23606, x@2D ® 2.99999, x@3D ® 2.23607, x@4D ® 0.999999<,
8x@1D ® 2.23606, x@2D ® 2.99999, x@3D ® 2.23607, x@4D ® 0.999999<,
8x@1D ® -2.23606, x@2D ® -2.99999, x@3D ® -2.23607, x@4D ® -0.999999<,
8x@1D ® -2.23606, x@2D ® -2.99999, x@3D ® -2.23607, x@4D ® -0.999999<<

The worst residual is not terribly large.

Max@Abs@polys �. solnDD

0.000064876
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GCDs via Gröbner bases

For univariate polynomials, can extract a GCD via simple Gröbner basis computation.

èThis is in effect a form of polynomial remainder sequence.

è It can be regarded as an overdetermined system (two polynomials, one variable).

Multivariate polynomial LCM of H f , gL can be computed as an ideal intersection: eliminate t from 8t f , H1- tL g<.

èFollow with generalized division to extract the GCD.
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Example 3: A Univariate Polynomial GCD

p1 = x14 + 3.00001 x10 - 7.99998 x7 - 25.00002 x6 + 3.00001 x13 +

9.00006 x9 - 3.00001 x5 - 2.00001 x8 - 6.00005 x4 + 16.00004 x+ 2.00001;
p2 = x13 - 3.00003 x9 - 2.99999 x6 + 2.99999 x12 - 9.00006 x8 -

8.99997 x5 - 1.99998 x7 + 5.99999 x3 + 5.99994;

We use a Gröbner basis computation as a remainder sequence approach to obtain the gcd. We artificially raise precision, but lower
tolerance for zero determination. Raising of precision is necessitated as a detail of the implementation, and might not be required by
other programs.

FirstANAGroebnerBasisAsetCoefficientPrecision@8p1, p2<, 50D,

x, CoefficientDomain ® InexactNumbers , Tolerance®
1

102
EEE

-2.00015 + 3.00024 x5 + 1. x6

It corresponds closely to the GCD of the "obvious" polynomial pair formed by rounding coefficients.

First@GroebnerBasis@8p1, p2< �. a_Real ¦ Round@aD, xDD

-2 + 3 x5 + x6
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Multivariate Polynomial GCD and Other Code

Here is code used to raise precision artificially.

Here is code to obtain polynomial gcds. We first find the LCM, using a simple module Gröbner basis elimination method from the
textbook literature.

floatPolynomialLCM@poly1_, poly2_, tol_D :=
Module@8vars, mat, v, cvars, newpolys, rels, gb, rul<, vars = Variables@8poly1, poly2<D;
mat = 881, 1, 1<, 8poly1, 0, 0<, 80, poly2, 0<<;
cvars = Array@v, 3D;
newpolys = mat.cvars;
rels = Flatten@Union@Outer@Times, cvars, cvarsDDD;
newpolys = Join@newpolys, relsD;
gb = GroebnerBasis@newpolys, Prepend@vars, Last@cvarsDD,

Most@cvarsD, MonomialOrder ® EliminationOrder , Tolerance® tol,
CoefficientDomain ® InexactNumbers@Precision@newpolysDD, Sort ® TrueD;

rul = Map@Hð ® 8<L &, relsD;
gb = Flatten@gb �. rulD;
First@gbD �. Last@cvarsD ® 1D

floatPolynomialGCD@p1_, p2_, tol_D :=
Expand@PolynomialReduce@p1 * p2, floatPolynomialLCM@p1, p2, tolD,

CoefficientDomain ® InexactNumbersD@@1, 1DDD

¢ | £

15



Example 4: A Multivariate Polynomial GCD

This is example exF07 (referred to as cleanF7_list) at
http://www4.ncsu.edu/~kaltofen/software/manystln/

The input, if rationalized, has a nontrivial (exact) GCD (so this is not such a hard problem).

[Honking big input below: open at your own risk.]

Timing@fgcd = floatPolynomialGCD@exF07polys@@1DD, exF07polys@@2DD, 810^H-8L, 10^H-4L<DD

90.816051, 2. + 6. x + 10. x2 + 8. x3 - 2. x4 + 7.64022 ´ 10-11 y + 8. x y + 2.54509 ´ 10-13 x2 y -

8. x3 y - 8. y2 - 8. x y2 - 10. x2 y2 + 8. y3 - 4. x y3 - 6. y4 + 6. z - 10. x z - 10. x2 z +

2.09215 ´ 10-14 x3 z + 10. y z + 8. x y z + 4. x2 y z - 4. y2 z + 2. x y2 z - 8. y3 z + 6. z2 -

4. x z2 + 2. x2 z2 - 10. y z2 - 10. x y z2 - 10. y2 z2 - 2. z3 + 4. x z3 - 6. y z3 - 2. z4=

¢ | £

16



Example 5: Another Multivariate Polynomial GCD

Here is an example from a recent article by M. Sanuki.

c@x_, u_, n_D := x +â
j

n

u@jDj + 1
2

f2@x_, u_, n_D := x2 -â
j

n

u@jD - .5
2

g2@x_, u_, n_D := x2 +â
j

n

u@jD + .5
2

We create a pair of polynomials with proscribed GCD. We readily recover it using approximate arithmetic.

f@5D = Expand@f2@x, u, 5D * c@x, u, 5DD;
g@5D = Expand@g2@x, u, 5D * c@x, u, 5DD;

Timing@floatPolynomialGCD@f@5D, g@5D, 810^H-6L, 10^H-2L<DD

98.27652, 1. + 2. x + 1. x2 + 2. u@1D + 2. x u@1D + 1. u@1D2 + 2. u@2D2 + 2. x u@2D2 +

2. u@1D u@2D2 + 1. u@2D4 + 2. u@3D3 + 2. x u@3D3 + 2. u@1D u@3D3 + 2. u@2D2 u@3D3 + 1. u@3D6 +
2. u@4D4 + 2. x u@4D4 + 2. u@1D u@4D4 + 2. u@2D2 u@4D4 + 2. u@3D3 u@4D4 + 1. u@4D8 + 2. u@5D5 +
2. x u@5D5 + 2. u@1D u@5D5 + 2. u@2D2 u@5D5 + 2. u@3D3 u@5D5 + 2. u@4D4 u@5D5 + 1. u@5D10=

Here we see that, with some amount of noise thrown in, we can still recover a reasonable approximate GCD.

fnoise@5D = Expand@f2@x, u, 5D * Hc@x, u, 5D + .001L + .002D;
gnoise@5D = Expand@g2@x, u, 5D * Hc@x, u, 5D - .004L - .007D;
Timing@floatPolynomialGCD@fnoise@5D, gnoise@5D, 810^H-2L, 10^H-1L<DD

98.85655, 0.997 + 2. x + 1. x2 + 2. u@1D + 2. x u@1D + 1. u@1D2 + 2. u@2D2 + 2. x u@2D2 +

2. u@1D u@2D2 + 1. u@2D4 + 2. u@3D3 + 2. x u@3D3 + 2. u@1D u@3D3 + 2. u@2D2 u@3D3 + 1. u@3D6 +
2. u@4D4 + 2. x u@4D4 + 2. u@1D u@4D4 + 2. u@2D2 u@4D4 + 2. u@3D3 u@4D4 + 1. u@4D8 + 2. u@5D5 +
2. x u@5D5 + 2. u@1D u@5D5 + 2. u@2D2 u@5D5 + 2. u@3D3 u@5D5 + 2. u@4D4 u@5D5 + 1. u@5D10=
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Example 6: A Numeric System Caught  Misbehaving

This example is a Stewart platform system from Jan Verschelde’s web site.

http://www.math.uic.edu/~jan/Demo/movestew.html

It came to my attention from our QA department. We were getting twice as many solutions as expected (80 instead of 40), and half of
them both were huge and gave huge residuals (1018 or so), hence seemed somehow wrong.

[Another large system.]

Length@Variables@polysDD

9

To check, I artificially raised precision to 600 digits, and solved at high precision. There were still 80 solutions, of which 40  were still
"large", but  now they gave modest residuals. The time needed to solve at this precision was around 200 seconds.
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Misbehaving Numeric System...

Clearly something was afoot. After some reading I decided the issue was that the input coefficients, in order to give the "right" solutions,
need to satisfy certain relations and that they only did so to machine precision. Thus we got what would otherwise be solutions at
infinity, appearing around 1/(machine epsilon) in size. Use of modest tolerances removed these rogue solutions (or rather, sent them
packing to infinity, where they belong). This also ran around six times faster, as there is now  no need for high precision.

Timing@res = NSolve@polys, Tolerance ® 810^H-10L, 10^H-3L<D;D
Length@resD
Max@Abs@polys �. resDD
Max@Abs@Variables@polysD �. resDD

832.738, Null<

40

1.58882 ´ 10-14

8.53752
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SUMMARY

èPrecision and accuracy ideas from numerical computation can be adapted to the setting of numerical Gröbner bases.

é  Troublesome cases: Coefficient sizes might be orders of magnitude apart. A precision tolerance might then remove coefficients that are actually 
needed.
éAccuracy tolerances are less troublesome but often still require trial−and−error setting.

èMost examples covered seem to work efficiently and give reasonable results.

èTentative conclusions
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