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Abstract.  It  is  known  that  five  points  in  R3  generically  determine  a  finite  number  of  cylinders
containing  those  points.  We  discuss  ways  in  which  it  can  be  shown  that  the  generic  (complex)
number  of  solutions,  with  multiplicity,  is  six,  of  which  an  even  number  will  be  real  valued  and
hence  correspond to  actual  cylinders  in  R

3.  We  partially  classify  the  case  of  no  real  solutions  in
terms of the geometry of the five given points. We also investigate the special case where the five
given  points  are  coplanar,  as  it  differs  from  the  generic  case  for  both  complex  and  real  valued
solution cardinalities.
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1. Introduction
Given five generic points in R3  it is not hard to show that there are finitely many solutions to the set of equations
that  determine cylinders  containing  those  points.  This  is  to  be  expected  because cylinders  have  five  degrees of
freedom (a radius and four parameters to determine the axial line). Several papers prove that the generic number
of such solutions, in complex space, is six (counted with multiplicity) [4] [6] [8] [13]. Of these any even number
may be real valued.

This is of importance for several reasons. First we indicate two constraint geometry interpretations of the problem.

è Given five points in R3, find the smallest positive r  and axis parameters such that the cylinder of radius 2 r  with

those parameters tangentially encloses the balls of radius r centered at the points [8] [22].

è  A  common  need  in  scene  classification  [7]  is  to  find  a  best  fitting  cylinder  for  a  set  of  more  than  five  data
points. To do so one might start with an exact fit to five points, followed by optimization methods to get a best fit
to the full ensemble. See [13] for several references to applications of this.

In order to tackle either of  these it  is  necessary to find all  cylinders through five given points [13];  clearly it  is
useful to know the expected size of the solution set (or an upper bound, if  we restrict to only real valued solu−
tions). In this paper we discuss several aspects to this enumeration problem.

Some experimentation indicates that it is not infrequent, when working with pseudorandom point coordinates, to
have configurations with no real cylinder solutions. We investigate this situation in an attempt to understand the
geometry of the configurations that give rise to it. Another point of interest is the case where the five points are
coplanar.  In  this  situation  we  will  see  that  the  generic  number  of  complex  solutions  to  the  cylinder  parameter
equations is four. It turns out, however, that the number of real solutions is at most two. In discussing the case of
coplanar data we state a conjecture regarding the degenerate situation where there is a dimensional component to
the cylinder solutions. This is of interest insofar as configurations near one with such a solution set might exhibit
numerical instabilities in a computational setting.

The related problem of finding cylinders of a given radius through four given points in R
3 is discussed in [9] [10]

[15]  [22].  The  special  case  of  four  coplanar  points  is  discussed  in  [18].  In  contrast  to  cylinders  through  five
coplanar points, all cylinder solutions of given radius through four coplanar points can be real valued.



This paper is a companion to [13]. Substantial emphasis therein was placed on various aspects of solving systems
and  related  computation  for  purposes  of  deducing  properties  of  cylinders  through  five  points.  Here  we  rely
primarily on elementary arguments that cover the theory, with less focus on computational specifics. Experiments
that gave rise to this use code similar to that presented and explained in [13]. The rest of this paper is as follows.
Section 2 proves that there are generically six (possibly complex valued) solutions to the equations for cylinders
containing  five  given  points.  We  begin  by  formulating  polynomial  conditions  that  the  fourth  and  fifth  points
project to the same circle as the first three in a given direction, and work with the ideal formed by these polynomi−
als.  The main tactic is  a count of  solutions in projective space, followed by a simple computation to enumerate
solutions  at  infinity.  We then  cover  some implications  of  this.  Section  3  discusses  in  detail  the  case  of  no  real
solutions. Here the main tool is again the cocircularity polynomials; we now make observations about the behav−
ior  of  their  respective direction curves in  real  space.  In  section  4  we look  at  cases  that  have  six  real  solutions.
Section 5 investigates the special case when the points are coplanar. This is followed with a summary and some
directions of further inquiry.

One way to approach some of these problems, from the perspective of automated geometry, is to employ compre−
hensive Gröbner systems as in [20],  to classify both generic solutions and specialized configurations e.g.  where
the  number  of  solutions  becomes  infinite.  The  difficulty  is  that,  to  date,  the  computations  involved  have  been
intractable.  One  could  regard  the  alternate  approach  taken  in  this  paper  as  a  blend  of  computational  tools  and
human guidance, to make progress on problems for which fully automated methods seem to falter. That is to say,
we do not work with full−blown automated geometric deduction tools, but borrow a bit from underlying computa−
tional methods.

In the sequel we use "cylinder" to denote solutions to polynomial equations for a cylinder, regardless of whether
they are real or complex valued.  To specify  the former we use "real cylinders".  Typically  we will  use the term

"parameters" to refer to coordinates in the configuration space of the five points (which we may identify with R
15

or even C15). The values that specify a cylinder, to wit, radius and axial line features, are generally referred to as
"variables" (since they are what we solve for in finding cylinders) or as "cylinder parameters" to distinguish them
from the coordinate parameters already mentioned.

I thank the anonymous referees of this and a prior draft. Their several useful remarks and suggestions improved
both exposition and references.

2. Counting (Possibly Complex) Cylinders Through Five Points
We recall a way of setting up the problem that gives rise to two equations in two unknowns. This specific formula−
tion is used in [13] but similar methods are given in [6] [8]. We place one point at the origin, another at H1, 0, 0L,
and a  third in  the  x y coordinate plane at  Hx2, y2, 0L.  We project  these onto  the  set  of  planes through the origin

parametrized by normal vector Ha, b, 1L. In each such projection they uniquely determine a (possibly degenerate)
circle.  We  obtain  the  two  polynomials  below  by  enforcing  that  the  two  remaining  points,  Hx3, y3, z3L  and
Hx4, y4, z4L, project onto the same circle.

I-x3 y2 - b2 x3 y2 + x3
2 y2 + b2 x3

2 y2 + x2 y3 + b2 x2 y3 - x2
2 y3 - b2 x2

2 y3 +

2 a b x2 y2 y3 - 2 a b x3 y2 y3 - y2
2 y3 - a2 y2

2 y3 + y2 y3
2
+ a2 y2 y3

2
- b x2 z3 -

b3 x2 z3 + b x2
2 z3 + b3 x2

2 z3 + a y2 z3 + a b2 y2 z3 - 2 a b2 x2 y2 z3 -

2 a x3 y2 z3 + b y2
2 z3 + a2 b y2

2 z3 - 2 b y2 y3 z3 + a2 y2 z3
2
+ b2 y2 z3

2,

-x4 y2 - b2 x4 y2 + x4
2 y2 + b2 x4

2 y2 + x2 y4 + b2 x2 y4 - x2
2 y4 - b2 x2

2 y4 +

2 a b x2 y2 y4 - 2 a b x4 y2 y4 - y2
2 y4 - a2 y2

2 y4 + y2 y4
2
+ a2 y2 y4

2
- b x2 z4 -

b3 x2 z4 + b x2
2 z4 + b3 x2

2 z4 + a y2 z4 + a b2 y2 z4 - 2 a b2 x2 y2 z4 -

2 a x4 y2 z4 + b y2
2 z4 + a2 b y2

2 z4 - 2 b y2 y4 z4 + a2 y2 z4
2
+ b2 y2 z4

2M
One observes from this that the number of solutions is generically finite, and by Bezout’s theorem it is moreover
bounded  by  nine,  as  each  polynomial  has  total  degree  of  three  in  the  variables  Ha, bL.  Moreover,  using,  say
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bounded  by  nine,  as  each  polynomial  has  total  degree  of  three  in  the  variables  Ha, bL.  Moreover,  using,  say
pseudorandom values for the coordinate parameters and solving for the cylinder parameters as per [8] or [13] one
obtains six solutions. Thus we know there are generically at least that many solutions.

Before developing the theory it might be instructive to see how these curves intersect real space. We work with an
explicit  set  of  points:  H0, 0, 0L, H1, 0, 0L, H5�3, 3�4, 0L, H5�4, 1, 4�5L, H3�4, 1�3, 1�2L.  Plugging  these
parameters into the polynomials above gives 

I-9925 - 12 960 a + 9612 a2
+ 2000 b + 9000 a b + 6480 a2 b -

5713 b2
- 20 160 a b2

+ 12 800 b3, -1063 - 324 a + 144 a2
+

1014 b + 792 a b + 486 a2 b - 559 b2
- 1512 a b2

+ 960 b3M

The zero sets are plotted in Figure 1. One sees from the curve intersections that there are two real solutions to the
pair of equations, hence two real cylinders through this particular set of five points.

Figure 1
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PROPOSITION 1. Configurations that give rise to an empty solution set or to a solution set of positive dimension 
lie on a variety in the configuration space.

PROOF  (sketch).  One  obtains,  in  principle,  a  description  of  the  generic  solutions  by  forming  a  lexicographic
Gröbner basis for the system (0). The process of doing this gives rise to the generic basis because at steps along
the way one is allowed to divide by polynomials in the indeterminates. All inputs that fail to give the generic basis
thus must satisfy conditions among the coordinates that cause these polynomials, upon specialization, to vanish.
As there are finitely many steps in forming the basis, there are finitely many such conditions. As these vanishing
conditions  are  defined  by  polynomials,  their  union  is  a  variety.  We  may  further  refine  it.  Some  configurations
might fail  to give the generic basis but still  yield a nonzero finite solution set. If  we exclude the conditions that
give this situation, we are still left with a variety for which we get either zero or infinitely many (complex valued)
solutions. �

DEFINITION 1. Above we saw that the subset of nongeneric configurations that give either zero or infinitely 
many solutions comprises a variety. We refer to this as the "bad variety", denoted Vbad. Several results below are 
stated in terms of configurations that miss this variety.

We remark that Vbad is a part of the discriminant variety (see [12]).

PROPOSITION 2. There is a nonempty open set in our configuration space (which is, in effect, R
15) for which we 

obtain no cylinders in R3.

PROOF. If one point is contained strictly within the convex hull of the other four then, as cylinders are convex,
we have no real cylinders containing the five points. Small perturbations in real configuration space do not alter
the situation that one is inside the hull of the other four. Hence there is an open set in real configuration space for
which we obtain no real cylinders. �
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COROLLARY 1. The maximum number of cylinders, already shown to be bounded by nine, is in fact no larger 
than eight.

PROOF. This is a consequence of the following facts. (i)  Restricting to real inputs does not move us out of the
generic case because this restriction is not algebraic. (ii) Given real data, complex solutions appear in pairs. (iii)
The case where one point lies in the hull of the other four contains an open subset in the real part of the parameter
space. Hence there is an open set in parameter space for which there are only complex solutions.  So in general
there must be an even number of solutions. �

This also shows that the the number cannot be seven. So we know it is either six or eight.

THEOREM 1. Five generic points in R3 determine six distinct sets of cylinder parameters, of which an even 
number are real valued.

Proofs may be found in [4]  [6]  [8]  [13].  They make use of  various algebraic or geometric features particular to

this  problem.  An  algorithmic  approach  in  [14]  proves  this  blindly,  that  is,  without  use  of  geometry−specific
features. (As with many algorithms in geometry, one can argue as to whether this is a good or bad thing, insofar
as automated proofs often convey little insight. Regardless, algorithmic technology should not be ignored.) Proofs
in  [13]  count  roots based on either a Gröbner basis  or resultant computation from (0).  We give an independent
proof below.

PROOF. We will  count the solutions at infinity for the polynomials shown in (0).  We do this by homogenizing
and setting the homogenizing variable to zero to get the initials (that is, the degree forms). They are

I-b3 x2 z3 +b3 x2
2 z3 +a b2 y2 z3 -2 a b2 x2 y2 z3 +a2 b y2

2 z3,

-b3 x2 z4 + b3 x2
2 z4 + a b2 y2 z4 - 2 a b2 x2 y2 z4 + a2 b y2

2 z4M

The solution set for Ha, bL consists of the three cases a®-b H1- x2L �y2, a® b x2 �y2, and b® 0. We thus obtain
three solutions at infinity for the homogenized system (these are simply the directions of the three lines between
any pair of the first three points). The number of solutions from the Bezout theorem, nine, counts these three, and
hence there are six solutions in affine space. �

In [13] a mixed volume computation is done in order to bound the number of solutions using a method presented

in [23]. The value obtained in this computation is 8, and from [23] we moreover know that that will be the generic
number of solutions for problems with the same Newton polytope for monomial exponent vectors. To understand
why this cylinder problem is not generic for the mixed volume computation, note that the initials are identical up

to a constant multiple; any random perturbation (say, add b3 to the first polynomial) will give only one solution at
infinity, and therefore yield 8 finite solutions.

PROPOSITION 3. There is a closed set with nonempty interior in R
15
- Vbad for which we obtain six real 

cylinders provided we count solutions by multiplicity.

PROOF (sketch). We may count the number of real roots using the Rule of Signs [19] on the univariate polyno−
mial  in  any  generic  lexicographic  Gröbner  basis.  This  gives  a  closed  condition  for  the  boundary  of  the  set  of
configurations that yield six sets of real valued cylinder parameters. To show it has nonempty interior it suffices
to demonstrate one such configuration that  has no multiple  solutions.  But  this  is  the case for the two six−real−
cylinder examples shown in [13] (one of which is formed from two regular tetrahedra sharing a common face). �

Similar argument shows that the sets in R
15
- Vbad  that give rise to two or four cylinders real cylinders also have

nonempty interiors. From Proposition 2 we already knew this to be the case for configurations that give no real
cylinders.

It may be useful to look at Theorem 1 in the context of what are known as comprehensive Gröbner bases [2] [17]

[24]. This construction in effect allows one to circumvent the problem that Gröbner bases are not continuous in
their input data; indeed it seems designed to address that defect. Such a basis contains encoded all Gröbner bases,
for a given ideal with respect to a specified term order, under all specializations of the parameters. It  does so in
essence by doing multiple polynomial reductions on a given polynomial in the basis, to simultaneously allow for
the possibility that any nonnumeric leading coefficient might or might not be zero. The upshot is that the coeffi−
cients of the comprehensive Gröbner basis vary continuously in the parameters of the configuration. The typical
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the possibility that any nonnumeric leading coefficient might or might not be zero. The upshot is that the coeffi−
cients of the comprehensive Gröbner basis vary continuously in the parameters of the configuration. The typical
use of such a basis is in concrete examples when one wishes to make case distinctions based on parameter values.
When a lexicographic term ordering is utilized we can say a bit about the structure of such bases in the (generic)
case of finite solution sets, using insight gained from our examples.

For instance, suppose we have six distinct solutions in a situation where the Shape Lemma [1] does not apply (see

[13] for two such examples involving six distinct real valued cylinders). We consider the basis for such a numeric
specialization of the general problem. From Gröbner basis theory we know it contains a univariate polynomial in
the  lexicographically  last  variable  (say,  a).  The  degree  of  this  polynomial  must  be  less  than  six  as  we  have
assumed the Shape Lemma does not  hold for this particular ideal  and term ordering. We refer to the remaining
variables as "higher".

We return for the moment to the general case wherein coefficients are again indeterminate parameters that vary in
our  configuration  space.  Note  that  a  comprehensive  Gröbner  basis  encodes,  in  vanishing  conditions  of  leading
coefficients, the basis for specializations of the sort just described. It also encodes the generic basis. By the Shape
Lemma this latter contains linear polynomials in each of the higher variables with lead coefficients that generi−
cally  do  not  vanish.  By  [11]  all  parametrized  coefficients  of  at  least  one  such  linear  polynomial  must  become
identically  zero  for  the  nongeneric  type  of  specialization  under  consideration  (otherwise  we  would  have  fewer
than six solutions). Hence the comprehensive basis must also contain nonlinear polynomials in those variables.

Now consider a generic specialization of the configuration parameters. Again invoking results from [11] we know
that solutions are obtained from the subset of the comprehensive basis that encodes the generic case (that is, the
generic  degree  six  univariate  polynomial  and  the  polynomials  that  are  linear  in  each  of  the  higher  variables).
These  are  shown  also  to  satisfy  those  polynomials  that  are  nonlinear  in  the  higher  variables.  So  such  a  linear
polynomial (say, in the variable b) must have the form f HparamsL Hb- gHaLL where the second factor divides any

corresponding  polynomial(s)  of  higher  degree  in  b.  In  other  words,  when  the  first  factor,  which  involves  only
parameters, is nonzero, then where the second is satisfied all those in higher degree must also be satisfied; more−
over they cannot all vanish when the first factor vanishes, so they must be divisible by the second factor.

3. Configurations With no Real Solutions
THEOREM 2. Suppose we have four noncoplanar points in R

3. They are the vertices of some tetrahedron. Then 
there is an open set S containing the open tetrahedron and a dense subset of its boundary in the configuration 
space, such that if the fifth is chosen in S there will be no real cylinders containing all five points.

REMARK. If the fifth point is inside the convex hull of the other four then we already know this result. Now take
the tetrahedron formed by the four points.  Through each vertex the planes containing the three coincident faces
form a cone with triangular base. If the fifth point lies within that cone then it obscures that vertex, i.e. the vertex
lies inside the new tetrahedron formed by the fifth point and the remaining three. Hence this case is also covered
by  the  "one  point  in  the  hull  of  the  others"  situation.  Note  that  in  this  case  the  fifth  point  need  not  be  near  in
distance to the other four.

PROOF 1. Suppose the fifth point lies on a face of the tetrahedron formed by the other four. Then the convexity

argument still  tells us that no cylinder in R3  can contain all five points. As we assumed the tetrahedron coordi−
nates are generic, we are in one of two situations: either having the fifth point lie on a face formed by three others
puts the configuration in Vbad or it does not. We show that generically it does not, or in other words, the algebraic
condition that four points are coplanar is not a condition for the bad variety. That this is so follows from the trivial
observation  (verified  computationally)  that  there  are  configurations  with  four  coplanar  points  that  give  rise  to
lexicographic Gröbner basis with the generic "shape";  were this  a condition to lie  in  the bad variety then every
configuration with four coplanar points would be in it.

The preceding argument shows that generically the fifth point is not on a tetrahedral face of the other four, so the
set of such fifth points is dense in the set of all boundary points of the tetrahedron. By genericity we may assume
that we have a univariate polynomial of degree six for one of the cylinder parameters. As there are no real cylin−
ders containing this configuration, this polynomial  has exclusively nonreal roots. These roots vary continuously
with  the  configuration,  hence  the  imaginary  parts  remain  nonzero  under  small  perturbations of  the  five  points.
Thus there is an open set around this point on the boundary for which we still obtain no real roots. As we require

real roots in order to obtain cylinders in R3 this suffices to finish the proof. �
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PROOF 2. This line of reasoning was suggested by [Richard Bishop, private communication]. In order for all five
points to lie on a cylinder there must be a plane tangent to the unit sphere, and a circle in that plane, such that they
all project onto that circle. Suppose the fifth point is inside or on the boundary of the tetrahedron formed by the
other four. Then it is clear that the projection of the five points onto any such plane will have the projection of this
last  point  contained  in  the  quadrilateral  formed by  the  projection of  the  other  four.  Hence  any  quadratic  in  the
plane that contains all five projected points must be a hyperbola (because all other quadratic curves are convex).
Moreover the parameters of the hyperbola equation are continuous in the locations of the five points. As the set of
projection planes is compact, a small perturbation of the fifth point beyond the hull of the other four will not alter
the situation that the five points project onto hyperbolas in all such planes, hence they cannot lie on any cylinder

in R3. Hence from every boundary point on the tetrahedral hull of the four points, we may perturb outward some
minimal distance (depending on that boundary point) and still have no real cylinders. As the tetrahedron boundary
is compact we deduce that there is a minimum positive distance we can move outside and still not get real cylin−
ders. �

COROLLARY TO PROOF. There is an open set S containing the closed tetrahedron, such that if the fifth is 

chosen in S there will be no cylinders in R3 containing all five points. In other words, the "bad" variety in 
configuration space is not an issue.

We now wish to show that all configurations that give no real cylinders arise in the setting of Theorem 2. Specifi−
cally we state the following conjecture.

CONJECTURE 1. Suppose we have a configuration of five points in R
3 for which no real cylinders exist, and 

moreover assume that no point lies in the hull of the others. Then one of the points can be moved anywhere inside 
the convex hull of the full set and still we will get no real cylinders. In particular we could move this point along a 
line segment from outside to inside the hull of the other four, and at no point on that path would we get real 
cylinders. Thus we could regard the given configuration as a perturbation of one that has one point inside the hull 
of the other four, effectively providing a converse to Theorem 2.

We make observations of sufficient conditions for a proof and then state as a theorem a special case wherein we
can fullfill the conditions. First consider the two curves that are solution sets to the two polynomials in (0). They
are  cubics  that  have  one  or  more  closed  topological  components  in  two  dimensional  real  projective  space,  and
because they are cubic they each have at least one real component that goes to infinity. (It is well known that they
are connected as complex curves; by "components" we mean the obvious thing with respect to intersections with
real space.)

We regard each point on such a curve as a solution to the direction parameter equations given by the four points
in configuration space lying on a cylinder with axis in that direction. In other words, each point on the solution
curve in parameter space defines a cylinder through the four points in configuration space that were used to form
that  equation.  Suppose  that  at  a  solution  on  one  such  component,  the  fifth  point  lies  inside  the  cylinder  thus
obtained (we are being loose with terminology but trust the meaning of "inside a cylinder" is clear).

Claim: For generic configurations it must then lie inside all cylinders defined by points on that affine component
of the solution curve.

The proof of this claim has a small  complication. Specifically, we must show that in order for the fifth point to
"escape" outside the cylinder containing the other four, it must cross that cylinder (in contradiction to our hypothe−
sis that there are no real cylinders containing all  five points).  A priori there is another way it  might escape: the
cylinder containing four can degenerate to a plane and subsequently reverse its "open" side. This degeneration can
arise  if  the  four  points  project  onto  a  line  for  some direction.  Such  a  direction  must  then  lie  in  all  four  planes
containing three of the four points. This gives an overdetermined and generically inconsistent set of linear condi−
tions. We thus have verified the claim for generic configurations: if the fifth point is inside a cylinder containing
the other four, then it stays inside the cylinders defined by all points on that component of the solution curve, and
these cylinders each contain the other four points.

Next we observe that, were this true not just on one topological component of the direction solution curve, but on
all of them, then that fifth point works in the conjecture. We see this as follows. When the fifth point lies inside
all cylinders defined by a solution curve component, then it projects along the cylinder axis to a point inside the
circle that intersects the projections of the other four. The same must hold for any other point in the interior of the
convex hull  of  the five  points.  This  is  because such a  point,  written as a  convex combination of  the five,  must
either be in the interior of  the tetrahedron defined by the first four (and thus project to the interior of  the circle
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convex hull  of  the five  points.  This  is  because such a  point,  written as a  convex combination of  the five,  must
either be in the interior of  the tetrahedron defined by the first four (and thus project to the interior of  the circle
they define), or else have a nontrivial component of that fifth point and again thereby project to that circle interior.

We now proceed to construct a solution on one direction curve, that is, a cylinder containing four of the points,
such that the fifth is inside it. We can arrange our four so that three are in the x y coordinate plane and the remain−
ing two have a segment joining them that intersects the triangle defined by the first three (using a rotation, such an

arrangement can always be found for a configuration of five points in R
3). We place the fourth point on the z axis

beneath  the  origin.  Projecting  from  the  fourth  point  onto  a  plane  in  the  direction  of  the  segment  between  the
fourth  and  fifth  points  gives  a  unique  circle  containing  the  first  three.  The  cylinder  along  that  direction  and
containing that circle thus encloses the fourth and fifth points. Now we simply move one of the direction coordi−
nates,  forming new projections and cylinders containing the first  three points,  until  one of  the remaining points
(say, the fourth) hits that cylinder. What we have done is to arrive on one of the two direction solution curves we
set up in (0). Thus we obtain a cylinder containing four points and enclosing the fifth. From the discussion above
we know that this holds for all cylinders defined by this affine component of the curve of directions.

At this point we have a sufficient condition for the conjecture to hold. We simply require that each of the solution
curves have only one affine component.

THEOREM 3. Given five points in R3 for which there are no real solutions to the cylinder equations, suppose 
there are three such that
(i) The segment joining the remaining two intersects the triangle bounded by those three.
(ii) The two curves of solution directions for cylinders containing those three and either the fourth or fifth 
respectively, each have only one component in real projective space.
Then either the fourth or fifth point can be moved anywhere inside the hull of the five and there will be no real 
cylinder containing this new point and the other four.

As remarked above we can always order the points in such a way that the first condition holds. But then in general
the second condition will  not  hold.  We believe the conjecture to be true all  the same, though we do not have a
proof at this time. We also mention that extensive graphical evidence suggests that most often these curves have
one  component  in  two  dimensional  real  projective  space.  This  is  found  by  taking  random examples  with  three
points in the x y coordinate plane and the fourth and fifth above and below respectively, throwing away those that
have real solutions, throwing away from the rest those for which the segment between fourth and fifth points does
not go through the triangle bounded by the first three, and plotting the zero level sets for the two cylinder equa−
tions in remaining cases.  "Most often", in this setting, refers to specifics of how we select our five points; we use
pseudorandom values in a unit interval for each of the free parameters. In any case it would seem that this method
applies frequently to configurations that give rise to no real cylinders. Finally, we remark that such curves have
either one infinite component, three infinite components, or one infinite and one finite component (homotopic to a
circle). This is easily shown by a root counting argument.

We illustrate with a configuration that meets the conditions of the hypotheses. There are no real cylinders contain−
ing  the  set  of  points  H0, 0, 0L,  H2, 0, 0L,  H1, 2, 0L,  H5�4, 1, 1�2L,  and  H3�4, 1,-1�3L.  This  point  set  is  shown  in
Figure 2.  It  may  be  seen  that  the  segment  joining  highest  and  lowest  points  pierces the  triangle  formed by  the
other three.
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Figure 2
Here are the direction parameter polynomials  obtained by requiring that  the fourth and fifth  points  respectively
project onto the circles determined by the first three points and a given direction vector.

I-575-40 a-384 a2-40 b-200 a b+160 a2 b-159 b2
-40 b3,

-207-24 a-128 a2+24 b+72 a b-96 a2 b-47 b2
+24 b3M

Figure 3 plots of their respective zero sets. It is clear from the way the respective affine parts will meet at infinity
that each has one topological component in real space, and moreover they do not intersect at finite points. Hence
Theorem 3 applies to this configuration.

Figure 3

-7.5-5-2.502.557.5
-7.5
-5

-2.5
0

2.5
5

7.5

Note that we can weaken the second hypothesis of Theorem 3 so that the curves may have multiple components,
provided the components for one are not separated by any component of the other. Graphical evidence supports
the belief that this weaker requirement is always satisfied. Clearly a proof to this effect would suffice to prove the
conjecture.

4. Configurations that have six real solutions
We describe in brief two cases that have six solutions. Further detail may be found in [13].

(1). Start with four points forming vertices of a square in the x y plane. This is the base of a pyramid with the fifth
point as its apex above the centroid of this square. We obtain two horizontal cylinders each passing through a pair
of  opposite  triangular  faces  of  the  pyramid.  The  remaining  four  each  pass  through  a  triangular  face,  angled
upward, and an edge of the base. This case was first posted in [21].
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(2). Take as five points the vertices of  two regular tetrahedron sharing a common face. This presents an interest−
ing set of symmeries. Any cylinder will have a "mirror image" obtained by reflection across the joined face, and
also have two "conjugates" obtained by rotation of Π �3. We show a visualization of this in Figure 4; the common
face lies in the horizontal plane.

Figure 4

We now show the planar curves in real space that one obtains from the pair of cocircularity conditions in (0). We
also perturb the five points slightly and show the resulting intersections. This is because the unperturbed case is a
degenerate setup and the actual curves are each three lines. The perturbation indicates how each triad of lines can
split at intersections into pairs of curves in the projective plane.

Figure 5

-10 -5 0 5 10
-10

-5

0

5

10

-10 -5 0 5 10
-10

-5

0

5

10

This  configuration  has  some  interesting  properties.  If  the  tetrahedron  edge  length  is  3  then  the  common
cylinder radius is 9�10. It is related to a configuration from [15], wherein we have four points and a fixed radius
for which there are twelve real cylinders through the points. For that we take vertices of one of the tetrahedra as
our four points, and 9�10 as the common radius. We obtain four sets of six cylinders by gluing tetrahedra respec−
tively to each face of the given one. But these pair off for a total of twelve cylinders.

This configuration is also, perhaps surprisingly, related to the case of no real cylinders. We start with the doubled
regular  tetrahedra.  There  are  two  vertices  not  on  the  common  face.  Now  let  one  of  them move  along  the  axis
connecting it to the other. The two and three fold symmetry considerations indicated above imply that we either
have six real cylinders (counting multiplicity), or none. It is not hard to realize that either moving it "too close" or
"too far" from the opposite vertex gives rise to a configuration approaching the case of one point inside the hull of
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"too far" from the opposite vertex gives rise to a configuration approaching the case of one point inside the hull of
the other four. This is  quantified in an explicit  computation in [13].  It  is  also makes for an interesting dynamic
geometry visualization to change the one vertex and depict the six cylinders coalescing into three pairs (multiple
roots) before vanishing from real space [5].

It  is an interesting question whether all  cases of six real cylinders arise as "perturbations" of the two cases dis−
cussed above. As a starting point it would be useful to know whether they can be perturbed into one another with
six real cylinders for every configuration along the perturbation.

5. Nongeneric Configurations
Thus far we have discussed exclusively the generic situation. It is of interest to make a few observations about the
nongeneric case. This in turn sheds light on cylinder solutions for point configurations that are generic but "near"
to such nongeneric ones.

PROPOSITION 4. Sets of five coplanar points are not generic insofar as they do not give six solutions to the 
cylinder equations. In general they give four such solutions.

PROOF. This follows from a straightforward computation with the pair of  polynomials from (0).  We substitute
zero for the two nontrivial z parameters and compute a Gröbner basis in terms of the cylinder direction variables

Ha, bL.  This is in the form specified by the Shape Lemma and has a univariate polynomial of degree four with a
second polynomial linear in the remaining variable. Hence for coplanar configurations there are generically four
solutions rather than six. Of course there are further degeneracies that can arise. If, for example, four of the points
are collinear then there will be infinitely many cylinders containing all five.

To finish the proof we must show that there are no cylinders parallel to the x y coordinate plane (as we tacitly set

the z coordinate of the normal vector to 1). But this is clear from the fact that such a cylinder would intersect the
coordinate plane in a pair of lines, and generically the five coplanar points do not lie on any pair of lines. �

COROLLARY. As configurations of five points move toward a generic coplanar configuration, two of the six 
(possibly complex) cylinder solutions go to infinity.

This shows that in any comprehensive Gröbner basis for the system, using a lexicographic ordering, the univariate
polynomial  of  generic degree six  has leading and second coefficients  vanish when the points  are coplanar.  The
third coefficient will in general not vanish in this situation.

We now describe what happens in the generic coplanar case.

THEOREM 4. Given five coplanar but otherwise generic points in R
3 there are four (complex) cylinders 

containing them. Of those, either zero or two will be real cylinders.

PROOF. That there are four complex cylinders was noted in the proof to Proposition 4. The five points uniquely
determine a quadratic curve in the plane in which they lie, and generically it  is either a hyperbola or an ellipse.
The intersection of a cylinder with a plane is likewise a quadratic in that plane. Thus any cylinder containing five
coplanar  points  contains  the  entire  quadratic  curve  they  determine.  If  that  curve  is  a  hyperbola  then  no  real
cylinder  can  contain  it.  If  instead  it  is  an  ellipse  then  there  are  two  real  cylinders  that  contain  it.  These  two
cylinders have radial axes that each go through the center of the ellipse and lie in the plane perpendicular to the
ellipse minor axis, and their angle of intersection is determined by the eccentricity of the ellipse. �

For illustration we show in Figure 6 the case of two real cylinders when the points (all in the x y coordinate plane)

are H1, 0, 0L, H-1�3, 1, 0), H4, -1, 0L, H1�2, 2�3, 0L, and H1�4, -1, 0L.
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Figure 6

We can use the computational construction (0) to shed light on the problem of counting the number of cylinders

of a given fixed radius through four points (which, as noted in [15], is equivalent to the problem of counting the

number of lines simultaneously tangent to four given spheres of equal radius). As the radius is fixed (say, to 1),
we are no longer free to rescale so we would use Hx1, 0, 0L for our second point. We would project to circles using
only two points along with the given radius. An important difference to arise is that for projections of two points
onto  any  given  plane,  there  are  two  circles  of  the  given  radius  containing  them.  This  ansatz  would  lead  us  to
expect twice as many solutions for this problem as we obtained for counting cylinders through five points. That
there  are  in  fact  twelve  (not  necessarily  real  valued)  cylinders  of  given  radius  through  four  generically  placed
points is a theorem in [15]. In the special case that the points are coplanar, that there are eight such cylinders is a

result of [18]. All of them can be real valued which is an interesting contrast to the result of Theorem 4 above. We

remark that the generic number of complex solutions to these systems is obtained algorithmically in [14].

We would like a converse to Proposition 4.  We begin with the observation that any configuration with four (or
five)  collinear  points,  or  three  collinear  points  and  the  remaining  two  on  a  parallel  line,  will  contain  infinitely
many cylinders. We would like to know whether these are the only configurations for which that is the case. We
note that a similar situation was shown in [3] for having infinitely many lines tangent to four given spheres.

Once three noncollinear points are fixed in a plane, there are finitely many ways to combine the remaining two
points such that one of the above conditions holds. For any such combination, there are two degrees of freedom in
how the points are placed. We will show that this is consistent with dimensional considerations.

Suppose  we  have  infinitely  many  solutions.  If  they  arise  from but  finitely  many  axial  directions,  then  one  can
readily show that any infinite solution set comes about from four collinear points or points lying on two parallel
lines, so that the axis is uniquely determined. We now assume this is not the case, that is, we have infinitely many
axial  directions.  Consider  our  axial  direction  cubics  from  (0).  In  order  to  have  infinitely  many  solutions,  the
algebraic curves that are solution sets to these two polynomials must share a component. That is, on a component
of directions in which four points project onto a circle, the fifth must project onto that same circle. 

Observe that cubic equations of the form imposed by our choices above have eight degrees of freedom (general
cubics have ten coefficients but  ours lose one degree three term, and the cubics are only defined up to nonzero
scalar multiplication, giving eight degrees of freedom). Hence pairs of cubics of that form have sixteen parame−
ters. The set of pairs we can actually attain has eight degrees of freedom (from the eight coordinates not a priori
known). In order that a pair share a component, they must factor (they cannot be identical unless a pair of points
coincides, in contradiction of hypotheses). The set of pairs that share a common factor has dimension ten. Thus
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known). In order that a pair share a component, they must factor (they cannot be identical unless a pair of points
coincides, in contradiction of hypotheses). The set of pairs that share a common factor has dimension ten. Thus
we expect the dimension of the set of attainable cubic pairs that share a component to be given by the intersection
dimension, which is two.

CONJECTURE 2. Any configuration of five distinct points for which there is a dimensional component to the 
cylinder parameter solution set must be coplanar. Either four points are collinear, or three are collinear with the 
remaining pair on a line parallel to that containing the first three.

This  conjecture,  alas,  is  not  true  as  stated.  In  particular  it  does  not  hold  in  complex  space.  Here  is  a  specific
configuration violating the hypotheses, for which the solution set is infinite.

H0, 0, 0L, H1, 0, 0L, H-2, 8 � 5 - H6 äL � 5, 0L, H2, -2, 1L, H-2, 14 � 5 + H12 äL � 5, -3L
It remains an open question whether there are configurations with real coordinates which comprise a counterexam−
ple to the conjecture. Attempts to prove this via computational tactics (formulate relations based on factoring of
the  polynomials  and  equating  a  pair,  finding  relations  among  the  data  parameters,  then  checking  that  no  real
solutions can exist) have foundered to date due to computational complexity. That complex solutions can exist is
already a bad sign insofar as it means one must use real solving technology e.g. cylindrical algebraic decomposi−
tion, and this is known to be computationally intensive.

6. Summary
We reviewed in brief the fact  that  there are generically six solutions to the equations for cylinders through five

points in R3,  noting that  of  these any even number, counting multiplicity,  may be real valued.  We discussed in
some detail  the  case  where there  are  no  real  valued  solutions.  Specifically  we  have  a  theorem and  conjectured
converse relating the case of no real cylinder solutions to perturbations of having one point within the convex hull
of the other four. We also described configurations for which there are six real solutions.

We proceeded to the special  case where the points are coplanar. In this situation generically there are only four
solutions, and, in contrast to the noncoplanar case, at least two are not real valued. When two are real valued and
distinct, small perturbations from coplanarity will not alter this situation. A natural question is whether there is a
plausible conjecture, similar to that for the case of no real cylinders, to the effect that all cases of two real cylin−
ders are perturbations of coplanar cases.

It would be interesting to get a geometrical description of what configurations will give rise to the other numbers
of real valued cylinders. In [13] it is observed that all computational examples observed having six real solutions
appear to be perturbations of the two particular configurations we mentioned. But this is quite far from a system−
atic understanding of the geometry of five point configurations that give six real solutions. We seem to know even
less about the case of four real solutions.

Related  to  the  geometric  classification  of  where  the  number  of  real  or  complex  solutions  changes,  there  is  the
algebraic  description  via  real  and  complex  algebraic  sets.  From  this  point  of  view  it  would  be  nice  to  better
understand the discriminant variety [12],  [16].  Unfortunately this  seems to  be computationally  intractable using
existing technology.
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