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Abstract

I will show how lattice reduction and branch−and−bound methods may be used in
tandem to solve Frobenius instance problems. We apply much the same methods to
other aspects of finding Frobenius numbers. Moreover the instance solver can be used
to give good (as in tight, with high probability) bounds on the Frobenius number, in
many cases where the latter computation is intractable with current methods.

Part 1: Review integer linear programming and Frobenius instance solving

Part 2: Show further applications to Frobenius number problem
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Introduction

The Frobenius Instance problem

One is given a set of nonnegative integers A = 8a1, ...,an< and a target value k. We
wish to know when k can be written as a nonnegative integer combination of the ele−
ments of A (if we relax the nonnegativity constraint on the multipliers, then clearly it
can be done iff k is a multiple of the GCD of A). This problem goes by other names,
among them the postage stamp problem (given several stamp denominations, how to
obtain a given total value?) and the change making problem (same idea).

The common feature to this and related problems will be that we take restricted inte−
ger combinations of integer vectors to fulfill some task. That is to say, we work with
sets of constrained linear diophantine equations.

The Frobenius number problem

SImple to state. Given a set A as above, with stipulation that gcd is 1. Find the largest
integer k such that k CANNOT be represented as a nonnegative combination of A.
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Integer linear programming (ILP) with lattice reduction

The idea behind the integer linear programming

A blend of classical "branch−and−prune" and more recent lattice reduction methods
in a way that surpasses what either alone can typically achieve.

A simple Frobenius instance example

We start with a simple example. We are given

In[37]:= A = 812 223, 12 224, 36 674, 61 119, 85 569<;
b = 39 999 425;

We wish to find a nonnegative integral combination of elements of A that sum to b.
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Integer linear programming (ILP) with lattice reduction

Step 1: Allow negative integers

Our first step is to find an integer combination, waiving the nonnegativity restriction.
We also find a basis for the integer null space of A. This is important because our
problem will then be recast into finding a combination of null vectors to add to the
solution, so that the final result is nonnegative.

The method we use for find ing a solution and null space is from a 1966 article by
Blankenship.

In[39]:= 8soln, nulls< = systemSolve@8A<, 8b<D

Out[39]= 880, 0, -2, 5945, -3778<,
880, -1, 1, 1, -1<, 81, 3, 1, 0, -1<, 8-3, 1, -1, 1, 0<, 82059, 157, -3336, 2687, -806<<<

We see that 80, 0,-2, 5945,-3778<.A == b and moreover we have our null space
generators. We note that our solution vector has negative elements, hence we will
need to do more work.
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ILP with lattice reduction

Step 2: Find a "small" solution

Our next step is strictly for efficiency. We change our solution using a lattice reduc−
tion known as the embedding method. The object is to get a solution vector with
smaller and more evenly balanced entries.

In[40]:= soln2 = smallSolution@soln, nullsD

Out[40]= 8-336, 10, 723, -298, 417<
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ILP with lattice reduction

Step 3: Set up a linear programming problem to enforce nonnegativity

We now define a set of variables, one for each null space basis element. We then
form a set of linear polynomials.

In[49]:= vars = Array@x, Length@nullsDD;
linpolys = soln2 + vars.nulls

Out[50]= 8-336 + x@2D - 3 x@3D + 2059 x@4D, 10 - x@1D + 3 x@2D + x@3D + 157 x@4D,
723 + x@1D + x@2D - x@3D - 3336 x@4D, -298 + x@1D + x@3D + 2687 x@4D, 417 - x@1D - x@2D - 806 x@4D<

We will have a constraint satisfaction problem, to wit, that each element of the above
sum to a nonnegative integer. So how do we intend to obtain this? We set up a branch−
ing loop that uses ordinary linear programming to enforce nonnegativity, and branch−
ing to obtain integrality.
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ILP with lattice reduction

Step 3 small print

More  specifically,  LP  is  used  to  solve  "relaxed"  problems,  now  over  the  reals,
wherein we allow noninteger values but now enforce inequalities. We choose a nonin−
teger solution vector component x on which to "branch". To this end we set a pair of
inequalities forcing the value to be less−or−equal to Floor@xD or greater−or−equal to
Ceiling@xD. This gives a pair of subproblems (we can put these on a stack, queue,
or priority queue). Any time we have a relaxed solution with all integer components it
is in fact a solution to the ILP. Eventually subproblem solutions either have all integer
components or are empty (when we cannot satisfy the constraints).
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ILP with lattice reduction

Step 3 details

"Integer programming with a fixed number of variables" (H. Lenstra, 1983) shows
how to solve these problems in polynomial time once dimension is fixed.

Subsequent work, in particular by Aardal, Hurkins, and A. Lenstra (2000) with fur−
ther refinement found in Aardal and A. Lenstra (2002), use lattice reduction to cast
the ideas into algorithmic form.

First improvement

Make the directions as close to orthogonal as possible. This is done in practice by a
lattice reduction step (LLL algorithm) on the basis of null vectors.

Next improvement: branch−on−largest

Recall form our previous example that the last null vector had components substan−
tially larger than those of the other null vectors (and they came from a reduced basis
for the null space lattice). What those Aardal et al papers show is that one can help
the search considerably by appropriate choice of the branching variable. In particular
we want to choose the direction corresponding to the largest basis element. Why?
Because, in some sense, the constrained search space polytope is "thin" in that direc−
tion. That is, we expect to encounter fewer hyperplanes with that particular variable
set to integer values. Hence we might hope to more quickly exhaust the search space,
rather than meandering through it by naive choice of branching variable.
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ILP branching strategy

The picture may give  some idea of  that  first  improvement.  The "bad"  directions
8b1, b2< can cause us to wander in the triangle (imagine it to be longer but not wider),
whereas we can quickly learn that not many integer multiples of the good direction c2
will stay inside it.

eps = .5;
Show@Graphics@88Dashing@8.002, .2<D, Table@Line@88x, 0<, 8x + 10, 20<<D, 8x, 0, 23, 10<D<,

Arrow@80, 0<, 81, 3<D, Arrow@80, 0<, 84, 5<D, Arrow@80, 0<, 82, -1<D,
Line@88-1, -2<, 815, 18<, 84, 12<, 8-1, -2<<D,
Text@Subscript@b, 1D, 81 + eps, 3< + epsD, Text@Subscript@b, 2D, 84 + eps, 5+ eps<D,
Text@Subscript@c, 2D, 82 + eps, -1 + eps<D
H*,Table@Point@8x,y<D,8x,0,20,2<,8y,0,20,2<D*L<, Axes ® TrueD,

PlotRange ® 88-4, 20<, 8-4, 18<<, AspectRatio ® 1D;
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Frobenius instance code

The code

In[1]:= SetSystemOptions@"LatticeReduceOptions "® 8"LatticeReduceRatioParameter "® .999<D;

In[2]:= systemSolve@Hmat_L?MatrixQ, Hrhs_L?VectorQD :=
Module@8newmat, modrows, hnf, j= 1, len = Length@matD, zeros, solvec, nullvecs<,

newmat = Prepend@Transpose@matD, rhsD;
newmat = Transpose@Join@Transpose@newmatD, IdentityMatrix@Length@newmatDDDD;
hnf = HermiteDecomposition@newmatD@@2DD;
zeros = Table@0, 8len<D;
While@j £ Length@hnfD && Take@hnf@@jDD, lenD =!= zeros, j++D;
solvec = Drop@hnf@@jDD, len + 1D�H-hnf@@j, len + 1DDL;
nullvecs = HDrop@ð1, len + 1D &L �� Drop@hnf, jD;
nullvecs = LatticeReduce@nullvecsD;
8solvec, nullvecs<D �; Length@rhsD � Length@matD

In[3]:= smallSolution@Hsol_L?VectorQ, Hnulls_L?MatrixQD :=
Module@8max, dim = Length@nullsD + 1, weight, auglat, lat, k, soln<, lat = Prepend@nulls, solD;
max = Max@Flatten@Abs@latDDD;
weight = dim*max ^2;
auglat = HPrepend@ð1, 0D &L �� lat;
auglat@@1, 1DD = weight;
lat = LatticeReduce@auglatD;
For@k = 1, lat@@k, 1DD � 0, k++D;
soln = lat@@kDD;
Which@soln@@1DD � weight, Drop@soln, 1D, soln@@1DD � -weight, -Drop@soln, 1D, True, solDD
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In[9]:= FrobeniusInstance@lhs_, rhs_D :=
Module@8soln, nulls, vars, vals, var, x, obj, program, stack, iter= 0, lpresult, badvar, minval, val,

signs, ineqle, ineqge, ineq, len, sign, origconstraints , constraints , ctoo, oldctoo= 8<<,
8soln, nulls< = systemSolve@8lhs<, 8rhs<D;
nulls = LatticeReduce@nullsD;
soln = smallSolution@soln, nullsD;
len = Length@nullsD;
vars = Array@x, lenD;
vals = soln + vars.nulls;
soln = 8<;
origconstraints = Thread@Floor@rhs�lhsD ³ vals ³ 0D;
constraints = origconstraints ;
signs = Table@Equal, 8Length@varsD<D;
Do@ctoo = Table@Quiet@lpresult = Minimize@8x@jD, constraints<, varsDD;

If@Head@lpresultD � Minimize ÈÈ ! FreeQ@lpresult, IndeterminateD, Return@88<<, ModuleDD;
ineqge = Ceiling@lpresult@@1DDD;
Quiet@lpresult = Minimize@8-x@jD, constraints<, varsDD;
If@Head@lpresultD � Minimize ÈÈ ! FreeQ@lpresult, IndeterminateD, Return@88<<, ModuleDD;
ineqle = Floor@-lpresult@@1DDD;
If@ineqge < ineqle, ineqge£ x@jD £ ineqle,
If@ineqge � ineqle, x@jD � ineqge, Return@88<<, ModuleDDD, 8j, len<D;

If@ctoo === oldctoo, Break@D, constraints = Join@origconstraints , ctooD; oldctoo = ctooD;, 84<D;
stack = 88signs, constraints<, 8<<;
While@stack =!= 8<, iter++;
program = stack@@1DD;
stack = stack@@2DD;
signs = First@programD;
program = program@@2DD;
sign = 2*Random@IntegerD - 1;
obj = x@Random@Integer, 81, len<DD;
Quiet@lpresult = Minimize@8sign*obj, program<, varsDD;
If@Head@lpresultD � Minimize ÈÈ ! FreeQ@vals, IndeterminateD, Continue@DD;
minval = First@lpresultD;
If@Abs@minvalD === Infinity, Continue@DD;
lpresult = lpresult@@2DD;
badvar = Position@Reverse@vars �. lpresultD, Ha_ �; ! IntegerQ@aDL, 81<, 1, Heads® FalseD;
If@badvar � 8<, Return@8vals �. lpresult<, ModuleDD;
badvar = badvar@@1, 1DD;
var = Reverse@varsD@@badvarDD;
val = var �. lpresult;
minval = If@sign === 1, Ceiling@minvalD, Floor@-minvalDD;
ineq = If@sign === 1, GreaterEqual , LessEqualD;
ineqle = 8var £ Floor@valD, ineq@obj, minvalD<;
ineqge = 8var ³ Ceiling@valD, ineq@obj, minvalD<;
ineq = signs@@badvarDD;
Which@ineq === Equal ÈÈ Head@ineqD === LessEqual , signs@@badvarDD = ineqle@@1DD;
stack = 88signs, Join@program, ineqleD<, stack<;
signs@@badvarDD = ineqge@@1DD;
stack = 88signs, Join@program, ineqgeD<, stack<,
True H*Head@ineqD�GreaterEqual*L, signs@@badvarDD = ineqge@@1DD;
stack = 88signs, Join@program, ineqgeD<, stack<;
signs@@badvarDD = ineqle@@1DD;
stack = 88signs, Join@program, ineqleD<, stack<D;D;

solnD

¢ | £
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Frobenius instance examples

We now tackle Frobenius problems that had been out of reach. Here is one such exam−
ple. We exhaust the search space quickly even when the solution set is empty.

Example 1

In[10]:= Timing@ff = FrobeniusInstance@810 000 000 000, 35 550 333 797, 42 807 347 507, 55 224 372 861,
67 932 625 959, 75 136 205 917, 79 022 523 667, 80 463 866 750<, 7 631 346 246 323DD

Out[10]= 81.39609, 8<<

Example 2

We handle fairly large examples in what I would consider to be reasonable time.

In[8]:= Timing@ff = FrobeniusInstance@810 000 000 000, 10 451 674 296, 18 543 816 066, 27 129 592 681,
27 275 963 647, 29 754 323 979, 31 437 595 145, 34 219 677 075, 36 727 009 883, 43 226 644 830,
47 122 613 303, 57 481 379 652, 73 514 433 751, 74 355 454 078, 78 522 678 316, 86 905 143 028,
89 114 826 334, 91 314 621 669, 92 498 011 383, 93 095 723 941<, 1 250 976 029 960DD

Out[8]= 8158.738, 887, 1, 16, 2, 0, 2, 2, 3, 2, 0, 2, 0, 0, 1, 1, 0, 0, 3, 0, 0<<<
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Finding Frobenius numbers

Use of integer linear programming to compute Frobenius numbers

The gist of the algorithm is to use ILPs to find certain sets containing elbows, then
use a method to go from elbows to corners. We finish when we have the furthest cor−
ner. While pathological cases (too many corners) arise even at n = 4, the average case
performance (e.g. random examples) is quite nice. The ILPs in question are similar to
those used in solving Frobenius instances, hence the relevance of the methods we
have discussed.

Heuristic usage of ILP

The joint paper ELSW discusses a shortcut that frequently gives g HAL. The idea is to
find a subset of elbows, hence have "corners" that might be too large. The furthest is
our candidate for g(A). If it is too large, then using it in Frobenius instance solving
will tell us that. If the instance solver fails, then it must be the correct value for g HAL.
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Estimating Frobenius numbers

An ILP tactic for approximating the Frobenius number

Note that even when the problem is too large to find the Frobenius number in reason−
able time, we might still be able to solve sufficiently many relevant ILPs to obtain
good lower and upper bounds. We have done this for n as large as 21, with 11 digit
numbers, bracketing the Frobenius number by a factor of 100 or so. This is far better
than a priori bounds can accomplish (if all elements are O(k) then these bounds are

around k and k2 respectively, whereas typically the Frobenius number is around k
n

n-1 ).
The idea here is to find the full set of what we call "axial elbows".
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Estimating Frobenius numbers

A stronger ILP tactic for approximating the Frobenius number

Proposition: Given A = 8a1, ...,an<, with gcdHAL = 1, and call the Frobenius number
g HAL. Let NHAL denote the positive integers less or equal to g HAL for which the Frobe−
nius instance problem cannot be solved.

Proposition: NHAL ³ gHAL �2.

Proof: Takea £ gHAL. Then either a Î NHAL or g HAL - a Î NHAL (else the sum, g HAL,
would have a nonnegative representation, contradicting definition of the Frobenius
number). Note that both could be in NHAL; this is not a mutually exclusive situation.
Upshot: By pairing off in this way, at least half the values less than gHAL are in NHAL.

Observation

In practice, as we get close to g HAL most instance problems CAN be solved. Thus
with probability somewhat greater than 1/2,  values less than half  g HAL  will  be in
N HAL.

How to use this

Find a reasonable but low starting value (use the BHNW heuristic lower bound as a
guide). Try to solve the instance problem. If we cannot solve it, increase the target
size by some percentage. Else increase target by one. If we continually solve it then
we are almost certainly near or above gHAL. In practice this approach seems able to
get the first two or three bits of g HAL, at least in examples for which we can indepen−
dently assess this.
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Tight bounds: iterating the Frobenius solver

Code

Here we show some code and examples, using the ideas above.

In[11]:= bhnwLowBound@aa_ListD :=
Floor@H.5 * Gamma@Length@aaD + 1.D * Apply@Times, aaDL^H1 � Length@aaDLD

In[29]:= estimateFrobenius@aa_List, mult_: 1.1, consec_: 16D := Module@
8b = Round@.8 * bhnwLowBound@aaDD, j, done = False, lastb<,
While@! done,
done = True;
For@j = 0, j <= consec, j++,
soln = FrobeniusSolve@aa, b+ j, 1D;
If@soln === 8<, j = consec; lastb = b; b = Round@b * multD; done = FalseD;
DD;

lastb
D

Example1

In[24]:= SeedRandom@1 112 223D;
aa1 = RandomInteger@10^10, 88<D

Out[25]= 81505302 742, 5572 572328, 29510 273, 9279 374671,
1956902 370, 1982 829533, 995048 914, 7902 515103<

In[26]:= bhnwLowBound@aa1D

Out[26]= 5871726 142

In[30]:= Timing@ef = estimateFrobenius@aa1DD

Out[30]= 816.469, 132007850 511<

In[22]:= Timing@FrobeniusNumber@aa1DD

Out[22]= 851.7432, 164459821 067<

Not  such  a  great  time  savings.  But  we  can  use  this  method  on  sets  where  a
FrobeniusNumber computation is not feasible.
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Example2

In[31]:= aa2 = RandomInteger@10^10, 818<D

Out[31]= 88580842 616, 5707 446915, 266469 396, 6635 059441, 8650 981767, 4 330092700,
2621441 038, 1806 347720, 7614 852913, 7 496868713, 6 082031 401, 1258238 091,
342253107, 1 587216 691, 8320388 772, 7824 471461, 725756 237, 4033 282577<

In[33]:= Timing@ef = estimateFrobenius@aa2DD

Out[33]= 83047.15, 46733841 844<
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Summary

è Lattice reduction methods are quite useful for solving linear diophantine problems.

è Branch−and−prune methods remain a viable method for handling constrained lin−
ear diophantine systems. The needed adaptations are 
(1) They be used in conjunction with reduced lattice input.
(2) Branching choices must be based on size considerations a la Aardal & Lenstra.

è These methods tend to work well on Frobenius instance problems and the related
ILPs one encounters in computation of Frobenius numbers (in the ELSW implemen−
tation).

è Simple iteration of a Frobenius instance solver can give a lower bound estimate of
the Frobenius number that is typically about 3/4 of the actual value
(1) The actual ratio depends to an extent on input parameters that define the itera−
tion.
(2) Simple theory shows that, with VERY high probability, it is not worse than 1/2.
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