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Abstract

| will show how lattice reduction and branch—-and—-bound methods may be us
tandem to solve Frobenius instance problems. We apply much the same metl
other aspects of finding Frobenius numbers. Moreover the instance solver can
to give good (as in tight, with high probability) bounds on the Frobenius numb
many cases where the latter computation is intractable with current methods.

Part 1: Review integer linear programming and Frobenius instance solving

Part 2: Show further applications to Frobenius number problem
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Introduction

The Frobenius Instance problem

One is given a set of nonnegative integkrs {a, ...,a,} and a target valuke We

wish to know wherk can be written as a nonnegative integer combination of the
ments ofA (if we relax the nonnegativity constraint on the multipliers, then clea
can be done ifk is a multiple of the GCD of). This problem goes by other name

among them the postage stamp problem (given several stamp denominations,
obtain a given total value?) and the change making problem (same idea).

The common feature to this and related problems will be that we take restricte
ger combinations of integer vectors to fulfill some task. That is to say, we work
sets of constrained linear diophantine equations.

The Frobenius number problem

SIimple to state. Given a s@&tas above, with stipulation that gcdlisFind the larges
integerk such thak CANNOT be represented as a honnegative combinatidn of
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Integer linear programming (ILP) with lattice reduction

The idea behind the integer linear programming

A blend of classical "branch—and—prune" and more recent lattice reduction me
in a way that surpasses what either alone can typically achieve.

A simple Frobenius instance example

We start with a simple example. We are given

n@E7)= | A= {12223, 12224, 36674, 61119, 85569;
b = 39999 425;

We wish to find a nonnegative integral combination of elemenéstb&t sum td.
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Integer linear programming (ILP) with lattice reduction

Step 1: Allow negative integers

Our first step is to find an integer combination, waiving the nonnegativity restri
We also find a basis for the integer null spacéoT his is important because ou
problem will then be recast into finding a combination of null vectors to add tc
solution, so that the final result is nonnegative.

The method we use for find ing a solution and null space is from a 1966 artic
Blankenship.

In[39]:= ‘ {sol n, null s} =systenftol ve[{A}, {b}]

{{0, 0, -2, 5945, -3778},
{{0, -1, 1, 1, -13, {1, 38, 1, 0, -1}, {-3, 1, -1, 1, O}, {2059, 157, -3336, 2687, -806}}}

Out[39]=

We see thatO, 0,-2, 5945,-3778.A == b and moreover we have our null spac
generators. We note that our solution vector has negative elements, hence w
need to do more work.
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ILP with lattice reduction

Step 2: Find a "small" solution

Our next step is strictly for efficiency. We change our solution using a lattice re
tion known as the embedding method. The object is to get a solution vector
smaller and more evenly balanced entries.

in4o:= | sol n2 = smal | Sol ution[soln, nulls]

Out[40]= ‘ {-336, 10, 723, -298, 417}
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ILP with lattice reduction

Step 3: Set up a linear programming problem to enforce nonnegativity

We now define a set of variables, one for each null space basis element. We
form a set of linear polynomials.

vars = Array [x, Length[nulls]];
linpolys =soln2+vars.nulls

In[49]:=

(-336 +x[2] -3x[3] +2059x[4], 10 -x[1] +3x[2 (3] + 157 x [4],

out[50]= +X
723 +x[1] +Xx[2] -X[3] - 3336 x[4], -298 +X[1] + X [3] + 2687 x[4], 417 - x[1] -x[2] - 806 x [4] }

We will have a constraint satisfaction problem, to wit, that each element of the
sum to a nonnegative integer. So how do we intend to obtain this? We set up a
ing loop that uses ordinary linear programming to enforce nonnegativity, and b
ing to obtain integrality.
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ILP with lattice reduction

Step 3 small print

More specifically, LP is used to solve "relaxed" problems, now over the rea
wherein we allow noninteger values but now enforce inequalities. We choose a
teger solution vector componenbn which to "branch". To this end we set a pail
inequalities forcing the value to be less—or—equdlltoor [x] or greater—or—equal -
Cei | i ng[x]. This gives a pair of subproblems (we can put these on a stack, ¢
or priority queue). Any time we have a relaxed solution with all integer compon
Is in fact a solution to the ILP. Eventually subproblem solutions either have all i
components or are empty (when we cannot satisfy the constraints).



JMM2008_ILP.nb |9

ILP with lattice reduction

Step 3 details

"Integer programming with a fixed number of variables" (H. Lenstra, 1983) sh
how to solve these problems in polynomial time once dimension is fixed.

Subsequent work, in particular by Aardal, Hurkins, and A. Lenstra (2000) with
ther refinement found in Aardal and A. Lenstra (2002), use lattice reduction tc
the ideas into algorithmic form.

First improvement

Make the directions as close to orthogonal as possible. This is done in practic
lattice reduction step (LLL algorithm) on the basis of null vectors.

Next improvement: branch—-on-largest

Recall form our previous example that the last null vector had components su
tially larger than those of the other null vectors (and they came from a reducec
for the null space lattice). What those Aardal et al papers show is that one ca
the search considerably by appropriate choice of the branching variable. In pa
we want to choose the direction corresponding to the largest basis element.
Because, in some sense, the constrained search space polytope is "thin" in thi
tion. That is, we expect to encounter fewer hyperplanes with that particular va
set to integer values. Hence we might hope to more quickly exhaust the searcl
rather than meandering through it by naive choice of branching variable.
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ILP branching strategy

The picture may give some idea of that first improvement. The "bad" directic

{b1, by} can cause us to wander in the triangle (imagine it to be longer but not v
whereas we can quickly learn that not many integer multiples of the good direc

will stay inside it.

eps =.5;
Show[G aphi cs[{{Dashi ng[{. 002, .2}], Table[Line[{{x, 0}, {x+10, 20}}1, {x, O, 23, 1031},
Arrow[ {0, 0}, {1, 3}], Arrow[{O, O}, {4, 5}1, Arrow[{0O, O}, {2, -1}],
Line[{{-1, -2}, {15, 18}, {4, 12}, {-1, -2}}1,
Text [Subscript [b, 1], {1 +eps, 3} +eps], Text [Subscript [b, 2], {4 +eps, S5+eps}],
Text [Subscript [c, 2], {2 +eps, -1 +eps}]
(%, Tabl e[Poi nt [{x,VYy}], {X, 0, 20, 2}, {y, 0, 20, 2}]1*)}, Axes - True],
Pl ot Range -» {{-4, 20}, {-4, 18}}, AspectRatio - 17;

15}

10¢

by

C2 5 10 15 20
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Frobenius instance code

The code
In[1]:= Set SystenOptions["Latti ceReduceQptions "-» {"Latti ceReduceRati oParaneter "».999}];
In[2]:= systenSol ve[ (mat _) ?Matri xQ, (rhs_)?VectorQ]: =

Modul e[ {newmat , nodrows, hnf, j=1, len=Length[mat], zeros, solvec, nullvecs},
newmat = Prepend[Transpose[mat ], rhs];
newmat = Tr anspose [Joi n[Transpose [newrat ], ldentityMatrix[Length[newnat ]]]1];
hnf = Her mi t eDeconposi tion[newrat 1[[2]];
zeros = Tabl e[0, {len}];
Wil e[j <Length[hnf] & Take[hnf [[j 1], | en] =t=zeros, j ++];
solvec =Droprhnf [[j 1], len+ 11/ (-hnf [[j, len+11]);
nul lvecs = (Drop[#l, len+1] &) /eDrop[hnf, jI;
nul | vecs = Latti ceReduce[nul | vecs];
{solvec, nullvecs}] /; Length[rhs] =Length[nat ]

In[3]:= smal | Sol ution[(sol _)?VectorQ, (nulls_)?MtrixQ]: =
Modul e[ {max, di m=Length[nulls] +1, weight, auglat, lat, k, soln, lat =Prepend[nulls, sol];
max = Max [Fl atten[Abs[lat]]];
wei ght = di mxmax " 2;
augl at = (Prepend[#1, 0] &) /el at;
augl at [[1, 1]] = wei ght ;
lat =LatticeReduce[augl at ];
For [k =1, lat [[k, 1]] =0, k++];
soln=1at[[k]];
Which[soln[[1]] == wei ght , Drop[soln, 1], soln[[1]] == -wei ght, -Drop[soln, 1], True, sol]]
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In[9]:=

Frobeni usl nstance[l hs_, rhs_]: =
Modul e[{sol n, nulls, vars, vals, var, x, obj, program, stack, iteeO, Ipresult, badvar, mnval, val,
signs, ineqgle, ineqge, ineq, len, sign, origconstraints, constraints, ctoo, oldcteo(}},
{sol n, nulls}=systentol ve[{l hs}, {rhs}];
nulls =LatticeReduce[nulls];
sol n =snal | Sol ution[sol n, nullsj;
len=Length[nulls];
vars = Array [x, |en];
vals =soln+vars.nulls;
soln = {};
origconstraints = Thread[Fl oor [rhs /Il hs] 2val s 20];
constraints =origconstraints;
si gns = Tabl e[Equal , {Length[vars]}];
Do[ctoo = Tabl e[Qui et [I presult =M nim ze[{x[j ], constraints}, vars]l];
I f [Head[l presult] =Mninize || ! FreeQ[l presult, Indeterm nate], Return[{{}}, Mdul e]];
ineqge =Ceiling[lpresult[[1]]];
Quiet [l presult =M nim ze[{-x[j ], constraints}, vars]l;
I f [Head[l presult] ==Mnimze || ! FreeQ[l presult, Indeterm nate], Return[{{}}, Module]ll;
inegle=Floor [-lpresult[[1]]];
I f [i neqge <ineqgle, ineqgesx[j] <ineqle,
I f [i neqge =i neql e, x[j ] =1ineqge, Return[{{}}, Moddulelll, {j, len};
| f [ctoo ===o0l dct oo, Break[], constraints =Join[origconstraints, ctod; ol dctoo=ctoo];, {4}];
stack = {{signs, constraints}, {}};
Wil e[stack =!= {}, iter ++;
program=stack[[1]];
stack =stack[[2]];
signs = Fi rst [program];
program=program[[2]];
si gn = 2 xRandom[l nt eger ] - 1;
obj =x[Random[l nteger, {1, len}1];
Quiet [l presult =M nim ze[{sign*obj, progran}, vars]];

I f [Head [l presult] =Mninize || ! FreeQ[val s, |Indeterm nate], Continuel[]];
mnval =First [l presult];
I f [Abs[minval ] ===Infinity, Continue[]];

I presult =lpresult[[2]];
badvar = Position[Reverse[vars /. | presult], (a_/; !IntegerQ[a]), {1}, 1, Heads - Fal sel;
| f [badvar == {}, Return[{vals /. | presult}, Mdule]ll;
badvar = badvar [[1, 1]1;
var = Reverse[vars][[badvar]];
val =var /. I presult;
mnval =I1f[sign===1, Ceiling[m nval ], Floor[-m nval ]];
ineq=1f[sign===1, GeaterEqual , LessEqual];
ineql e ={var <Floor [val ], ineq[obj, minval]};
ineqge = {var > Ceiling[val ], ineq[obj, m nval]};
ineq =signs[[badvar]];
Wi ch[i neq === Equal || Head[i neq] === LessEqual , signs[[badvar]] =ineqle[[1]];
stack = {{signs, Join[program, ineqle]}, stack};
signs[[badvar]] =ineqge[[1]];
stack = {{signs, Join[program, ineqge]}, stack},
True (xHead[i neq]==Gr eat er Equal ), signs[[badvar]] =ineqge[[1l]];
stack = {{si gns, Joi n[program, ineqge]}, stack};
signs[[badvar]] =ineqle[[1]];
stack = {{signs, Join[program, ineqlel}, stack}];1;
sol n]




JMM2008_ILP.nb |13

Frobenius instance examples

We now tackle Frobenius problems that had been out of reach. Here is one sur
ple. We exhaust the search space quickly even when the solution set is empty.

In[10]:=

Oul[lO]‘ {1. 39609, {}}

Example 1

Tim ng[ff = Frobeni usl nstance[{10 000 000 000, 35550333797, 42807 347 507, 55224 372861
67932 625959, 75136205917, 79022523667, 80463866 750 7631 346 246 323]]

Example 2

We handle fairly large examples in what | would consider to be reasonable time

In[8]:=

Out[8]=

(158. 738,

Timing[ff = Frobeni usl nstance[{10000 000 000, 10451674296, 18543816 066, 27 129592 681,
27275963647, 29754323979, 31437595145, 34219677075, 36727 009 883, 43226 644 83
47122 613 303, 57481379652, 73514433751, 74355454078, 78522678 316, 86 90514302
89114826 334, 91314621669, 92498011 383, 93095723941 1250976 029 960] ]

{{7, 1, 16, 2, 0, 2, 2,8, 2,0, 2,0, 0, 1, 1, 0, 0, 3, 0, 0}}}
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Finding Frobenius numbers

Use of integer linear programming to compute Frobenius numbers

The gist of the algorithm is to use ILPs to find certain sets containing elbows,
use a method to go from elbows to corners. We finish when we have the furthe
ner. While pathological cases (too many corners) arise eves 4f the average ca
performance (e.g. random examples) is quite nice. The ILPs in question are sil
those used in solving Frobenius instances, hence the relevance of the methc
have discussed.

Heuristic usage of ILP

The joint paper ELSW discusses a shortcut that frequently giU®s The idea is tc
find a subset of elbows, hence have "corners" that might be too large. The furl
our candidate for g(A). If it is too large, then using it in Frobenius instance sol
will tell us that. If the instance solver fails, then it must be the correct valgg Aor
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Estimating Frobenius numbers

An ILP tactic for approximating the Frobenius number

Note that even when the problem is too large to find the Frobenius number in r
able time, we might still be able to solve sufficiently many relevant ILPs to ob
good lower and upper bounds. We have done thia &® large as 21, with 11 digi
numbers, bracketing the Frobenius number by a factor of 100 or so. This is far
than a priori bounds can accomplish (if all elements are O(k) then these boun

aroundk andk? respectively, whereas typically the Frobenius number is arbruLn)d
The idea here is to find the full set of what we call "axial elbows".
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Estimating Frobenius numbers

A stronger ILP tactic for approximating the Frobenius number

Proposition: GiverA = {a4, ..., a,}, with gcd(A) = 1, and call the Frobenius numb

g(A). LetN(A) denote the positive integers less or equal(#®) for which the Frobe
nius instance problem cannot be solved.

Proposition: | N(A) | = g(A)/ 2.

Proof: Takea < g(A). Then eithema € N(A) org(A) —a e N(A) (else the sung (A),
would have a nonnegative representation, contradicting definition of the Frob
number). Note that both could beNtA); this is not a mutually exclusive situatio
Upshot: By pairing off in this way, at least half the values lessdgt@nare inN(A).

Observation

In practice, as we get close ggA) most instance problems CAN be solved. Thi
with probability somewhat greater than 1/2, values less tharglalf will be in
N (A).

How to use this

Find a reasonable but low starting value (use the BHNW heuristic lower bount
guide). Try to solve the instance problem. If we cannot solve it, increase the 1
size by some percentage. Else increase target by one. If we continually solve
we are almost certainly near or abay@). In practice this approach seems able
get the first two or three bits @f(A), at least in examples for which we can indep
dently assess this.
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Tight bounds: iterating the Frobenius solver

Code

Here we show some code and examples, using the ideas above.

n11:= | bhnwLowBound[aa_List] : =
Floor [ (.5 Gamma[Lengt h[aa] +1. ] » Appl y [Ti nes, aa])” (1 /Length[aa])]

in2o]:= | esti mat eFrobenius[aa_List, mult_: 1.1, consec_: 16 : = Modul e[
{b = Round[. 8 * bhnwLowBound[aa]], j, done = Fal se, | astb},
Wil e[! done,
done = True;
For[j =0, j <=consec, | ++,
sol n = Frobeni usSol ve[aa, b+, 11;
| f [soln==={}, j =consec; lastb=Db; b=Round[b=xnult]; done = Fal se];

115
| astb

1

Examplel

SeedRandom[1 112 223];
aal = Randonl nt eger [10" 10, {8}]

In[24]:=

{1505302742, 5572572328, 29510273, 9279374671,
1956902370, 1982829533, 995048914, 7902515103}

Out[25]=

In[26]:= ‘ bhnwLowBound [aal]

out[26]= ‘ 5871726142

In[30]:= ‘ Ti m ng[ef = estimat eFrobeni us[aal]]

Out[30]= ‘ {16. 469, 132007850511}

In[22]:= ‘ Ti m ng [Fr obeni usNunber [aal]]

out[22]= ‘ {51. 7432, 164459821067}

Not such a great time savings. But we can use this method on sets where
Fr obeni usNunber computation is not feasible.
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Example2

n@1= | aa2 = Random nt eger [107 10, {18}]

ou31]= | {8580842616, 5707446915, 266469396, 6635059441, 8650981767, 4330092700,
2621441038, 1806347720, 7614852913, 7496868713, 6082031401, 1258238091,
342253107, 1587216691, 8320388772, 7824471461, 725756237, 4033282577}

in33):= | Timng[ef =estinmateFrobeni us[aa2]]

out[33]= ‘ {3047. 15, 46733841844}
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Summary

Lattice reduction methods are quite useful for solving linear diophantine probl

Branch—and-prune methods remain a viable method for handling constraine
ear diophantine systems. The needed adaptations are

(1) They be used in conjunction with reduced lattice input.

(2) Branching choices must be based on size considerations a la Aardal & Le

These methods tend to work well on Frobenius instance problems and the r
ILPs one encounters in computation of Frobenius numbers (in the ELSW imp
tation).

Simple iteration of a Frobenius instance solver can give a lower bound estin
the Frobenius number that is typically about 3/4 of the actual value

(1) The actual ratio depends to an extent on input parameters that define the
tion.

(2) Simple theory shows that, with VERY high probability, it is not worse than
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