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Abstract. We address the following question: Given five pointRi) determine a right circular cylind
containing those points. We obtain algebraic equations for the axial line and radius parameters and
these give six solutions in the generic case. An even number (0, 2, 4, or 6) will be real valued a

correspond to actual cylindersi®. We will investigate computational and theoretical matters related
problem. In particular we will show how exact and numeric Grébner bases, equation solving, ani
symbolic—numeric methods may be used to advantage. We will also discuss some applications.
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1. Outline of the Problem and Related Work

Given five points inR3, we are to determine all right circular cylinders containing those points. We do -
solving equations for the axial line and radius parameters. We will show that generically one obtains six sc
these equations. Of these an even number are real valued, as the complex valued ones appear in conjug
immediate consequence is that there is no "unique" real cylinder through five given points unless it a soll
multicity). Moreover there are open regions in the real configuration space that give each of these poss
we learn that none are disallowed.

The basic problem of determining cylinders from five points may be recast in a computational geometn

Given five points ink3, find the smallest positive and orientation parameters such that the cylinder of rai
with those parameters encloses tangentially the balls of radergered at the points.

Here are some questions we will consider. The first three are classical; we address them here to illustrate
of symbolic computation in such investigations. The last ones are related to more recent work in computa
integral geometry.

(1) Given the points and corresponding cylinder parameters, how might we display them graphically?

(2) Given the cylinder parameters, how may we obtain its implicit equation as a hypersura®e in
(3) Reversing this, how can one obtain parameters from the implicit form?

(4) Given six or more points, how do we find the coordinates of a (generically unique) cylimfethiat "best" fit:
those points?

(5) Given five points chosen with random uniform distribution in a cube, what is the expected probability
lies inside the convex hull of the other four (this is related to the "no real cylinder" case).

(6) How might we rigorously provide, via straightforward computation, the generic number of solution:
algebraic equations that describe cylinders through five indeterminate points.

In the sequel we frequently use the term "real cylinders" to denote real valued solutions to the cylinder
that arise from a given configuration of five points. Sometimes we refer to arbitrary solutions as "cylinders
they have complex values. The meaning should be clear from context. We refer to configurations as "¢
they do not have multiple solutions and if all sufficiently small perturbations of the configuration give ris

same number of solutions. This amounts to the configuration not lying on the discriminant variety [25] bu
not belabor this point. In some places we also use generic to mean that a system is in general position
Shape Lemma applies [2]. As we will have occasion to change our underlying set of variables we note th,
notion is dependent on the variables under consideration.



That one obtains six cylinders was previously demonstrated in [5] though by rather different means. Vario
are also presented in [8] [14] [28] [29]. A related problem, finding cylinders of a given radius through fot
points inR3, is discussed in [16] [20] [30] [33]. A nice survey of computational commutative algebra methe
are applicable to nonlinear problems in computational geometry can be found in [7]. Another good gene
ment of theoretical and practical aspects of Grébner bases in computational geometry is chapter 7 «
companion paper to this one [28] delves further into enumerative geometry aspects of cylinders through fiv

The remainder of this paper is structured as follows. In section 2 we present several computational si
problem. These include finding and counting cylinder solutions. In section 3 we handle various associated
tional geometry problems, and basics of point/cylinder visualization. Section 4 delves into the frequencit
cylinders containing random point sets from a certain distribution. These investigations are again largely
tional, though we relate some to a recent result in integral geometry. In section 5 we use simple symbolic
tion methods to prove the enumerative geometry result that there are six solutions to a generic set ¢
equations. Section 6 poses some further questions regarding cylinders through five points, and outline:
might attack them computationally using aspects of the discriminant variety [25]. Following that is a bri
mary. An attempt is made to emphasize the ways in which symbolic, numeric, and hybrid computation me
useful in these investigations. Computations in the sequel were performed with the vefgiatherhatica[38]
under development at the time of this writing. All implementation code is provided in the appendix. While -
used seems generally good for the tasks at hand, the author makes no claim to the effect that other proc
not be as good (or perhaps better). Explanatory detail is provided so that readers inclined to program
armed with software capable of symbolic and numeric computation, might reproduce results similar to tho
herein. An incomplete list of programs capable of handling some or all of the computations in the seque
CoCoA, Macaulay 2, Magma, Maple, Risa/Asir, and Singular. More specialized software well suited for
these computations (e.g. Grébner bases and numeric system solving) would include FGb and PHCpack.
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2. Computing Cylinders Through Five Points

Finding cylinder parametersfrom a set of 5 points

We will assume unless otherwise stated that our points are generic. In particular, no three are collinear, r
coplanar, cylinder axes do not lie in coordinate planes, and so forth. With these assumptions we avoid
tional pitfalls that would arise from parametrizing axial directions using a sphere (this gives rise to two p
we have one extra variable, and so to eliminate it we would add an equation that normalizes the direction.
we would double the size of our solution set because any direction is equivalent to its negative.) Gi
stipulations we proceed as follows.

With our assumptions in place, given a cylinder axis lineR® we may parametrize it as
(y=ax+b, z=cx+d} 1)
For anyr > 0 there is a unique circular cylind€rof radiusr with center axid.. Supposing we have five points

that cylinder the following questions now arise. How do we finghdr? How do we use them to parametnz
e.g. for purposes of plotting it?

First we discuss why this data will determine finitely many cylinders. Given a poi@tvea will project orthogo
nally ontoL in order to get an equation involving the parameters we wish to find. We have five paran



determine in the setup used above. For each point we denote the length of the orthogonal projpet'mfnlbjs

computed as follows. We talketo be the subspace obtained by translatirig pass through the origin. For e

point p; takep; to be the correspondingly translated point. We subtract fiprits projection ontd_ . This differ-
ence is the orthogonal complement of the projection and thus its magniimmkpjisThis projection will give us ¢

algebraic equation of the form
2
[perm]| -7 =0 @
A concise coordinate—free formulation of this appears in [34], and simple code to compute it is in the appe

show here the actual equation in terms of our point coordinates and cylinder paramptessgiven as(x,—, Yi, z,-)
then, after clearing denominators, the explicit equation in terms of cylinder parataeters d, r) is:

P+b’c?-2abcd+d®+a?d® -1 -ad®r’ -c*r*+2abx;+2cdxj+a’ x* + > x2 - 2by; - 2bc’ y; +
J ] J j J J (3)
2acdyj—2axjyj+yf+czyjz+2abczj—2dzj—2a2dzj—2cszj—2acyjzj+z]?+a2zf: 0
For generic choice of points the equations should be algebraically independent, hence the dimension of tl

set would be zero. In more detalil, if we take five points with indeterminate coordinates (that is, coc
expressed as variables) then we obtain a system of five equations of thig(fptmc, d, r) = 0, each arising fror
(3) with appropriate point coordinates plugged in. From these we want to solve for the cylinder parameter
of those coordinates. To show there are finitely many solutions it suffices by the implicit function theorem
that the Jacobian of the méfy fo, fs, f4, fs) has full rank for these generic coordinates. One can do this exj

by finding the symbolic Jacobian, plugging in random values for the coordinates, and checking that the
matrix has full rank. We will instead show a computation in the last section that demonstrates there are ¢
at most nine solutions. Simple reasoning will further reduce this to eight. We also provide computational p
there are in fact but six.

Let us demonstrate how to solve for the cylinder parameters with a specific example. We will take as our
values

a= 3,b=2,c=4,d=-1,r= V21 (4)
The locus of points o€ is obtained as sums of a vector loplus a vector of length perpendicular td_. All
vectors perpendicular to are spanned by any independent pair. We can obtain an orthonorm@ahpais) in the
standard way by finding the null space to the matrix whose one row is the vector along the axial directio
vec=(1,4a,¢), and then using Gram-Schmidt to orthogonalize that pair. From this we obtain

(-4/V17,0,1/V17) and(-3/V 442 ,\/17/26 , -6V 2/221).

We will then select five "random” points @ We do this by selecting five values for an axial vector scale fa
and five values for an ange such tha0 < 6 < 2. Our points will be of the forma + w where

v=offset + vecx

w = rcos(f) wy + rsin(d) w,
We now discuss recovery of a set of cylinder parameters from these five points. Given a bweomant tc
project orthogonally ontd, to get an equation involving the parameters we wish to find. As discussed ak
first translate our point by subtractingfse. We then project onto the line spannedvby. Subtracting this projec
tion from the translated vector gives us @arg. For example, one point on the cylinder in question is app
mately (5. 86419, 9.90186, 16.3218). The corresponding expression we set to zero is

364.45 - 116.133 a + 300.791 a® — 19.8037b + 11.7284 ab + b* - 191.429 ¢ -
323.233ac +32.6437abc + 132.435 c* - 19.8037 b ¢* + b ¢ — 32.6437d —
32.6437a°d +11.7284cd + 19.8037acd —2abcd + d* + a® d* - r* —a?r* - ¢*1?
We can use numerical methods to find some roots. This is very sensitive to initial conditions. For example
at(a, b,c,d r)= (3.2, 2.8, 3.7~-1.6, 3.3, which is quite close to the values we began with, will recover



values. Starting  instead at (2.7, 1.8,3.2-.7,3 gives solution parameters (a, b, c,d, r)=
(1.91, 7.09, 2.49, 7.02;4.44 to three decimal places.

Another well known method to find numeric roots is to sum the squares of the polynomials to be satisfied,
minimize this sum. This too is sensitive to initial guesses. Using initial valuegadi, c, d, r)=
(2.4,1.8,2.2-1.8, 3 recovers the second solution shown above. Using ingt2dd1.8, 3.2-.8, 3 gives ¢
useless result with residual larger tHal. Clearly we need a better approach.

Solving simultaneously for all roots of the cylinder parameter equations

An obvious drawback to the methods seen thus far is the need for good initial guesses. We may take ac
the fact that the equations are all polynomial and instead use a global solver suitable for such systems. V
strate below the utility of this approach. In order to have simpler equations for visual purposes will work wi
example comprised of integer coordinates in the range (-10,10). To further simplify matters we will solv:
square of the radius (this will avoid solutions with negative valuesdsrwell as cut in half the number of comg
valued solutions). An example problem with pseudorandom coordinates in the indicated range gave r
polynomials shown below. The points we chose to lie on the cylinder(s) are:

(7,9,8),(8,-4,-10),(-4,1,4),(-9,-9,-10),(-7,-10,-10) (5)
The five corresponding polynomials we set to zero are as below.

(145-126a+113a* - 18b+14ab+b®-112c-144ac+16abc+130c¢® - 18bc +
b?c?-16d-16a’d+14cd+18acd-2abcd + d? + a® d® — rsqr — a rsqr — ¢ 1sqr,
116 +64a+164a° +8b+16ab+b?+160c—-80ac—20abc+80c®> +8bc® +b?c? +
20d+20a’°d+16cd-8acd-2abcd+d® +a?d® - rsqr — a® rsqr — ¢ 1sq,
17+8a+32a?-2b-8ab+b*+32c-8ac+8abc+17c*>-2bc? +b?c? -
8d-8a’d-8cd+2acd-2abcd+d?+a?d?-rsqr—a?rsqr — ¢? rsqr,
181 -162a+181a”*+18b—18ab+b* - 180c—180ac—20abc+162c* + 18bc* +
b?c?+20d+20a®d-18cd-18acd-2abcd+d? +a? d? - rsqr — a® rsqr — ¢ 1sqr,
200 - 140a+149a* +20b-14ab +b* - 140c-200ac-20abc+ 149 c* + 20 b c® +
bzcz+20d+20a2d—14Cd—20acd—2abcd+d2+a2d2—rsqr—azrsqr—czrsqr)
We mention that this system is not substantially simpler to solve numerically than the preceding one; its i
for our purposes is that it is more concise to print. In contrast to local methods, which, as we saw, may fe

particular solution, it turns out to be computationally straightforward to obtain all solutions to this system
this in Mathematicawith theNSol ve function. It uses a hybrid symbolic-numeric technique to efficiently fir

roots. Details of this technology are discussed in [10] [11] [27]. The basic idea is to compute a numeric
basis and then do an eigendecomposition of a certain matrix formed therefrom. Our solution set is as belov

{a— -1.03253 + 0.760393 i, b - 6.11349 — 3.37419, ¢ - —0.322931 — 1.37768 ,
d - —0.295427 + 6.8709 i, rsqr — 344.25 + 23.8554 i}, {a - —1.03253 - 0.760393 i,
b - 6.11349 + 3.37419, ¢ - —0.322931 + 1.37768 i, d - —0.295427 — 6.8709 i, rsqr - 344.25 — 23.8554 i},
{a—0.151635, b > —-1.25748, ¢ - 1.58897, d — —6.45046, rsqr - 83.0554},
{a—30.9362, b > 93.172, ¢ - 37.1186, d > 92.7034, rsqr - 198.258)},
{a—0.613253 - 0.359335, b > —4.49777 — 3.77132i, ¢ - 0.102934 + 0.159852 i,
d - -1.56979 + 2.23275, rsqr - 57.5606 + 13.7534 i}, {a - 0.613253 + 0.359335,
b - -4.49777 + 3.771321, ¢ > 0.102934 - 0.159852 i, d - —1.56979 — 2.23275 i, rsqr - 57.5606 — 13.7534 i}
Actually we can get exact solutions in the same way, albeit at greater (though still quite reasonable) com

cost. This illustrates a sort of cascading hybrid algorithm: one starts with a symbolic-numeric method 1
numeric problems, then modifies it to give exact rather than approximate results.

Timing [exactsolns = NSolve [exprs, {a, b, c, d, rsgr }, WorkingPrecision - Infinity 1; 1
{0. 972061 Second, Nul |}

The exact values for the solution set have a leaf count of 12139. These solutions are comprised of alget
bers coming from defining polynomials with integer coefficients of several hundred digits. This is far too

(6)



warrant printing.

Overview of other approachesto solving the cylinder equations

We can improve considerably on the computational efficiency of finding cylinder parameters from five pol
one, a different formulation of the problem, to be utilized later, finds directions for which all points project «
same circle in a plane perpendicular to the direction. Using this we can reduce the computational time by i
tial factor vs. the method shown above.

In addition to changing the formulation of the problem to one that is computationally easier, one might als
the solver method. We discuss one very efficient alternative. This is the sparse homotopy method describ
Here one constructs a readily solved system using information from the Newton polytope. One then forms
topy to move from each solution of the first system to a solution of the new system. Specifically, if we
systemd~(x) andG(x) respectively, whera denotes a vector of variables, then one adds a new vatiagate set
up the homotopy between solutions in each set as a refatiot) F(x) + t G(x) = 0. At timet =0 we have a solu
tion to the first system, and at tihe: 1 we have a solution to the new system. Techniques for moving alo
homotopy path generally utilize a predictor—corrector method to increfrignt small amount and then alter
coordinates ok to maintain the relation above; a general introduction to this method is presented in [24].

cylinder problem there is a nice refinement that goes by the name of the "cheater's homotopy" [26] wherei
with known solutions for one set of points and hence can skip the first step of the general approach. In on
cylinder parameters for each subsequent set of points we simply use a homotopy appropriate for the |
equations.

An occasional disadvantage to the general sparse homotopy technique is that in some cases one has
solutions than are given by the starting system. When this occurs, in the process of following the homoto
must wander off to infinity. This can pose difficulties for the software in terms of deciding when a path is d
rather than merely wandering afar prior to converging. For our problem family the sparse homotopy me
predict that there are eight solutions for cylinder parameters, two more than are actually present.
cheater's homotopy is all the more appealing for this class of problems. It should be noted, however

general sparse method [36] is far better at approximating the correct number of solutions than any earliel
based on homotopies. Moreover it tends to handle systems with far more solutions than can successfully
by methods that require computation of matrix eigensystems such as that presented in [10].

The size of the solution set

The preceding example had six solutions. We now investigate further. Again taking the polynomial systel
form a lexicographic Grobner basis. This is a standard tactic for computational equation manipulation [:
[12] [18]. The idea is that it effectively triangulates the polynomial system in a manner that will becon
below. If we order so that is the lexicographically "smallest" variable then we obtain a univariate in that ve
along with other polynomials. As the coefficients are large we will only show that first polynomial.

33369819849 015 — 260250873 299469 a + 250 872 620 195750 a® +
127385909908 067 a® — 186 344 103 956 650 a* — 259 033 149 843 189 a° + 8 563 282 997 415 a®

It is instructive to learn the structure of the Grébner basis. The first polynomial is of deigrélee variablea (as
we already knew), and the rest are quinti@iand linear and with a constant coefficient in each of the resp
other variables. So now we see what was meant by triangularizing the system. To solve it one could fil
roots ina and back substitute each into the remaining equations in order to get six corresponding solutior
of the remaining variables.

This tells us to expect six solutions in general. As noted earlier this result may be found in several referer
we will give computational proofs. For now we offer two reasons to believe this result; each may be vie
Monte Carlo "proof".

1: In the theory of lexicographic Grébner bases there is a fact known as the Shape Lemma [2], which ma

as follows. As is well known, a generic zero dimensional polynomial ideal over an infinite field is radica
general position with respect to the last variable in any ordering of the variables. In other words, the varie
multiplicity and moreover its finitely many points do not share any coordinates. The lemma states that ur



circumstances any lexicographic Grébner basis will have exactly one polynomial with leading term a purt
in each variable, all but the one in the smallest variable will be linear, and that one in the smallest variable
degree equal to the size of the solution set. One interpretation of the Shape Lemma is almost a matter of |
one proves the above fact given a radical ideal in general position, and then asserts that generic ideals ¢
hypotheses. In addition to the Shape Lemma there is the following result: lexicographic Grobner bases
defined over rational function fields remain Grébner bases after generic specialization of coefficients [17

other words, there is a Zariski—open set in the parameter space for which specializations do not alter the :
the basis. We use these facts as follows: if our selection of coefficients was generic, we may conclud
generic Grbbner basis has the same shape as that of the basis we just obtained. Moreover we may beli
selection was generic because (i) it had the correct shape of a generic basis, and (ii) we used pseudor
selected from a fairly large set.

2: A simulation with2!? randomly chosen configurations always gave exactly six solutions.

One might ask why we do not simply compute a lexicographic basis for our system using indeterminates
cients. The answer is that it does not finish in finite time. Indeed, even making one coordinate a paramet
tremendous computational effort (several minutes on current processors) and very large coefficients for
That is to say, polynomials in that parameter are of high degree and have large integer coefficients. An i
computational approach to finding generic cardinality of solution—sete with the added virtue of bei

tractable—is presented in [29].
As Grobner bases computations never leave their base field (that is, if we begin with real data then the p«
in the basis will have real coefficients) we conclude that complex solutions will be in pairs. Thus we mi

zero, two, four, or six (real) cylinders &?. In the case of the example above we have two. We will later u
results of the large simulation tests to say a bit about percentages of examples for which one obtains give
of real solutions.

3. Computational Geometry of the Solution Cylinders

Finding theimplicit equation of a cylinder from its parametric form

Given the parameters of a cylinder, it is natural to ask how one might obtain the implicit form. The first me
show, best described as "applied brute force", is from modern elimination theory. Some references for
nique are [1] [12] [19] [23]. We begin with equations fgyy, z) in terms of the five parameters and the sine
cosine of an (unrestricted) angular parameter.

In more detail, we have a parametrization for the cylinder in terms of a scalar muttifgliethe direction vectc
vec and an anglé to determine a unit vector in the plane orthogonaleto To make this parametrization algebi
we can use the usual pair of trigonometric functions, abbreviated below as algebraic variehlsip. This give:

one parameter more but of course we also now have the polynoosiat si’ — 1. A standard Grébner ba:
method for elimination of variables uses a term ordering that is typically efficient for partially triangulariz
polynomials. In particular it weights terms that involve any of the elimination variables higher than all othe
We form a Grdbner basis with respect to such an ordering and remove all polynomials that contain a
elimination variableqt, cos sin). What remains, a single polynomial, is the implicit relation in the vari

XY, 2.
b? +b*c*-2abcd+d*+a*d® -r*-a’r* -’ + 2ab+2cd)x+(a* + c?)x* +
(-2b-2bc*+2acd)y-2axy+(l+c®)y*+(2abc-2d-2a°d)z-2cxz-2acyz+(1+a’)z’
Note that, as one might expect, the implicit polynomial is a functiof. of

For the example using cylinder parameters from (4) the implicit polynomial is computed to be

—420+4X+25%° - 92y —6Xy+17y* +68z-8xz—-24yz +107°



There is a simpler way to find the implicit form for a cylinder. Just use the formulation we described for fin
distance from a point to the axial line. This gives an equation satisfied by every point on the cylinder. Her
be the hypersurface expression we seek. As is so often the case, we see that brute force can be usefu
match for finesse. The first approach remains of interest because it is a standard technique in computati
braic geometry, and works when geometric intuition may not be so readily available.

Finding cylinder parametersfrom the implicit form

Now we look into the reverse problem of finding parameters from the implicit form. While algebraic paran
tion is in general difficult, the case of quadric surface®¥nis not terribly hard; general methods for this
presented in chapter 5 of [19]. For the case of cylinders we will show a very simple approach which we
using the example above.

As we know the general implicit form, it suffices merely to equate coefficients with those of the specific
form and solve for the parameters. Some of the coefficients are linear in the cylinder parameters so this is
tionally quite easy. For the example with cylinder parameters given in (4) the implicit fornowmsim the
previous subsection. One can equate coefficients using, for examplathematicafunction Sol veAl ways.
This yields, as we expedtsqr—-»21,b—»2,d—-» -1,a- 3,c—- 4)}.

Were the coefficient equations not so readily solvable we could instead do as follows. Starting with that ¢
implicit form we generate at least five points that lie on it. To this end we might simply take valugsyi
coordinates, and solve far We then form equations for the parameters from the first five points and solve

This gives candidate parameter values. Last we find the implicit equation corresponding to each set of p
the correct parameters will be the ones that recover the original implicit form (up to scalar multiple).

Solving for overdetermined cylinders

An important question to ask is what we might do to find a cylinder when we are given more than five give
The typical case is where the points all lie approximately on a cylinder and we wish to find the best fil
(perhaps to assess tolerance). We will use a local optimization method for this task. We can set up an ex
minimize as follows. First form the list of orthogonal complements to projections of our points onto the a
Then take a sum of squares of differences between projected lengths and radius.

We already saw that it is quite important to have good starting values. We do this by taking five points, st
all exactly determined cylinder parameters therefrom, and then using other points to decide which of the si
ties we should utilize. Specifically, at the set of "good" approximations we will have real values and ou
squares will be near zero. This is referred to as a minimal subset method.

To illustrate we resurrect our original example but this time we use more points and we add random nois
them. The eight points below are thus perturbed slightly from the known example cylinder.

(—2.61303, 4.97448, —-3.39489), (-6.50929, —17.4652, —19.5735),

(9.39443, 185 3.93821x10%%, 18.2057), (12.7263, 29.6737, 32.2087), (5.481, 20.4069, 30.6016),

(7.21938, 33.4364, 34.1586), (10.6382, 20.9278, 29.2479), (—4.81338, —25.7862, —39.1488)

We first obtain a set of candidate starting values. Using the method described above, we get six possibl
select the best candidate by calculating values of the six implicit equations at all points, summing absol
for each equation over all points, and using the parameters that correspond to the implicit equation that
smallest such sum. For a particular set of choices we obtained the residuals below.

(340.514, 340.514, 8047.95, 0.1098, 1973.7, 1973.7)
It is clear that the fourth set of initial values is the one we should use. With this providing initial values
minimization of the sum of squares of residuals gives the resulting parameter values below.

{4.02685%107%, {a > 2.99996, b - 1.99945, ¢ - 3.99999, d - —1.00099, r - 4.58255}}

As a general remark, attempts with different optimization methods indicate that this sort of expressior
problematic to minimize without reasonable starting points. Hence the ability to solve the exactly de
system is quite important as it provides an essential preprocessing step.

There are interesting applications to this. In the industrial realm of geometric tolerancing one wishes ta
how well an object conforms to specifications. The cylinder is of course a very common object in manuf:



good approach to metrology involving cylinders may be found in [15]. The technology discussed therein

cially effective when the object in question is small and may be readily positioned, but one might accept
approach e.g. to check an underground pipeline. For this sort of task one could probe five points, obtain -
a set of approximate cylinder parameters, then probe several others and obtain parameters for a le:
nearest cylinder as above. One can then check whether all probed points are within specification toleranc

radial measure from the computed axial line. Other applications include fitting a cylinder to a point clouc
positioning of femur pieces for surgical fracture reduction [37], and the first step of fitting peptides ar
biomacromolecules to a helix [4]. We note that the method above is strictly a fitting problem. If we wis
points in regions with multiple objects we must preprocess via image segmentation. A robust statistics a|
presented in [31] that also relies on sampling exact fits of minimal subsets. In order to qualify as "robust” i

a method to distinguish and discard outliers. Once the object points in the region are segmented one ¢
cylinders as above.

Visualization of cylinderscontaining a set of points

Once one has parameters for real cylinders containing a set of points one might wish to plot the configur
this purpose it is often useful to shrink the cylinder radius mildly so that the points are more readily visible.
connect them by segments as this tends to make more clear how they are situated on the cylinder.

Let us look at an interesting configuation. Our points &re0, 0, (-1/2,V3 /2,0, (-1/2,-V3 /2,0),
(0, 0, \/?) and(O, 0, —\/7) One notes that it is hardly generic in the sense that the points form a double

tetrahedron (with edge length of3 ). In particular gives a pair of cylinders with axes parallel toytheoordinatt
plane, and this means we cannot obtain all six cylinder parameters as solutions to the equations based
that we have worked with thus far.

For this example we instead use the third coordinate to parametrize the cylinder gais+&scz+d, z. The
change this imposes on the code is quite modest and is indicated in the appendix. With respect to this set
a very simple set of parameter values where the radii ag¢ Xl Two are

(a b, ¢, d, rsqr)= (0, 1/10,y 2/3 , 0, 81/100)

(& b, c, d, rsgr) = (—1/\/;, -1/20, —1/\/E, \/;/20, 81/100)

The rest are similar to these first two but with various of the first four components negated. Here are pl
various viewpoints. We show some renditions of the first solution cylinder using different graphics and vie
This may help to visualize how the cylinder axes pass through pairs of faces of the doubled tetrahedra.
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Here is a plot of all six cylinders containing these five points.
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It is interesting to note that from this double regular tetrahedron construction one may obtain twelve real
of a certain radius that intersect four particular points. Such an example was first presented in [30]; here
how it arises naturally from our construction above. We begin with a regular tetrahedron and this time
others onto it, one on each face. The vertices of the original tetrahedron will be our four points. Clearly fi
of the glued on tetrahedra we get the six cylinders as above, each intersecting those four points and all
same radius.While this would appear to giwet = 24 cylinders, they pair off so that the actual total is twelve
remark that computational techniques essentially identical to those we have shown can be used to find tt

ters for this problem as well. A different approach, using homotopy continuation methods as described e.
was employed in [16]. A generalization of finding cylinders of possibly different given radii through four poi
been studied in [20]. In [34] there is a construction givdrgal cylinders that is similar to the one above, but t
a perturbed configuration that avoids symmetry. Computations are similar to those in the appendix.
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4. Real Cylinders: Probabilitiesand Configurations

Enumerating real cylinders

We now investigate cases in which a configuration of five points will give rise to the various possible nui
real cylinders containing it. First we note one obvious situation for which there can be no real cylinders: if (
is inside the convex hull of the other four then, as right circular cylinders are convex, no real cylinder ca
all five points. It would be interesting to know how frequently this arises for point sets that are random un
reasonable distribution. A simple simulation is revealing. We @$géxamples with point coordinates chose
independent and uniformly distributed pseudorandom integers in the [Fah@@, 10Q. From these we found t
frequencies of zero, two, four, or six real cylinders.

In one such simulation the frequencies obtained \{@3#&, 2206, 865, 9. So roughly 23% give no real cylinde
It is natural to ask whether these are all configurations in which one point is enclosed by the other four.
out not to be so. We first discuss the frequency of such random configurations for which one point is en
the hull of the other four. Presently we will see an open set in the configuration space for which no point |
the hull of the rest, and for which there are no real cylinders through all points.

To approximate the one-enclosed-by—four situation we genefdtechndom configurations and checked t
many cases one point was within the convex hull of the other four. In a simulation we omuﬁ;éﬁ“ or abou
0.07C Thus, for the no—-real-cylinder examples subject to the distribution of points we used (which closely
mates points uniformly distributed in a cube), we surmise that almost three out of four cases do not ar
way. A partly proven conjecture in [28] states that the remaining configurations with no real solutions
regarded as perturbations of the ones wherein one point is enclosed by the other four.

The frequency of one point being enclosed by the others is related to some classical problems in integral
One way to pose it is as a three dimensional version of Sylvester’s problem [13]: What is the probability
points chosen at random in a unit cube all lie on the convex hull they define? Another variant is to find the
volume of a random tetrahedron in the unit cube (several other variations are posed in the reference). W\
this expected volumeTe. To see how these problems are related, we order the five random points, then as
the probability that the first is enclosed by the others. This is exactly that expected volume. Now observ
expected likelihood that any one point is enclosed by the other f&wTig, as these are each pairwise exclu
events. Indeed, by taking the average of the five cases of one—point-enclosed-by-the-rest one obtair
Carlo simulation of/Tet it is in the ballpark oL/ 70.

Taking this another step we might refine the estimate by quadrature. We utilized a quasi—-Monte Carlo ¢
and obtained as our approximati®n0136. This is clearly in accord with the approximation by simule
described above.

The problem of finding the expected volume of a tetrahedron with vertices independently and uniformly di
inside a cube was recently solved [39] using an elaborate breakdown of the region and several exact n

integral computations. The actual value3&77/216 000- 7r2/216C, or approximately.01384.. This agrees wit
both the quadrature result and the simulation to almost three decimal places.

Configurationsthat give six real cylinders

We previously obtained six real cylinders above by starting with a regular tetrahedron and gluing a copy c
one face to obtain five points. If the common face is inxthglane (so that one tetrahedron points up, the
down), then each intersects one of the three faces of the upper tetrahedron and one the faces of the
connected by an edge to the intersected upper face. In fact it is quite clear by symmetry that if we hav
cylinder then we must have six: we get two "conjugates” by rotating, and three more by reflecting throug
plane. There is another configuration, from [32], that can be seen to give six cylinders. We have four point
vertices of a square in they plane. This is the base of a pyramid with the fifth point as its apex above the ¢
of this square. We obtain two horizontal cylinders each passing through a pair of opposite triangular fac
pyramid. The remaining four each pass through a triangular face, angled upward, and an edge of the base

It is a (vague) conjecture that all configurations giving rise to six cylinders iare small perturbations of one
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these two configurations. This idea, admittedly difficult to quantify, is based on visual experimental evidenc

More configurationsthat give noreal cylinders

As noted earlier we get no real cylinders whenever one point is in the convex hull of the other four. It is ¢
from experiments (and theoretical grounds discussed in [28]) that there are other configurations that gi\
cylinders. We now use symbolic computation to derive a particular family of such configurations.

We begin with a double tetrahedron glued along a common face in the horizontal plane, allowing the upj
to vary on a vertical line. To make results of computations more concise we now work with & loveedinat:

that is -1 instead of-v'2. Thus our points are now, 0, 0, (-1/2, V3 /2, 0), (-1/2,-V3 /2, 0), (0, 0,-1),
and(0, 0,2). One may readily check that when the indeterminate coordinatevéshave6 real cylinders (all rad
are5/6). If we alter either or both of the upper and lower vertices we can jump from having six cylinders
the five points to having none. This is explained via a symmetry argument that we outline below. As noted
we have one real cylinder from such a configuration then the threefold symmetry will give us two more,
cylinders (counting multiplicity). As this is an odd value either we must have another (and again by 1
symmetry, six altogether), or else there must be multiplicity. One can argue against multiplicity on g
grounds, but a simple algebraic observation is that in any case we cannot have multiple solutions on m
finite set of configurations as we move that top vertex along a vertical line (else we would have multif
solutions everywhere on that variety in the configuration space). As we cannot have three real solutions
multiplicity, we see that we either have six or none.

Below we explicitly show this phenomenon. Note that as we use a Grébner basis approach we canr
straightforward way impose positivity on that mobile vertex. Were it to become negative we would have
cylinders because either it or the other negative vertex will be in the tetrahedron hull of the remaining four
Our interest is in the case where it gets larger, however, and our discussion will handle that.

We use the five equations based on (2), with the axial parametrizationb, c z+ d, z}, to obtain the cylinde

polynomials. Let us now look at a lexicographic Grobner basis for this polynomial set. We regard the
vertex vertical coordinate as a parameter and do the basis computation over the rational function field
parameter. When the variables are ordered satisdexicographically smallest we have the basis given below

{—6+l6z—2022+823+c2(—9+182)+C4(—12+482—4822)+06(—4+24z—4822+3223),
2+c¢*(5-102)+a(-2+6z-42")+c*(2-82+82%),
(-5+102)+c*(-2+8z-87%)+c(2-8z+47°)+d(-4-4z+87%),
—1—22+b(2—822)+c4 (—2+82—822)+cz(—4+62+4z2), 5+2022+rsqr(—4—16z—l6zz)}

We saw from symmetry considerations that we obtain at least one real solution if and only if we obtair
solutions. So it suffices to indicate situations where we cannot have six. For this we focus on the univariat

mial in the last variables. First note that it is a cubic polynomialdf For our task it suffices to find values ofor
which this cubic has no positive roots. Writing the cubic in a new varabt® we have

~6+162-202"+82° +(-9+182) s+ (-12+ 482z - 482°)s” + (-4 + 24z - 48 7% + 327°) §° (7

For z sufficiently large the leading coefficient is asymptoticdBZz°. Dividing (7) by this leading coefficient v
have a cubic with quadratic and linear coefficients, as rational functian @&symptotically going to 0, a

"constant" term approaching 1/4. That is, fosufficiently large, our cubic approachs’s+ 1/4. As this does n
have positive roots, neither does the cubic for sufficiently largéence the sixth degree polynomialdrhas nc
real roots when is large, so the system has no real solutions in that case.

Note that for all but finitely many values afwe have a lexicographic Groébner basis with generic shape
follows from the main theorem of the next section (because it gigetutions, has first polynomial univariate
of degree6, and remaining polynomials linear in each respective variable; in order to conclude genericity
to know the generic solution countdgs This holds in particular for sufficiently large In that case we just show
that there are no real cylinders containing the five points. From this it is not hard to show that small perturl
any of the five points in any directions will also not give rise to real valued cylinder parameters (becau
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ciently small perturbations of the input will still give a basis conforming to the Shape Lemma). Hence we
open set in configuration space for which there are no real solutions.

5. Counting Cylinders Through Five Points

The above investigations indicate computational ways in which one might approach questions involving
through five points. We now show how purely computational methods can be brought to bear on sor
theory. Related results are presented in [28].

PROPOSITION 1Generic configurations of five pointsi¥ lie of the surface of finitely many cylinders.
Moreover an upper bound on the number of these cylinders is nine.

PROOF:We set up some linear algebra similar to that already seen, but now we reduce to two equatio
variables along with theonfiguration parameters. The linear algebra is as follows. Without loss of genere
have one point at the origin, anothetht0, 0, and a third in th& y coordinate plane. We project these onto th
of planes through the origin, parametrized generically by a normal vector1). In each such plane these tf
points determine a circle, and we get one equation for each of the remaining two points in order that th
onto the same circle (which is the condition that the five be cocylindrical). Our poin{®,d&¢0, (1, 0, 0,
(X2, Y2, 0), (X3, V3, Z3), and(Xq, Ya, Z4). From these we obtain the polynomials below.

(XY - b’ X3y, + X3 V2 + DX Vo + X0 y3 + DP X Y3 - X5 y3 —bP X3 y3 + 2abXp yo v —
2abxXsy,y3-V5y3 —a’ysys +y2y§ +a2y2y§ —bxyz3-b¥x,23 +bx5z3 + b3 x5 zg +ay, z3 +
ab’y,z3-2ab’®x,y, 23 - 2ax3 Y, 23 +by§zg +a2by§zg —-2by,vys3 23 +a2yzz§ +b2y2z§, (8)
X4 V2 - b? X4y, +x§y2 +b2x§y2 +X Vs +bPX Y, —x§y4 —b2x§y4 +2abxyoy4 —

2abxyyoya—V3Va—a V5 Va+ VoV +a V2 Vi —bXozy b’ %02 + XS 24 + DO X3 24 +ay, 24 +
abzygz4 —2ab2x2y2 Zy—2aXy Y2 Zy +by§z4 + azbyg Zy—2bysysz4 +a2y2 Zi +b2y2 zi)

Factoring shows that they are irreducible and hence are relatively prime. So generically they have finite in

and an upper bound is given by the Bezout theorem. In fact, as each polynomial has degree three in th

(a, b), we see that there are at most nine solutions for the cylinder axis direction parameters, hence at

solutions for the set of cylinder parameters.

In [14] it is noted that this projected circles approach is related to the Delaunay triangulation of projectio
five points on all possible planes. Specifically, directions of projection where the triangulation changes ar
tant, as these occur exactly when four points become cocircular. This gives a direct tie between the enum
computational geometry of cylinders through five points.

PROPOSITION 2Real valued solutions always have positive values for the square of the radius.

The significance of this proposition is that all real valued solutions do indeed give cylingérs in

PROOF. Suppose we form a lexicographic Grobner basis for the system of five generic polynomials from
the radius—square variable ordered as smallest. Then generically (Shape Lemma) we have a basis ¢
univariate polynomial in that variable. For each of the other variables there will correspond a linear polyr
the basis, and it will have real valued coefficients. Suppose a solution to that univariate polynomial is rei
Then the remaining cylinder parameters, on back substitution, will also be real valued as they are given
polynomials over the reals. Now recall that our original equations were of the form equating a sum of sque
squared radius. Here the left hand side is a polynomial function of the input data and cylinder parameters,
the original equations will have positive left hand sides, so the radius squared must also bemositive.

THEOREM.Five generic points ik3 determine six distinct sets of cylinder parameters, of which an even nui
(counting multiplicity) are real valued. That number can be zero, two, four, or six.

Note that the number of real valued solutions being even follows from the fact that complex solutions mu
in conjugate pairs (since all the polynomial equations have real coefficients). Moreover we saw in the eni
simulation that all four possible cases of real valued cylinder counts arise. So we need only prove that the
solutions is six.

PROOF 1. We form a Grébner basis with respect to a degree based term ordering for the polynomie
created in proposition 1. Looking at the head terms we find that theré mr@nomials in(a, b) that are nc
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reducible with respect to this basis and hehiselutions to the system [10] [11].

PROOF 2. We compute the resultant of the pair of polynomials with respect to one of the two variables. \
a polynomial of degreé in the other (with large symbolic coefficients). This means there are aténsosutions
As we already know there are at least that many, this suffices to show that there are generically six solutiot

REMARK 1: One might wish to use the method of mixed volume to compute the number of solutions [:
finds the convex hull of the Newton polytopes of the exponent vectors for each polynomial and then ca
mixed volume. This is easy to do using the computation from the proof of proposition 1. Each of the two pt
als has the same set of power product&jrb) and specifically the hull of the exponent vectors is given b
vertex set0, 0), (2, 0), (2, ), (1, 2, and(O, 3.

The volume of this region i4. The Minkowski sum of the two polytopes is just the same hull scaled to tw
size, and the mixed volume is equal to the total volume minus the sum of the volumes of each separe
16-8=8. So the generic number of solutions for equations with these sets of exponent ve&taithés tharb.
Indeed, one can verify this immediately by solving a pair of random equations that use the same power
We thus conclude that the entire family of cylinder problems is nongeneric with respect to the theory pre

[21]. A hint as to why this is so may be gleaned from the computational proof of theorem 1 presented in |
sort of nongeneric example is also noted in [21]. The related problem discussed in [16] and [30] similarly f
generic for the polyhedral homotopy solving method.

REMARK 2: Proof 1 uses a brute force computation of a Grobner basis for a system with generic coni
parameters. This approach is not tractable for most geometric problems, and that it worked here is indica
relative simplicity of this formulation of the problem.

REMARK 3: Proof 2 is similar in method to an argument in [33] which implies that there are at most 12 ¢
of a given radius through four fixed points.

REMARK 4: Other proofs of varying levels of complexity may be found in [5] [8] [14] [28]. An algorithn
effectively automates finding the cardinality of generic solution sets to geometric configuration problems is
[29]. It relies on showing that the solution count is constant in a neighborhood of a given point in confi
space.

6. Nongeneric solution sets (too many, too few, or too familiar)

Some further problems of interest include understanding the configurations of five distinct points that are
ate for the problem at hand. Specifically we would like to know:

(1) When the number of solutions is infinite.

(2) When the number, counting multiplicity, is less tBan

(3) When there are multiple solutions.

Some aspects of the first two questions are addressed in the companion paper [28]. Among other things v
a sufficient condition to have either infinitely many cylinders through five points, or at most four, is that th
be coplanar. It is conjectured in [28] that these are also necessary conditions, and moreover that infini

cylinders exist exactly when either four points are collinear or three are collinear with the line determine
remaining two parallel to the line through those first three. In this section we discuss how some ideas inv

discriminant variety [25] might be used to approach these questions. We emphasize that this is entirely t
we have not obtained concrete results with this approach to date, in part due to certain complexities prese
problem formulation (and in no small way to gaps in the author’s understanding of the work in question).
describe code in the appendix that starts out along this computational path.

The basic idea, from [25], is to formulate polynomial conditions for where we do not have 6 solution:
cylinder equations. We will start with the two equations for the two axis variables (these will be our "mai
ables), given in (8). We create a block term order for all variables, including the indeterminate point coc

such that the heavier weighted block corresponds to the main variables. We find the basis and look at lea
in the two main variables; these have coefficients in the indeterminate parameters. A necessary conditic
basis not be valid for a configuration is that such a leading term coefficient vanish.
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This computational method has weaknesses. First, one really needs to ensure that the five points are di
might be done by adding polynomial conditions (with new variables) to enforce that certain differences be
(or at least that one difference from some set of possibilities be nonzero; this is not harder in principle bu
polynomials of higher degree in the new variables).

A second difficulty is that our algebraicization of the problem took a shortcut in setting a direction coordin
We may be in a situation similar to that posed by the doubled regular tetrahedra, wherein our initial
direction parameters could not describe all actual cylinders through the points. The code in the appe
generate leading coefficient factors that inclyglefor example. Were this to vanish we would have three coll
points on thex axis, and this would force all cylinder directions to be in that direction and hence have a last
nate of zero. Another such factor is shown below.

yZY4Z3—in3—YZY3Z4+Y§Z4+Z§Z4—23Z2
It is less obvious how this might be a result of the limitations in our representation of the direction vectol
presumably that is the case. Other factors are far longer and correspondingly less amenable to this auth
standing.

We might try to adjust for the direction vectors which we cannot capture, e.g. by using polynomial relatior
out configurations that would give such cylinders. An alternative would be to work with the computational
difficult formulation wherein a direction vector has three variables and a new polynomial is used to "norma
direction (e.g. by making the sum of squares equd).téctually this too is not going to get all possible cylinc
because we consider complex solutions, and in that setting we can have a complex "direction" vector w
sum of coordinates vanishing. This method has the drawback of being computationally more intensive
shortcut approach.

Yet another issue is that we may have a variety in the configuration parameter space for which leading te
basis vanish, but for which a different term ordering might behave perfectly well (these are called "repre
singularities” in [35]). That is, we might have the correct solution count but a basis that is not of the same
generic bases.

A related matter of interest is to describe the configurations that give some given number (even, col
multiplicity) of real solutions. In [28] there is considerable discussion of the case of no real cylinders. A

might wish to approach this computationally using discriminant variety tools from [25]. Here the ideal of in

the set of certain Jacobian minors (as well as the original polynomials). At multiple solutions these wil
Hence any characterization of these, intersected with real space, will include the boundaries in the cor
space between different numbers of real solutions. Computationally this would appear to be a daunting pr
it would be interesting to learn if any existing software can make progress with it. Also as the result is exf
terms of algebraic relations, it would then be useful to understand from them the underlying geometric rele
describe the four cases of real solution cardinalities.

7. Summary

We have discussed computational methods for finding cylinders through a given set of five geitaliong the
way we have covered several related problems and computational approaches thereto. We have investig:
real valued scenarios using simulation. Overall we have combined geometric reasoning with Grébner |
several related tools from symbolic computation in order to study a rich family of problems from enumere
computational geometry.
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9. Appendix

We giveMathematicacode used herein. Small amounts of text relate the code to the ways in which it is us
body of this article. It should be of interest that in total there is not much code. This again points to the in
of symbolic-numeric computation in investigations of the sort found herein: this would be something of a
to code "from scratch” but is straightforward with programs that support such functionality.

Below is code used to set up our first example.

perp [vecl_, vec_, offset_ ] : =vecl -offset - Projection [vecl - offset, vec, Dot 1

{a,b,c,d,r }={3,2,4, -1,Sqrt [21]};
vec = {1, a,c };offset ={0,b,d };

pair = NullSpace [{vec}];

{wl, w2} = Orthogonalize [pair, Dot 1;

SeedRandom[111 111 7];
xvals =Table [Random[Real, {-10,10 }1, {5}1;
thetas =Table [Random[Real, {0, 2 =n}]1, {5}1;
points =Table [xvals [jJ vec +offset +rCos [thetas [j 1] wl+rSin [thetas [j11w2, {j,5 }1;
When we use this point set to findand the parameters describihgve must of course clear those that we
above so they become symbolic indeterminates. Using these points we will obtain the needed algebraic ¢
for extraction of roots.
Clear [vec, offset, a, b, c, d, r ]
vec = {1, a,c };offset ={0,b,d };
perps = Map[perp [#, vec, offset ] &, points  1;
exprs = Map[Numerator [Together [#. #-r"2 1] &, perps 1;
Here we attempt to get solutions to the parameter equations using local root—finding methods.
rtl = FindRoot [Evaluate [Thread [exprs ==0]], {a, 3.4 },
{b, 2.8 }, {c, 3.7 }, {d, -1.6}, {r, 3.3 }, Maxlterations - 500]
r2 =FindRoot [Evaluate [Thread [exprs ==0]], {a, 2.7 }, {b, 1.8 },
{c, 3.2 }, {d, -7}, {r, 3 }, Maxlterations - 500]
Now we use local optimization, minimizing a sum of squares with the Levenberg—Marquardt method (whi
to be good for sums of squares).
esquares = Apply [Plus, Map [#"2 &, exprs 11;

{m3, rt3 } = FindMinimum [Evaluate [esquares ], {a, 2.4 }, {b, 1.8 1},

{c, 3.2 }, {d, -.8}, {r,3 }, Maxlterations - 500, Method - LevenbergMarquardt ]
{m4, rt4 3} = FindMinimum [Evaluate [esquares ], {a, 2.4 }, {b, 1.8 1},

{c, 22 }, {d, -1.813}, {r, 3 }, Maxlterations - 500, Method - LevenbergMarquardt ]

We useNSol ve as below to find all solutions.
Timing [solns = NSolve [exprs, {a, b, c, d, rsgr 111
We can even ug€Sol ve to find exact solutions.
Timing [exactsolns = NSolve [exprs, {a, b, c, d, rsqgr }, WorkingPrecision - Infinity 1;1

In our second example we indicate the polynomial exponent structure of a set of polynomials. This is don
code below.

gb = GroebnerBasis [exprs, Sort - True ];

listl = Map[Apply [List, #] &, gb] /._Integer =xXx_ -X;

list2 =Map[Cases [#, a_ /; ! IntegerQ [a]] &, listl ]
The code below will find the implicit form of a cylinder given a parametric formulation. It implements a si
elimination method using Grébner bases.

Clear [a, b, c,d, t,r 1;

vec = {1, a,c };offset ={0,b,d };

pair = NullSpace [{vec}];

{wl, w2} = Orthogonalize [pair, Dot 1;

polys = Append [tvec +offset +rcoswl +rsinw2 -{x,y,z }, sin 2+cosz—1];

ee = Numerator [MapAll [Together, polys 11;

ff = Numerator [Together [PowerExpand [ee]]];

implicit = First [GroebnerBasis [ff, {X,y,z }, {t sin,cos }, Sort - True,
MonomialOrder - EliminationOrder , CoefficientDomain - RationalFunctions 11;
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We can check this on the particular example by showing that each given point is a root of the polynomial.
thisExample = implicit /. {a=»3,b>2,c »4d ->-1,r »Sqgrt [21]}
thisExample /. Map [Thread [{X, Yy, z } ->#] &, points ] // Chop
Here is another way to get the implicit form. It is quite simple, but, unlike the preceding general appro
specific to the geometric object in question.
pp =perp [{X, Yy, Z }, vec, offset 1;
implicit2 = Numerator [Together [pp.pp -r?]]
Here we find the parameter values from the implicit form of a cylinder.

generallmplicitForm = implicit /.1 2 5rsqr;
thiscase = generallmplicitForm /. {a=»3,b 52,¢c »4,d »-1,rsqr -21};
SolveAlways [thisExample == generallmplicitForm , {X,¥,2 }]

An alternative approach to the parametrization is given below.

points = Partition [
Flatten [{X,y, z } /.Table [Solve [{thiscase =0,X =j,y =0}, {X,¥,Z2 }1, {,0,2 13}11,371;
perps = Table [perp [points [k], vec, offset 1, {k, 51}1;
exprs = (Numerator [Together [#1.#1 -rsqr ]] &) /@ perps;
generallmplicitForm

/. #l
thiscase ] ] &]

Below we create an overdetermined example of eight points. It contains some random noise to move i
exact parameter values.

SeedRandom[1111 111 ];

{a, b, c, d, rsgr }=(3,2,4, -1,21}%;

numpts = 8;

vec = {1, a,¢c };offset ={0,b,d };

pair = NullSpace [{vec}];

{wl, w2} = Orthogonalize  [pair, Dot 1;

xvals =Table [Random[Real, {-10, 10 }], {numpts }];
thetas = Table [Random[Real, {0, 2 w}], {numpts }];
randomNoise3D [max_] : = max Table [Random[], {3}]

points = Table [xvals I 1 vec + offset + «/ rsqr Cos [thetas [j 11 wl+

Select [candidates, NumericQ [Together [

«/rsqr Sin [thetas [j ] w2+ randomNoise3D [0.001 ], {j, numpts }];

We obtain a set of candidate starting values as below (again we need to clear the various parameters ti
above to recreate the example).

Clear [a, b, c, d, rsqr 1;

vec = {1, a,c };offset ={0,b,d };

perps = Table [perp [points [[j 1], vec, offset 1, {j, numpts }1;

exprs = Map[Numerator [Together [Rationalize [#.#, 0] -rsgr 1] &, Take [perps, 5 11;

solns = NSolve [exprs, {a, b, c, d, rsqr }1;

We find the correct set of starting values for a local optimization of parameters.

squaresums =
Apply [Plus, Abs [ (generallmplicitForm /.solns ) /.Map [Thread [{X, Yy, Z }->#] &, points 1]1;
candidate = solns [[Position [squaresums, Min [squaresums 1]1[[1,11111;

We use the starting values in a local minimization of a sum of squares in order to get a best fit cylinder to
set.
2

sumsquarelens = Plus ee ((V #l. #1 - r) &) /@ perps;

startvals = (List ee#l &) /e candidate ;

newstartvals = startvals /. {rsgr, v_ } {r, Vv };

{min, ee } = FindMinimum [Evaluate [sumsquarelens ], Evaluate [Sequence @@ newstartvals ]]
Below is code used for plotting a cylinder and point set.
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showlines [points_List, rest_ ] : = Module [{plotpoints, plotlines, len = Length [points 1},
plotpoints = Table [Graphics3D [{Blue, PointSize [0.05 ], Point [points [j11}1, {j, 1, len }7;

plotlines = Table [Graphics3D [{Hue[1/26 24k - 4)], Line [{points [j I, points [kI}1}],
{k, 1,len -1}, {j,k +1,len }];
Show[plotpoints, plotlines, rest, DisplayFunction - |dentity, Boxed - False, Axes - True,
AxesLabel - {"x", "y" , None }, ViewPoint - {-1/2,2,1 1}, ImageSize - {300, 480 }]]
cylinderplot [rt_, pts_List, vec_, offset_, showcyl_: True 1:=
Module [{r, vec2, lin, x, theta, wl, w2, circ, cylplot, axis, pair },

r = w/ rsqr /. rt ;vec2 =vec /.rt; lin =xvec +offset /.rt;

pair = NullSpace [{vec2}];

{wl, w2} = Orthogonalize [pair, Dot 1;

circ =0.7rCos [theta ] wl+0.7rSin [theta ]w2/.rt;

cylplot = ParametricPlot3D [Evaluate [lin +circ ], {x, -3, 31},

{theta, -0.5 x, 0.85 =}, Shading - True, DisplayFunction - |dentity 1;
axis = ParametricPlot3D [lin, {x, -3.5, 3.5 1}, DisplayFunction - |dentity 1;
If [showcyl, showlines [pts, axis, cylplot, DisplayFunction - |dentity 1,

showlines [pts, axis, DisplayFunction - |dentity ]]]

Our example uses two regular tetrahedra glued along a face of each. The common face Xsyinotbrelinate

plane. As this cannot be handled with the setup used above, we take different direction and offset vector
cally, we have solutions with axes parellel to yhecoordinate plane, that is to saycoordinate of zero, and ¢

generic axis of choicdll, a, ¢), will not find these parameter sets. Hence instead we&a sg1) as our directio
vector.

dpoints = {{1,0,0 }, {-1/2, V3 /2,0}, {-1/2, -¥3 /2,0}, {0,0, ¥2}, {00, -V2}};
vec ={a, c, 1 };offset ={b,d, 0 };

solveCylinders [pts_List, vec_, offset_, prec_ : Automatic 1 : = Module [ {exprs, k, perps },
perps = Table [perp [pts [k, vec, offset 1, {k, 51}1;
exprs = (Numerator [Together [#1.#1 -rsqr ]] &) /@ perps;
NSolve [exprs, {a, b, c, d, rsqr }, WorkingPrecision - prec 1]

One obtains the exact cylinder parameters as below.

solns = solveCylinders [dpoints, vec, offset, Infinity 1;
FullSimplify [{a, b, c, d, rsqr } /.solns ]

The first two may be plotted with the following code.

nsols = N[solns 1;

Show[GraphicsArray  [Table [cylinderplot [nsols [[j 1], dpoints, vec, offset, True 1, 0,2 3111
A nice plot may be constructed more simply in the versiomMathematicaunder development at the time of |
writing. We show it for the first solution cylinder.

{pl, p2, p3, p4, p5 } =dpoints;

topl = (vec »2 +offset ) /.solns [[1]];

botl = (-vec 2 +offset ) /.solns [[1]];

Graphics3D [

{{Red, Sphere [#, 0.04 ] & /e {pl, p2, p3 }, Green, Sphere [p4, 0.04 1], Blue, Sphere [p5, 0.04 1},
{White, Opacity  [0.1 ], Polygon [{{pl, p2, p4 }, {p2, p3, p4 }, {p3, pl, p4 }}1,
Polygon [{{pl, p2, p5 }, {p2, p3,p5 }, {p3,pl, p5 }}1},
{Yellow, Opacity [0.6 1, Cylinder [{topl, botl 1}, 0.70 1}},
Axes - True, AxesLabel - {"x" , "y" , None }]

One can instead plot the cylinders together in one picture using the code below.
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multiplecylinderplot [rt_, pts_List, vec_, offset_ 1:=
Module [{Ien =Length [pts ], r, vec2, lin, x, theta,
wl, w2, circ, cylplot, axis, cyls, plotpoints, plotlines },
plotpoints = Table [Graphics3D [{Blue, PointSize [0.05 ], Point [pts [j11}1, {j, 1, len }1;

1
plotlines = Table [Graphics3D [{Hue[g (i 24k - 4)], Line [{pts [j I.pts [kI}1}].

{k,1,len -1}, {jk +1,len }];
cyls =Table [

r=afrsar /.rt [[i1];

vec2 =vec /.1t [[j1];

lin =xvec +offset /.rt [[j1];

pair = NullSpace [{vec2}];

{wl, w2} = Orthogonalize [pair, Dot 1;

circ =0.87rCos [theta ]wl+0.87rSin [theta Jw2/.1t [[j]1];

axis = ParametricPlot3D [lin, {x, -3.5,3.5 }, DisplayFunction -> Identity  ];
cylplot = ParametricPlot3D [Evaluate [lin +circ 1,
{X, -3,31}, {theta, -0.85 = 0.85 =}, DisplayFunction -> ldentity  1;
cylplot
. (i, Length [t T}];
Show[plotpoints, plotlines, Apply [Sequence, cyls 1, ViewPoint ->{1/4,3,0 }]

]

For example we might plot the six from the doubled tetrahedron example.

solns = solveCylinders [dpoints, vec, offset 1;
multiplecylinderplot [N[Take [solns, 6 1]], dpoints /.z - Sqrt [2. ], vec, offset ]

Here we counted the number of real solutions Z&% point configurations wherein coordinates were take
pseudorandom integers uniformly and independently distributed in the[rab@@, 10Q.

Clear [a, b, c, d, rsq 1;
vec = {1, a,c };offset ={0,b,d };
pair = NullSpace [{vec}];
{wl, w2} = Orthogonalize [pair, Dot 1;
SeedRandom[11111];
len =2%?;
intpoints = Table [Table [Random[Integer, {-100, 100 3}1, {5}, {3}1, {len }1;
Timing [rvals =Table [perps = Table [perp [intpoints [Ij, k 11, vec, offset 1, {k, 5 1}1;
exprs = Map[Numerator [Together [#. #-rsqgr 1] &, perps 1;
solns = NSolve [exprs, {a, b, c, d, rsqr }1;
rs =N[rsgqr /.solns 1;
{j, Cases [rs, _Real 1}, {j,len 1}1;1

We separate into numbers of real cylinders.

rvals2 = Sort [rvals, Length [#1[2]] < Length [#2[2]] &];
lens = (Length [#1[2]] &) /@rvals2;
lenlens =Length /@ Split [lens ]

Below is a simulation of the one—enclosed—-by—four configuration. The code below will generate random cc
tions and then check to see in how many cases one point lies within the convex hull of the rest.
plane [pl_, p2_, p3_ ] := With [{norm = Cross [pl - p2, p1 -p3]1},
{norm, norm.pl }]
sameside [{pl_, p2_,p3_ },p4_,p5_ 1 := Module [{norm, d },
{norm, d } = plane [pl, p2, p3 1;
(norm.p4 -d) % (norm.p5 -d) > 0]
encloses [pnts: {pl_, p2_,p3_,p4_ },p5_1] :=Module [{combos, | },
combos = Table [{Drop [pnts, {j }1,pnts [[j 11}, {, Length [pnts ]1}1;
Apply [And, Map [sameside [#[[1]1], #[[2]], p5 ] & combos 111
anyenclosed [pnts: {pl_, p2_,p3_,p4_,p5_  }] := Module [{combos, | },
combos = Table [{Drop [pnts, {j }1,pnts [[j 11}, {, Length [pnts ]1}1;
Apply [Or, Map [encloses [#[[1]], #[[2]]] &, combos ]]]

SeedRandom[1111 ];

len =2%;
realpoints = Table [Table [Random[Real, {-100, 100 }], {5}, {3}1, {len }71;
Timing [enclosedlist = Transpose [{Range[len ], Map [anyenclosed , realpoints 1}11;1
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We now can check the proportion of cases with one point enclosed by the rest.

hasenclosed Cases [enclosedlist , {_, True 1}1;
numenclosed Length [hasenclosed ]
N[numenclosed /len ]

We estimate via quadrature the expected volume of a tetrahedron with vertices uniformly and indepently ¢
in the unit cube.
vol [pl_,p2_,p3_,p4_ ] := Abs[(p2 -pl).Cross [p3 -pl,pd4 -pl]]/6

Nintegrate [Evaluate [vol [{x1, y1, z1 }, {x2,Yy2,22 }, {x3,y3,23 }, {x4,vy4,2z4 }11,
{x1,0,1 3}, {y1,0,1 3}, {z1,0,1 }, {x2,0,1 3}, {y2,0,1 }, {z2,0,1 3},
{x3,0,1 3}, {y¥3,0,1 }, {23,0,1 }, {x4,0,1 }, {y4,0,1 }, {z4,0,1 },
PrecisionGoal - 2, AccuracyGoal -6, MaxPoints - 1000 000 ]
We generate the six real cylinders containing points that are vertices of a pyramid with square base in the
plane and four upward triangular faces.
dpoints = {{1,0,0 }, {-1,0,0 }, {0,1,0 3}, {0, -1,0}, {0,0,3 /2}};
vec = {1, a, ¢ }; offset = {0, b,d };
solns = solveCylinders [dpoints, vec, offset ]
We plot two as below. They illustrate the two types of cylinder we obtain from this configuration. Ont
fourfold set through each triangular face and sloped downward through the square base. The other two ar
tal and go through a pair of opposite triangular faces.

Show[GraphicsArray  [Map[cylinderplot [nsols [[#]], dpoints, vec, offset, True 1& {3,513}111;

We form a family of point configurations based on regular tetrahedra glued along a face in the horizontal |
with the upper vertex allowed to move vertically.

dpointslong = {{1,0,0 3}, {-1/2,Sart [3]1/2,0}, {-1/2, -Sqgrt [3]/2,0}, (0,0, -1}, {0,0,z }};

vec = {1, a, ¢ }; offset = {0, b,d };

perps = Table [perp [dpointslong [[k]], vec, offset 1, {k,51}1;

exprs = Map[Numerator [Together [#. #-rsqr 1] &, perps ]

We get a Grobner basis over the field of rational functions in the coordinate of that moving vertex.
gb = GroebnerBasis [exprs, {rsqr, d, b, a, ¢ }, CoefficientDomain - RationalFunctions ]

We reformulate the cylinder problem as follows. We seek direction vectors such that projection onto a platr
thereto gives five points on a circle. Such directions will give rise to cylinders containing the five points; 1
direction vector one can solve for the remaining cylinder parameters. As our interest is in counting ¢
without loss of generality we can fix one point at the origin, another at one unit aloxngxtise and a third lying i
thex y coordinate plane.

Clear [a, b 1;

normal ={a, b, 1 };

spanners = Orthogonalize  [NullSpace [{normal }], Dot 1;

points ={{0,0,0 }, {1,0,0 }, {X2,¥2, 0}, {X3,¥3 Z3}, {Xs,Y4 Z4}};

Length [span]

projpoint  [p_, span_ ]: = Z p.span [j I span [[j I;

j=1
projpoints = Table [Together [projpoint [points [j 1, spanners 1], {j, Length [points 1}1;
circle [{pl_, p2_, p3_ }, normal_ ]:=Module [{rsqr, cl1, c2, c3, c, cpl, cp2, cp3, gb },

c={cl, c2,c3 };
cpl =c -pl;cp2 =c -p2;cp3 =c -p3;
polys = Append [Thread [{cpl.cpl, cp2.cp2, cp3.cp3 } -rsgr 1, c.normal  1;
gb = GroebnerBasis [polys, {cl, c2, c3, rsqr }, CoefficientDomain - RationalFunctions 1;
{{cl,c2,c3 3}, rsqr }/.Solve [gb==0, {cl,c2, c3, rsqr 311
{cen, radsqgr } = First [circle [Take [projpoints, 3 1, normal 17;
vecl = projpoints [[4]] - cen;
vec2 = projpoints [[5]1] -cen;
polys = Numerator [Together [{vecl.vecl - radsqr, vec2.vec2 -radsqr }11;
The first proof of theorem 1 computes a Grobner basipédys and uses it to count solutions. The code for
counting is a few dozen lines and is omitted. Similar code may be found in [29].

In the second proof of theorem 1 we find the resultant of our pair of polynomials generated above, with |
one variable. We then look at its degree in the remaining variable as this gives an upper bound on the
solutions.
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res = Resultant [polys [[1]], polys [[2]]1,b1;
Exponent [res, a ]

In another proof of theorem 1 (presented in [28]) we look at the vanishing set at infinity. To this end we hc

our two cubic polynomials, find the highest degree terms, and solve for when they vanish.

hompolys = Expand}a*polys /. {a —> a*t, b —> b*t}] /. t\(n_.) :> w4 - n)/a;
initials = hompolys /. w —> 0

We solve for the vanishing of the initials.
solns = Solve [initials =0, {a, b}]

One can plot the intersections of the vanishing sets for the direction parameter polynomials with real space
tions of these two curves give real cylinders. One way to do such a plot is as below. This is used to illustre

in [28] concerning the case of no real cylinders.

pl = ContourPlot [polys [[1]1], {a, -40, 40 }, {b, -40, 40 }, Contours -> {0}, ContourShading - False,
PlotPoints - 200, ContourStyle - {Thickness [.0005 ], Dashing [{.03, .01 }1, Hue [.04 1}71;
p2 = ContourPlot [polys [[2]], {a, -40, 40}, {b, -40, 40 },
Contours -> {0}, ContourShading - False, PlotPoints - 200,
ContourStyle - {Thickness [.001 ], Dashing [{.12, .04 }], Hue [.6 ]}, DisplayFunction - |dentity 1;
Show[ {pl, p2 }, DisplayFunction - $DisplayFunction ]
We define a utility to give a matrix of weights for exponent vectors to effect the degree reverse lexicogra|
order. One can put together blocks of such orders (on subsets of variable$)l usitkdvat r i x below. This migh
be useful in computing a basis over cylinder variables and point coordinate parameters e.g. for atte
determine cases in which we lose solutions.
driMatrix ~ [n_]: = Prepend [Table [-KroneckerDelta [j +k- (n+1)], {j,n -1}, {k,n}], Table [1, {n}]]
blockMatrix ~ [m1_, m2_]: =Module [{l1 =Length [m1], 12 =Length [m2], matl },
matl = Transpose [Join [Transpose [ml], Table [0, {I2 }, {I1 }111;
mat2 = Transpose [Join [Table [0, {I1}, {I2 }], Transpose [m2]]1;
Join [matl, mat2 ]]
We continue to work with our set of two polynomials in the axis direction variables. We extract the co
parameters and build a block term order where the direction variables are weighted higher.
vars = {a, b };
params = Complement [Variables [polys ], vars 1;
avars =Join [vars, params 1];
wmat = blockMatrix  [drMatrix ~ [Length [vars 17, drIMatrix [Length [params ]1]11;

We form this Grébner basis.
gb = GroebnerBasis [polys, avars, MonomialOrder - wmat];

The code below finds leading terms that are pure products in one of the axis direction variables. These he
cients that are polynomials in the coordinates. We find each such leading term with its coefficient polync
factor it.

leads = First [GroebnerBasis'DistributedTermsList [gb, avars, MonomialOrder -»wmat] ];

leads2 = Map[First, Map [Function [{x}, Split [x, Take [#1[[1]], 2] ===Take [#2[[1]],2 ] &]], leads 1]1;

leads3 =Select [leads2, #[[1,1,1 1]1===0]|#[[1,1,2 ]]===0&];

We now find all the square free parts of the coefficient factors.
pc = Map[#[[2]] *Apply [Times, avars™ #[[1]]] &, leads3, {2}1];
pc2 = Apply [Plus, pc, {1}];
fax = Map[FactorList, pc2 1;
leadfax = DeleteCases [Map[First, Flatten [fax, 1 1], _Integer 1 /. {a=» Sequence [], b > Sequence []};
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