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ABSTRACT

I will discuss a problem I encountered over a decade ago, 
and worked on via internet with someone I (alas) never 
met. It involves a mix of number theory, real analysis, 
hard−core computation, and some slightly perplexing 
results.

In brief, we begin with a function expressed as a certain 
infinite product; Arnold Knopfmacher encountered it in 
an attempt to approximate the number of irreducible 
factors of univariate polynomials over Galois fields and 
raised the question of how to obtain a certain limit to this 
function. We derive and execute an effective algorithm 
for the task at hand. We’ll also indicate why the most 
"obvious" approach does not work well in practice, or at 
all in theory.
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The problem
As posed by Arnold Knopfmacher to the Usenet group 
comp.soft−sys.math.mathematica in January 1999

Let dHkL denote the smallest prime factor of k.

Define m HkL = k - k � dHkL
Define

pHxL = Ûk=2
¥ J1- xmHkL

k+1 N
1-x

We wish to compute numerically, to at least eight decimal places, the 
following limit.

limx®1- pHxL
That is to say, we compute the limit as x approaches 1 from the left 
(lesser) side.
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Why do we care?

èThere are similar formulas in a paper from 1995 by 
Knopfmacher and Warlimont, analyzing  probabilities related to 
numbers of irreducible factors of distinct degrees  in univariate 
polynomials over Galois fields

è It’s an interesting computation

¢ | £

4



My history with this problem

I worked on it off and on for several days. Then someone else reading the 
forum contributed a similar result, but much more precise. His name was 
Jürgen Tischer, a math department faculty member of Universidad del 
Valle, Columbia. We corresponded a bit over a period of months, and I 
wrote up the results. I lost contact with him a year or two later. I had 
wanted to invite him to this conference. After getting nowhere with an 
internet search for a current contact address, I learned he had passed away 
in January of 2008. I felt it fitting to talk a bit about this problem, since it 
used ideas of his and also was one of my first forays into computational 
mathematics.
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Candidate results

There were four responses, with two (mine and Tischer’s) giving roughly 
the same results. The proposed values were

è 1.3397

è 2 (exactly)

è 2.292

So which is correct?

More important: How do we even know the limit exists?
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Easy to show...

èA lim sup and lim inf  both are readily computed.

èA lim inf  is given by ãΓ(the exponential of the Euler gamma 
constant). This is around 1.871, so...1.3397 will exit stage left.
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Definitions in Mathematica

d@k_D := Divisors@kD@@2DD
m@k_D := k - k

d@kD

p@x_D :=
Ûk=2¥ J1 - xm@kD

k+1
N

1 - x

General idea: Start with

 

Ûk=2
¥ 1- x

c k
2
s

k+1

1-x < p@xD < Ûk=2
¥ J1- xk-1

k+1 N
1-x

Now take logs to get summations. Expand logs at 1 as power series, 
obtaining double summations. Switch order of summation (requires 
justification), and we find that log of a lim sup is Γ + log H2L. Finding a 
lim inf  is similar though a bit more work.
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What has changed in the past decade?
Ten years ago this computing took manual intervention. I had to do things 
like split sums, and do further contortions to take limits. Today some can 
be done directly. Here is one such that arose in the process.

LimitAâ
k=3

M

â
j=2

¥ 1

j kj
, M ® ¥E

3

2
- EulerGamma - Log@2D

¢ | £

9



A start at approximating the actual limit

èTruncate the series for the logarithm

èEvaluate using exact or  high precision arithmetic at x = 1

èExponentiate

Log@p@xDD = -Log@1- xD +â
2 k

LogB1- xk�2
k + 1

F +

â
2Ik,3 k

LogB1- x2 k�3
k + 1

F + ...=

-â
k=1

¥
xk

k
+â

2 k

xk�2
k + 1

+â
2 k

â
j=2

¥
x j k�2

j Hk + 1L j +

â
2Ik,3 k

x2 k�3
k + 1

+ â
2Ik,3 k

â
j=2

¥
xH2�3L j k

j Hk + 1L j + ...

(The series that get truncated are the summations inj). From this tactic I 
was able to get 2.292 (so, as you may have guessed, exact 2 was not the 
correct result either).
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Troublesome aspects

There are serious problems with this approach.

èDifficult to get good precision

è (Related, but more serious) It is quite difficult to bound the 
error. Indeed, it is not easy to show we have convergence.
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Tischer’s idea

Figure out exact forms for some of the infinite sums, so as to avoid 
truncation. In parts we cannot compute exactly, show that error is much 
better than what we have from above approach.

Start by writing log Hp HxLL (after a bit of algebra) as

x +
x2

2
+â
k=2

¥
xk+1

k + 1
-
xm@kD
k + 1

-

â
k=2

¥

â
j=2

¥ K1
j
O xm@kD

k + 1

j

Proposition: This approaches Γ + logH2L+Úk=2
¥ J xk+1

k+1
-

xmHkL
k+1
N as x® 1 from 

below.
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Sketch of proof

Clearly we only need focus on the double summation. Switch summation 
order and use

â
k=2

¥
xk

k + 1

j

£â
k=2

¥
xm@kD
k + 1

j

£â
k=2

¥
xk�2

k + 1

j

Middle is squeezed to 

â
k=2

¥

K 1

k + 1
O

j

So we can find:

â
j=2

¥ 1

j
â
k=2

¥

K 1

k + 1
O
j

1

2
H3 - 2 EulerGamma - 2 Log@2DL

Several steps require justification! We interchanged a summation order, 
then a sum with a limit...
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That remaining summation

We now need to estimate the remaining part. We split by smallest divisors.

â
k=2

¥
xk+1

k + 1
-

xm@kD
k + 1

=

â
d@kD=2

¥
xk+1

k + 1
-

xI k2 M
k + 1

+ â
d@kD=3

¥
xk+1

k + 1
-

xI
2 k
3 M

k + 1
+

â
d@kD=5

¥
xk+1

k + 1
-

xI
4 k
5 M

k + 1
+ ...

The reordering is fine: for 0< x < 1 each term is negative so we can do 
this.

Now we need to compute

â
d@kD=Prime@ jD

¥
xk+1

k + 1
-

xJ
HPrime@ jD-1L k

Prime@ jD N

k + 1
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Remaining summation...

We need some functions.

q@j_D :=ä
k=1

j

Prime@kD

r@j_D :=ä
k=1

j-1

HPrime@kD - 1L

frac@j_D := r@jD
q@jD

The terms k for which primeH jL is the smallest divisor larger than 1 fall 
into finitely many congruence sets. For example, when the prime in 
question is 5, the applicable values for k are 
85, 25, 35, 55, 65, 85, 95, ...<. This may be partitioned as 
85, 35, 65, 95, ...< and 825, 55, 85, ...<. In each case, the step size is 30.
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Remaining summation...

In general we have the following lemmas.

èThe step size of congruence classes for primeH jL is q(j) as 
defined above

èThe number of congruence classes is rH jL
èWhen we partition in this way, the limit for each subsum 

depends only on the prime and is independent of congruence 
class

Upshot:

lim
x®1-

â
d@kD=Prime@ jD

¥
xk+1

k + 1
-

xJ
HPrime@ jD-1L k

Prime@ jD N

k + 1
=

frac@ jD LogB1- 1

Prime@ jD F
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Remaining summation...

lim
x®1-
â
k=2

¥
xk+1

k + 1
-

xm@kD
k + 1

=

â
j=1

M

frac@ jD LogB1- 1

Prime@ jD F +

lim
x®1-

â
d@kD³Prime@M+1D

¥
xk+1

k + 1
-

xI
Hd@kD-1L k

d@kD M
k + 1

We can readily bound that tail sum.

tailsumbnd = SumA x
k+1

k + 1
-

x
HPrime@MD-1L k

Prime@MD

k + 1
, 8k, 0, ¥<E

-
1

x
Jx Log@1 - xD -
x

1
Prime@MD LogAx- 1

Prime@MD J-x + x 1
Prime@MDNEN

Limit@tailsumbnd, x ® 1, Direction ® 1D
LogA1 - 1

Prime@MDE
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Computing our estimate

We can now put all this together.

estimate@n_D :=â
j=1

n

frac@jD LogA1 - 1

Prime@jDE

error@n_D := â
j=n+1

¥

frac@jD LogA1 - 1

Prime@jDE

numestimate@n_, prec_D :=
ModuleA8sum = -1�2*Log@2D, frac = 1�2,

p1 = Prime@1D, p2<,
DoA
p2 = N@Prime@jD, precD;
frac *=

p1 - 1

p2
;

sum += frac*LogA1 - 1

p2
E;

p1 = p2,
8j, 2, n<E;
8frac*p2, sum<E

Timing@8mfact, est< =
numestimate@2*10^8+ 1, 25DD

817524.4, 80.025332454849260739,
-0.4408622662133543648819837<<
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Computing...

Upper bound on error. Set n = 2´ 10^8.

mfact â
j=n+1

¥
1

Prime@ jD LogB1- 1

Prime@ jD F <

mfactK1+ 1

Prime@nD O â
j=n+1

¥
1

j2 Log@ jD2 <

57�2000à
n

¥ 1

Hj log@jDL2 âj
errormax =
H57�2000L Integrate@1�Hj Log@jDL^2,
8j, 2*10^8, Infinity<D

N@errormaxD
1

2000
57 KExpIntegralEi@-Log@200000 000DD +

1

200 000 000 Log@200 000 000DO

3.54571´10-13
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Computing...
 Finally we get our estimate and error bound.

p1 = Exp@EulerGamma + Log@2D + estD
2.292173695248049690410395

errbound = N@Exp@errormaxD - 1D*p1
8.12817´10-13
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Further items of interest

We can investigate the error term of the "naive" summation approach by 
looking at the series of the log of the product.

logp@x_, n_D := NormalA

SeriesA-Log@1 - xD +â
k=2

2*n

LogA1 - xm@kD

k + 1
E,

8x, 0, n<EE
We can use this to get the signs of the terms. I show them in a run−length 
form.

880, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 3<,8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<,81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 3<,8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 3<, 8-1, 1<,81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<,8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 3<, 8-1, 1<,81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 3<, 8-1, 1<, 81, 1<,8-1, 1<, 81, 1<, 8-1, 1<, 81, 3<, 8-1, 1<, 81, 1<, 8-1, 1<,81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<,8-1, 1<, 81, 1<, 8-1, 1<, 81, 3<, 8-1, 1<, 81, 3<, 8-1, 1<,81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<,8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<, 81, 1<, 8-1, 1<<

They seem to alternate, with sporadic runs of three positive terms. 
Strange...
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Further items...

But stranger is the magnitudes of these coefficients. They are not even 

bounded by  OI 1
n
M.

Can show:

èThey are bounded by OI log @log@ nDD
n

M
èThis bound is tight (we can show that infinitely many 

coefficients will approach it closely).

èThe ones that approach closely have interesting factorization 
patterns (which is why they approach closely).

èFiguring this out was more math than computation (our jobs are 
not going to the machines just yet).

Upshot: a naive summation will clearly give very poor convergence.
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Some open problems

èUnderstand the sign patterns of error approximants.

èFind a more efficient way to compute the estimate to high 
precision.

èFind an exact closed form for the limit.

èAutomate more of the symbolic analysis: some still requires 
manual intervention.

èDetermine whether the error bound/estimate is tight. If not, 
improve it (this would be a "cheap" way of getting more digits).
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