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Abstract

The Mathematica kernel is a large body of software that encompasses hundreds of person−years of in−house
code as well as several large standalone libraries developed elsewhere. This makes for an endless assortment of
possible problems, as well as offering many possibilities for future cutting−edge development. In this talk I will
describe some of the issues that have arisen in my own work, and the ways we in the Kernel Group have gone
about resolving them. I will also touch on some of the ways in which this complex software project plays off its
strengths as it undergoes new development.

This talk is intended to be accessible to math and computer science students, and does not assume any prior
knowledge of Mathematica.  While specific examples will  be presented, by and large the emphasis will  be on
generalities without too much technical detail.

The octopus of the subtitle is a metaphor for the multi−tentacled Mathematica kernel. The apelets come from the
so−called "infinite monkey theorem". As they are very smart they require a mere four hundred monkey−years to
do the job at hand (paw?). It is not yet clear what are the repercussions of mixing zoo and aquarium species in
this cavalier manner.
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Vastly abbreviated overview of the Mathematica kernel

What is it?

í The computational engine of the Mathematica  program

í Parses and evaluates input as in an interpreted environment

What can it do?

Math

í Knows about hundreds of math functions (can evaluate 
numerically, simplify symbolically, etc.)

í Arithmetic (the usual, but in ways that are optimized for 
efficiency)

í Linear algebra (numeric, exact, symbolic)

í Polynomial and related algebra (gcds, factorization, various 
algorithms from algorithmic commutative algebra)

í Symbolic calculus (limits, integrals, ODEs, recurrence solving, 
summation, ...)

í Some number theory functionality

í Numeric algorithms from linear algebra, calculus, optimization, 
and elsewhere

Other things

í An extensive programming language (procedural constructs, 
pattern matching, functional programming constructs...)

í Graphics (uses math under the hood...)
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The power of bootstraps (or: leveraging your own technology)

As might be surmised from the brief overview, it is sensible to implement substantial mathematical functionality
using Mathematica. The practical implication for those of us who develop the code is that it is effective to write
large amounts in Mathematica itself.

When I began at WRI in 1991 I think perhaps 20−30% of the kernel code was in Mathematica, with the rest in C.
Now it might be 50% or so, excluding external libraries.

One advantage is that Mathematica is powerful language, and often one can do in a few lines what might take a
few dozen in C. A disadvantage is that one does not have traditional debugging tools. The Wolfram Workbench,
an Integrated Development Environment (IDE) product in beta testing, goes a long way toward filling this void.
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Bootstraps and leveraging, more generally

As this is a talk primarily aimed at students who are largely unfamiliar with the technology workplace, I want to
remark that the idea of leveraging of in−house technology is important and quite common. For example, when I
worked on compilers and related technology for several years prior to graduate school, we had programs for
representing annotated parse trees that were routinely ported from one project to another,  with small  project
related tweaks along the way.

The lesson is that good ideas and code can and should be recycled. Of course, every company must then be on
the lookout for its mistakes, because not everything is recyclable and ideas don’t  come with those triangular
number codes.
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The power of libraries (or: Never do something yourself that someone else 
will do for you, and better)

The Mathematica kernel prior to libraries

Until version 5 appeared in 2003, the code for the Mathematica kernel was essentially all written and maintained
by WRI. There was some amount of code from legacy libraries LINPACK and EISPACK, for numerical linear
algebra, that had initially been translated from Fortran to C. I believe there was some polynomial algebra code
likewise translated from existing sources. But all of it was subsequently modified in−house.

Libraries come to the Mathematica kernel

Early in version 5 development we planned to use LAPACK, the LINPACK/EISPACK successor, as an external
library to which Mathematica would link. Reason: it takes advantage of processor−tuned efficient Basic Linear
Algebra Subroutines (BLAS)  which give as much as an order  of  magnitude speed improvement  in  machine
arithmetic linear algebra.

As development progressed it became clear that the Gnu Multiple Precision (GMP) library was similarly more
efficient for arithmetic of numbers with many (thousands or more digits). We made accomodations to use GMP in
many places, thus effectively removing some of our arithmetic code.

Later we chose to encorporate specialized libraries e.g. for sparse linear algebra, in order to support some devel−
opment  elsewhere.  Example:  needed  sparse  linear  solver  for  development  of  interior  point  code  for  linear
programming.
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When to use libraries? 

When deciding wherther to use external libraries for certain functionality, we typically consider several questions.

í Does it do things Mathematica cannot do, or cannot do as 
well?

í What is the level of the library? State of the art?

í Are there licensing issues? If so, can they be resolved?

í What is the level of developer support? Do they fix their bugs?

í Do ported version exist for all platforms on which we support 
Mathematica?
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The advantage of libraries (or: We should have thought of this years ago)

Once past the above hurdles, we find the typical advantages to be of the following related types.

í Better code than we could produce in−house in reasonable 
time

í We gain the benefit of dedicated expertise from external 
development

í Some projects such as LAPACK/BLAS are well funded and 
have ongoing development

í We don’t need to write/maintain it all ourselves

8



The curse of libraries (or: Remind me why we chose to rely on these 
people?)

A drawback to use of libraries is that the code base is no longer under our control. Hence Mathematica users
inherit bugs that find their way into such libraries, and we are responsible for the problems caused thereby.

Examples

í Numerous bugs in machine linear algebra on various platforms
These are often isolated to vendor supplied BLAS or LAPACK routines. Some also have been found in sparse
linear algebra libraries.

í A speed degradation caused by BLAS alignment needs
This was caught and fixed shortly before version 5 was released.

í A platform−dependent speed degradation caused by GMP 
reentrancy needs

This too was caught just before it could escape from the lab. Like the BLAS alignment issue it was resolved by
proper setting of switches in building the library.

Attempts at resolution

Generally we try to isolate causes, send smallish examples to the library authors/vendors, and hope for the best.
Among other things this implies that we actually try to maintain good working relationships with various external
library purveyors, large and small.

In some cases we can also come up with workarounds in our own code. This involves adding code to detect
failures in library code, and thereupon going to "plan B". Of course it also involves coding plan B.
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How to extend technology? (Very carefully...)

A case study

In version 4 we unleashed our "packed array" technology. This is where lists of machine double precision real
numbers,  say,  are  maintained internally  and processed as "raw"  data  structures containing tensors  (vectors,
matrices, etc.) of contiguous floating point numbers, instead of the usual Mathematica "lists" which are arrays of
pointers to expressions, each of which might be a machine double.

The benefit to such representation is the ability to make optimal use of fast library code e.g. BLAS, and to make
use of our own vectorized machine precision numeric functions, in order to gain competitive advantage in regards
to speed of large scale numeric processing.

The down side is this had to be "seamless" insofar as we were not about to create new data structures and
functions just for this purpose. So such lists need to be indistinguishable to the user from ordinary lists, except in
speed of processing and memory hoofprint. That is to say, all functions from part extraction and assignment to
numeric evaluation must look and act the same regardless of mode of internal storage. This is at it ought to be.

Implication to development

The important thing to realize is that it placed a huge burden on development and also has had repercussions
that are felt in debugging to this very day. Specifically, I believe a problem reported to me by one "Stan Wagon"
on October 21 of this year can be attributed to an obscure part of the packed array technology.
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An example of Mathematica development using Mathematica

I will discuss in brief the history of some recent Mathematica functionality. I choose this because it is something I
worked on, it  is something I find interesting (not true of everything I work on, alas), and it  has roots here at
Macalester, with Stan Wagon’s work on Frobenius number algorithms.

In 2004 Stan visited WRI and talked about a Frobenius number algorithm. He also was working on a new one and
had some questions that turned out to require integer linear programming (ILP) as an underlying algorithmic tool.
As it happens, I had only months earlier worked on a different problem, computation of Keith numbers. But the
underlying computations one does are quite similar.

11



Mathematica development example ...

What these problems require is a branch−and−bound or related loop, ability to solve relaxed problems using
standard linear programming with rational or high precision arithmetic, and ability to solve linear systems over the
integers. Also helpful and in some cases essential is some lattice reduction preprocessing. I was familiar with this
from working on Keith numbers. Stan knew of relevant articles by Aardal, Hurkins, and A. Lenstra. Putting our
knowledge together, I found some improvement Aardal et al had made over my formulation of the branching loop.
We wre now on the way to handling "difficult" examples.

Upshot: I wrote more code to do these ILPs, Adam Strzebonski made further improvements and put them into
some Mathematica functions, and now Mathematica can do some classes of difficult ILPs. This is only possible
because we have the basic tools already: Hermite decomposition and lattice reduction of integer matrices, and
linear programming. As a side benefit, we have nice built in code for solving Frobenius number problems.

Postscript (a further connection to Macalester)

John Renze, a Macalester graduate, worked at WRI on a new web site that, among other things, allows one to
work with various physical units. This new ILP functionality allows Mathematica to readily find certain "minimal
equivalents" to a given dimensional product of powers of units.
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Another Mathematica development example

Numeric Gröbner bases

I will give another example of code I worked on that was possible only because of what the Mathematica kernel
already had under the hood. Around 1994 I read an article about a prototype implementation of numerical Gröb−
ner bases in a competing program. Now this is not a familiar topic to most people, but it is of some interest to
people who do or rely upon computational algebra. As for working with approximate numbers, suffice it to say
that, a dozen years later, there is still relatively little actually implemented in this realm. The biggest single prob−
lem is recognizing when a number arising in the process of polynomial coefficient arithmetic is zero. But Mathemat−
ica’s significance arithmetic is quite good for this (it is a sort of approximation to interval arithmetic). I discussed
this a bit  with the late Jerry Keiper, who was responsible for the Mathematica  implementation of significance
arithmetic. I then went to my office, and a day and a few dozen lines of code rearrangement later, Mathematica
had an implementation of approximate Gröbner bases. It is now used in functions such as NSolve for finding all
solutions to a system of polynomial equations.

This is but one example of how Mathematica technology can and has been fit together to do what is nowadays
known as "hybrid symbolic−numeric" computation.

13



A development story in progress

Symbolic summation

Recently  we have devoted considerable resources to improving our symbolic  summation capabilities.  Among
other  methods utilized is  table  lookup.  This  involves "canonicalizing"  inputs  and then having reasonably  fast
lookup based on hashing.

Once this is near completion, joy of joys, we may get to do it again!! It is likely that we will then extend this to
symbolic integration. The rough progression is this.

í We identify areas that might benefit from a given approach.

í We identify what capabilities we have to implement said 
approach

In this example hashing would play an important role.

í We identify what further work needs to be done
This might include canonicalizing inputs to keep the size of the table within reason, and perhaps handling of
convergence issues.

í After putting togetehr the pieces, then see if outer parts of our 
technology base might benefit from the same or similar 
methods

If we can do sums this way, then why not integrals?
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"Infinite evaluation"

We now discuss a mildly distressing problem buried deep in the Mathematica kernel.

Mathematica supports "infinite evaluation" (more or less...), wherein input is reevaluated until it stabilizes. The
cases where this fails usually involve computations with "side effects" which, for purposes of this talk, are not of
much interest. More problematic are some cases where it succeeds all to well. For example, Mathematica will
attempt to crudely "canonicalize" products of powers, by splitting bases, merging exponents, and the like. One
reason this is done is that it  becomes easier to recognize mathematically equivalent expressions or common
factors in expressions. 

A drawback is that a power can be split into a product and sent on for further evaluation. The product handling
code might then try to remerge the factors, leading to infinite recursion. While in practice this sort of thing is quite
rare, there are pathological examples that we still need to repair.

As a primary cause of this problem I can only say that I hope to see it repaired in the not terribly distant future.
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An invitation to infinite recursion

Transformations that reverse one another

A dark side to a complicated program like Mathematica is the ability to make trouble in subtle ways. One is to
invoke pairs of transformations that undo one another.

Case in point: symbolic integration. This sits atop a tremendous amount of other functionality. One well known
tactic for integration involves finding a partial fraction decomposition of a rational function. Grossly oversimplify−
ing, this might be done as below.

i1 = Apart@input, xD
If@Head@i1D � Plus, result = Map@Integrate@ð, xD &, i1DD

Another tactic is to accept "partial" results, that is, split integrands into summands that we can integrate and those
we cannot. As it happens, in some cases it is also helpful to put a sum of terms over a common denominator. So
imagine what happens if your code has transformations of the form:

i2 = Integrate@Together@ppD, xD

where pp was generated, say, as a sum of pieces from the Apart call that have not been fully integrated, and all
parts that have been successfully integrated happen to cancel. Then we might well find that the "togethered" thing
gets us right back to input. And we go into recursion.
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Inhibition of recursion

In some cases it is simply difficult to draw a line between infinite recursion and simply "trying real hard" on pieces
of a problem. While still allowing for some amount of the latter, we attempt to forestall recursion in at least a few
distinct ways.

Caching computations "in progress"

One is to rely on caching intermediate computations, in "canonicalized" form, so that later stages can attempt to
"look up" results to see if we are reencountering a problem we have not yet finished processing (an obvious sign
of recursion).

Depth charges

A more coarse approach is to use certain counters in order to determine approximately how deep we might be in
some computation. If they get incremented too far we give up. This has some obvious drawbacks (if we stop too
soon) but, in practice, seems to be reasonable.

Blocking reusage of parent callers

Still another thing is to "block" certain code from being used in certain places, on the supposition that it is likely to
lead to recursion. Below is an abbreviated code snippet of this sort. We have a function TableMatchTrig that can
call on IntegrateNoTrig. We wish to make sure the latter does not call back the former, and do so by putting it
on a "stack" using Mathematica’s Block construct.

IntegrateNoTrig@h_, x_D := Block@8TableMatchTrig, res<, res = Integrate@h, xDD

Curiously, it  is entirely coincidental that something named "Block" has the effect of "blocking" functionality of
things in the manner indicated above: it was meant as the "block" of procedural programming languages.
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"Finite" recursion

Even without getting into infinite recursion it is by no means difficult to have "deep" recursion. Here is a small
example.

Example

a = 8<;
Do@a = 8a, j<, 8j, 50<D
a

888888888888888888888888888888888888888888888888888<, 1<, 2<, 3<, 4<, 5<, 6<, 7<, 8<, 9<,
10<, 11<, 12<, 13<, 14<, 15<, 16<, 17<, 18<,

19<, 20<, 21<, 22<, 23<, 24<, 25<, 26<, 27<,
28<, 29<, 30<, 31<, 32<, 33<, 34<, 35<, 36<, 37<, 38<,

39<, 40<, 41<, 42<, 43<, 44<, 45<, 46<, 47<, 48<, 49<, 50<

Well and good. Now let’s remove the nesting.

b = Flatten@aD

81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50<

Upshot

That was a very silly way to emulate Range[50]. But that’s not the point. What matters is that in order to do the
flattening the kernel code had to somehow traverse this expression. Prior to version 4 of Mathematica it would do
this using recursive calls; for sufficiently deep nesting one could blow up the program’s recursion stack in this
way. Flatten and several other functions now use their own stack to avoid this pitfall, but certainly there are
cases we did not catch that might still cause trouble.

The moral, I think, is that we in the Kernel group at WRI should not rely too much on explicit recursion in our own
code.
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Code dependencies

We have described some ways in which implementation using the functions of Mathematica can lead to trouble.
Here we discuss some perhaps more subtle points.

í Code now has hidden dependencies
When Mathematica calls on itself, in particular in ways that are not necessarily carefully thought out (recall what
was said about unequal developers), there can be reliance on undocumented "default" behavior. For example,
Integrate relies on Apart (the partial fraction function), but this is not well defined in cases where the input is
not a rational function in an "obvious" set of variables. So when changes are made to Apart, it is necessary to
check whether integrals will break. This is, to say the least, a regretable state of affairs.
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Dependencies...

í Code may have dependencies on choice of variable names
We give a reasonably benign example that recently came to light. We begin with two expressions that are struc−
turally identical. We then use Together on them and the results are no longer structurally the same (though they
remain mathematically equivalent).

Clear@aD;
e1 = -y^2 � 2 - Hx^2 * C@1DL � 2 + HHI � 2L * uu * Sqrt@-Huu^2 * H1 + C@1D^2LLDL � a - C@2D;
e2 = e1 �. uu ® u@x, yD;
Together@e1D
Together@e2D

-a y2 - a x2 C@1D + ä uu -uu2 - uu2 C@1D2 - 2 a C@2D

2 a

-a y2 - a x2 C@1D - 2 a C@2D + ä u@x, yD -I1 + C@1D2M u@x, yD2

2 a

This difference is due to vagaries of internal variable ordering and the way in which radicals get made into internal
"variables" for functions such as Together. This then becomes an issue for funtions such as Solve that may rely
on behavior of these utility functions. In the case that caused me to investigate the example above, Solve was
giving different number of solutions based on whether we called a variable uu or u@x , y D. This is by no means
wrong, but it  is mildly unsettling behavior, and is indicative of complicated interactions between various com−
ponets of the Mathematica kernel.
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Allergic reactions in complex software

Quote

"In any sufficiently complicated mathematical program, there can be pairs or trios of design decisions that are
individually quite sensible, but, in tandem, play havoc with one another." (I said that.)

Example that I think illustrates this

First, what should happen when we add a finite offset to a directed infinity?

infsum = ¥ + ä Π

¥

"That makes sense", he said.

Next, what should happen when we multiply exponentials?

expprod@a_, b_D := ãa ãb
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Allergic reactions...

Symbolic case

Let’s try it on symbolic parameters.

expprod@a, bD

ã
a+b

Check 1

Fine. Let’s check on our values above.

expprod@Infinity, I* PiD

-¥

Good.

Check 2

Now what if we substitute after we evaluate?

expprod@a, bD �. 8a ® Infinity,b ® I * Pi<

¥

Oops.

Just imagine the headache of getting this to behave when finding a limit. It was only as of version 5 (2003) that
Mathematica began getting this next one correct:

Limit@Exp@x + I * PiD, x ® InfinityD

-¥
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New methods bring new problems

Progress

From time to time one learns of a new algorithm for doing a certain type of computation, say resultants of a pair of
polynomials. One may read that the new method is vastly better than anything that came before it, and see, in the
literature, examples to support that notion. Sometimes the new algorithms are easy to implement, and we do so.

Regress, or, What’s the down side?

Quite often it turns out that there are classes of problem for which the old method simply worked better e.g. faster
or using far less memory. For example, when we implemented the Sylvester matrix method for computing resul−
tants we found many classes of example for which the polynomial remainder sequence method worked better.
This is not a surprise, and was not unexpected, but...

What to do to get the best behavior?

In this situation we must resort to various heuristics in order to decide upon the method to use for a given input.
This is how any good polyalgorithm should behave.

So what is the problem?

The added problem is that we now have a "legacy" wherein, if we get it wrong on the method choice, we behave
worse than in past even though we might rightly claim that we use "better" methods. This is the dilemma of
having more choices.
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Heuristics, more generally

The all−important quote

"Heuristics are bug ridden by definition. If they didn’t have bugs, then they’d be algorithms." (Author unknown)

Lessons

í Even good heuristics can only take you but so far

í Bad heuristics can take you further, but in the wrong direction
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Similar issues in code "improvement"

If at first you don’t succeed...

Let us focus for a moment on one of my least favorite topics, symbolic integration. One approach to integrals,
particularly indefinite ones, is to transform e.g. by converting trigs to exponentials. Sometimes we find that several
different transformations may be useful for what seems to be a general class of inputs. Somewtimes we learn, to
our further dismay, that we have no heuristics at hand to distinguish which inputs are amenable to which transfor−
mations.

What to do?

What indeed? We may just try them in sequence. This means several things can go wrong.

í Adding a new transformation may give rise to a "worse" result 
for some inputs than in past

í Adding a new transformation makes all computations that try 
it, and fail, that much slower

Moral

"The more choices you have, the more opportunity for the unwary developer to really mess things up." (Author
unimportant. Okay, it was again me who said it.)
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Code "improvement"...

Fix me here...

In symbolic computation it is quite common to find that fixing one problem exposes weaknesses elsewhere. For
example, say algorithm A decides to do operation X and, if it succeeds, operation Y, else Z. Say operation Y has
six legs (as in "buggy"),  but operation X returns a failure status so algorithm A goes on to do Z and gets a
respectable result. What happens when operation X is improved so that it no longer returns a failure flag?

...break me there...

This is NOT a trick question. What happens is that algorithm A now uses defective procedure Y and messes up.

...or maybe go play hangman

Now suppose operation Y is not defective but simply slow? In this situation we have turned algorithm A into
something that might hang rather than complete its task in reasonable time.
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Code modularity

The ways in which various parts of Mathematica depend upon one another lead to certain undesirable outcomes.
One is that the Mathematica kernel is not terribly modular. That is to say, it is difficult to extract various compo−
nents e.g. "arithmetic" or "numerics" or "polynomial algebra", as there tend to be interconnections.

Legacy

As the kernel has been build up over many years this is even more difficult than might otherwise be the case,
because in earlier times the need for modularity, clean "application program interfaces" (APIs), etc. were not so
well understood, at least not by mathematicians.

On the bright side

Offsetting this I will mention a few happier points.

í The Mathematica kernel withstood the transition to the GMP 
library for arithmetic

í Has extensible numeric differential equation solvers
These, moreover, use some very nice modular code with carefully designed data structures.

í Has recently seen the addition of an extensible random 
number generator

í Has a huge test suite
This last means that when changes are made, if they have a bad impact in some part of the kernel far away this
is often caught quickly in−house.
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Infinite evaluation, redux

Getting the wrong computational complexity

We discuss another issue related to infinite evaluation and deep recursion. Say we have a list of n elements, and
change an element. The semantics of Mathematica then require that the entire list be reevaluated, causing a
complexity of OHnL instead of constant time. There are various tactics used by the Mathematica kernel in order to
decide when this might be avoided. Well and good.

Now suppose we have an expression we did NOT change. We still need to assess that this is the case in order to
determine that it does not require reevaluation. We might do this by walking through it, checking each "node" to
see if it is up to date. This works well, but such a walk can be as expensive as the reevaluation itself; for a deeply
nested structure this can be a significant hit.  So we need an inexpensive way to bypass this recursive walk
through the expression.

Example

Here is an example of the phenomenon I describe. We nest an expression to a depth of 5000.

t1 = First@Timing@Module@8weirdness, L<, L = weirdness@D;
Do@L = weirdness@L, iD, 8i, 5 * 10^3<DDDD

0.48003 Second
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Infinite evaluation, redux

Now we double the size, nesting to a depth of 10000.

t2 = First@Timing@Module@8weirdness, L<, L = weirdness@D;
Do@L = weirdness@L, iD, 8i, 10^4<DDDD

1.88412 Second

Note that in doubling the size, the timing goes up by a factor quite close to four.

t2 � t1

3.925

I hate when that happens

This is the classic sign of quadratic complexity, in a situation where we expect it to be linear. The culprit is the
kernel code that assesses the need to reevaluate the nested expression at every step. It is often thwarted but not
in this instance (due to an unfortunate internal hashing collision).

I have put some time into this issue and have experimental code that seems to improve the situation for bad
examples that have come my way. While it is not yet ready for release, this, too, is a problem I hope to see
largely repaired in a future version of Mathematica.
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Speed vs. correctness

Symbolic computation should never allow for intentional mistakes!

One might suppose: "This is not a numeric program, ergo it should do symbolic computations without allowing the
possibility of intentional mistakes."

Wrong, wrong, wrong

There are many places where such a program must do things in a way that is generally reliable but, even more
importantly, fast. Case in point: determination of whether an expression is zero.

Examples

í Pivot selection in symbolic row reduction

í Inverting the leading term of a symbolic power series

í Solving a system of exact nonlinear equations
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Speed vs. correctness...

The common theme

These all need functionality that will decide whether a symbolic, or perhaps exact numeric expression is zero.
Such functionality is not infallible. Even for classes where it might be, requirements of speed dictate that it should
not  be.  Otherwise  it  becomes  even  easier  than  it  already  is  to  hang  the  program  on  a  seeminly  simple
computation.

Here is an example that gives a mathematically incorrect result of 1, because of a failure to discern that a factor in
an exponent is positive rather than zero.

Limit@Exp@-x * HSqrt@2D + Sqrt@3D - Sqrt@5 + 2 * Sqrt@6DD + 10^H-1000LLD, x ® InfinityD

1

In the next release of Mathematica this will at minimum give a warning to the effect that a possibly flawed numeri−
cal assessment was made to the effect that some intermediate expression was zero. While this particular exam−
ple might improve over time, the general problem will not go away: some zero test assessments will give mathe−
matically incorrect results.
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Speed vs. replicability

ÿ Caution:

This next topic scares people. Take a deep breath.

Constraining an evaluation

In order to prevent code from hanging it is sometimes necessary to rely on time constraints. The flow of a computa−
tion (e.g. a symbolic integral) is then influenced by whether a particular subcomputation does or does not finish in
under the allotted time limit.

Obvious consequence

í The same computation may follow different paths on different 
machines, or even on the same machine but under 
different work loads

Slightly less obvious consequence

í Results, both good and bad, may be sporadic and difficult to 
replicate

Still less obvious consequence

í A faster machine can be much slower for a given computation
How?! Like so: Algorithm A tries subcomputation X. If it succeeds in under its time constraint, it goes on to do Y,
else Z. If Z is, for the particular problem at hand, much faster than Y, then the faster machine that completes X is
now herading into the tarpit of Y while its slower cousin zips instead through Z.
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Speed vs. replicability...

Possible way to improve this situation

í Use a measure based on operation count that is independent of 
platform and processor

Even this will not be impervious to history, that is, effects of caching intermediate results in prior computations.
But at least it would be platform−independent. A drawback is it is not easy to implement and not easy to tie to
reasonable estimates of time of a computation on an "average" processor.

Another, quite unobvious issue with use of such constraints

Computations that must end due to time or similar constraints are aborted. Any "change of state" (e.g. temporary
resetting of an option to some function) during the computation must then be restored by the caller. This can be
tricky when coding in Mathematica and there are nested uses of TimeConstrained. Example:

answer = TimeConstrained@
computation1;
result = TimeConstrained@

computation2@SomethingThatChangesStateD, 30D;
FixStateIfAborted@resultD;
result
, 10D

If the inner TimeConstrained invocation is aborted then the state altered by computation2 will be restored. If
instead the outer one is interrupted, and if, unlike this simple example, it is calling from another planet rather than
just outside the door, it may not realize there could be a state change to repair.

There is a function in Mathematica called CheckAbort that, I believe, is meant to be used for such scenarios.
But...I don’t know how it works, or whether it can really handle issues with nesting of TimeConstrained.
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Speed vs. replicability...

A last issue with use of such constraints

As noted above, computations that end due to time constraints do so with aborts. How does the Mathematica
kernel handle aborts? Well... they are caught by C code scattered about that checks a dedicated interruption flag.
This then "bubbles up" from procedures on the calling stack. Callers have the obligation of cleaning up before
moving to the next caller upward; failure to do so is a cause of memory leaks. A failure to check for an interruption
can have the even worse consequence of, say, trying to dereference pointers in a result expected to have several
elements, when instead what is received is an abort expression. This is a cause of crash−on−abort bugs. While
not terribly common, they certainly do exist, and code such as symbolic definite integration that relies heavily on
time constraints will exhibit this trouble on some hard inputs.
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Scaling an octopus

Over time the functionality, and corresponding code base, of the Mathematica kernel has grown considerably.
This creates several burdens.

í Design consistency must be maintained
This  is  vital  because  design  consistency  has  been  the  backbone,  I  believe,  of  the  commercial  success  of
Mathematica.

í New functionality must be useful
It is easy to add new things. It is not so easy to add useful new things.

í New functionality must be robust
A small subset of my colleagues may disagree, but in general I find that neat bells and whistles do not win friends
if they behave badly e.g. cause the program to crash.

í New functionality should not detract too much from our 
capability to repair/improve/maintain old functionality

There are endless opportunity costs involved in deciding on what needs to be added, what should be rewritten,
what needs debugging, etc.
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Scaling...

í Interactions with existing technology may cause trouble
New methods allow us to make use of them elsewhere. An interesting problem then arises. Code that "worked" in
past, but using perhaps non−robust technology, may begin to fail e.g. because the new methods are too slow, or
have bugs, or are being extended beyond their appropriate "operating range" (e.g. relying on a polynomial solver
to handle transcendental equations), or ....

í Other issues:

í New functionality requires documentation!!!

í Larger memory footprint of the program (what happens 
Congress revokes Moore’s Law?)

í Larger code base implies a larger burden of maintaining legacy 
code

So how well does the Mathematica kernel scale as it grows? Thus far I think remarkably well. But as every stock
prospectus will caution:

í Past performance is no guarantee of future returns
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Summary

Issues

í We covered several problematic areas in the implementation 
of the Mathematica kernel...

í ...but most areas are not burdened by such issues...

í ...and even the exceptions tend to work fine for most 
purposes, so...

í ...the outlook far less bleak than one might think

Down the road

í Over time, some of the problematic areas actually get 
improved

í Other ideas, methods, functions get developed that make some 
problem areas less relevant

í We are at the crossroads between voodoo and science
This makes for interesting times in computational mathematics. It’s anyone’s guess how far we will go, or to what
extent voodoo can be replaced, if not by science, then at least by something more deserving to be called "art".

My motto

"I write the legacy code of the future."
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