
Lattice Reduction, Integer Programming,
and Knapsacks

Daniel Lichtblau
danl@wolfram.com

Wolfram Research, Inc.
100 Trade Centre Dr.
Champaign IL USA, 61820

ICMS, Castro Urdiales, Spain
September 1−3, 2006

Abstract

We will discuss knapsack problems that arise in certain computa−
tional number theory settings. A common theme is that the search
space for the standard real relaxation is large; in a sense this trans−
lates to a poor choice of variables. Lattice reduction methods have
been developed in the past few years to improve handling of such
problems. We show explicitly how they may be applied to computa−
tion of Frobenius instances, Keith numbers (also called "repfigits"),
and as a first step in computation of Frobenius numbers.

Introduction

Informal description of a knapsack problem

í One has a set of items.

í One must select from it a subset that fulfills specified criteria.

Introduction

Informal description of a knapsack problem

í One has a set of items.

í One must select from it a subset that fulfills specified criteria.

Other problems under consideration in this talk

í Find Keith numbers (first we must define them...)

í Solve the "Frobenius instance" problem (aka "postage stamp"
or "change−making" problem).

í Compute the Frobenius number for a given set of nonnegative
integers whose GCD is unity.

The common feature to these problems will be that we take
restricted integer combinations of integer vectors to fulfill some task.
That is to say, we work with sets of constrained linear diophantine
equations. This is really just a mild generalization of the classical
subset sum problem.

Introduction

Informal description of a knapsack problem

í One has a set of items.

í One must select from it a subset that fulfills specified criteria.

Other problems under consideration in this talk

í Find Keith numbers (first we must define them...)

í Solve the "Frobenius instance" problem (aka "postage stamp"
or "change−making" problem).

í Compute the Frobenius number for a given set of nonnegative
integers whose GCD is unity.

The common feature to these problems will be that we take
restricted integer combinations of integer vectors to fulfill some task.
That is to say, we work with sets of constrained linear diophantine
equations. This is really just a mild generalization of the classical
subset sum problem.

The idea

A blend of classical "branch−and−prune" and more recent lattice
reduction methods in a way that surpasses what either alone can
typically achieve.

Frobenius instances and Frobenius numbers

We mention in brief Frobenius instances and numbers.

Frobenius instances and Frobenius numbers

We mention in brief Frobenius instances and numbers.

Statement of the Frobenius instance problem

Given a set of n positive integers in increasing order A = 8a1, ..., an<,
we wish to know when a given positive integer k can be written as a
nonnegative integer combination of the elements of A (if we relax
the nonnegativity constraint on the multipliers, then clearly it can be
done iff k is a multiple of the GCD of A).

This problem goes by other names, among them the postage stamp
problem (given several stamp denominations, how to obtain a given
total value?), the chicken McNugget problem (how to get k
McNuggets from orders of size 6, 9, or 20?), and the change mak−
ing problem (for equally obvious reasons).

Frobenius instances and Frobenius numbers

We mention in brief Frobenius instances and numbers.

Statement of the Frobenius instance problem

Given a set of n positive integers in increasing order A = 8a1, ..., an<,
we wish to know when a given positive integer k can be written as a
nonnegative integer combination of the elements of A (if we relax
the nonnegativity constraint on the multipliers, then clearly it can be
done iff k is a multiple of the GCD of A).

This problem goes by other names, among them the postage stamp
problem (given several stamp denominations, how to obtain a given
total value?), the chicken McNugget problem (how to get k
McNuggets from orders of size 6, 9, or 20?), and the change mak−
ing problem (for equally obvious reasons).

Frobenius numbers

Given a set A as above, with the added restriction that it have GCD
of unity, it is not hard to show that we can always represent suffi−
ciently large n as a nonnegative integer combination of A. The
largest integer that CANNOT be so represented is called the Frobe−
nius number of A.

Keith numbers

Now we describe a different sort of problem. Well, it’s sort of differ−
ent. That is to say, it looks different. Sort of.

Around 1987 Michael Keith first wrote about what he called repfig−
its (for "replicating Fibonacci digits"). These are sequences of num−
bers that, when one progressively addsthem to form new elements
in the style of the Fibonacci sequence, one obtains the number
whose digits began the sequence. For example we take the number
197. We thus start with 81, 9, 7<. Adding these to get the next ele−
ment gives 81, 9, 7, 17<. Adding the preceding thee digits to get the
next one gives 81, 9, 7, 17, 33<. If we continue this we get
81, 9, 7, 17, 33, 57, 107, 197, ...<. Because our number, 197,
appears in the sequence originating with its digits, it is a repfigit. Oth−
ers later began referring to these as Keith numbers in honor of the
first to discuss them.

Question: Why do we care about these numbers?

Keith numbers

Answer: Beyond the moderate interest of their definition, we want to
find them because the solution techniques are applicable to other
problems. Like Frobenius instances/numbers, as we’ll see presently.

A property I find of interest for repfigits is that they are not exactly
easy to find. By 1994 all and only the ones up to 15 digits were
known. In 1997 Michael Keith found all of them through 19 digits,
using a clever search algorithm and about 500 hours of computer
time. There are 71 such numbers. No larger ones were known (an
unfortunate situation that persisted until 2004).

As it happens, one can write Keith number problems as integer lin−
ear programs. The digits of a Keith number of a given size will have
to satisfy one of a few readily computable linear diophantine equa−
tions, subject to the obvious inequalities that force them to actually
be digits (that is, they must be between 0 and 9 inclusive, with the
first being at least 1).

Keith numbers

In order to find such numbers we need to describe the possible equa−
tions they might satisfy. The code to do this is concise but in fact
took me over two hours to write. I have an explanation for how it
works written down somewhere but I doubt I will ever again under−
stand it myself.

keithEquations@len_Integer �; len > 0D := Module@
8matrow, n, list, res, vecs<, res = list@D;
Do@matrow@jD = Table@KroneckerDelta@k, j + 1D,
8k, len<D, 8j, len - 1<D;

matrow@lenD = Table@1, 8len<D;
n = len;
While@9 * Apply@Plus, matrow@nDD <

10^Hlen - 1L, n++;
matrow@nD = Sum@matrow@kD,
8k, n - len, n - 1<D;D;

While@First@matrow@nDD £ 10^Hlen - 1L,
res = list@res, matrow@nDD;
n++;
matrow@nD =
Sum@matrow@kD, 8k, n - len, n - 1<D;D;

vecs = Apply@List, Flatten@
res, Infinity,listDD;

Map@Hð - 10^Range@len - 1, 0, -1DL &, vecsDD

Simple example finding a Keith number

Quick example:

k6 = keithEquations@6D;

We’ll work with the second possible equation for 6 digit Keith
numbers.

k6@@2DD

8-96 160, -4224, 5752, 7144, 7482, 7616<

The equation this represents is:

-96 160 d0 - 4224 d1 +

5752 d2 + 7144 d3 + 7482 d4 + 7616 d5 == 0

Simple example finding a Keith number

These equations each give rise to integer null space computations.
This is easy to handle e.g. with the Hermite normal form of a matrix.

integerNullSpace@vec : 8_Integer ..<D :=
Module@8mat, hnf<, mat = Transpose@Join@

8vec<, IdentityMatrix@Length@vecDDDD;
hnf = Last@Developer‘HermiteNormalForm@

matDD;
LatticeReduce@Map@Drop@ð, 1D &,

Drop@hnf, 1DDDD

Simple example finding a Keith number

These equations each give rise to integer null space computations.
This is easy to handle e.g. with the Hermite normal form of a matrix.

integerNullSpace@vec : 8_Integer ..<D :=
Module@8mat, hnf<, mat = Transpose@Join@

8vec<, IdentityMatrix@Length@vecDDDD;
hnf = Last@Developer‘HermiteNormalForm@

matDD;
LatticeReduce@Map@Drop@ð, 1D &,

Drop@hnf, 1DDDD

With this we now find a set of vectors that generates the solution
space for our example.

nulls@6, 2D = integerNullSpace@k6@@2DDD

880, 3, -3, 0, 4, 0<,
8-1, 1, -3, -2, -4, -4<, 80, -6, -3, 1, 0, -2<,
80, -1, 1, 5, 0, -6<, 80, 4, -12, 15, -12, 9<<

We arrive at a set of small null vectors. This is referred to as solving
a relaxation over the integers (that is, we insist of integer solutions
but do not constrain the values by inequalities e.g. nonnegativity).
We observe that none of these vectors has entirely nonnegative or
entirely nonpositive values. Hence none gives a Keith number. We
need to take integer combinations of these in order to get a Keith
number, assuming the equation we began with will yield any (it
does).

Simple example finding a Keith number

The idea: For each null vector we create an integer−valued variable.
Allow arbitrary linear combinations of these vectors subject to the
constraints that all resulting components be nonnegative, and the
first be positive. This is simply a constraint satisfaction problem. We
use a handy optimizer and we are off to the races.

keithSolution@nulls_, iters_: AutomaticD :=
Module@8len = Length@nullsD, vars, x,

vec, constraints, program, min, vals<,
vars = Array@x, lenD;
vec = vars.nulls;
constraints = Join@8Element@vars, IntegersD,

1 £ First@vecD £ 9<,
Map@0 £ ð £ 9 &, Rest@vecDDD;

program = 81, constraints<;
8min, vals< = NMinimize@program,

vars, MaxIterations ® itersD;
vec �. valsD

keithSolution@nulls@6, 2DD

81, 4, 7, 6, 4, 0<

One can check that 147640 is in fact a repfigit.

This method of finding such numbers using a black−box optimizer is
a bit lame. But it illustrates the basic idea, which was to form a con−
straint satisfaction problem using integer combinations of a lattice−
reduced set of generators. So what remains is to do this in a system−
atic and efficient, manner.

Big Keith numbers

This is an integer linear program (ILP) and more specifically, an inte−
ger constraint satisfaction problem (that is, we have no objective
function to optimize). We will use a branching method coupled to
ordinary LP code. Here is the idea. We solve "relaxed" problems,
now over the reals, wherein we allow noninteger values but now
enforce inequalities. We choose a noninteger solution vector compo−
nent x on which to "branch". To this end we set a pair of inequalities
forcing the value to be less−or−equal to Floor@xD or greater−or−
equal to Ceiling@xD. This gives a pair of subproblems (we can put
these on a stack, queue, or priority queue). Any time we have a
relaxed solution with all integer components it is in fact a solution to
the ILP. To get all solutions we spawn further problems that force at
least one component to have a different value from the solution we
found. Eventually subproblem solutions either have all integer com−
ponents or are empty (when we cannot satisfy the constraints).

There are numerous technical details for purposes of efficiency. I do
not plan to discuss most of them as they are variants of classical
ideas such as cutting planes. One, however, is not (yet) standard
and is quite relevant to this talk.

Big Keith numbers

First we will see the code. Actually this is quite unlikely, because I
have the font size reduced, but I want to show that it can fit comfort−
ably on two pages or less.

keithSolutions@onulls_D :=
Module@8nulls, vars, x, len = Length@onullsD, vecs, constraints, program,

stack, soln, solns = 8<, badvar, varvals, val, counter = 1, var, extra,
maxs, mins, ctmp = 8<, bad = False, vnum, vval, eps = 10^H-5L, rndvar<,

nulls = Reverse@onulls@@Ordering@Map@Norm, N@onullsDDDDDD;
vars = Array@x, lenD; vecs = vars.nulls;
constraints = Join@81 £ First@vecsD £ 9<, Map@0 £ ð £ 9 &, Rest@vecsDDD;
Do@mins = Table@

Internal‘DeactivateMessages@val = NMinimize@8vars@@jDD, Join@constraints, ctmpD<, varsD;
If@Head@valD === NMinimize ÈÈ ! FreeQ@val, IndeterminateD, bad = True; Break@DD;
val = First@valD, NMinimize ::"nsol"D, 8j, len<D;

maxs = Table@
Internal‘DeactivateMessages@val = NMaximize@8vars@@jDD, Join@constraints, ctmpD<, varsD;
If@Head@valD === NMaximize ÈÈ ! FreeQ@val, IndeterminateD, bad = True; Break@DD;
val = First@valD, NMaximize ::"nsol"D, 8j, len<D;

ctmp = Join@Thread@LessEqual@vars, Floor@maxs + epsDDD,
Thread@GreaterEqual@vars, Ceiling@mins - epsDDDD;

, 84<D;
If@bad, Return@8counter, 8<<DD;
constraints = Join@constraints, ctmpD;
program = constraints; stack = 8program, 8<<;
While@stack =!= 8<, counter++; program = stack@@1DD; stack = stack@@2DD;
rndvar = vars@@Random@Integer, 81, len<DDD; program = 8rndvar, program<;
Internal‘DeactivateMessages@vals = NMinimize@program, varsD, NMinimize ::"nsol"D;
If@Head@valsD � NMinimize , Continue@DD;
vval = Ceiling@First@valsD - epsD; vals = Chop@vals@@2DDD; soln = Chop@vecs �. valsD;
If@! FreeQ@soln, IndeterminateD, Continue@DD;
constraints = program@@2DD; varvals = vars �. vals;
badvar = Position@varvals, Ha_ �; Chop@a - Round@aDD =!= 0L, 81<, 1, Heads® FalseD;
If@badvar � 8<, soln = Round@solnD; solns = 8soln, solns<;
Do@extra = Table@vecs@@kDD � soln@@kDD, 8k, j - 1<D;
stack = 8Join@constraints, Append@extra, vecs@@jDD £ soln@@jDD - 1DD, stack<;
stack = 8Join@constraints, Append@extra, vecs@@jDD ³ soln@@jDD + 1DD, stack<;,
8j, Length@solnD<D;

Continue@DD;
badvar = badvar@@1, 1DD; var = vars@@badvarDD; val = var �. vals;
stack = 8Join@constraints, 8rndvar ³ vval, var £ Floor@valD<D, stack<;
stack = 8Join@constraints, 8rndvar ³ vval, var ³ Ceiling@valD<D, stack<;D;
8counter, Partition@Flatten@solnsD, Length@First@nullsDDD<D

Big Keith numbers

Running the code above on all possible equation sets, I found all
Keith numbers between 20 and 29 digits. Here are the ones in the
range 24−28 digits.

82, 2, 9, 1, 4, 6, 4, 1, 3, 1, 3,
6, 5, 8, 5, 5, 5, 8, 4, 6, 1, 2, 2, 7<
89, 8, 3, 8, 6, 7, 8, 6, 8, 7, 9, 1, 5,
1, 9, 8, 5, 9, 9, 2, 0, 0, 6, 0, 4<
81, 8, 3, 5, 4, 9, 7, 2, 5, 8, 5, 2, 2,
5, 3, 5, 8, 0, 6, 7, 7, 1, 8, 2, 6, 6<
81, 9, 8, 7, 6, 2, 3, 4, 9, 2, 6, 4, 5,
7, 2, 8, 8, 5, 1, 1, 9, 4, 7, 9, 4, 5<
89, 8, 9, 3, 8, 1, 9, 1, 2, 1, 4, 2, 2,
0, 7, 1, 8, 0, 5, 0, 3, 0, 1, 3, 1, 2<
81, 5, 3, 6, 6, 9, 3, 5, 4, 4, 5, 5, 4, 8,
2, 5, 6, 0, 9, 8, 7, 1, 7, 8, 3, 4, 2<
81, 5, 4, 6, 7, 7, 8, 8, 1, 4, 0, 1, 0, 0,
7, 7, 9, 9, 9, 7, 4, 5, 6, 4, 3, 3, 6<
81, 3, 3, 1, 1, 8, 4, 1, 1, 1, 7, 4, 0, 5,
9, 6, 8, 8, 3, 9, 1, 0, 4, 5, 9, 5, 5<
81, 5, 4, 1, 4, 0, 2, 7, 5, 4, 2, 8, 3, 3,
9, 9, 4, 9, 8, 9, 9, 9, 2, 2, 6, 5, 0<
82, 9, 5, 7, 6, 8, 2, 3, 7, 3, 6, 1, 2, 9,
1, 7, 0, 8, 6, 4, 5, 2, 2, 7, 4, 7, 4<
89, 5, 6, 6, 3, 3, 7, 2, 0, 4, 6, 4, 1, 1,
4, 5, 1, 5, 8, 9, 0, 3, 1, 8, 4, 1, 0<
89, 8, 8, 2, 4, 2, 3, 1, 0, 3, 9, 3, 8, 6,
0, 3, 9, 0, 0, 6, 6, 9, 1, 1, 4, 1, 4<
89, 4, 9, 3, 9, 7, 6, 8, 4, 0, 3, 9, 0, 2,
6, 5, 8, 6, 8, 5, 2, 2, 0, 6, 7, 2, 0, 0<

Big Keith numbers

One will observe that all of these begin with digits in {1,2,9} and end
with digits in {0,2,4,5,6,7}. If these were in some way "random" and
uniform we would believe the probability of this limited set of first

digits occuring exclusively to be I 1
3
M13, or about 1

106
. The probabil−

ity of the last digits being so restricted is a tame one−in−a−thousand
or so. This raises an obvious conjecture and a perhaps unusual
question: Might there be something intrinsically "interesting" to Keith
numbers that would keep them from being "random"?

Big Keith numbers

One will observe that all of these begin with digits in {1,2,9} and end
with digits in {0,2,4,5,6,7}. If these were in some way "random" and
uniform we would believe the probability of this limited set of first

digits occuring exclusively to be I 1
3
M13, or about 1

106
. The probabil−

ity of the last digits being so restricted is a tame one−in−a−thousand
or so. This raises an obvious conjecture and a perhaps unusual
question: Might there be something intrinsically "interesting" to Keith
numbers that would keep them from being "random"?

So I checked further. After a few computer−days I found the only
two 29 digit Keith numbers.

84, 1, 7, 9, 6, 2, 0, 5, 7, 6, 5, 1, 4, 7, 4,
2, 6, 9, 7, 4, 7, 0, 4, 7, 9, 1, 5, 2, 8<
87, 0, 2, 6, 7, 3, 7, 5, 5, 1, 0, 2, 0, 7, 8,
8, 5, 2, 4, 2, 2, 1, 8, 8, 3, 7, 4, 0, 4<

Both violate the seemingly strong trend of first digits, and one vio−
lates the last digit trend as well. So this becomes a much weaker
conjecture that there might be a mathematical justification for "most"
large Keith numbers to fit the trend patterns.

Frobenius instances

We return to the Frobenius problems.

Solving Frobenius instances

One quickly sees that this is the same sort of linear diophantine prob−
lem as was encountered in finding Keith numbers. So we would like
to believe we can attack it similarly and have similar success. But
wait...

Frobenius instances can be tricky

Beginning in 1983 with "Integer programming with a fixed number of
variables" by H. Lenstra various papers have appeared that indicate
how lattice bases might be utilized to improve ILP performance. Sub−
sequent work, in particular by Aardal, Hurkins, and A. Lenstra
(2000) with further refinement found in Aardal and A. Lenstra
(2002), cast the ideas into algorithmic form.

What I did with Keith numbers is certainly in this vein, and in many
respects quite similar, but with one shortcoming. During a visit Stan
Wagon made to WRI in October 2004, he had me try out a pathologi−
cal benchmark example from the Aardal & Lenstra paper. My code
did a beautiful impression of an empty coat, which is to say, it hung.
What I had was tolerable for the "average case", but not up to the
task for bad cases.

Frobenius instances can be tricky

What was missing, and what those papers clarified, is that one can
help the search considerably by appropriate choice of the branching
variable. In particular we want to choose the direction corresponding
to the largest basis element. Why? Because, in some sense, the
constrained search space polytope is "thin" in that direction. That is,
we expect to encounter fewer hyperplanes with that particular vari−
able set to integer values. Hence we might hope to more quickly
exhaust the search space, rather than meandering through it by
choosing a naive branching method. In the pathological examples
one direction was much larger than the rest, and failing to heed their
choice strategy consigned the algorithm to wander endlessly.

Why did this not appear when I worked with Keith numbers? It turns
out that (1) the equations that yield them are not "pathological" and
(2) it really did show up but in such a mild way that I did not notice.
In making the appropriate algorithm change I did get a reasonable
speed improvement on average (factor of 2 or so).

Frobenius instances can be tricky

The picture may give some idea. The "bad" directions 8b1, b2< can
cause us to wander in the triangle (imagine it to be longer but not
wider), whereas we can quickly learn that not many integer multi−
ples of the good direction c2 will stay inside it.

5 10 15 20

5

10

15

b1

b2

c2

Frobenius instances can be tricky

With this appropriate branching strategy, and the relevant lattice
basis ordered by size, we now tackle Frobenius problems that had
been out of reach. Here is one such example. We exhaust the
search space quickly even when the solution set is empty.

Timing@ff = FrobeniusInstance@810 000 000 000,
35 550 333 797, 42 807 347 507, 55 224 372 861,
67 932 625 959, 75 136 205 917, 79 022 523 667,
80 463 866 750<, 7 631 346 246 323DD

80.99 Second, 8<<

We handle fairly large examples in what I would consider to be rea−
sonable time.

Timing@ff = FrobeniusInstance@
810 000 000 000, 10 451 674 296,
18 543 816 066, 27 129 592 681, 27 275 963 647,
29 754 323 979, 31 437 595 145, 34 219 677 075,
36 727 009 883, 43 226 644 830, 47 122 613 303,
57 481 379 652, 73 514 433 751,
74 355 454 078, 78 522 678 316, 86 905 143 028,
89 114 826 334, 91 314 621 669, 92 498 011 383,
93 095 723 941<, 1 250 976 029 960DD

8161.66 Second, 82, 8, 3, 0, 9, 12, 0,
4, 0, 2, 2, 0, 0, 0, 1, 0, 0, 0, 0, 1<<

The literature quite clearly shows that naive branching, even with an
industry standard program such as CPLEX, simply cannot handle
such problems. On the flip side, lattice methods alone do not suf−
fice. What we require is a bona fide marriage of the two approaches.

Frobenius numbers

Computing Frobenius numbers

Sylvester gave an explicit value for n = 2 as a1 a2 - a1 - a2. A
method was described by Brauer and Shockley in 1963 to handle
sets of three elements. An efficient continued fraction method due
independently to Greenberg and Davison appeared in 1989 and
1994 respectively. These have good complexity with regards to the
size of the numbers.

Several algorithms have arisen in the past 25 years that handle
larger sets. For example there is a method based on a tree construc−
tion from circulant graph, due to Beihoffer, Hendry, Nijenhuis, and
Wagon. Theirs can handle sets of, say, 100 elements. The draw−
back is that the smallest element a1 must be no larger than 10 mil−
lion or so (a residue table is computed comprising all values modulo
a1).

Stan Wagon and David Einstein then set about to develop a method
that was not restricted to having a small element in the set, even if it
meant limiting the cardinality of the set to, say, 10 or so. When Stan
visited WRI in 2004 he discussed this with some of us. At the time
they had made good progress on sets of 4 elements but were hitting
walls after that. Well, they could attack n as large as 5 or 6, but with
considerable programming resources.

Finding Frobenius numbers

For Frobenius number computations Wagon and Einstein defined a
"fundamental domain". It has turning points we refer to as elbows. It
has extremal points called corners. This region is one dimension
smaller than the input set (everything is done modulo a1), hence
can be illustrated for the cases n = 3 and n = 4. With respect to
these domains, the Frobenius number corresponds to the farthest
corner from the origin, with distance an l1 metric weighted by ele−
ment sizes.

A reviewer kindly pointed out that these domains are closely related
to "multiple loop networks", which also (typically) begin with a set of
integers. There appears to be but small crossover in the literature
(that is to say, there is similarity of methods but I’ve not found much
overlap of authors). I suspect this is because one asks different ques−
tions in these two realms.

Finding Frobenius numbers

The gist of the algorithm is to use ILPs to find certain sets contain−
ing elbows, then use a method to go from elbows to corners. We
finish when we have the furthest corner. While pathological cases
(too many corners) arise even at n = 4, the average case perfor−
mance (e.g. random examples) is quite nice. The ILPs in question
are similar to those used in solving Frobenius instances or finding
repfigits, hence the relevance of the methods we have discussed.

Here we indicate an example with 11 digit numbers from sets of 7
and 8 elements respectively. To the best of my knowledge no other
existing algorithm can compute these Frobenius numbers.

Timing@
fnum = FrobeniusFEfficient@810 000 000 000,

18 543 816 066, 27 129 592 681, 27 275 963 647,
43 226 644 830, 73 514 433 751, 74 355 454 078<DD

828.04 Second, 7 688309 842 406<

Timing@fnum = FrobeniusFEfficient@
810 000 000 000, 18 543 816 066, 27 129 592 681,
27 275 963 647, 43 226 644 830, 73 514 433 751,
74 355 454 078, 78 522 678 316<DD

8541.71 Second, 5215 972 252 834<

Note that even when the problem is too large to find the Frobenius
number in reasonable time, we might still be able to solve suffi−
ciently many relevant ILPs to obtain good lower and upper bounds.
We have done this for n as large as 21, with 11 digit numbers, brack−
eting the Frobenius number by a factor of 100 or so. This is far bet−
ter than a priori bounds can accomplish (if all elements are O(k)
then these bounds are around k and k2 respectively, whereas typi−

cally the Frobenius number is around k
n

n-1).

Summary

è Lattice methods are, as ever, quite useful for solving linear diophan−
tine problems. This is true even in the presence of possibly unpleas−
ant constraints.

Summary

è Lattice methods are, as ever, quite useful for solving linear diophan−
tine problems. This is true even in the presence of possibly unpleas−
ant constraints.

è Branch−and−prune methods remain a viable method for handling
constrained linear diophantine systems. The needed adaptations
are
(1) They be used in conjunction with reduced lattice input.
(2) Branching choices must be based on size considerations a la
Aardal & Lenstra.

Summary

è Lattice methods are, as ever, quite useful for solving linear diophan−
tine problems. This is true even in the presence of possibly unpleas−
ant constraints.

è Branch−and−prune methods remain a viable method for handling
constrained linear diophantine systems. The needed adaptations
are
(1) They be used in conjunction with reduced lattice input.
(2) Branching choices must be based on size considerations a la
Aardal & Lenstra.

è There are several possible refinements we did not discuss.
(1) There are tactics for improving the underlying LP performance
(e.g. use of dual simplex method which, I gather, is amenable to a
"hot restart" when adding a new constraint to move away from a
particular solution).
(2) There are different lattice embeddings one might use in order to
cull yet smaller solutions to the unconstrained solutions prior to the
branch−and−prune phase.
(3) Use of objective functions allows us to cheaply emulate cutting
planes, thus tightening the constraints as we branch.
(4) My use of cutting planes is best described as "hopelessly naive".
Certainly improvements there might lead to substantially faster ILP
solving overall.

