Solving knapsack and related problems

Daniel Lichtblau

Wolfram Research, Inc.
100 Trade Centre Dr.
Champaign IL USA, 61820
danl@wolfram.com

Abstract. Knapsack problems and variants thereof arise in several different fields from op
research to cryptography to really, really serious problems for hard—core puzzle enthusi:
discuss some of these and show ways in which one might formulate and solve the
Mathematica

1. Introduction

A knapsack problem is described informally as follows. One has a set of items. One must select
subset that fulfills specified criteria. A classical example, from cryptosystems, is what is called the
sum" problem. From a s&of numbers, and a given numberfind a subset of whose sum i&. A varian
is to find a subset whose sum is as close as possikleAtwther variant is to allow integer multiples of
summands, provided they are small. That is, we are to find a componentwise "small"vwsatdr the
v.S~ k (where we regar@ as being an ordered set, that is, a vector). More general knapsack proble

allow values other than zero and one (typically selected from a small range), inequality constraints,
variations on the above themes..

Of note is that the general integer linear programming problem (ILP) can be cast as a knapsacl
provided the search space is bounded. Each variable is decomposed into new variables, one for
they are referred to &%—1 variables because these are the values they may take. One multiplies tF
variables by appropriate powers of two in reformulating the problem in terms of the new variables.
use this tactic in an example below. An advantage (as we will see) is that often one need not strict
the0 -1 requirement.

Applications of knapsack problems are manifold. The approximate knapsack with small multipliers v
used, for example, to find a minimal polynomial given an approximation to a root [Lenstra 198
knapsack approximation problem is also used in a more efficient algorithm for univariate factorizati
[van Hoeij 2002]. Applications to cryptosystems are discussed in [von zur Gathern and Gerha
chapter 17] and [Nguyen 1999].

Among the tools one might use for knapsack problems are brute force search, smart combinator
techniques, integer programming optimization methods, algebraic solvers with appropriate constr:
lattice methods. We will illustrate several of these tactics in the examples below, Mathgmatici
[Wolfram 2003]. The methods we discuss are not new and most have previously appeared in vario
as cited. The object of this paper is to gather together several convenient examples, references, a
and usefuMathematicacode under the unifying theme of knapsack solvers.

Timings, where indicated, are performed on a 1.4 Ghz machine using the development kétatidanat-
ica. A part of this work appeared in [Lichtblau 2004]. | thank Frank Kampas for useful remarks al
problems and certain solving methods, and Adam Strzebonski for expalining hiwatiematicafunctior
Fi ndl nst ance handles constrained diophantine equations.

2. A simple subset sum

The example below arose in the Usenet news group comp.soft-sys.math.mathematica. A response
the method we illustrate appears in [Lichtblau 2002a]. It is the very classical subset sum problen
given a set of rational numbers and a desired value, and seek a subset that sums to the value.

vec=((1/2,1/3, 1/4, 1/8, 3/10, 12/79, 13/ 38};
val = 2509 /2280;

In a way this is a linear diophantine equation but we seek a particular type of solution, wherein all
nents are zero or one. As such solutions are small in Euclidean norm, a common method by which

such problems involves lattice reduction [Lenstra, Lenstra, and Lovasz 1982]. The idea is to set ug
wherein the last column is precisely the vector augmented at the bottom with the negated value
augment to the left with an identity matrix (next to the vector), and a row of zeros preceding the
value. We then reduce this lattice. The elements of the identiy matrix serve as recorders of the mu
use in (attempting to) zero the last column, in much the same way that augmenting may be used
matrix inverse. If we obtain a row with a zero in the last entry and all ones and zeros preceding,
columns with ones correspond to set elements we take for our summands. We will rescale to mal
column large though this is not always necessary. We will show the lattice below so one might see
a reduction can give something useful.

latticel =

Transpose [Append [l dentityMatri x[Length[vec]], 10"10=xvec]];
lattice2 = Append[l atticel,

Append [Tabl e[0, {Length[vec]}], -10710=xval]]

10000 000 000
{{1, 0, 0, 0, 0, 0, 0, 5000000000} {o, 1, 0, 0, 0, 0, O, f}
{0, 0, 1, 0, 0, 0, 0, 2500000000}, {0, 0, 0, 1, 0, 0, 0, 1250000000},
120000 000 000

{0, 0, 0, 0, 1, 0, 0, 3000000000}, {o, 0,0, 0,0, 1, 0, T}'

65000 000 000
fo,0,0,0,00 1, — 1},

19

627 250 000 000

[o,0,0,00 0 0 -— 1}
57

We will reduce and then select those rows with last element zero and all preceding elements eith
one. We check that such candidate solutions actually work.

Ir =Latti ceReduce[l attice2];
result = Map[Most

Select [Ir, Last [#] == 0 & Appl y[And, Map[# =1 || # =0 & Most [#]]] &]]
Map [#. vec == val & result]

{{0, 1, 0, 1, 1, O, 1}}

{True}
We thus see that the second, fourth, fifth, and seventh elements sum to the desired value.

We should note that the method illustrated above it is by no means guaranteed to give a solution if «
The useful fact is that, for a large class of problems, it does (see [Lagarias and Odlyzko 1985]). Th
and a variant thereof are discussed in [Schnorr and Euchner 1991]. The variant uses an encodin
qguently works better when there might be small vectors in the lattice other than the solution vector.

Variations on this lattice technique have applications to polynomial factorization methods already
the introduction, finding small solutions to linear diophantine equations (the "closest vector prok
lattices; see e.g. [Nguyen 1999], [Matthews 2001], or [Lichtblau 2003b]), and simultaneous dio
approximation ([Lenstra, Lenstra, and Lovasz 1982], [von zur Gathen and Gerhard 1999]; this is ir
the method behind the functioff fi neRati onal i ze in the Mathematicastandard add-on packs
Nunber Theory* Rati onal i ze').

3. Numeric solvers and knapsacks

Another method for the previous example, workable for problems of small size, is to use a numel
with equations in place to insure that all variables take on only v@loe4. This method was first broug
to my attention by [Boneh 1997] (though not indicated in [Lichtblau 2002a], | used it on this exa
private follow—up correspondence).

vars = Array [X, Length[vec]];
polys = Append[vars = (vars -1), vars.vec-val];
NSol ve [pol ys]

{{x[1] - 0., x[2] » 1., x[3] - 0.,
x[4] - 1., x[5] > 1., x[6] -0., x[7] - 1.}}

It must be mentioned that this method is, for practical purposes, generally no better than brute se
sometimes considerably worse. The reason, roughly, is that we have an overdetermined nonline
wherein all equations but one are quadratic. Such systems are easily overwhelmed by computatione
ity when one applies the methodsNgol ve [Lichtblau 2000]. The nice feature of the method lies ir
simplicity of code. More importantly, and the reason we showed it above, is that it may be used to ¢
in larger knapsack-style problems when there are more linear equations, as these have an effect
the complexity (for one they reduce the a priori bound on the size of the solution set; indeed even
equations may help to reduce complexity since the system is overdetermined). In [Rasmusson 200:
nice application to solving a type of classic puzzle. The particular example is known as "Johnn
Woman" and the problem statement is as follows (see the URL to the Georgia College & State L
BITS & BYTES electronic journal given in the Rasmusson reference below).

Johnny’s ideal woman is brunette, blue eyed, slender, and tall. He knows four women: Adele, Bet
and Doris. Only one of the four women has all four characteristics that Johnny requires.

. Only three of the women are both brunette and slender.

. Only two of the women are both brunette and tall.

. Only two of the women are both slender and tall.

. Only one of the women is both brunette and blue eyed.

. Adele and Betty have the same color eyes.

. Betty and Carol have the same color hair.

. Carol and Doris have different builds.

. Doris and Adele are the same height.

Which one of the four women satisfies all of Johnny’s requirements? Rasmusson solved this is t
follows (I have made modest alterations to the code but the essentials remain unchanged).

O~NOOUITAWNE

gal s = {Adel e, Betty, Carol, Dori g;
features = {bl ueeye, slender, brunette, tall};
sol vvars = Map[perfectgirl , Range[4]];
elinmvars = Fl atten[Quter [Operat e[##, 0] & features, Range[4]1]11];
gal nunbers = Thread[{Adel e, Betty, Carol, Dorig -» {1, 2, 3, 4}];
constraints = Map[#72 == & Flatten[Join[elinmvars, solvvars]]l;
probl em=Joi n[constrai nts, {Sum[bl ueeye[i] *sl ender [i], {i, 4}] =3,
Sum[brunettef[i] «tall [i], {i, 4}] =2,
Sum[slender[i]tall [i], {i, 4}] =2,
Sum[bl ueeye[i] »brunettel[i], {i, 4}] =1, bl ueeye[Adel e] ==
bl ueeye[Betty], brunette[Betty] == brunette[Carol],
sl ender [Carol] == 1 -sl ender [Doris], tall [Adele] ==tall [Doris]},
Tabl e[brunettel[i] blueeye[i]slender[i]tall [i] =perfectgirl [i],
{i, 4}11 /. gal nunbers;

We solve the system, eliminating all variables other thampéhné ect gi r| set. We then do some repla
ment postprocessing to make it clear who is Johnny’s favorite (at least this should make it clear to Jc

sol = (NSol ve[probl em, solvvars, elinvarg /.
feature_[j _Integer] :»featurefgals[[j1]1]) /.
{1. -» True, 0. » Fal se, Rul e » Equal }
Cases[sol, perfectgirl [gal _] == True > gal , {2}]

{{perfectgirl [Adel e] == True, perfectgirl [Betty] == Fal se,
perfectgirl [Carol] == Fal se, perfectgirl [Doris] == Fal se}}
{Adel e}

In this example it turns out that elimination of extraneous variables has the desirable effect of 1
multiplicity from the solution set; the problem specification does not uniquely determine heights of
women.

As problems of that particular type often contain several equations, some of them linear, the com|

complexity tends to be more modest than is the case for a subset sum problem of comparably n
ables. Hence one can have more variables and still hope for a result in reasonable time.

At this point | will mention another approach to puzzle problems of this type, as utilized heavily il
1999]. The idea is to enlarge, via enumeration of possibilities, and then prune the search space ite
new variables are taken into account. The enumeration steps consist of adding all possible value:
variable to each partial solution. These are then pruned using available constraints in an effort ta
size of the partial solution set reasonable. We will illustrate the method on this example. We |
showing the power set of eye combinations that can go with the four women (we will not show thi
remaining features).

eyes = Flatten[
Qut er [Li st, Sequenceee Tabl e[{bl ueeye, Not[bl ueeyel}, {4311, 3]

{{bl ueeye, bl ueeye, bl ueeye, bl ueeye}, {blueeye, bl ueeye, bl ueeye, ! bl ueeye},
{bl ueeye, bl ueeye, ! bl ueeye, bl ueeye}, {blueeye, bl ueeye, ! blueeye, ! blueeye},
{bl ueeye, ! bl ueeye, bl ueeye, bl ueeye}, {blueeye, ! blueeye, bl ueeye, ! blueeye},
{bl ueeye, ! bl ueeye, ! bl ueeye, bl ueeye},
{bl ueeye, ! bl ueeye, ! blueeye, ! blueeye},
{! bl ueeye, bl ueeye, bl ueeye, bl ueeye}, {! blueeye, bl ueeye, bl ueeye, ! bl ueeye},
{! bl ueeye, bl ueeye, ! blueeye, bl ueeye},
{! blueeye, bl ueeye, ! blueeye, ! blueeye},
{! bl ueeye, ! bl ueeye, bl ueeye, bl ueeye},
{! bl ueeye, ! bl ueeye, bl ueeye, ! bl ueeye},
{! blueeye, ! blueeye, ! blueeye, bl ueeye},
{! bl ueeye, ! blueeye, ! blueeye, ! blueeye}}
We form the lists of possibilities combining women with eye color.

gal sAndEyes = Fl atten[Qut er [Thread [And [##]] &, {gal s}, eyes, 1], 1]

{{Adel e & bl ueeye, Betty & &bl ueeye, Carol & &bl ueeye, Doris &bl ueeye},
{Adel e && bl ueeye, Betty &bl ueeye, Carol &bl ueeye, Doris && ! bl ueeye},
{Adel e && bl ueeye, Betty && bl ueeye, Carol && ! bl ueeye, Dori s & &bl ueeye},
{Adel e & bl ueeye, Betty &bl ueeye, Carol && ! bl ueeye, Dori s & ! bl ueeye},
{Adel e && bl ueeye, Betty && ! bl ueeye, Carol &&bl ueeye, Doris & &bl ueeye},
{Adel e & bl ueeye, Betty & ! bl ueeye, Carol &&bl ueeye, Dori s && ! bl ueeye},
{Adel e & bl ueeye, Betty & ! bl ueeye, Carol && ! bl ueeye, Doris &bl ueeye},
{Adel e && bl ueeye, Betty & ! bl ueeye, Carol && ! bl ueeye, Doris & ! bl ueeye},
{Adel e && ! bl ueeye, Betty &&bl ueeye, Carol &&bl ueeye, Dori s & &bl ueeye},
{Adel e && ! bl ueeye, Betty && bl ueeye, Carol &&bl ueeye, Doris & ! bl ueeye},
{Adel e && ! bl ueeye, Betty &&bl ueeye, Carol && ! bl ueeye, Dori s && bl ueeye},
{Adel e & ! bl ueeye, Betty &&bl ueeye, Carol && ! bl ueeye, Doris & ! bl ueeye},
{Adel e && ! bl ueeye, Betty && ! bl ueeye, Carol &&bl ueeye, Doris &bl ueeye},
{Adel e & ! bl ueeye, Betty && ! bl ueeye, Carol &bl ueeye, Doris && ! bl ueeye},
{Adel e & ! bl ueeye, Betty && ! bl ueeye, Carol && ! bl ueeye, Doris &&bl ueeye},
{Adel e && ! bl ueeye, Betty && ! bl ueeye, Carol && ! bl ueeye, Doris & ! bl ueeye}}

Now we use the relevant constraint to prune this list.

gal sAndEyes = Cases [gal sAndEyes, {AorB_&&a_, _ , BorA &&a_, _ 1} /;
Mat chQ[Aor B, Adel e | Betty] & Mat chQ[Bor A, Adel e | Betty]]

{{Adel e && bl ueeye, Betty &&bl ueeye, Carol & &bl ueeye, Dori s &bl ueeye},
{Adel e &bl ueeye, Betty & &bl ueeye, Carol &&bl ueeye, Doris && ! bl ueeye},
{Adel e &bl ueeye, Betty & &bl ueeye, Carol && ! bl ueeye, Dori s &bl ueeye},
{Adel e && bl ueeye, Betty & &bl ueeye, Carol & ! bl ueeye,

Doris & ! bl ueeye}, {Adel e & ! bl ueeye,
Betty && ! bl ueeye, Carol &&bl ueeye, Dori s & &bl ueeye},
{Adel e && ! bl ueeye, Betty && ! bl ueeye, Carol &&bl ueeye,
Doris & ! bl ueeye}, {Adel e&& ! bl ueeye, Betty && ! bl ueeye,
Carol && ! bl ueeye, Dori s &bl ueeye}, {Adel e & ! bl ueeye,
Betty && ! bl ueeye, Carol & ! bl ueeye, Doris & ! bl ueeye}}
We add an attribute for girth.

widths =Flatten][

CQut er [Li st, Sequenceee Tabl e[{sl ender, Not[slender1}, {4}11, 31;
gal sAndEyesAndW dth = Fl atten[

Quter [Thread[And [##]] & gal sAndEyes, widths, 1, 17;

This time we can prune with more than one constraint.

gal sAndEyesAndW dt h = Cases [gal sAndEyesAndW dt h
{__, And[CorD_, _, a1, ___, And[DorC_, _, b1, ___} /; MatchQ[Cor D,
Carol | Doris] & MatchQ[DorC, Carol | Doris] &b == Not [a]];
gal sAndEyesAndW dt h = Sel ect [gal sAndEyesAndW dt h , LengtH
Sel ect [#, Function[x, MatchQ[x, _ &&bl ueeye &&sl ender]]1]] == 3 &]

{{Adel e && bl ueeye &&sl ender, Betty &bl ueeye &&sl ender,
Car ol &&bl ueeye & & sl ender, Dori s & &bl ueeye && ! sl ender },
{Adel e && bl ueeye && sl ender, Betty &&bl ueeye &&sl ender,
Car ol &&bl ueeye && ! sl ender, Dori s &bl ueeye &&sl ender },
{Adel e &bl ueeye && sl ender, Betty & &bl ueeye &&sl ender,
Carol & &bl ueeye && sl ender, Doris & ! bl ueeye & ! sl ender },
{Adel e && bl ueeye && sl ender, Betty &&bl ueeye &&sl ender,
Carol && ! bl ueeye & ! sl ender, Dori s &bl ueeye && sl ender }}

Now add hair coloring.

hairs =Flatten[

Quter [Li st, Sequenceee Tabl e[{brunette, Not[brunette]}, {4}1], 31;
gal sAndEyesAndW dt hAndHai r = Fl atten|[

Cut er [Thread [And [##]] & gal sAndEyesAndWdth , hairs, 1, 17;

Again we prune.

gal sAndEyesAndW dt hAndHai r = Cases [gal sAndEyesAndW dt hAndHai r
{_, And[BorC_, _, , a], __, And[CorB_, _, _, al, __} /;
Mat chQ[Bor C, Betty | Carol] & Mat chQ[Cor B, Betty | Carol]1;
gal sAndEyesAndW dt hAndHai r = Sel ect [gal sAndEyesAndW dt hAndHai r
Lengt h[Sel ect [#,
Function[x, MatchQ[x, _&&bl ueeye & _&&brunettg]]] =1 &]

{{Adel e && bl ueeye && sl ender & & brunette, Betty &bl ueeye & & sl ender && ! brunette,
Carol &&bl ueeye && sl ender && ! brunette,
Dori s &bl ueeye && ! sl ender && ! brunette},
{Adel e && bl ueeye && sl ender && ! brunette,
Betty &bl ueeye && sl ender && ! brunette, Carol &&bl ueeye &&
sl ender & ! brunette, Doris &bl ueeye && ! sl ender & brunette},
{Adel e && bl ueeye && sl ender & & brunette, Betty &bl ueeye & & sl ender && ! brunette,
Carol &&bl ueeye & ! sl ender && ! brunette,
Dori s &bl ueeye && sl ender && ! brunette},
{Adel e && bl ueeye && sl ender && ! brunette,
Betty & &bl ueeye && sl ender && ! brunette, Carol &&bl ueeye &&
! sl ender & ! brunette, Doris &bl ueeye && sl ender & brunette},
{Adel e && bl ueeye && sl ender & & brunette, Betty &bl ueeye & & sl ender && ! brunette,
Carol &&bl ueeye && sl ender && ! brunette,
Doris & ! bl ueeye && ! sl ender & brunette},
{Adel e && bl ueeye && sl ender & & brunette, Betty &bl ueeye & & sl ender && ! brunette,
Carol &&bl ueeye & & sl ender && ! brunette,
Doris & ! bl ueeye && ! sl ender && ! brunette},
{Adel e && bl ueeye && sl ender & & brunette, Betty &bl ueeye & & sl ender && ! brunette,
Carol && ! bl ueeye && ! sl ender && ! brunette,
Dori s &bl ueeye && sl ender && ! brunette},
{Adel e && bl ueeye && sl ender && ! brunette, Betty &bl ueeye && sl ender &&brunette,
Carol && ! bl ueeye && ! sl ender & & brunette,
Dori s &bl ueeye && sl ender && ! brunette},
{Adel e && bl ueeye && sl ender && ! brunette,
Betty & &bl ueeye && sl ender && ! brunette, Carol & ! bl ueeye &&
! sl ender & ! brunette, Doris &bl ueeye && sl ender & brunette}}

Finally add height (we want her to have dimension).

hei ghts =
Fl atten[Quter [Li st, Sequenceee Table[{tall, Not[tall]}, {4}11, 31;
gal sAndEyesAndW dt hAndHai r AndHei ght = Fl atten[Quter [
Thread [And [##]] &, gal sAndEyesAndW dt hAndHair , heights, I, 17;
gal sAndEyesAndW dt hAndHai r AndHei ght =
Cases [gal sAndEyesAndW dt hAndHai r AndHei ght
{__, And[AorD , , , al, ___, Ad[DorA, , ,al, ___ } /;
Mat chQ[Aor D, Adel e | Dori s] && Mat chQ[Dor A, Adel e | Doris]l;

This time we prune with three constraints. When finished, we will have only one ideal woman (wl
happens, repeats herself. Possibly Johnny was not aware of this trait.)

gal sAndEyesAndW dt hAndHai r AndHei ght = Fl atten[Qut er [
Thread [And [##]] &, gal sAndEyesAndW dt hAndHair , heights, I, 17;
gal sAndEyesAndW dt hAndHai r AndHei ght =
Cases [gal sAndEyesAndW dt hAndHai r AndHei ght
{__, And[AorD, ., , a], __, And[DorA, , , al, __} /;
Mat chQ[Aor D, Adel e | Dori s] & Mat chQ[Dor A, Adel e | Doris]l;
gal sAndEyesAndW dt hAndHai r AndHei ght =
Sel ect [gal sAndEyesAndW dt hAndHai r AndHei ght , Lengt piSel ect [#,
Function[x, MatchQ[x, _&&bl ueeye & && &&tall11]] =2 &J;
gal sAndEyesAndW dt hAndHai r AndHei ght = Sel ect [
gal sAndEyesAndW dt hAndHai r AndHei ght
Lengt h[Sel ect [#, Function[x, MatchQ[x, __ &&brunette & tall]]]] =2 &]

{{Adel e && bl ueeye &&sl ender & & brunette &&tall,
Betty && bl ueeye && sl ender && ! brunette &&tall,
Car ol & &bl ueeye && sl ender && ! brunette&& ! tall,
Doris & ! bl ueeye && ! sl ender & brunette &&tall },

{Adel e && bl ueeye && sl ender & & brunette &&tall,
Betty & &bl ueeye && sl ender & ! brunette&& ! tall,
Carol &&bl ueeye && sl ender && ! brunette &&tall,
Dori s & ! bl ueeye & ! sl ender & brunette &&tall }}

We see again that only Adele has the requisite features.

4. Linear diophantine equations

We now show a simple example from [Lichtblau 2002a]. Given 143267 coins (pennies, nickels, dii
quarters) of total value $12563.29, how many coins might be of each type? In general one mig
many different solutions; we will be happy to obtain any one of them. In the reference we show an
to obtain results using an optimization method (this amounts to a constraint satisfaction ILP). Her:
attempt a lattice-based method quite similar to what was shown above for the subset sum . W
nonnegative integer solutions to a pair of equatiops+ 5n + 10d + 25 = 125632¢ anc

p+n+d+ q=14326. We use these as columns of our lattice, again augmenting by an identity

To assist the process of obtaining a small vector that really gives a solution we will multiply the equi
a large value.

vecs = 1078« {{1, 5, 10, 25, -1256329}, {1, 1, 1, 1, -143267}};
lattice = Transpose[Join[ldentityMatrix[Length[vecs[[1]]]]., vecs]];
redlat = Latti ceReduce[l attice]

{{0, 3, -4, 1, 0, 0, 0}, {-5, 3, 4, -2, 0, 0, 03},
{41749, 39185, 35978, 26355, 1, 0, 0},
{0, -2, 1, 0, 0, 0, -100000000}, {1, -2, 1, O, O, 100000000, 0O}}
The third row gives a solution: 41749 pennies, 39185 nickels, 35978 dimes, and 26355 quarters.

Generally speaking it is not difficult to find "solutions" when we allow negative values. Making this |
work in the presence of many small null vectors becomes problematic precisely because it then be
the more likely that small solutions will have components of both signs.

It is of some interest to pursue this a3-al problem. From each variable we make new variables corres
ing to each bit. Note that, as above, we will work with vectors of numbers and not form explicit variak

base = 2;

sizesl =Ceiling[Log[base, 1256329/ {1, 5, 10, 25}11;

size2 = Ceiling[Log[base, 143 267]];

sizes = Map[M n[#, size2] & sizesl];

expandedvec = Map [base " Range[0, #-1] &, Si zes];

mult =107 3;

vecl = mult = Append[Fl att en[expandedvec % {1, 5, 10, 25}], -1256 329];
vec2 = mul t » Append[Fl att en[expandedvec » {1, 1, 1, 1}], -143 267];
lattice = Transpose[Join[ldentityMatrix[Length[vecl]], {vecl, vec2}]];

What we seek is a solution vector containing all zeros and ones, with one in the third to last
(denoting that we utilized the last row but not with a multiplier), and zeros in the last two slots (in
that we satisfied both linear relations).

redlat = Latti ceReduce[l attice];

sol vec = First [Cases[redlat, {a , 1, 0, 0} = {a}]]

{1, 0, 0, 0, 1, 0, -1, 0, 1, 0,0, 12,0,10,0 OO0 -1,0,0,0, 1,

o 1¢00¢0060006%068¢012000010000010H1,

1, 0,0,01,112100000000000,0 00 0}
This, in the words of television’s Maxwell Smatrt, is "not quite what | had in mind." No matter; we ca
anyway. We simply reform our solution values as coefficients times powers of two. For this we
break apart the solution vector into components that correspond to each of the original variables
nickels, dimes, and quarters). So long as the largest nonzero component in each is positive we will
get a valid solution.

start = 1;

sol conponent s =

Tabl e[res = Take[sol vec, {start, start +sizes[[j1]-1}1;
start +=sizes[[j11;
res, {j, Length[sizes]}]

{{(3, 0,0,0, 1,0 -1,0,1,0,0, 1
{-1, 0,0,0 10,1, 0,0 0, 0, O,
{0, 1, 0,0, 0,0,0,1,0,1,1,0,0
{14, 0, 0,0 0,0 0000000 0,0, 0}}

[t

val ues = Map[#. (2" Range[0, Length[#] -1]) & sol conponent s]
{10449, 16463, 116354, 1}
{10449, 16463, 116354, &

We check that this satisfies the two equations.
values. {1, 1, 1, 1} == 143267 & & val ues.{1, 5, 10, 25} == 1256 329
True

5. A more challenging subset sum

The next example is from [Reinholtz 2003]. We are given the first forty reciprocals of squares of
larger than one. The goal is to find a subset whose Sl%m\Me show Reinholtz’ method below. We be
with the vector itself, clear denominators, and compute the target value in terms of the new vector.

vec = Table[1/n"2, {n, 2, 40}1;

l en = Length[vec];

I cm= Appl y [LCM, Denoni nat or [vec]];
ivec =l cmxvec;

s=1lcmy/2;

Now find partial sums of all smallest elements, as we decrease the number of such elements. A p
table is defined along with a pair of predicates that in effect allow us to tell when to call recursiv

what to test. The bounding feasibility test, used recursively, acts as a sort of backtracking mecha
might also view it as a branch—and—bound tactic).

tottbl = Apply[Plus, ivec] -Fol dLi st [#1 +#2 & O, ivec];
b = Tabl e [0, {len}];

feasibleQ[i _, tot_J:=tot <s <tot +tottbl [[i]];
solutionQ[i _, tot_]:=tot ==s;

try[i_?(#l<len &, tot_]:=Wth[{rtot =tot +ivec[[i]]}, b[[i]] =1;
solutionQ[i, rtot] & Throw[b];
I f [feasibleQ[i +1, rtot], try[i +1, rtot]];
b[[i]1]1=0; try[i +1, tot];1];

Tim ng[result =Catch[try[1, 0]];]

result .vec=1/2

Sel ect [result xvec, # # 0 &]

{20. 55 Second, Null }
True
1 1 1 1 1 1 1 1 1 1

{4' 9 16 25 49 144 225 400 784 1225}
With some work this can also be attacked as a lattice problem. Specifically we can set this up a
diophaantine problem. There is a hitch: we typically have many null vectors and these tend to give
that do not have all ones. We can attempt to alleviate this by adding extra linear relations. For
suppose we know or at least suspect that a solution using effcilues exists (perhaps we peeke
Reinholtz’ solution, but only long enough to guess how big it was). We can set up a lattice as follows

si ze = 40;

squares = Tabl e[n”*2, {n, 2, size}];

I cm= Appl y [LCM, squar es];

vec =l cm/ squares;

vec = Append[vec, -lcm/2];

vec2 = Tabl e[1, {size}];

vec2[[size]] = -10;

lattice = Transpose[Join[ldentityMatrix[Length[vec]], {vec, vec2}]];

The last columns contain the two linear relations we need to enforce; the sum of square recipro

equal% and the number of values in the sum mustlBeAs in earlier examples, the augmented ide
matrix records the multiples used in satisfying these relations.

We still face the same difficulty; if we reduce this lattice we can readily make zeros in the last two ¢
using the last row multiplied by one, but the multiples of the other rows are not all likely to be one.
turn is because there are still many small "null" vectors that give rise to small solutions, from whic
reduction may not find the sort we require (using all ones). In order to further coerce the lattice red
yield a good vector we will alter the default behvior. Specifically we change what is often callé

parameter, typically set t§ in the liteature (see e.g. [Lenstra, Lenstra, Lovasz 1982]), to something
closer tol.

Devel oper* Set Syst en{pti ons[
"LatticeReduceOptions "-» {"LatticeReduceRati oParaneter "-».99}];
Timng[redlat = Latti ceReduce[lattice];]

{0. 36 Second, Null}

We now see if we have any solutions. These will have final three components of a one (signifying
last row is multiplied by one) followed by two zeros (indicating that we successfully satisfied the tw
relations). Actually these might all be negated but we ignore that possibility for now. Moreover eve
last value is not zero (signifying that the number of elements used wa§)rtbat would not be cause
concern.

solns = Cases[redlat, {a___ , 1, 0, } /; Max[a] ==1& &M n[a] = 0]

{{1, 1, 1,1,60,10000 10010000100,
o, 0008601000000 1,0000010 0}}
Our solution is given by this vector with the last three elements removed. We see that it agrees
previous one.

soln =Drop[First [sol ns], -3];
soln. (1/squares) ==1/2
Sel ect [sol nx (1 /squares), ## 0 &]

True
1 1 1 1 1 1 1 1 1 1

{4' 9 16 25 49 144 225 400 784 1225}
Obviously we made use of the fact that we expected the solution kD wsdues. In reality we would lo
over the possible lengths of a solution subset. It remains to ponder what to do in cases where we d
solution vector in the reduced lattice. One method | have used with modest success involves add
three more columns of random small integers (perhaps all multiplied by some constant larger thi
The last element in each column will be the negative of a possible sum of a subset of the values
This forces solutions to satisfy more relations, thus often removing the small null vectors. We ni
iterate over all possible values of sums of subsets of the new columns. If the random values are dre
small pool then typically there are not many such values for each column. This is important becaust
to arrange matters so that we do no more than some low degree polynomial number of iteratic
number of rows of the lattice.

An alternative is to put those problematic null vectors to work for us (in modern parlance one migt
this as "embracing our null vectors"). There is direct functionality builtifthematicato do something
this sort. The method used behind the scenes is a type of recursive enumeration over combinat
unrestricted integer solution plus null vectors ([Strzebonski 2004]). The code below is from [Kampas

vars = Table[x[i], {i, 2, 40}];
cons = Table[0 <=x[i] <=1, {i, 2, 40}1;
40 X[i]

i 2

1
Ti mi ng[Fi ndl nst ance [Joi n[{ == 5} cons], vars, Integers]]
i

=2

{74. 71 Second,

{{x[2] -1, x[3] >1, x[4] >1, x[5] >1, x[6] >0, x[7] -1, x[8] -0,
x[9] -0, x[10] -0, x[11] -0, x[12] -1, x[13] -0, x[14] > O,
x[15] -1, x[16] -0, x[17] -0, x[18] -0, x[19] - O,

x[20] -1, x[21] -0, x[22] -0, x[23] -0, x[24] -0,

X[25] -0, x[26] -0, x[27] -0, x[28] -1, x[29] - O,

x[30] -0, x[31] -0, x[32] -0, x[33] -0, x[34] -0, x[35] -1,
x[36] -0, x[37] -0, x[38] -0, x[39] -0, x[40] - 0}}}

6. Random determinants

In this section we illustrate some heuristic methods on certain extremal matrix problems of modest
sometimes important to understand extremal behavior of random polynomials or matrices com
elements from a given set. Below we apply knapsack-style optimization to study determin@mntg
matrices of integers taken from the $efl, 0, 3}, with diagonal elements all set 1o We arrived at tr
option settings utilized below after some trial and error experimentation.

n=7,
mat = Array[x, {n, n}];
funcl[a: {{_?NunberQ..}..}] /;
Lengt h[a] == Lengt h[First [a]] : = Det [a]
vars = Flatten[nmat];
problemist = {func[mat], Flatten[{El enent [vars, |ntegers],
Map[-1<#<1 &, vars], Table[x[j, jl1=1, {j, n}1}1};

Tim ng[{m n, val s} = NM ni m ze[probl emlist, vars,
Maxl terations -» 50, Method -» {"Di fferential Evol ution |
CrossProbability - 1 /50, SearchPoints -» 50}1;]

{37.34 Second, Null}
{mn, mat /. val s}
{-576., {{1, -1, -1, 1, 1, -1, -1}, {1, 1,1, -1, 1, 1, -1},

{-1, -1, 1,111, -13, {1, 1, -1, 1, -1, 1, -1}, {1, 1, 1, 1, 1, 1, 1},
(, -1, -1, -1, -1, 1, 1}, (-1, 1, -1, -1, 1, 1, 1}}}

7
Note that the Hadamard bound claims the minimum must be no smallerthaor —907. A random sear

that took approximately twice as long as the code above found nothing smaller28@anVe’ll now try
with dimension increased by one.

Timng[{m n, val s} = NM ni m ze[probl enlist, vars,
Maxl t erations -» 200, Method- {"Di fferential Evol ution |
CrossProbability -» 1 /50, SearchPoints » 100}7; 1]

{464. 97 Second, Nul |l }

{min, mat /. val s}

{-4096., ({1, 1,1, -1, 1, -1,

-1, -1}, {1, 1, -1, 1, 1, 1, 1, -1},
(,111, -1,1, -1, 13, (-1, 1, 1,1, -1, -1, 1, -1},
{, -1,1,11, -1, 1,1}, (-1, 1,1, -1, 1, 1,1, 1},

1, -1,1 -1, -1, 1,1, -1}, {1, 1, -1, -1, -1, -1, 1, 1}}}
In this case we actually attain the Hadamard bound.

We now show an example that, while not really a knapsack problem, is a cousin to the one above
is called doubly stochastic is all entries are nonnegative and all rows and columns sum to one.

theorem due to Birkhoff shows that any such matrix may be written as a convex sum of permutatior
(these are thus the vertices of the linear space of such matrices). It is not hard to show that the p

matrices are moreover the doubly stochastic matrices of extremal determinant. Below we find
determinant equal tel.

n=7,
mat = Array[x, {n, n}];
funcla: {{_?NunberQ..}..}] /;
Lengt h[a] == Lengt h[Fi rst [a]] : = Det [a]
vars = Flatten[mat];
problemist = {func[mat],
Flatten[{Map[# > 0 & vars], Tabl e[Sum[x[j, kI, {j, n}] =1, {k, n}]1,
Tabl e[Sum[x[j, kI, {k, n}] =1, {j, n}1}1};

{min, val s} = NM ni m ze[problemist, vars, Maxlterations- 200];

{mn, Chop[mat /. vals, 10"-7]}

{-1., {{0, O, 2., 0, O, O, O}, {O, O, O, O, O, 1., O3},
{0, 1., 0, 0, 0, O, O}, {O, O, O, O, 2., O, O}, {O,0,0,0,0,0, 1.3,
{1., 0, 0, 0, 0, O, O}, {0, 0,0, 1., 0,0, O}}}
The actual decomposition of a doubly stochastic matrix into a convex sum of permutation matrices
type of knapsack problem, albeit one that can be handled by an efficient greedy algorithmMzithptaat

ica code for this is given in [Lichtblau 1996]. As a rule of thumb, when a greedy algorithm will w
solve a knapsack problem, nothing will beat it.

10

7. Covering a set by subsets

Subset covering is an important task that appears, for example, in the Quine—McCluskey algo
finding an optimal disjunctive normal form for a boolean expression [McCluskey 1956]. We give an ¢
that arose in the Usenet news group comp.soft-sys.math.mathematica. The approach we us¢
previously in [Lichtblau 2002b]. We are given a set of sets, each containing integers between 1 and
union is the set of all integers in that range, and we want to find a set of 12 subsets that covers
range (we are given in advance that that number can be achieved).

subsets = {{1, 2, 4, 8, 16, 32, 64, {2, 1, 3, 7, 15, 31, 63,
(3, 4, 2, 6, 14, 30, 62, {4, 3, 1, 5, 13, 29, 61}, {5, 6, 8, 4, 12, 28, 60},
(6, 5, 7, 3, 11, 27, 59, {7, 8, 6, 2, 10, 26, 58, {8, 7, 5, 1, 9, 25, 57,
{9, 10, 12, 16, 8, 24, 56, {10, 9, 11, 15, 7, 23, 55, {11, 12, 10, 14, 6, 22, 54,
{12, 11, 9, 13, 5, 21, 53, {13, 14, 16, 12, 4, 20, 523, {14, 13, 15, 11, 3, 19, 53,
(15, 16, 14, 10, 2, 18, 50, {16, 15, 13, 9, 1, 17, 49, {17, 18, 20, 24, 32, 16, 48,
(18, 17, 19, 23, 31, 15, 47, {19, 20, 18, 22, 30, 14, 48,
{20, 19, 17, 21, 29, 13, 45, {21, 22, 24, 20, 28, 12, 44,
{22, 21, 23, 19, 27, 11, 43, {23, 24, 22, 18, 26, 10, 43,
(24, 23, 21, 17, 25, 9, 41, {25, 26, 28, 32, 24, 8, 40, {26, 25, 27, 31, 23, 7, 39,
(27, 28, 26, 30, 22, 6, 38, {28, 27, 25, 29, 21, 5, 3%, {29, 30, 32, 28, 20, 4, 38,
{30, 29, 31, 27, 19, 3, 35, {31, 32, 30, 26, 18, 2, 34, {32, 31, 29, 25, 17, 1, 33,
(33, 34, 36, 40, 48, 64, 33, {34, 33, 35, 39, 47, 63, 31,
{35, 36, 34, 38, 46, 62, 3G, {36, 35, 33, 37, 45, 61, 29,
{37, 38, 40, 36, 44, 60, 2§, {38, 37, 39, 35, 43, 59, 23,
{39, 40, 38, 34, 42, 58, 26, {40, 39, 37, 33, 41, 57, 23,
(41, 42, 44, 48, 40, 56, 24, {42, 41, 43, 47, 39, 55, 23,
(43, 44, 42, 46, 38, 54, 22, {44, 43, 41, 45, 37, 53, 21,
{45, 46, 48, 44, 36, 52, 20, {46, 45, 47, 43, 35, 51, 19,
{47, 48, 46, 42, 34, 50, 18, {48, 47, 45, 41, 33, 49, 13,
{49, 50, 52, 56, 64, 48, 18, {50, 49, 51, 55, 63, 47, 13,
{51, 52, 50, 54, 62, 46, 14, {52, 51, 49, 53, 61, 45, 13,
{53, 54, 56, 52, 60, 44, 13, {54, 53, 55, 51, 59, 43, 13,
{55, 56, 54, 50, 58, 42, 10, {56, 55, 53, 49, 57, 41, 9,
(57, 58, 60, 64, 56, 40, §, {58, 57, 59, 63, 55, 39, 3, {59, 60, 58, 62, 54, 38, §,
{60, 59, 57, 61, 53, 37, 3, {61, 62, 64, 60, 52, 36, 4, {62, 61, 63, 59, 51, 35, 3,
{63, 64, 62, 58, 50, 34, 2, {64, 63, 61, 57, 49, 33, 1}

Uni on[Fl atten[subsets]] == Range[64]

True

To cast this as a standard knapsack problem we first transform our set of subsets into a "bit vector"
tation; each subset is represented by a positional list of zeros and ones. We will show the first such |

densevec[spvec_, len_] :=Mdul e[{vec = Tabl e[0, {l en}]},
Do[vec[[spvec[[j 1111 =1, {j., Length[spvec]}];
vec]
mat = Map [densevec [#, 64] &, subsets];
mat [[1]]
(,1,0100010000000 10000,
o, o0 o060000000010000,0000 0,0,
0, 0000000000000 00000 001}
To form a knapsack problem, the idea is to add component-wise as few bitvectors as possible, suk

constraint that each component sum be greater than zero (indicating we have "covered" that pos
remark that this example is in a sense harder than might otherwise be the case due to the presence
ties. This also provides a clue that it might be wise to employ discrete optimization methods. We thi
as such and use tMathematicafunctionNM ni ni ze in order to solve it.

11

spanni ngSets[set_, iter_, sp_, seed_, cp_: .53 :=
Modul e[{vars, rnges, max= Length[set], nmn, val s},
vars = Array [xX, max]; rnges = Map[(0 <# < 1) & vars];
{nmin, val s} = NM ni m ze[{Appl y [Pl us, vars], Joi n[rnges,
{El ement [vars, Integers]}, Thread[vars. set > Table[1l, {max}]1]1},
vars, Maxlterations-»iter, Method- {Differential Evol ution,
CrossProbability -» cp, SearchPoi nts -» sp, RandonSeed - seed}];
val s =vars /. val s;
{nm n, val s}]
{m n, sets} =spanni ngSets[mat, 2000, 100, O, .9

{12., (0, 0, 1, 0, 0, 1, 0, 0, O, 0, O, O, O, 0, O, 1, O, O, O, O,

1, 0,0,0 1,0, 0,0, 0,100,000 0,010,0,0,0,1,

o, o06o08¢0610008601001,0000000 0 1}
Information regardind\M ni m ze and in particular the selection and setting of its various options, n
found in advanced documentation fdathematica or in [Champion 2002]. The fascinating engine be
the optimizer utilized in the example above is described in [Price and Storn 1997]. While it is p
intended for continuous optimization, one lesson we learn here is that applications of evolutionary
can themselves evolve. Several related discrete optimization examples are attacked using this fu
in [Lichtblau 2002b] where further mention is made of option settingsiNbni ni ze appropriate for suc
problems. In that article we also show a very different way to approach this particular examp
NM ni m ze.

8. In search of those elusive Keith numbers

Keith numbers are defined as follows. Suppose we are given a nswhbedigits (we work in basé0, but
these can be defined with respect to arbitrary bases). Form a sequence in Fibonacci style as follow

n elements are the digits themselves. Tie 1)™ element is the sum of the fimstdigits. Subsequent el
ments are the sums of the precedinglements. Then s is called a Keith number (for Mike Keith, whc
discussed these), if it appears in this sequence. For example, the sequencE7fois

{1, 9, 7,17, 33, 57, 107, 197, } and so 197 is a Keith number. Keith originally referred to these asr
its, for "replicating Fibonacci digits".

Keith numbers tend to be quite rare (there are @flpf them belowl0'®), and known methods for findi
them, while flawless (in the sense that they find all of them), are limited in range due to algorithmic ¢
ity and memory requirements. At the time the present work was begun the state of the art, from [Kel
was that all such numbers up 18 digits had been found but no larger ones were known. We will re
that situation.

We begin with some background remarks on the nature of two methods on which we have relied
One, lattice reduction, can be used to find small integer solutions to diophantine linear proble
particularly useful for finding small null vectors to a given homogeneous integer equation. The ot
differential evolution, can frequently enforce "reasonable” linear inequality constraints if provided wi
that is not too far from satisfying the constraints, especially when that input contains small compor
the constraints are directly influenced by (integer) perturbations in the optimization variables. Both
in a sense form new vectors from old by their respective means of recombination. The fact that or
find small things, and the other can more readily impose constraints on sets comprised of small
well as the fact that we discuss them together in this section), suggests that it might be profitable
two methods in tandem. That is exactly what we will do.

To begin we must find equations to describe these things. If the digitdade, ..., d,_1} then the numb:

is Z?;é d 10™%1. Meanwhile we form the sequence using a Fibonacci matrix of dimensihis is simpl

a matrix that, when operating on a vector, replaces each element up to the last by its successor, a
0100

01
the last by the sum of the elements. Fer2 this is simply{) For, sayn=4, itis 0010
11 0001
1111

12

If we multiply this matrix by itselk — 1 times then the dot product of the bottom row with the digit seq
will give the (n+ k™ term in the sequence. Some simple inequality considerations will give fairl
bounds on how many such multiples can possibly work for a given number of digife will use eac

possibility to form a homogeneous linear diophantine equation (that is, the sum will be zero). For ef
in the actual code we take advantage of the structure of the matrix to avoid forming explicit matrix pr

kei t hEquations[len_Integer /; len>0]: =

Modul e[{matrow, n, |ist, res, vecs,
res =list[];
Do [

matrow[j] = Tabl e[KroneckerDeltafk, j +11, {k, len}], {j, len-1}1];
matrow[l en] = Tabl e[1, {len}];

n=1Ien;

VWil e[9 *Appl y[Plus, matrow[n]] < 10" (len-1), n++;

mat row[n] = Sum[nmatrow[k], {k, n-len, n-1}71; 1;

Wil e[First [matrow[n]] <10~ (len-1), res =1ist[res, matrow[n]];
n++,

matrow[n] = Sum[matrow[k], {k, n-len, n-1}1;1;

vecs = Appl y[List, Flatten[res, Infinity, list]];

Map[(#-10"Range[len-1, 0, -1]) & vecs]]

Next we need to solve such systems. This is really just an integer null space computation. For co
we strip down code from [Lichtblau 2003b].

i ntegerNul | Space[vec: {_Integer ..}]:=Mdul e[{mt, hnf},
mat = Transpose[Joi n[{vec}, ldentityMatrix[Length[vec]]]];
hnf = Last [Devel oper‘ Her mi t eNor mal For m[nat]17;

Latti ceReduce[Map[Drop[#, 11 & Drop[hnf, 1]]]
1

We demonstrate with a short example. We start by obtaining the set of candidate equation veécthgst
examples.

k5 = kei t hEquati ons [5];
We find the small null vectors for one of these candidates.
null s[5, 2] =integerNul |l Space[k5[[4]]]

{({-3, -1, -3, -3, -1}, {-2, -4, -3, 3, -3},
{1, 6, -5, 6, -2}, {7, -3, -15, 5, 26}}
Notice that for any solution vector, its negative is also a solution vector. Thus we s@&3Bais a Keitt
number of five digits. That was not too difficult. We now look at examplesdligits.

k6 = kei t hEquati ons[6];

We find the small null vectors for one of these candidates.
nul Il s[6, 2] =integerNul |l Space[k6[[2]]]

({0, 3, -3, 0, 4, 0}, {-1, 1, -3, -2, -4, -4},
{0, -6, -3, 1, 0, -2}, {0, -1, 1, 5, 0, -6}, {0, 4, -12, 15, -12, 9}}

We arrive at a set of small null vectors, none of which have entirely nonnegative or entirely nor
values (with the first being nonzero, in order that they give a legitimate six digit number). It turns
this will be the case for all possible equations giverk®iyWe now need a way to recombine these sc
the first component is positive and the rest are nonnegative. This job can be tackled by differential
with integer variables. The idea is quite simple. For each null vector we create an integer—valued
We allow arbitrary linear combinations of these vectors subject to the constraints that all resulting
nents be nonnegative, and the first be positive. Since this is a constraint satisfaction problem we
use a constant objective function or else use some function that would have the effect of imposing
on combinations that violate the constraints. AsNkEeni mi ze constraint handler already do this, we
opt for the former (actually, since the zero vector is close to satisfying the constraints, one shoul
add emphasis to the constraint that the first value is nonzero). The code for this is below.

13

keithSolution[nulls_, iters : Automaticq : =
Modul e[{l en = Length[nul I s], vars, X, vec,
constraints, program, mn, valg, vars = Array[x, |len];
vec =vars.nulls;
constraints =Joi n[{El enent [vars, |Integers], 1 <First[vec] <9},
Map[0 < # <9 & Rest[vec]]];
program= {1, constraints};
{mn, val s} = NM ni m ze[program, vars, Maxlterations-iters];
vec /. val s]

keithSol ution[nul I s[6, 2]]

{1, 4, 7,6, 4,0}

We note from [Keith 1998] th&t47 64(is in fact in the list. Now we will try for something more ambitic
As there are no known Keith numbers26fdigits, we will attempt to find one.

k20 = kei t hEquati ons [207];
nul | s[20, 3] =integerNul | Space[k20[[3]111];
Ti m ng[kei thSol ution[nulls[20, 3], 200]]

— NMnimze::incst: NMninmze was unable to generate
any initial points satisfying the inequality constraints
{-2 Round [x$1808[2]] + Round [x$1808[3]] + 3 Round [x$1808[4]] + 2 Round [x$1808 [
5]] + <<4> + Round [x$1808[10]] - 2 Round [x$1808[11]] - 4 Round [x$1808 |
12]] + <5> <0, <«<10=}. The initial region specified
may not contain any feasible points. Changing the initial region
or specifying explicit initial points may provide a better solution.

(46.29 Second, (2, 7, 8, 4, 7, 6,5, 2,5 7, 7,9 0,5 7,9, 3, 4 1, 3})

We have found the first known example of a 20 digit Keith number (hooray for us!). It is, moreover,
pandigital example (that is, containing all 10 digits). The warning message tells us, not surprisir
none of the initial combinations satisfied the constraints. Letting differential evolution work its mag
the course 020C generations sufficed to overcome that defect.

We check that this is in fact a Keith nhumber. The code below will bracket the original value with
value in the sequence that is strictly less, and its successor. We have a Keith number if and o
successor is the original value. We code this to take a list of digits as input.

frlist_1:=Append[Rest[list], Apply[Plus, list]]
knumsuns [list_]:=Wth[{val =FronDigits[list]},
Take [Nest Whil e[f, |ist, Last[#] <val &, -2]]
knum[l'i st _] : = Last [knunmsunms [l ist]] === FronDigits[list]
knum[{2, 7, 8, 4, 7, 6, 5, 2, 5,7, 7,9,0,5,7,9, 3, 4,1, 8

True

Utilizing a clever search algorithm that relies on large tables, Mike Keith found all examples up to :
using about 500 hours of computation time with hardware of mid-to—late 1990’s vintage. To be
comparison, the method we show above is by no means guaranteed to work. It just happens to do
and in the example above required no tuning beyond settinigkthiet er at i ons (though possibly oth
option tuning would make it more effective). But clearly it is much faster than the direct search ar
means requires much memory.

A tentative conclusion is that for some types of knapsack problem, the tandem of lattice and opt
tools can be quite powerful. Actually the scenario is not quite so nice. It turns out that the method ¢
fairly lucky with the example we did. With substantial work one can get another such set of 2!
{1, 2,7,6,3,3,1,4,47,9, 4,6, 1, 3, 8, 4, 2, 4. This uses the second rather than third o
candidate equations. So we can regard this approach as something that will sometimes work, pe
substantial tuning, and more importantly it provides evidence to the effect that lattice reduction ir
with integer programming methods can be a powerful combination for attacking knapsack problems.

Even alone, lattice methods can find sporadic large Keith numbers. For example, in the code |
borrow a method from [Schnorr and Euchner 1991] to improve our chances of getting a valid result
lattice reduction step. The idea is to augment each null vector with a zero, and augment the lattice \

14

consisting of some nonzero value (typically one) in the new column of zero%,arm‘ywhere else. Thus
there is a valid solution then in this augmented lattice contains the vector consisting of that nonzera
its negative) and the remaining entries in the r#ngge g} As this would be a fairly "small" vector, one

hope that it will appear in the reduced basis (this is essentially the idea used by Schnorr and Euc
binary setting, to raise the density at which one can hope to solve subset sum problems). In practic
few Keith numbers this way, as well as a larger number of near misses.

i ntegerNul | Space2[origvec : {_Integer ..}]:=
Modul e[{vec, mat, hnf, red, vecs, m, vec =ori gvec;
mat = Transpose[Joi n[{vec}, ldentityMatrix[Length[vec]]]];
hnf = Drop[Last [Devel oper‘ Herm t eNor mal Form[mat 1], 11;
vec = Table[-9 /2, {Length[vec] +1}];
vec[[1]] = 1;
hnf = Latti ceReduce[hnf];
hnf = Prepend[hnf, vec];
red = Latti ceReduce [hnf];

vecs = Cases[red, {1|-1, __ }1;
vecs = Map[Rest [#/ Sign[First [#]]] & vecs];
vecs +9/2

1
Using this code we found the following digit lists for Keith numbers.

{r, 6,5, 7,2 3,0,8, 8, 2 2,5 9,5,4,8,7 2,3 5 9, 3}

{2, 6, 8, 4, 2,9,09, 4,4, 2, 2,6, 3, 7,1, 1, 2,5, 2,3, 3, 3, 7}

{2, 2,9, 1, 4,6, 4,1, 3, 1, 3, 6, 5 8,5, 5,5,8, 46,1, 2 2 7}

{1, 8, 3, 5, 4, 9,7, 2,5,8,5,2, 2,5,3,5,8, 06,7, 7,1, 8 2,6, 6}

of 22, 23, 24, and 26 digits respectively. The last is again pandigital.

As a side remark, one might well wonder what is the probability that a numibeligifs is pandigital. th
code below will compute it via recursion.

pin_, 11 = (1/710)~ (n-1);

p[10, 10] = 10! /10~ 10;
pIn_, j_1/;j >n=0;
pin_, j_1/;] s10:=

pin, jl1=(/10) *xp[n-1, j1+(10-j +1) /10xp[n-1, j -1]
It turns out that foR0 or 26 digits the probabilities are abaeit % and48 % respectively.
N[{p[20, 101, p[26, 10]1}]
{0.214737, 0.478985}

9. Set covering via branch—-and-bound

The method we showed above for handling the set cover uses a heuristic sort of integer programn
on theDi ff erenti al Evol uti on method ofNM ni mi ze. While this is useful, it would be nice to hi
the capability to search for solutions in a way that is more exhaustive and guaranteed to find at lea
exists. This can be attained by the "branch—-and-bound" method of implicitly enumerating througt
strained linear problem. The method is discussed in [Schrijver 1986]. We give a brief synopsis below

The idea is to solve what are termed relaxations of the problem wherein integrality is not enfo
inequality constraints are in use. For any solution one looks for noninteger parts. If all are integer the
is fine. Otherwise one takes, say, the first coordinate that is not an integer and spawns a pair of r
lems, one constraining the corresponding variable to be less or equal to the floor of the value in the
and the other constraining it to be greater or equal to the ceiling of that value. This is the "branch
"bounding” part comes once we obtain solutions that are integer valued. We evaluate the objectivi
and now can ignore all spawned relaxed problems for which the evaluation of the objective ful
greater, as these can only get worse when integrality is enforced. Note that this approach is also
what are referred to as mixed problems, wherein some but not all variables may be constrained 1
integer values. One simply branches only on those so constrained.

15

The code below is tailored for the set partition problem previously discussed. We keep a count
number of times we actually solve a linear programming problem. For simplicity wsMige ni ze bul
one might avoid preprocessing and thus obtain greater speed by setting up a direct
Li near Progr ammi ng. Also we provide for the possibility that one might know in advance rough
minimum value, and hence more quickly discard subproblems (and candidate solutions) that will e
turn out to be suboptimal. We also set up the code in such a way as to stop once we have foun
number of solutions beneath the given bound. Even without this it is quite possible that the code a
miss some solutions (though it is not too hand to alter in such a way as to find all possible solutions
will find many, and perhaps most.

set Cover [vecs_, startmin_: O, maxsols_: Infinity:=
Modul e[{l en = Lengt h[vecs], x, vars, cl1, c2, program, mn, vals, stack
counter =0, tnp, solns={}, nylist, obj, constraints, nunsol s=0},
mn=I|f[startmin==0, Length[vecs], startm n];
vars = Array [X, | en];
cl = Joi n[Map [G eat er Equal [#, 0] & vars],
Map [LessEqual [#, 1] &, vars]l];
c2 = Map[G eat er Equal [#, 1] & Apply[Plus, vars=*vecs]];
obj = Apply [Pl us, vars];
program= {obj, Join[cl, c2], m n};
stack = {program, {}};
Wi | e[stack =!= {},
program= First [stack]; stack = Last [stack];
I f [Last [program] > nin, Continue[]];
counter ++; program= Drop[program, -17;
I nternal ‘ Deacti vat eMessages [
soln = NM ni m ze[program, vars], NM nim ze::"nsol "];
If[!FreeQ[soln, Indeterm nate], Continue[]];
{tmp, soln} =soln; If[tnmp >nin, Continue[]];
sol n = Chop[vars /. sol n];
badpos = Posi tion[sol n,
(a_/; Chop[a-Round[a]] =!=0), {1}, 1, Heads - Fal se];
| f [badpos == {},
If[tnmp <min, solns={}; min=tnp; nunsol s =0];
nunsol s ++; solns = {Apply[nylist, soln], solns};
I f [startmin # 0&&nunsol s == maxsol s, Break[]];

Badpos = badpos[[1, 1]]; constraints = Last [program];
stack =
{{obj , Append[constraints, vars[[badpos]] = 0], tnp}, stack};
stack = {{obj, Append[constraints, vars[[badpos]] == 1], tnp},
stack}; 15 1;
{nunsol s, counter, Flattensolns, Infinity] /. nylist - List}]

We use this to find several solution to the set covering problem in question. We will use the knowle
solutions have length2 in order to gain a speed advantage.

16

Ti m ng[Round [set Cover [mat, 12.1, 10]]]

{156. 11 Second,

{10, 166, {{1, 1, 0, 0, 0, 0, 0, 0, O, O, 1, O, O, O, O, O, O, O, O, 1,
0,o0¢610¢000¢001¢00000110 000,
0, 0¢o0690401001200010000 10000},
{4, 1, 0,0 0,0 0000100000000 10,HQ0,
0,1¢000100000601000 10000,
0,o08¢61,00000601100000000 0 1}
{4, 1,0, 0 0 000001000000 0100,HQ0,
1, 006001600060 00001100000,
0, 0608901000120 00¢01000000 10},
{4, 1,00 00 000010000000 100,HQ0,
0,1¢0016000000600100001,1,0,
0, 0600006000120 00000010 010},
{4, 1,00 0,0 0000601000010 0000,HQ0,
1, 0060016000600010000100HO0,
o, 1,1,0006000000120000 10 00 0},
{4, 1,00 0,0 000010000100 100,HQ0,
0,o0¢0600100000600100101,1,0,
0, 06000060010 0000000 1000 0},
{4, 1,000006010010000000010HQ0,
0,o0¢009016000000600100001,1,0,
0,o08¢061,000010000001 0000 0},
{4, 1,00 0001001000000 0010HQ0,
1, 00600060006000101100000,
0, 0608901000120 01200000 000 0},
{4, 1,010 000006010000000000,HnQ0,
0,1¢0016000000600000010 00,
0 1,1,1608¢0000000¢01001 0000 0},
{4, 1,010 0000010000000 100HnQ0,
0,1¢000¢000¢000¢00011100 000,
0, o08¢01,00100001200000000}}}

One will observe that the speed for this problem is quite reasonable. This is due in large part to the
bounding relaxed problems, so we can avoid many of them. It takes about eight hours on the sam
to find all solutions (there aE87t in total), and oveB0 00(linear subproblems are solved in the effort.

Note that our use of a stack is naive in the case where we do not know in advance a good upper bc
objective function. One can attempt to make faster initial progress with a priority queue (also knoy
ordered heap) [Aho, Hopcroft, and Ullman 1974]. The idea is to inspect subproblem relaxations or
objective function values, hence looking earlier at more promising candidates. A dWafiiematici
implementation of this data structure, along with some applications, is discussed in [Lichtblau
Another reason to proceed by objective function values is to rule out more quickly any possibility
tions of low values. For example, our problem above has a lower bound for the relaxation of st
underll This means the problem with integer constraints might have a solution dfisizarly exploratio
of relaxations with lower objective function values will tend to show relatively soon that the actual s
must have siz&2 or larger. If we do not do this then generally we must try more possibilities before
rule out smaller solution sets.

We should point out that a variety of related problems of modest size can be handled in an essentic
manner. For example, the travelling salesman problem cities, and variants thereof, may be set up

0 -1 problem with variables; for each paitj, k} of cities. We interprek; = 1to mean there is a dire
path in the tour from city to city k. One has the obvious restrictions that

17

Xjj=0foralll<j<n
O<xjk=1foralll<{j, ki<n

n
ij'k =1foralll<j<n
j=1

n
ij,k =1foralll<k<n
k=1

These, coupled with the -1 integrality condition, force any solution to be a permutation of the cities
one path leads into each city and another leads out). They do not impose that it be a tour, so suct
might in fact have nontrivial cycles. The tour condition may be enforced in various ways. One is to r
branching condition. That is, for any integer solution we check for cycles and, if present, add new c
and spawn subproblems accordingly. A simpler approach is given in [Dantzig 1963, 26-3] and
attributed to A. W. Tucker. Fa2 < j <n we add variables; and constraintsi; — ux +nxjx <n—1 for all

pairsl<{j, k} =n. It can be shown that this suffices to enforce that all solutions be tours, and more
no actual tours are excluded from consideration.

Again, one can improve the method we indicate using heuristics to speed the process such as sta
known value near the minimum (to make pruning faster). That said, for combinatorial problems inq

entities we hav@(nz) variables and a comparable number of constraints. Beyond modest size one i

ally better off applying heuristic (or, in some cases, deterministic) methods dedicated to comt
optimization.

10. A logic puzzle withO —1 inequality constraints

This next example illustrates a type of popular logic puzzle often found in supermarket and airport
tions. This one is called "Dinner on the run" [Hannagan 2004]; | cribbed it from my son’s puzzle m
A description of the problem is as follows. Five men order five sandwiches from Max’s Deli, such tt
has a distinct fillings, toppings, spreads, and breads. Further clues are as below, and we are to

components of each person’s sandwich. We follow customary rules of interpretation of such puz
"Neither the sandwich with cheese nor the one with mayo was on white bread" means, among ott
that the cheese and mayo sandwiches are themselves distinct.

(1) One filling is salami. One topping is tomatoes. One spread is butter. One bread is pumpernick
placed the order.

(2) Regardless of order, Max refuses to put mustard or ketchup on tuna salad, or onions on turkey.
(3) Tim does not like onions.

(4) The roast beef was not on rye, and did not contain pickles.

(5) The tuna salad was not on seven—grain bread.

(6) Neither tuna salad nor sandwhich with lettuce was spread with mayo.

(7) The turkey, which was on whole wheat, did not have mustard.

(8) The sandwich with lettuce did not have mustard.

(9) Neither Nick nor the person requesting ketchup and onions used white bread.
(10) The ham sandwich had neither pickes nor onions.

(11) The sandwich with pickles did not have mayo.

(12) Jim did not order relish.

(13) The sandwich with lettuce did not have relish.

(14) The sandwich with cheese did not have mustard. Moreover it did not go to Tim.
(15) Neither the sandwich with cheese nor the one with mayo was on white bread.
(16) Elmer does not eat rye bread.

(17) Tim did not order his with whole wheat bread.

(18) The sandwich with whole wheat did not have mayo.

(19) Nick did not order tuna salad.

(20) Jim did not order seven—grain bread.

(21) Neither Jim nor Nick used lettuce.

18

We first use the information just to figure out the five items in each of five categories. The men ar
Jim, Nick, Tim, and Elmer. The fillings are salami, tuna salad, turkey, ham, and roast beef. The top
tomatoes, lettuce, onions, cheese, and pickles. The spreads are butter, ketchup, mustard, mayo,
The breads are pumpernickel, seven—grain, white, rye, and wheat. Note that this preprocessing
itself a bit of a challenge. (Is relish a topping or spread? Is cheese a filling or topping?)

As there are a scarfi!)* possibilities we could, with some work, do a brute force search. A better ag
would be the enumerate—and—-prune method used in [Trott 1999]. But we will use a constraint sa
approach via linear programming as we believe it is instructive to demonstrate handling of inequatio
setting.

Conceptually, we arbitrarily number the mErank=1, ..., EImer=5. We create variables for each of
categories: filling, top, spread, and bread. For each such variable we create subvariables, one pe
number. These must be zero or one and sum to one. For example, we will have the equation

5
> mayofj]=1
j-1

Moreover we have transposes of the above type of equation. That is, we know the sum of all subva
a particular sandwich and category must be also be one. For example, we have

mayo[l] +ketchup[1l] +nustard[l] +relish[l] +butter[1l] =1
We furthermore have equations relating the basic variables to their corresponding subvariables, sucl

mayo = mayo[l] +2mayo[2] +3mayo[3] +4mayo[4] +5mayo[5]

For efficiency we only work with the knapsack variables, using tactics equivalent to these above eq
the end to put the solution into a reasonable form.

Finally we have all the inequations and the handful of equations implied by the 21 rules above. -
handle as follows. From rule 7, say, we know that key = wheat . This means we equate all the co
sponding subvariables. From rule 11 we know thiatkl es # mayo. Some reflection shows that t
equivalent to the set of subvariable inequalitiesyo[j] + pi ckles[j] <1 for 1<j<5 When w

equate a pair of items, e.g. turkey and wheat, we realize that by equating each pair of their five su
we can remove one. Similarly observe that, for example, Jim did not take lettuce, so we have an ec
the variable representing lettuce used by Jim (it is zero). Again we can remove it from further cons
after we use it to simplify whatever constraints contained that variable. Use of such equations as
remove variables and constraints tends to make the computation much faster. In this case it ga
improvement by a factor of 10.

The code below will quit after finding one valid solution. We are trusting that the author used &
conditions to ensure that a solution exists and is unique (which is in fact the case). As in previous
we see that it is not hard to modify the code to allow for other possibilities.

findSandw ches[] : =
Modul e[{consuners, fills, tops, spreads, breads, frank, jim nick, tin

el mer, salam , tuna, turkey, ham roastbeef, tomatoes, |ettuce,

oni ons, cheese, pickles, butter, ketchup, nustard, nayo, relish,
punper ni ckel , sevengrain, white, rye, wheat, fillvars, topvars,
spreadvars, breadvars, varlists, allOlvars, pv, prodvars,
constraintsl, constraints2, constraints3, constrai nts4,
constraints, vars, program, stack, soln, soln0l1, badpos,

counter =0, eps = 10" (-6), nanes, suffix, partsoln, psvarg,

consuners = {frank, jim, nick, tim el ner;

fills = {sal am , tuna, turkey, ham roast beef};

tops = {tomatoes, | ettuce, oni ons, cheese, pickle};
spreads = {butter, ketchup, nustard, nmayo, relish;
breads = {punperni ckel , sevengrain, white, rye, whea};

fillvars = Quter [#1[#2] & fills, consuners];

topvars = Quter [#1[#2] & tops, consuners];
spreadvars = Quter [#1[#2] & spreads, consuners];

19

breadvars = Qut er [&1[1&2]-&, br eads, consuner sj;)
varlists = {fillvars, topvars, spreadvars, breadvar$;
all Olvars = Flatten[varlists];

constraintsl =Map[0 <#<1&, allOlvars];
constraints2 = Map[Appl y [Pl us, #] =1 &,
{fillvars, topvars, spreadvars, breadvar$, {2}];
constrai nts3 = Map[Appl y [Pl us, #] =1 &,
Map [Transpose, {fillvars, topvars, spreadvars, breadvar$], {2}1;

ineq[vl_, v2_, v3_ 1 :={ineq[vl, v2], ineq[vl, v3], ineq[v2, v3]};
ineq[vl_, v2_]:=Map[vl[#] +Vv2[#] <1 & consuners];
eq[vl_, v2_]:=Map[vl[#] == V2[#] & consuners];

constraints4 =
{i neqg[nustard, tuna], i neq[ketchup, tuna], i neq[oni ons, turkey],
i neq[roast beef , rye], i neq[roastbeef , pickles],
neq[tuna, sevengrain], i neq[tuna, |ettuce, mayq],
neq[turkey, nmustard], i neq[rmustard, |ettuce],
neq[ket chup, white], i neq[ham pickles], i neq[ham, oni ons],
neq[pi ckl es, mayo], i neq[l ettuce, relish], i neq[cheese, nustard],
neq[cheese, mayo, white], i neq[mayo, wheat]};

constraints =Flatten[
Join[constraintsl, constraints2, constrai nts3, constraintsy];

partsoln =Fl atten[{eq[turkey, wheat], eq[ketchup, onions],
onions[tim] == 0, rye[el ner] =0, wheat [tim] == 0, white[ni ck] =0,
onions[nick] =0, relish[jim] ==0, cheese[tim] =0, tunaf[ni ck] == 0,
sevengrain[jim] =0, lettuce[jim] ==0, |ettuce[nick] =0}1];

psvars = Map[First, partsolnj;

partsol n = partsoln /. Equal » Rul e;

constraints =constraints //. partsoln /.
{True -» Sequence[], ((aa_ /; Head[aa] =!=Plus) < 1) -» Sequence[]};
al | Olvars = Conpl enent [al | Olvars, psvars];

programs=constraints;
stack = {program, {}};

Wi l e[stack =t= {},

counter ++; program=stack[[1]]; stack =stack[[2]];
I nternal ‘ Deacti vat eMessages [

soln =NMninmze[{1, progran}, allOlvars]];
If[!FreeQ[soln, Indeterm nate], Continue[]];
soln = Chop[soln[[2]], eps];
sol n01 = al | Olvars /. sol n;
badpos = Position[sol n01,

(aa_ /; Chopl[aa-Round[aa], eps] =!=0), {1}, 1, Heads - Fal se];

| f [badpos == {},

partsol n = partsoln /. sol n;

sol n = Joi n[sol n, partsol n];

soln=Split[Sort [(soln /. aa_?Nunber Q:» Round[aa]) /.

{Hol dPattern[_ - 0] :» Sequence[], Hol dPattern[hh_[bb_] -» 1] =
bb == hh, Hol dPattern[Rul e[_, bb_ /; Not [Nunber Q[bb]]1]] =
Sequence[1}], ®#1[[1]] ===#2[[1]] &];

names = Map[#[[1, 1]] & sol n];
sol n = MapThr ead [Prepend, {soln /. aa_ == bb_ = bb, nanmes}];
soln=Mp[ToString, soln, {2}];
suffix =soln[[1, 1]1;
suffix =

StringDrop[suffix, StringPosition[suffix, "$"1[[1, 111 -17;
soln =Map[StringRepl ace[#, suffix->""1 &, soln, {2}1;
Break[],
badpos = badpos[[1, 1]1];
stack = {Append[program, all Olvarsflbadpos1l =01, stack};

20

stack = {Append[program, al | Olvars[[badpos]] == 1], stack};
1

I

{counter, soln}

1

Set Opti ons [Li near Programi ng , Met hod- I nteri or Point];
Ti m ng[orders =findSandw ches[]]

{0. 95606 Second,
{33, {{elmer, butter, lettuce, turkey, wheat }, {frank, cheese, relish,
rye, tuna}, {jim ketchup, onions, punpernickel, roastbeef},
{ni ck, ham mayo, sevengrain, tomatoes},
{tim nustard, pickles, salam, white}}}}

11. Keith numbers via branch—-and—cut

One might wonder whether this branching method using relaxed linear problems might be help in -
number problem. In that case we deal with simple constraint satisfaction and there is no objective
per se; hence the bounding aspect is not of use. A first attempt similar to the code above took tr
effort to handle evel digits. The problem is that the variables can take on fractional values in we
combine to make most but not all of the constraints integer valued. Branching on the vector (that is,
values is thus a slow process because this persists even after many such constraints have been adc

What turns out to work well is to branch on the variables themselves. We know that solutions ar
they are integer valued. Forcing them away from fractional values tends to take us to actual solu
fairly efficient manner. A bare—bones implementation revealed that this works reasonably well althc
surprisingly, it exhibits exponential behavior. Specifically it takes approximately twice as long fc
increase by one digit. The output reveals that the number of subproblems for which a relaxation w
is small compared to the total size of the search space.

This method is quite similar to one employed in [Aardal and Lenstra 2002] for solving an ILP know
Frobenius instance problem. Their work has a simple but important refinement. In the setting of a t
algorithm it is as follows. We order the null vectors by decreasing norm and branch on the first one
tered with noninteger coefficient. The idea, roughly, is that this tends to move us more quickly thr
polytope corresponding to the relaxed LP, by forcing us first to take directions in which that pol
thinner. (More technically, the polytope is likely to intersect fewer hyperplanes orthogonal to larger ¢
vectors and spaced by integral multiples of those vectors.) For difficult Frobenius instance probl
lattice vector will be significantly larger than the rest and this reordering is crucial. For finding Keitt
bers typically the vector lengths in the lattice spans a factor of two or so. In such cases we do not se
dous improvement but experiments indicate the advantage may be as much as a factor of two or mc

The picture below may give some idea of why this vector norm based branching is a good idea. 1
directions{b,, b,} can cause us to wander in the triangle (imagine it to be longer but not wider), whe
can quickly learn that not many integer multiples of the good directiafwhich comes from the latti
reduction of{by, b,}) will stay inside it.

21

15¢

10}

by

c2 5 10 15 20

Among other possible ways to improve speed we mention the following.

e UselLi near Progr anmi ng directly (as mentioned earlier for set covering). Possibly this should bt
with nondefault option settings.

e Use the dual simplex method on the relaxed problems after adding new constraints. It can be sts
previous LP solution and hence might be expected to finish faster than an LP begun from scratch.

e Use other methods to spawn more subproblem constraints. This might be done, say, with cultti
(see [Schrijver 1986]). For example we can use relaxations to find minimal and maximal value
separate variables and then enforce integrality. That is, we take ceilings and floors to obtain what
tighter constraints. This in turn may yield new restictions so iterating the process can give bound:
tighter still.

e Use some basis vectors framt eger Nul | Space2 as they are often very close to solutions to the
constrained problem (as we saw, in a few cases they even are solutions). We would not want to ¥
dependencies as dimensional components of null vectors tend to make the branching difficult. So
need to augment these with vectors produced rityeger Nul | Space in such a way as to generate
same lattice. One could check the Hermite normal form to see that this has been done correctly
preliminary experiments we obtained a factor of two or so improvement in speed by using a solutior
constructed.

The idea of utilizing cutting planes has appeal in part because we do not have a specific function to
This being the case, we are free to utilize any linear function of the variables. For example,we «
values of those variables or their negatives, or small integer combinations of them. For each minit
obtained for such an objective function we might then add a constraint that in future the actual va
less than its ceiling. We show below a version that works reasonably well. It does several rounds
cuts for all variables and then makes subsequent cuts based on extremal values of randomly chose
We note that, as cutting methods go, this one is naive. So one might hope for substantial impro.
more detailed analysis of the inequalities.

We also make small modification so that once a solution is found, further branching will be done a
until all solutions have been obtained. In this way we can generate all solutions for such numl|
specified size.

22

kei thSol utions[onulls_]: =
Modul e[{nul I's, vars, x, len=Length[onulls], vecs, constraints, program,

stack, soln, solns={}, badvar, varvals, val, counter=1, var, extra,

1
maxs, mns, ctnp={}, bad=Fal se, vhum, vval, eps= — rndvar},
10
nul | s = Reverse[onul | s[Orderi ng[Norm/@N[onul | s]11]1;
vars =Array[x, |l en]; vecs =vars.nulls;
constraints =Join[{l1<First[vecs] <9}, (0<#l<98&) /@Rest [vecs]];
Do[mi ns = Tabl e[l nternal ‘ Deacti vat eMessages [
val =NM ni m ze[{vars[j], Join[constraints, ctnp]}, vars];
| f [Head[val] ===NM ni m ze || ! FreeQ[val , | ndeterni nate], bad = True;
Break[]]; val =First [val], NMnim ze::"nsol "1, {j, len}];
maxs = Tabl e[l nt ernal * Deact i vat eMessages [
val = NMvaxi mi ze[{vars[j 1, Join[constraints, ctnp]}, vars];
| f [Head[val] === NMaxi m ze || ! FreeQ[val , | ndeterm nate], bad = True;
Break[]]; val =First [val], NVaximize::"nsol "], {j, len}]; ctnp=
Join[Thread[vars < Fl oor [maxs +eps]], Thread[vars =2Ceiling[m ns -eps]]];,
{4}]; | f [bad, Return[{counter, {}}11;
constraints =Join[constraints, ctnp];
program=constraints; stack= {program, {}};
Whi |l e[stack =!= {}, counter ++; program=stack[1l]; stack =stack[2];
rndvar =var s[Random nteger [{1, | en}]1; program= {rndvar, program;
I nternal ‘ Deacti vat eMessages [val s = NM ni ni ze [program, vars],
NM nim ze::"nsol "]; | f [Head[val s] ==NM ni mi ze, Conti nue[]];
vval =Ceiling[First [val s] -eps]; val s =Chop[val s[2]];
sol n=Chop[vecs /. val s]; If[! FreeQ[sol n, |Indeterm nate], Continue[]];
constraints =programf2]; varval s =vars /. val s; badvar =
Position[varvals, a_/; Chop[a-Round[a]] =t=0, {1}, 1, Heads - Fal se];
| f [badvar = {}, sol n=Round[sol n]; sol ns = {sol n, sol ns};
Do[extra = Tabl e[vecs[k] == sol n[k], {k, j -1}1;
stack = {Joi n[constraints, Appendlextra, vecs[j] <soln[j]-1]], stack};
stack = {Joi n[constraints, Appendlextra, vecs[j] zsoln[jQ+1]], stack};,
{j, Length[soln]}]; Continuel]l];
badvar =badvar [1, 1]; var =vars([badvar]; val =var /. val s;
stack = {Join[constraints, {rndvar >vval , var <Fl oor [val]1}], stack};
stack = {Joi n[constraints, {rndvar 2vval , var 2Ceiling[val 1}], stack}; 1;

{counter, Partition[Flatten[solns], Length[First [nuIIs]]]}]

The function above returns all solutions for a candidate Keith number equation, as well as the n
linear programs that were actually solved (after the initial ones used to find cuts). We used this cor

all Keith numbers up t@3 digits. We first find the appropriate sets of integer equations along with sp
sets of solutions that do not in general satisfy the digit constraints.

Do[
keqns[j] = kei thEquati ons|j];
Do[vecs =i nteger Nul | Space[keqns[j 1[[k]]11;
nul Il s[j, k] = Reverse[vecs[[Ordering[Map[Norm, N[vecs]11111,
{k, Length(keqns[j 11}1,
{j, 2, 23}

Now we solve these. For brevity the full output will not be shown.

Ti m ng[knuns = Tabl e[Print ["digits ", jI;
Print [Tim ng[digits = Tabl e[
{j, k, First[Timing[knumist =keithSolutions[nulls[j, k1];11,
knumist}, {k, Length[kegns[j1]1}111; digits, {j, 2, 23}1]

23

Here are all the Keith numbers betwezth and 23 digits. Note that some had not been found usin
heuristic methods from the earlier section. The total run time was about four hours on a machine
twice as fast as that used for the other computations in this paper. The time spent in recovering thc
known since 1998 (up through 19 digits) was roughly a half hour. We leave it as an open problem
better type of cutting or other optimizations might lead to substantial further improvement in speed.

(1, 2, 7, 6, 3, 3, 1, 4, 4, 7, 9, 4, 6, 1, 3, 8, 4, 2, 7, 9}

(2, 7, 8, 4, 7, 6, 5, 2,5, 7, 7,9, 0,5,7,9, 3, 4 1, 3}

{4, 5, 4,1, 9, 2, 6,6, 4,1, 4 4, 9,5, 6,0, 1, 9, 0, 3}

{8, 5,5, 1,9 1, 3, 2,4 3,30 80 2, 3,9 7,9, 8 9}

{7, 6,5, 7,2 3,0, 8,8, 2, 2,5 9,5,4,28,7 2,3 5 9, 3}
{2, 6, 8, 4, 2,9,09, 4,4, 2, 2,6, 3, 7,1, 1, 2,5, 2, 3,3, 3, 7}
{3, 6,8, 9,9, 2, 7,7,5, 9, 3,8,5, 26,0 9,9 9,7, 4,0, 3}
{6, 1, 3, 3, 3, 8,5, 3, 6,0, 2,1, 2,9 81,9, 1, 8 9, 6, 6, 8}

o

A similar but substantially longer run yielded all such numbers thr@agtgits.

2, 2,9, 1, 4, 6, 4,1, 3,1, 3, 6, 5 8,5 5, 5,8, 46,1, 2 2 7}
{9, 8, 3, 8,6, 7,8 6,8, 7 9 1,5 1, 9,8 5 9,9, 2,0 0, 6, 0, 4}
{1, 8, 3, 5, 4, 9,7, 2,5, 8, 5,

2, 2,5 3,5,8,0,6,7,7, 1,8, 2, 6, 6}
{1, 9, 8, 7, 6, 2, 3, 4, 9, 2, 6, 4, 5, 7,
2,8, 8 5, 1,1, 9, 47,9, 4 5)

{9, 8 9, 3,8, 1,09 1, 2,1, 4, 2, 2, O,

7, 1, 8 0, 5,0, 3, 0, 1, 3, 1, 2}

{1, 5, 3, 6, 6, 9, 3, 5, 4, 4, 5,5, 4, 8,
2,5 6,0 9 8 7,1, 7, 8 3, 4, 2}

{1, 5, 4, 6, 7,7, 8,8, 1, 4 0,1, 0, O,

7, 7, 9,9, 9,7, 4,5, 6, 4, 3, 3, 6}

{1, 3, 3, 1, 1, 8, 4, 1, 1, 1, 7, 4, 0, 5,

9, 6,8, 8,3 9,1, 0, 4 5, 9, 5 5}

(1, 5, 4, 1, 4, 0, 2, 7, 5, 4, 2, 8, 3, 3,
9,9, 4,9 8 9 9 9, 2, 2 6,5, 0}

{2, 9, 5, 7,6, 8, 2,3, 7,3, 6,1, 2,9,

1, 7, 0, 8, 6, 4, 5, 2, 2, 7, 4, 7, 4}

{9, 5 6,6, 3, 3,7, 2, 0 4,6, 4 1, 1,

4, 5, 1, 5,8, 9 0, 3, 1, 8 4, 1, 0}

{9, 8,8, 2,4 2, 3,1, 0, 3,9, 3, 8, 6,

0, 3 9,0,0,6, 6, 9 1, 1, 4 1, 4}

9, 4,9, 3,9, 7,6, 8, 40, 3,9 0, 2, 6,
5 8, 6,85, 2 2 06,7 2, 0 0}

4, 1, 7, 9, 6, 2, 0, 5, 7, 6, 5 1, 4, 7, 4,
2, 6,9, 7, 47,04 7,9, 1, 5 2, 8}
{(r, 0, 2, 6, 7, 3, 7,5 5,1,0, 2,0, 7, 8,
8,5 2 4,2 2 1, 8,8, 3,7, 40 4

It is interesting that most of these larger ones pri@digits all have leading digit in the gdt, 2, 9. One
might well wonder if there is a deep reason for this, and whether the trend retur@$ dftgts.

This general method of computing bounded solutions by feeding a lattice-reduced set of vectors
programming code also appears in [Aardal, Hurkens, and Lenstra 2000]. They solve several prok
are demonstrably difficult for classical linear programming branching methods alone. A related pos:
to convert to a0 -1 problem by creating, for each digit, ten auxiliary variables, similar to how we hi
the sandwich problem. This would give a far larger set of Diophantine equations to solve but in r
lattice and branching steps would now work with smaller values.

The ILP refinements of [Aardal and Lenstra 2002] are motivated in large part by Frobenius instan
lems. Recent work of [Einstein, Lichtblau, Strzebonski, and Wagon 2005] indicates how it may play
the more difficult task of finding Frobenius numbers. In brief, we have ® seb,, ...,b,) of positive

integers withgcdB) =1. There is a largest integar such thatm cannot be represented as a nonneg

24

integer combination of elements Bf but every integes> m can be thusly represented. Thids called th
Frobenius number of the 8t

We finish with general remarks regarding the branching methods presented in this and preceding s
is clear that the implementations are quite similar. This is, not surprisingly, because the main idei
them are essentially the same. While one may not be terribly interested in, say, set covering, or

large Keith numbers, the important thing is that the method (along with a basic code framework)

and applies to a very large class of integer programming problems. Indeed, the entire body of code
above for finding Keith numbers is but a few dozen lines. The task of putting together the right tc
lattice reduction and linear programming) is much easier than that of building the tools themselve
still, future versions oMathematicawill automatically apply branching methods similar to those we
seen, in the functiord ndl nst ance, M ni m ze, andReduce.

12. Notes on implementations and related work

There is a large body of literature regarding attatcks on knapsacks via lattice reduction methods.
and applications to cryptosystems are discussed in [Lagarias and Odlyzko 1985], [Schnorr and
1991], [von zur Gathen and Gerhard 1999], and [Nguyen 1999]. It seems that many such cryptosys
vanquished in the 1980s and 1990s due to lattice methods. In [Schnorr 1993] there is moreover an
apply lattice methods to integer factorization and computation of discrete logarithms (which could
effect of breaking RSA-type cryptosystems). This has not yet been successful (to my knowledge!).

Computation of reduced lattices may be done in various ways. The original method of [Lenstra, Ler
Lovasz 1982] utilized rational arithmetic. It was recognized even that that integer arithmetic sufficec
exposition may be found in [Cohen 1993, chapter 2]. Efficient variations using floating point (mact
higher precision) arithmetic and integer arithmetic appear in [Schnorr and Euchner 1991] and [SI
1996] respectively. At various times in the past the defathematicamplementation has utilized appro
mate arithmetic but as of this writing it uses techniques from the latter paper. A considerable al
unpleasant experience (my own) indicates that an approximate arithmetic version can be difficul
both fast and free of bugs; other programmers/implementations may have fared better in this re
might experiment withLat ti ceReduce in Mathematicavia approximate arithmetic by using the
below.

Devel oper* Set SystenOpti ons["Latti ceReduceOptions "-
{"LatticeReduceArithnetic "-» Approxi mat eNunbers}i;

For restoration of default behavior one sets Itribeger s.

There are several methods for ILPs and knapsack problems that we did not show herein. One with
computational commutative algebra is done via Grobner bases. Matbematicademonstration notebo
(with some nontrivial examples) may be found in [Kapadia 2003].

Another example discussed in [Lichtblau 2002b] is as follows. Take the set of reciprocals of th@C
integers. Divide it into two subsets each of $gein such a way that the difference between the su
minimized (that is, they are the closest pair to half the total). Clearly this can be set up as an ap
subset sum problem; in the reference it is handled in two ways (one as a knapsack), both utifzaibeh
maticafunctionNM ni i ze as the underlying solver. It would be interesting to see a successful attac
on lattice reduction. We remark that it is effectively a high density subset problem and this alone n
trouble with lattice methods. But the real problem seems to be the presence of large null sets «
many small vectors. Possibly the tandem of lattice reduction and integer programming methods m
use? We leave this as an open problem.

As NM ni m ze uses several methods and is, in my opinion, an interesting polyalgorithm, some
about its history are in order. First, as one might notice, the example involving the coin problel
terribly exciting in and of iteself. It is included because it was the first sort of discrete optimization |
we successfully made to work at WRI using differential evolution. In 1999 | had the good fortune tc
course on nonlinear programming as a visitor in the mathematics department at the University of I
the class were two graduate students who went on to do work at Wolfram Research: Serguei Che
Brett Champion (the official spelling of the former has since changed twice and is now Sergey Shek
not venture to guess what it might be in future). Sergey spent that summer and the next as an inte
working primarily on what would becoméM ni i ze. By the end of that first summer we had the
example working using a sort of penalty method to enforce integrality. This is similar in spirit to a

25

from [Gisvold and Moe 1972]. We had the advantage that we worked with a method that made na
ment of smoothness and hence we were free to use penalties with properties better suited to pus
toward integer values.

The next summer was spent by Sergey in tuning the code, developing tests, and adding simulatec
and random search to the existing Nelder-Mead and differential evolution methods. As he wrapp
work and headed back to school, Brett obtained a degree, joined the company, and jumped (fell?)
the project. He set to work finding and fixing bugs, engaged in code refinement and robustifica
process by which solid proof-of-concept work gets transformed into actual production code)
extended the test suite, wrote substantial elementary and advanced documentation, participatec
review for the interface to the functionality, and overhauled various tactics for handling of cor
(equalities, in particular, can be troublesome). He also performed the requisite if messy deity pla
(an elaborate process whereby both major and lesser software gods are propitiated according to
the specifics involve proprietary trade secrets and in any case are not for the faint of heart).

We decided after substantial experimentation on his part that enforcing integrality could better be
plished by judicious use ¢gound in function evaluation. A year or so later we obtained a copy of |
1999] and learned that the inventors of differential evolution had had much the same experience
manner of discrete optimization (though curiously enough, 0-1 knapsack problems such as those
above often seem to be an exception in that they can behave better when integrality is enforced
ties). Moreover, in the book containing that reference some of the immediately following chapters
examples where differential evolution works well with discrete and mixed optimization problems. E
in private correspondence the inventors were mildly (albeit pleasantly) surprised that we had, witl
success, applied differential evolution to nontrivial examples that are entirely discrete and in sol
combinatorial in nature.

My own role in the development 8M ni m ze was, primarily, to offer the two basic types of advise (t
to say, wanted and unwanted). Mostly this involved the heuristics for handling various sorts of mis
examples. As for actual code, | wrote the original code foDiHd er ent i al Evol uti on method. Bre
and Sergey being a pair of fine young cannibals, | rather doubt any shred of it remains.

While linear programming code has been a paiathematicasince the early days, it was only in ver:
4.2 that code was in place that was both fast and reliable. This work was done by Yifan Hu. Since
he has worked on development of various methods such as interior point, so for some classes of
might get faster still As we now had strong linear programming we decided it should become a sf
method inNM ni mi ze, as linear problems are not infrequent. The preprocessing code ubktirhymi ze
to determine that a system is linear was written by Rob Knapp with some assistance and debuggir
Champion. While one sees in some examples above that on occasion the heuristics need to be
option settings, a nice feature is that often does its magic with little or no intervention on the part of tl

Puzzle problems of the sort we showed are often handled using an enumerate—and—prune
Another approach is via constraint satisfaction, utilizing the type of linear programming we employe
covering and Keith numbers. A distinguishing feature is that problems with mostly equality constri
readily handled in this way. For example, the infamous "Who owns the zebra" problem, which an
search indicates to be over four decades old, can be formulated as a linear CSP in terms ofO(rtk
variables. It can also be done by enumerate—and-prune, as in [Trott 1999]. The only troublesome
handling inequalities e.g. "Kools are smoked in the house next to the house where the horse is kept
are only a few such inequalities one can simply split into a disjunction of several problems and st
separately; all but one give an empty solution.

Alternatively one might use methods from nonlinear programming. For example a constraint

(Kools— horsé? = 1 can be rewritten as a quadraticGr-1 variables. But such quadratic constraints cz
turn be reformulated as linear ones (with new variables) soOthatsolutions also satisfy the origil
guadratic. One fairly common method for doing this is discussed in [Adams and Sherali 1986]. O
then work with a relaxation of the problem, imposing linearity via branching and/or cutting plane
method is quite general for quadratic knapsack problems and can even be used to factor integers
competitively with methods used in practice).

Surveying the technologies we used to attack knapsack and related problems, we fird dindato somr
extent, nonlinear programming, integer lattice normal forms and reduction, and solving systems of
ear algebraic equations. These all contain sophisticated mathematical algorithms underneath the
our purposes, however, they by and large can be taken as "black boxes" that do very useful things

26

we show above, while not in all instances trivial, is by no means strictly for experts. While the tools
are themselves complex, they may be put together in ways that are relatively simple in order to so
sack and related problems.

13. References

[Aardal, Hurkens, and Lenstra 2000] K. Aardal, C. A. J. Hurkens, and A. K. Lenstra. Solving a system
diophantine equations with lower and upper bounds on the variables. Mathematics of Operations
25:427-442, 2000.

[Aardal and Lenstra 2002] K. Aardal and A. K. Lenstra. Hard equality constrained knapsacks. Proceedings
Conference on Integer Programming and Combinatorial Optimization (IPCO 2002), W. J. Cook and A. S. Sc
Lecture Notes in Computer Science 233, 350-366. Springer-Verlag, 2002.

[Adams and Sherali 1986] W. P. Adams and H. D. Sherali. A tight linearization and an algorithm for z
quadratic programming problems. Management Sci8a():1274-1290, 1986.

[Aho, Hopcroft, and Ullmanh 1974] A. Aho, J. Hopcroft, and J. Ullm&he Design and Analysis of Compi
Algorithms Addison—-Wesley Publishing Company, 1974.

[Boneh 1997] D. Boneh. Private communication, 1997.

[Champion 2002] B. Champion. Numerical OptimizationMathematica An Insider's View ofNM ni mi ze. In
SCI2002,Proceedings of the 6th World Multiconference on Systemics, Cybernetics, and Inforifwltiose 16, N
Callaos, T. Ebisuzaki, B. Starr, J. M. Abe, D. Lichtblau, eds., pages 136-140. International Institute of Inforr
Systemics, 2002.

A Mathematicanotebook version may be found at:

http://library.wolfram.com/infocenter/Conferences/4311/

Up to date documentation regardiNiyl ni m ze may be found at:
http://documents.wolfram.com/v5/Built-inFunctions/AdvancedDocumentation/Optimization/NMinimize/
[Cohen 1993] H. CoherA Course in Computational Algebraic Number The@yaduate Texts in Mathematics 1
Springer-Verlag, 1993.

[Dantzig 1963] G. Dantzig.inear Programming and ExtensiarBrinceton Landmarks in Mathematics and Phy
Princeton University Press, 1963 (Reprinted 1998).

[Einstein, Lichtblau, Strzebonski, and Wagon 2005] D. Einstein, D. Lichtblau, A Strzebonski, and S. Wagor
nius numbers by lattice enumeration. In preparation.

[von zur Gathen and Gerhard 1999] J. von zur Gathen and J. GeNhadeérn Computer AlgebraCambridg
University Press, 1999.

[Gisvold and Moe 1972] K. M. Gisvold and J. Moe. A method for nonlinear mixed—integer programming
application to design problems. Journal of Engineering for Industry, pages 353-364, 1972.

[Hannagan 2004] J. Hannagan. Dinner on the run. Dell Variety Puzzles and Word 13&62sMay 2004.

[van Hoeij 2002] M. van Hoeij. Factoring polynomials and the knapsack problem. Journal of Number
95:167-181, 2002.

[Kampas 2004] F. Kampas. Private communication, 2004.

[Kapadia 2003] D. Kapadia. Integer Programming with Groebner Blsg¢sematicaDemo notebook, 2003.
Available electronically at:
http://library.wolfram.com/infocenter/Demos/4825/

[Keith 1998] M. Keith. Determination of all Keith Numbers upltﬁg. Electronic manuscript, 1998.

Available electronically at:

http://users.aol.com/s6sj7gt/keithnum.htm

See also:

http://users.aol.com/s6sj7gt/mikekeit.htm

[Lagarias and Odlyzko 1985] J. C. Lagarias and A. M. Odlyzko. Solving low—density subset sum problems
of the Association for Computing Machine39(1):229-246, 1985.

[Lenstra 1984] A. K. Lenstra. Polynomial factorization by root approximation. In EUROSANr84eedings of tt
International Symposium on Symbolic and Algebraic Computatieature Notes in Computer Science 174, p
272-276. Springer, 1984.

[Lenstra, Lenstra, and Lovasz 1982] A. Lenstra, H. Lenstra, and L. Lovasz. Factoring polynomials with
coefficients. Mathematische Annal261:515-534, 1982.

[Lichtblau 1996] D. Lichtblau. "doubly stochastic graph to permutations”, Usenet news group comp.soft-sys.
hematica communication, 1996.

Available electronically at:

http://forums.wolfram.com/mathgroup/archive/1996/Mar/msg00283.html

[Lichtblau 2000] D. Lichtblau. Solving finite algebraic systems using numeric Grobner bases and eigenv
SCI2000,Proceedings of the World Conference on Systemics, Cybernetics, and Inforiviatizae 10 (Concep
and Applications of Systemics, Cybernetics, and Informatics), M. Torres, J. Molero, Y. Kurihara, and A. Da'
pages 555-560. International Institute of Informatics and Systemics, 2000.

[Lichtblau 2002a] D. Lichtblau. "Re: need a function for sums of subsets”, Usenet news group comp.soft-sys
hematica communication, 2002.

Available electronically at:

http://library.wolfram.com/mathgroup/archive/2002/Feb/msg00410.html

27

[Lichtblau 2002b] D. Lichtblau. Discrete optimization usiMathematica In SCI2002,Proceedings of the Wol
Conference on Systemics, Cybernetics, and Informa¥ictume 16, N. Callaos, T. Ebisuzaki, B. Starr, J. M. Ab
Lichtblau, eds., pages 169-174. International Institute of Informatics and Systemics, 2002.

A Mathematicanotebook version may be found at:

http://library.wolfram.com/infocenter/Conferences/4317/

[Lichtblau 2003a] D. Lichtblau. Ordered heaps and fast marching method.Nafg&maticanotebook available at:
http://library.wolfram.com/infocenter/Demos/4928/

[Lichtblau 2003b] D. Lichtblau. Revisiting strong Grébner bases over Euclidean domains. Manuscript, 2003.

[Lichtblau 2004] D. Lichtblau. Solving knapsack problerRsoceedings of the Sixth International Matheme
Symposiunfconference CD-ROM), P. Mitic, ed. Banff, Canada, 2004.

[Matthews 2001] K. R. Matthews. Short solutions of A X=B using a LLL-based Hermite normal form alg
Manuscript, 2001.

[McCluskey 1956] E. J. McCluskey, Jr. Minimization of boolean functions. Bell System Technical
35:1417-1444, 1956.

[Nguyen 1999] P. Nguyen. Cryptanalysis of the Goldreich—-Goldwasser—Halevi cryptosystem from Cry
Advances in CryptologyRProceedings of CRYPTO 19%anta Barbara, CA, 1999.

Available electronically at:

http://www.di.ens.fr/~pnguyen/pub.html#Ng99

[Price and Storn 1997] K. Price and R. Storn. Differential evolution. Dr. Dobb’s Journal, April 1997, pages 1¢
78.

[Rasmusson 2003] L. Rasmusson. "Ré&athematicacommands needed to solve problem in Set Theory!", U
news group comp.soft-sys.math.mathematica, 2003.

Available electronically at:

http://forums.wolfram.com/mathgroup/archive/2003/Sep/msg00258.html

The original statement of the problem is from Georgia College & State University BITS & B$BEBebruary 199:
http://www.gcsu.edu/acad_affairs/coll_artsci/mathcomp_sci/bits/V3N3Feb98.html

This work has also appeared in THMathematicaJournal9(2): 289-291, "Tricks of the Trade" column, edited b
Abbott.

[Reinholtz 2003] K. Reinholtz. "Re: Notebook for low density subset sum?", Usenet news group comp.soft-s
mathematica, 2003.

Available electronically at:

http://forums.wolfram.com/mathgroup/archive/2003/Apr/msg00409.html

[Schnorr 1993] C. P. Schnorr. Factoring integers and computing discrete logarithms via diophantine apprc
Advances in Cryptology—Eurocrypt '91. Published in Lecture Notes in Computer Science 547, 171-182. ¢
Verlag, 1993.

[Schnorr and Euchner 1991] C. P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algoi
solving subset sum problems. In Proceedings of the 8th International Cnnference on Fundamentals of Ct
Theory, 1991. L. Budach, ed. Lecture Notes in Computer Science 529, 68-85. Springer—Verlag, 1991.
[Schrijver 1986] A. SchrijverTheory of Linear and Integer Programmin@/iley—Interscience Series in Discr
Mathematics and Optimization, 1986.

[Storjohann 1996] A. Storjohann. Faster algorithms for integer lattice basis reduction. Technical Report 249,
ment Informatik, ETH Zirich, 1996.

[Storn 1999] R. Storn. An introduction to differential evolution. Chapter 6 (pages 79—-1R@wofdeas in Optimize
tion, D. Corne, M. Dorigo, and F. Glover, eds. Advanced Topics in Computer Science Series, McGraw-Hill, 1
[Strzebonski 2004] A. Strzebonski. Private communication, 2004.

[Trott 1999] M. Trott. Solving puzzles withathematica In the column "Trott's corner”, ThelathematicaJourna
7(3):291-307, 1999.
[Wolfram 2003] S. WolframThe Mathematica Bodbth edition). Wolfram Media, 2003.

28

