
Solving knapsack and related problems

Daniel Lichtblau

Wolfram Research, Inc.
100 Trade Centre Dr.
Champaign IL USA, 61820
danl@wolfram.com

Abstract.  Knapsack  problems and variants thereof arise in  several  different fields from operations
research  to  cryptography  to  really,  really  serious  problems  for  hard−core  puzzle  enthusiasts.  We
discuss  some  of  these  and  show  ways  in  which  one  might  formulate  and  solve  them  using
Mathematica.

1. Introduction
A knapsack problem is  described informally as follows.  One has a set  of  items.  One must  select  from it  a
subset that  fulfills  specified criteria. A classical  example,  from cryptosystems, is  what is  called the "subset
sum" problem. From a set S of numbers, and a given number k, find a subset of S whose sum is k. A variant
is to find a subset whose sum is as close as possible to k. Another variant is to allow integer multiples of the
summands,  provided  they  are  small.  That  is,  we  are  to  find  a  componentwise  "small"  vector  v  such  that
v.S» k (where we regard S as being an ordered set, that is, a vector). More general knapsack problems may
allow values other than zero and one (typically selected from a small range), inequality constraints, and other
variations on the above themes..

Of  note  is  that  the  general  integer  linear  programming  problem (ILP)  can  be  cast  as  a  knapsack  problem
provided the search space is bounded. Each variable is  decomposed into new variables, one for each "bit";
they are referred to as 0 −1 variables because these are the values they may take. One multiplies these new
variables by appropriate powers of two in reformulating the problem in terms of the new variables. We will
use this tactic in an example below. An advantage (as we will see) is that often one need not strictly enforce
the 0 −1 requirement.

Applications of knapsack problems are manifold. The approximate knapsack with small multipliers variant is
used,  for  example,  to  find  a  minimal  polynomial  given  an  approximation  to  a  root  [Lenstra  1984].  The
knapsack approximation problem is also used in a more efficient algorithm for univariate factorization from
[van  Hoeij  2002].  Applications  to  cryptosystems  are  discussed  in  [von  zur  Gathern  and  Gerhard  1999,
chapter 17] and [Nguyen 1999].

Among  the  tools  one  might  use  for  knapsack  problems are  brute  force  search,  smart  combinatorial  search
techniques,  integer  programming optimization  methods,  algebraic  solvers  with  appropriate constraints,  and
lattice  methods.  We  will  illustrate  several  of  these  tactics  in  the  examples  below,  using  Mathematica
[Wolfram 2003]. The methods we discuss are not new and most have previously appeared in various venues
as cited. The object of this paper is to gather together several convenient examples, references, applications,
and useful Mathematica code under the unifying theme of knapsack solvers.

Timings, where indicated, are performed on a 1.4 Ghz machine using the development kernel for Mathemat−
ica.  A part  of  this  work appeared in  [Lichtblau 2004].  I  thank Frank Kampas  for useful  remarks about  the
problems and certain solving methods, and Adam Strzebonski for expalining how the Mathematica function
FindInstance handles constrained diophantine equations.

2. A simple subset sum
The example below arose in the Usenet news group comp.soft−sys.math.mathematica. A response indicating
the  method  we illustrate  appears  in  [Lichtblau  2002a].  It  is  the  very  classical  subset  sum problem:  we are
given a set of rational numbers and a desired value, and seek a subset that sums to the value.

vec = 81 � 2, 1� 3, 1� 4, 1� 8, 3� 10, 12� 79, 13� 38<;
val = 2509 � 2280;

In a way this is a linear diophantine equation but we seek a particular type of solution, wherein all compo−
nents are zero or one. As such solutions are small in Euclidean norm, a common method by which to attempt
such problems involves lattice reduction [Lenstra, Lenstra, and Lovász 1982]. The idea is to set up a matrix



nents are zero or one. As such solutions are small in Euclidean norm, a common method by which to attempt
such problems involves lattice reduction [Lenstra, Lenstra, and Lovász 1982]. The idea is to set up a matrix
wherein  the  last  column  is  precisely  the  vector  augmented  at  the  bottom  with  the  negated  value,  and  we
augment  to  the  left  with  an  identity  matrix  (next  to  the  vector),  and  a  row of  zeros preceding the  negated
value. We then reduce this lattice. The elements of the identiy matrix serve as recorders of the multiples we
use in (attempting to) zero the last column, in much the same way that augmenting may be used to form a
matrix  inverse.  If  we obtain  a  row with  a  zero in  the last  entry and all  ones and zeros preceding,  then the
columns with ones correspond to set elements we take for our summands. We will  rescale to make the last
column large though this is not always necessary. We will show the lattice below so one might see why such
a reduction can give something useful.

lattice1 =
Transpose@Append@IdentityMatrix@Length@vecDD, 10^10* vecDD;

lattice2 = Append@lattice1,
Append@Table@0, 8Length@vecD<D, -10^10* valDD

:81, 0, 0, 0, 0, 0, 0, 5 000000000< :0, 1, 0, 0, 0, 0, 0,
10000000000

3
>,

80, 0, 1, 0, 0, 0, 0, 2 500000000<, 80, 0, 0, 1, 0, 0, 0, 1250000 000<,

80, 0, 0, 0, 1, 0, 0, 3 000000000<, :0, 0, 0, 0, 0, 1, 0,
120 000000000

79
>,

:0, 0, 0, 0, 0, 0, 1,
65000000000

19
>,

:0, 0, 0, 0, 0, 0, 0, -
627250000000

57
>>

We will  reduce and then select those rows with last element zero and all  preceding elements either zero or
one. We check that such candidate solutions actually work.

lr = LatticeReduce@lattice2D;
result = Map@Most,

Select@lr, Last@ðD � 0 && Apply@And, Map@ð � 1 ÈÈ ð � 0 &, Most@ðDDD &DD
Map@ð.vec � val &, resultD
880, 1, 0, 1, 1, 0, 1<<
8True<

We thus see that the second, fourth, fifth, and seventh elements sum to the desired value.

We should note that the method illustrated above it is by no means guaranteed to give a solution if one exists.
The useful fact is that, for a large class of problems, it does (see [Lagarias and Odlyzko 1985]). This method
and a variant thereof are discussed in [Schnorr and Euchner 1991].  The variant uses an encoding that  fre−
quently works better when there might be small vectors in the lattice other than the solution vector.

Variations on this  lattice  technique have applications to  polynomial  factorization methods already noted in
the  introduction,  finding  small  solutions  to  linear  diophantine  equations  (the  "closest  vector  problem"  in
lattices;  see  e.g.  [Nguyen  1999],  [Matthews  2001],  or  [Lichtblau  2003b]),  and  simultaneous  diophantine
approximation ([Lenstra, Lenstra, and Lovász 1982], [von zur Gathen and Gerhard 1999]; this is in essence
the  method  behind  the  function  AffineRationalize  in  the  Mathematica standard  add−on  package
NumberTheory‘Rationalize‘).

3. Numeric solvers and knapsacks
Another method for the previous example,  workable for problems of  small  size,  is  to use a numeric solver
with equations in place to insure that all variables take on only values 0 or 1. This method was first brought
to  my  attention  by  [Boneh  1997]  (though  not  indicated  in  [Lichtblau  2002a],  I  used  it  on  this  example  in
private follow−up correspondence).
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vars = Array@x, Length@vecDD;
polys = Append@vars * Hvars - 1L, vars.vec- valD;
NSolve@polysD
88x@1D ® 0., x@2D ® 1., x@3D ® 0.,

x@4D ® 1., x@5D ® 1., x@6D ® 0., x@7D ® 1.<<
It  must  be mentioned that  this  method is,  for practical  purposes, generally no better than brute search, and
sometimes  considerably  worse.  The  reason,  roughly,  is  that  we  have  an  overdetermined  nonlinear  system
wherein all equations but one are quadratic. Such systems are easily overwhelmed by computational complex−
ity  when one applies  the methods of  NSolve  [Lichtblau 2000].  The nice feature of  the method lies  in  the
simplicity of code. More importantly, and the reason we showed it above, is that it may be used to advantage
in larger knapsack−style problems when there are more linear equations, as these have an effect of reducing
the complexity (for one they reduce the a priori bound on the size of the solution set; indeed even nonlinear
equations may help to reduce complexity since the system is overdetermined). In [Rasmusson 2003] we see a
nice  application  to  solving  a  type  of  classic  puzzle.  The  particular  example  is  known  as  "Johnny’s  Ideal
Woman" and the problem statement is  as follows (see the URL to the Georgia College & State University
BITS & BYTES electronic journal given in the Rasmusson reference below).

Johnny’s ideal woman is brunette, blue eyed, slender, and tall. He knows four women: Adele, Betty, Carol,
and Doris. Only one of the four women has all four characteristics that Johnny requires.
1. Only three of the women are both brunette and slender.
2. Only two of the women are both brunette and tall.
3. Only two of the women are both slender and tall.
4. Only one of the women is both brunette and blue eyed.
5. Adele and Betty have the same color eyes.
6. Betty and Carol have the same color hair.
7. Carol and Doris have different builds.
8. Doris and Adele are the same height. 

Which one of  the four women satisfies all  of  Johnny’s requirements?  Rasmusson solved this is  tackled as
follows (I have made modest alterations to the code but the essentials remain unchanged).

gals = 8Adele, Betty, Carol, Doris<;
features = 8blueeye, slender, brunette, tall<;
solvvars = Map@perfectgirl , Range@4DD;
elimvars = Flatten@Outer@Operate@ðð, 0D &, features, Range@4DDD;
galnumbers = Thread@8Adele, Betty, Carol, Doris< ® 81, 2, 3, 4<D;
constraints = Map@ð^2 � ð &, Flatten@Join@elimvars, solvvarsDDD;
problem = Join@constraints ,8Sum@blueeye@iD * slender@iD, 8i, 4<D � 3,

Sum@brunette@iD * tall@iD, 8i, 4<D � 2,
Sum@slender@iD tall@iD, 8i, 4<D � 2,
Sum@blueeye@iD * brunette@iD, 8i, 4<D � 1, blueeye@AdeleD �
blueeye@BettyD, brunette@BettyD � brunette@CarolD,

slender@CarolD � 1 - slender@DorisD, tall@AdeleD � tall@DorisD<,
Table@brunette@iD blueeye@iD slender@iD tall@iD � perfectgirl@iD,
8i, 4<DD �. galnumbers ;

We solve the system, eliminating all variables other than the perfectgirl set. We then do some replace−
ment postprocessing to make it clear who is Johnny’s favorite (at least this should make it clear to Johnny!).

sol = HNSolve@problem, solvvars, elimvarsD �.
feature_@j_IntegerD ¦ feature@gals@@jDDDL �.

81. ® True, 0. ® False, Rule® Equal<
Cases@sol, perfectgirl@gal_D == True ¦ gal, 82<D
88perfectgirl@AdeleD � True, perfectgirl@BettyD � False,

perfectgirl@CarolD � False, perfectgirl@DorisD � False<<
8Adele<

In  this  example  it  turns  out  that  elimination  of  extraneous  variables  has  the  desirable  effect  of  removing
multiplicity from the solution set; the problem specification does not uniquely determine heights of all four
women.

As problems of that particular type often contain several equations, some of them linear, the computational
complexity  tends to  be more modest  than is  the case for a  subset  sum problem of  comparably many vari−
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As problems of that particular type often contain several equations, some of them linear, the computational
complexity  tends to  be more modest  than is  the case for a  subset  sum problem of  comparably many vari−
ables. Hence one can have more variables and still hope for a result in reasonable time.

At  this  point  I  will  mention another approach to  puzzle  problems of  this  type,  as utilized heavily  in  [Trott
1999]. The idea is to enlarge, via enumeration of possibilities, and then prune the search space iteratively as
new variables are taken into account.  The enumeration steps consist of adding all  possible values of a new
variable to  each partial  solution.  These are then pruned using available  constraints in  an effort  to  keep the
size  of  the  partial  solution  set  reasonable.  We  will  illustrate  the  method  on  this  example.  We  begin  by
showing the power set of eye combinations that can go with the four women (we will not show this for the
remaining features).

eyes = Flatten@
Outer@List, Sequence�� Table@8blueeye, Not@blueeyeD<, 84<DD, 3D

88blueeye, blueeye, blueeye, blueeye<, 8blueeye, blueeye, blueeye, ! blueeye<,
8blueeye, blueeye, ! blueeye, blueeye<, 8blueeye, blueeye, ! blueeye, ! blueeye<,
8blueeye, ! blueeye, blueeye, blueeye<, 8blueeye, ! blueeye, blueeye, ! blueeye<,
8blueeye, ! blueeye, ! blueeye, blueeye<,
8blueeye, ! blueeye, ! blueeye, ! blueeye<,
8! blueeye, blueeye, blueeye, blueeye<, 8! blueeye, blueeye, blueeye, ! blueeye<,
8! blueeye, blueeye, ! blueeye, blueeye<,
8! blueeye, blueeye, ! blueeye, ! blueeye<,
8! blueeye, ! blueeye, blueeye, blueeye<,
8! blueeye, ! blueeye, blueeye, ! blueeye<,
8! blueeye, ! blueeye, ! blueeye, blueeye<,
8! blueeye, ! blueeye, ! blueeye, ! blueeye<<

We form the lists of possibilities combining women with eye color.

galsAndEyes = Flatten@Outer@Thread@And@ððDD &, 8gals<, eyes, 1D, 1D

88Adele && blueeye, Betty && blueeye, Carol && blueeye, Doris && blueeye<,
8Adele && blueeye, Betty && blueeye, Carol && blueeye, Doris && ! blueeye<,
8Adele && blueeye, Betty && blueeye, Carol && ! blueeye, Doris && blueeye<,
8Adele && blueeye, Betty && blueeye, Carol && ! blueeye, Doris && ! blueeye<,
8Adele && blueeye, Betty && ! blueeye, Carol && blueeye, Doris && blueeye<,
8Adele && blueeye, Betty && ! blueeye, Carol && blueeye, Doris && ! blueeye<,
8Adele && blueeye, Betty && ! blueeye, Carol && ! blueeye, Doris && blueeye<,
8Adele && blueeye, Betty && ! blueeye, Carol && ! blueeye, Doris && ! blueeye<,
8Adele && ! blueeye, Betty && blueeye, Carol && blueeye, Doris && blueeye<,
8Adele && ! blueeye, Betty && blueeye, Carol && blueeye, Doris && ! blueeye<,
8Adele && ! blueeye, Betty && blueeye, Carol && ! blueeye, Doris && blueeye<,
8Adele && ! blueeye, Betty && blueeye, Carol && ! blueeye, Doris && ! blueeye<,
8Adele && ! blueeye, Betty && ! blueeye, Carol && blueeye, Doris && blueeye<,
8Adele && ! blueeye, Betty && ! blueeye, Carol && blueeye, Doris && ! blueeye<,
8Adele && ! blueeye, Betty && ! blueeye, Carol && ! blueeye, Doris && blueeye<,
8Adele && ! blueeye, Betty && ! blueeye, Carol && ! blueeye, Doris && ! blueeye<<

Now we use the relevant constraint to prune this list.

galsAndEyes = Cases@galsAndEyes ,8AorB_ && a_, ___, BorA_ && a_, ___< �;
MatchQ@AorB, Adele BettyD && MatchQ@BorA, Adele BettyDD

88Adele && blueeye, Betty && blueeye, Carol && blueeye, Doris && blueeye<,
8Adele && blueeye, Betty && blueeye, Carol && blueeye, Doris && ! blueeye<,
8Adele && blueeye, Betty && blueeye, Carol && ! blueeye, Doris && blueeye<,
8Adele && blueeye, Betty && blueeye, Carol && ! blueeye,
Doris && ! blueeye<, 8Adele && ! blueeye,
Betty && ! blueeye, Carol && blueeye, Doris && blueeye<,
8Adele && ! blueeye, Betty && ! blueeye, Carol && blueeye,
Doris && ! blueeye<, 8Adele && ! blueeye, Betty && ! blueeye,
Carol && ! blueeye, Doris && blueeye<, 8Adele && ! blueeye,
Betty && ! blueeye, Carol && ! blueeye, Doris && ! blueeye<<

We add an attribute for girth.
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widths = Flatten@
Outer@List, Sequence�� Table@8slender, Not@slenderD<, 84<DD, 3D;

galsAndEyesAndWidth = Flatten@
Outer@Thread@And@ððDD &, galsAndEyes , widths, 1D, 1D;

This time we can prune with more than one constraint.

galsAndEyesAndWidth = Cases@galsAndEyesAndWidth ,
8___, And@CorD_, _, a_D, ___, And@DorC_, _, b_D, ___< �; MatchQ@CorD,

Carol DorisD && MatchQ@DorC, Carol DorisD && b � Not@aDD;
galsAndEyesAndWidth = Select@galsAndEyesAndWidth , Length@

Select@ð, Function@x, MatchQ@x, _ && blueeye && slenderDDDD � 3 &D
88Adele && blueeye && slender, Betty && blueeye && slender,

Carol && blueeye && slender, Doris && blueeye && ! slender<,
8Adele && blueeye && slender, Betty && blueeye && slender,
Carol && blueeye && ! slender, Doris && blueeye && slender<,
8Adele && blueeye && slender, Betty && blueeye && slender,
Carol && blueeye && slender, Doris && ! blueeye && ! slender<,
8Adele && blueeye && slender, Betty && blueeye && slender,
Carol && ! blueeye && ! slender, Doris && blueeye && slender<<

Now add hair coloring.

hairs = Flatten@
Outer@List, Sequence�� Table@8brunette, Not@brunetteD<, 84<DD, 3D;

galsAndEyesAndWidthAndHair = Flatten@
Outer@Thread@And@ððDD &, galsAndEyesAndWidth , hairs, 1D, 1D;

Again we prune.

galsAndEyesAndWidthAndHair = Cases@galsAndEyesAndWidthAndHair ,
8___, And@BorC_, _, _, a_D, ___, And@CorB_, _, _, a_D, ___< �;
MatchQ@BorC, Betty CarolD && MatchQ@CorB, Betty CarolDD;

galsAndEyesAndWidthAndHair = Select@galsAndEyesAndWidthAndHair ,
Length@Select@ð,

Function@x, MatchQ@x, _ && blueeye && _ && brunetteDDDD � 1 &D
88Adele && blueeye && slender && brunette, Betty && blueeye && slender && ! brunette,

Carol && blueeye && slender && ! brunette,
Doris && blueeye && ! slender && ! brunette<,
8Adele && blueeye && slender && ! brunette,
Betty && blueeye && slender && ! brunette, Carol && blueeye &&
slender && ! brunette, Doris && blueeye && ! slender && brunette<,

8Adele && blueeye && slender && brunette, Betty && blueeye && slender && ! brunette,
Carol && blueeye && ! slender && ! brunette,
Doris && blueeye && slender && ! brunette<,
8Adele && blueeye && slender && ! brunette,
Betty && blueeye && slender && ! brunette, Carol && blueeye &&
! slender && ! brunette, Doris && blueeye && slender && brunette<,

8Adele && blueeye && slender && brunette, Betty && blueeye && slender && ! brunette,
Carol && blueeye && slender && ! brunette,
Doris && ! blueeye && ! slender && brunette<,
8Adele && blueeye && slender && brunette, Betty && blueeye && slender && ! brunette,
Carol && blueeye && slender && ! brunette,
Doris && ! blueeye && ! slender && ! brunette<,
8Adele && blueeye && slender && brunette, Betty && blueeye && slender && ! brunette,
Carol && ! blueeye && ! slender && ! brunette,
Doris && blueeye && slender && ! brunette<,
8Adele && blueeye && slender && ! brunette, Betty && blueeye && slender && brunette,
Carol && ! blueeye && ! slender && brunette,
Doris && blueeye && slender && ! brunette<,
8Adele && blueeye && slender && ! brunette,
Betty && blueeye && slender && ! brunette, Carol && ! blueeye &&
! slender && ! brunette, Doris && blueeye && slender && brunette<<

5



Finally add height (we want her to have dimension).

heights =
Flatten@Outer@List, Sequence�� Table@8tall, Not@tallD<, 84<DD, 3D;

galsAndEyesAndWidthAndHairAndHeight = Flatten@Outer@
Thread@And@ððDD &, galsAndEyesAndWidthAndHair , heights, 1D, 1D;

galsAndEyesAndWidthAndHairAndHeight =
Cases@galsAndEyesAndWidthAndHairAndHeight ,
8___, And@AorD_, _, _, a_D, ___, And@DorA_, _, _, a_D, ___< �;
MatchQ@AorD, Adele DorisD && MatchQ@DorA, Adele DorisDD;

This time we prune with  three constraints.  When finished,  we will  have only  one ideal  woman (who,  as it
happens, repeats herself. Possibly Johnny was not aware of this trait.)

galsAndEyesAndWidthAndHairAndHeight = Flatten@Outer@
Thread@And@ððDD &, galsAndEyesAndWidthAndHair , heights, 1D, 1D;

galsAndEyesAndWidthAndHairAndHeight =
Cases@galsAndEyesAndWidthAndHairAndHeight ,
8___, And@AorD_, _, _, a_D, ___, And@DorA_, _, _, a_D, ___< �;
MatchQ@AorD, Adele DorisD && MatchQ@DorA, Adele DorisDD;

galsAndEyesAndWidthAndHairAndHeight =
Select@galsAndEyesAndWidthAndHairAndHeight , Length@Select@ð,

Function@x, MatchQ@x, _ && blueeye && _ && _ && tallDDDD � 2 &D;
galsAndEyesAndWidthAndHairAndHeight = Select@

galsAndEyesAndWidthAndHairAndHeight ,
Length@Select@ð, Function@x, MatchQ@x, __ && brunette && tallDDDD � 2 &D

88Adele && blueeye && slender && brunette && tall,
Betty && blueeye && slender && ! brunette && tall,
Carol && blueeye && slender && ! brunette && ! tall,
Doris && ! blueeye && ! slender && brunette && tall<,
8Adele && blueeye && slender && brunette && tall,
Betty && blueeye && slender && ! brunette && ! tall,
Carol && blueeye && slender && ! brunette && tall,
Doris && ! blueeye && ! slender && brunette && tall<<

We see again that only Adele has the requisite features.

4. Linear diophantine equations
We now show a simple example from [Lichtblau 2002a]. Given 143267 coins (pennies, nickels, dimes, and
quarters)  of  total  value  $12563.29,  how  many  coins  might  be  of  each  type?  In  general  one  might  expect
many different solutions; we will be happy to obtain any one of them. In the reference we show an easy way
to obtain results using an optimization method (this amounts to a constraint satisfaction ILP). Here we will
attempt  a  lattice−based  method  quite  similar  to  what  was  shown  above  for  the  subset  sum  .  We  require
nonnegative  integer  solutions  to  a  pair  of  equations  p + 5n + 10d + 25q = 1 256 329  and

p + n + d + q = 143 267. We use these as columns of our lattice, again augmenting by an identity matrix..
To assist the process of obtaining a small vector that really gives a solution we will multiply the equations by
a large value.

vecs = 10^8* 881, 5, 10, 25,-1 256 329<, 81, 1, 1, 1,-143 267<<;
lattice = Transpose@Join@IdentityMatrix@Length@vecs@@1DDDD, vecsDD;
redlat = LatticeReduce@latticeD
880, 3, -4, 1, 0, 0, 0<, 8-5, 3, 4, -2, 0, 0, 0<,
841749, 39185, 35978, 26355, 1, 0, 0<,
80, -2, 1, 0, 0, 0, -100 000000<, 81, -2, 1, 0, 0, 100000000, 0<<

The third row gives a solution: 41749 pennies, 39185 nickels, 35978 dimes, and 26355 quarters.

Generally speaking it is not difficult to find "solutions" when we allow negative values. Making this method
work in the presence of many small null vectors becomes problematic precisely because it then becomes all
the more likely that small solutions will have components of both signs.

6



It is of some interest to pursue this as a 0 −1 problem. From each variable we make new variables correspond−
ing to each bit. Note that, as above, we will work with vectors of numbers and not form explicit variables.

base = 2;
sizes1 = Ceiling@Log@base, 1 256 329� 81, 5, 10, 25<DD;
size2 = Ceiling@Log@base, 143 267DD;
sizes = Map@Min@ð, size2D &, sizes1D;
expandedvec = Map@base ^Range@0, ð - 1D &, sizesD;
mult = 10^3;
vec1 = mult * Append@Flatten@expandedvec * 81, 5, 10, 25<D, -1 256 329D;
vec2 = mult * Append@Flatten@expandedvec * 81, 1, 1, 1<D, -143 267D;
lattice = Transpose@Join@IdentityMatrix@Length@vec1DD, 8vec1, vec2<DD;

What  we  seek  is  a  solution  vector  containing  all  zeros  and  ones,  with  one  in  the  third  to  last  position
(denoting that we utilized the last row but not with a multiplier), and zeros in the last two slots (indicating
that we satisfied both linear relations).

redlat = LatticeReduce@latticeD;
solvec = First@Cases@redlat, 8a___, 1, 0, 0< ¦ 8a<DD
81, 0, 0, 0, 1, 0, -1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 1,
0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1,
1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<

This, in the words of television’s Maxwell Smart, is "not quite what I had in mind." No matter; we can use it
anyway.  We simply reform our solution values as coefficients  times powers of  two.  For this  we must  first
break apart  the  solution  vector  into  components  that  correspond to  each  of  the  original  variables (pennies,
nickels, dimes, and quarters). So long as the largest nonzero component in each is positive we will be able to
get a valid solution.

start = 1;
solcomponents =
Table@res = Take@solvec, 8start, start+ sizes@@jDD - 1<D;
start += sizes@@jDD;
res, 8j, Length@sizesD<D

881, 0, 0, 0, 1, 0, -1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0<,
8-1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0<,
80, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1<,
81, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<<

values = Map@ð.H2^Range@0, Length@ðD - 1DL &, solcomponentsD

810449, 16463, 116354, 1<
810 449, 16 463, 116 354, 1<

We check that this satisfies the two equations.

values.81, 1, 1, 1< == 143 267 && values.81, 5, 10, 25< == 1 256 329

True

5. A more challenging subset sum
The next  example is  from [Reinholtz  2003].  We are given the first  forty reciprocals of  squares of  integers

larger than one. The goal is to find a subset whose sum is 1

2
. We show Reinholtz’ method below. We begin

with the vector itself, clear denominators, and compute the target value in terms of the new vector.

vec = Table@1 � n^2, 8n, 2, 40<D;
len = Length@vecD;
lcm = Apply@LCM, Denominator@vecDD;
ivec = lcm * vec;
s = lcm � 2;

Now find partial sums of all smallest elements, as we decrease the number of such elements. A placeholder
table  is  defined along with  a  pair  of  predicates that  in  effect  allow us  to  tell  when to  call  recursively,  and
what to test.  The bounding feasibility test,  used recursively, acts as a sort of  backtracking mechanism (one
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table  is  defined along with  a  pair  of  predicates that  in  effect  allow us  to  tell  when to  call  recursively,  and
what to test.  The bounding feasibility test,  used recursively, acts as a sort of  backtracking mechanism (one
might also view it as a branch−and−bound tactic).

tottbl = Apply@Plus, ivecD - FoldList@ð1 + ð2 &, 0, ivecD;
b = Table@0, 8len<D;
feasibleQ@i_, tot_D := tot £ s £ tot + tottbl@@iDD;
solutionQ@i_, tot_D := tot � s;

try@i_?Hð1 £ len &L, tot_D := With@8rtot = tot + ivec@@iDD<, b@@iDD = 1;
solutionQ@i, rtotD && Throw@bD;
If@feasibleQ@i + 1, rtotD, try@i + 1, rtotDD;
b@@iDD = 0; try@i + 1, totD;D;

Timing@result = Catch@try@1, 0DD;D
result .vec� 1 � 2
Select@result * vec, ð ¹ 0 &D
820.55 Second, Null<
True

:
1

4
,
1

9
,

1

16
,

1

25
,

1

49
,

1

144
,

1

225
,

1

400
,

1

784
,

1

1225
>

With  some work this  can  also  be  attacked  as  a  lattice  problem.  Specifically  we  can  set  this  up  as  a  linear
diophaantine problem. There is a hitch: we typically have many null vectors and these tend to give solutions
that  do  not  have  all  ones.  We  can  attempt  to  alleviate  this  by  adding  extra  linear  relations.  For  example,
suppose  we  know or  at  least  suspect  that  a  solution  using  exactly  10 values  exists  (perhaps  we  peeked  at
Reinholtz’ solution, but only long enough to guess how big it was). We can set up a lattice as follows.

size = 40;
squares = Table@n^2, 8n, 2, size<D;
lcm = Apply@LCM, squaresD;
vec = lcm � squares;
vec = Append@vec, -lcm � 2D;
vec2 = Table@1, 8size<D;
vec2@@sizeDD = -10;
lattice = Transpose@Join@IdentityMatrix@Length@vecDD, 8vec, vec2<DD;

The  last  columns  contain  the  two  linear  relations  we  need  to  enforce;  the  sum of  square  reciprocals  must

equal  
1

2
 and  the  number  of  values  in  the  sum must  be  10.  As  in  earlier  examples,  the  augmented  identity

matrix records the multiples used in satisfying these relations.

We still face the same difficulty; if we reduce this lattice we can readily make zeros in the last two columns,
using the last row multiplied by one, but the multiples of the other rows are not all likely to be one. This in
turn is because there are still  many small "null" vectors that give rise to small solutions, from which lattice
reduction may not find the sort we require (using all ones). In order to further coerce the lattice reduction to
yield  a  good  vector  we  will  alter  the  default  behvior.  Specifically  we  change  what  is  often  called  the  ∆

parameter, typically  set  to 
3

4
 in  the liteature (see e.g.  [Lenstra, Lenstra, Lovász 1982]),  to something much

closer to 1.

Developer‘SetSystemOptions@
"LatticeReduceOptions "® 8"LatticeReduceRatioParameter "® .99<D;

Timing@redlat = LatticeReduce@latticeD;D
80.36 Second, Null<

We now see if  we have any solutions. These will  have final three components of a one (signifying that the
last row is multiplied by one)  followed by two zeros (indicating that we successfully satisfied the two linear
relations). Actually these might all  be negated but we ignore that possibility for now. Moreover even if  the
last value is not zero (signifying that the number of elements used was not 10) that would not be cause for
concern.
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solns = Cases@redlat, 8a___, 1, 0, _< �; Max@aD � 1 && Min@aD � 0D

881, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0<<

Our  solution  is  given  by  this  vector  with  the  last  three  elements  removed.  We  see  that  it  agrees  with  the
previous one.

soln = Drop@First@solnsD, -3D;
soln.H1 � squaresL � 1 � 2
Select@soln * H1 � squaresL, ð ¹ 0 &D
True

:
1

4
,
1

9
,

1

16
,

1

25
,

1

49
,

1

144
,

1

225
,

1

400
,

1

784
,

1

1225
>

Obviously we made use of the fact that we expected the solution to use 10 values. In reality we would loop
over the possible lengths of a solution subset. It remains to ponder what to do in cases where we do not get a
solution vector in the reduced lattice. One method I  have used with modest success involves adding one to
three  more  columns  of  random small  integers  (perhaps  all  multiplied  by  some constant  larger  than  unity).
The last  element in  each column will  be the negative of  a possible sum of  a subset  of  the values above it.
This  forces  solutions  to  satisfy  more  relations,  thus  often  removing  the  small  null  vectors.  We  now  must
iterate over all possible values of sums of subsets of the new columns. If the random values are drawn from a
small pool then typically there are not many such values for each column. This is important because we want
to  arrange  matters  so  that  we  do  no  more  than  some  low  degree  polynomial  number  of  iterations  in  the
number of rows of the lattice.

An alternative is to put those problematic null vectors to work for us (in modern parlance one might regard
this as "embracing our null vectors"). There is direct functionality built into Mathematica to do something of
this  sort.  The  method  used  behind  the  scenes  is  a  type  of  recursive  enumeration  over  combinations  of  an
unrestricted integer solution plus null vectors ([Strzebonski 2004]). The code below is from [Kampas 2004].

vars = Table@x@iD, 8i, 2, 40<D;
cons = Table@0 <= x@iD <= 1, 8i, 2, 40<D;

TimingAFindInstanceAJoinA9â
i=2

40 x@iD
i2

==
1

2
=, consE, vars, IntegersEE

874.71 Second,
88x@2D ® 1, x@3D ® 1, x@4D ® 1, x@5D ® 1, x@6D ® 0, x@7D ® 1, x@8D ® 0,

x@9D ® 0, x@10D ® 0, x@11D ® 0, x@12D ® 1, x@13D ® 0, x@14D ® 0,
x@15D ® 1, x@16D ® 0, x@17D ® 0, x@18D ® 0, x@19D ® 0,
x@20D ® 1, x@21D ® 0, x@22D ® 0, x@23D ® 0, x@24D ® 0,
x@25D ® 0, x@26D ® 0, x@27D ® 0, x@28D ® 1, x@29D ® 0,
x@30D ® 0, x@31D ® 0, x@32D ® 0, x@33D ® 0, x@34D ® 0, x@35D ® 1,
x@36D ® 0, x@37D ® 0, x@38D ® 0, x@39D ® 0, x@40D ® 0<<<

6. Random determinants
In this section we illustrate some heuristic methods on certain extremal matrix problems of modest size. It is
sometimes  important  to  understand  extremal  behavior  of  random  polynomials  or  matrices  comprised  of
elements  from  a  given  set.  Below  we  apply  knapsack−style  optimization  to  study  determinants  of  7 x7
matrices  of  integers  taken  from  the  set  8-1, 0, 1<,  with  diagonal  elements  all  set  to  1.  We  arrived  at  the
option settings utilized below after some trial and error experimentation.

n = 7;
mat = Array@x, 8n, n<D;
func@a : 88_?NumberQ ..< ..<D �;

Length@aD � Length@First@aDD := Det@aD
vars = Flatten@matD;
problemlist = 8func@matD, Flatten@8Element@vars, IntegersD,

Map@-1 £ ð £ 1 &, varsD, Table@x@j, jD � 1, 8j, n<D<D<;

9



Timing@8min, vals< = NMinimize@problemlist , vars,
MaxIterations ® 50, Method ® 8"DifferentialEvolution ",

CrossProbability ® 1 � 50, SearchPoints ® 50<D;D
837.34 Second, Null<
8min, mat �. vals<

8-576., 881, -1, -1, 1, 1, -1, -1<, 81, 1, 1, -1, 1, 1, -1<,
8-1, -1, 1, 1, 1, 1, -1<, 81, 1, -1, 1, -1, 1, -1<, 81, 1, 1, 1, 1, 1, 1<,
81, -1, -1, -1, -1, 1, 1<, 8-1, 1, -1, -1, 1, 1, 1<<<

Note that the Hadamard bound claims the minimum must be no smaller than -7
7

2 , or -907. A random search
that  took  approximately  twice  as  long  as  the  code  above  found  nothing  smaller  than  -288.  We’ll  now try
with dimension increased by one.

Timing@8min, vals< = NMinimize@problemlist , vars,
MaxIterations ® 200, Method ® 8"DifferentialEvolution ",

CrossProbability ® 1 � 50, SearchPoints ® 100<D;D
8464.97 Second, Null<
8min, mat �. vals<

8-4096., 881, 1, 1, -1, 1, -1, -1, -1<, 81, 1, -1, 1, 1, 1, 1, -1<,
81, 1, 1, 1, -1, 1, -1, 1<, 8-1, 1, 1, 1, -1, -1, 1, -1<,
81, -1, 1, 1, 1, -1, 1, 1<, 8-1, 1, 1, -1, 1, 1, 1, 1<,
81, -1, 1, -1, -1, 1, 1, -1<, 81, 1, -1, -1, -1, -1, 1, 1<<<

In this case we actually attain the Hadamard bound.

We now show an example that, while not really a knapsack problem, is a cousin to the one above. A matrix
is  called  doubly  stochastic  is  all  entries  are  nonnegative  and  all  rows and  columns  sum to  one.  A  famous
theorem due to Birkhoff shows that any such matrix may be written as a convex sum of permutation matrices
(these are thus the vertices of the linear space of such matrices). It is not hard to show that the permutation
matrices  are  moreover  the  doubly  stochastic  matrices  of  extremal  determinant.  Below  we  find  one  with
determinant equal to -1.

n = 7;
mat = Array@x, 8n, n<D;
func@a : 88_?NumberQ ..< ..<D �;

Length@aD � Length@First@aDD := Det@aD
vars = Flatten@matD;
problemlist = 8func@matD,

Flatten@8Map@ð ³ 0 &, varsD, Table@Sum@x@j, kD, 8j, n<D � 1, 8k, n<D,
Table@Sum@x@j, kD, 8k, n<D � 1, 8j, n<D<D<;

8min, vals< = NMinimize@problemlist , vars, MaxIterations® 200D;

8min, Chop@mat �. vals, 10^-7D<

8-1., 880, 0, 1., 0, 0, 0, 0<, 80, 0, 0, 0, 0, 1., 0<,
80, 1., 0, 0, 0, 0, 0<, 80, 0, 0, 0, 1., 0, 0<, 80, 0, 0, 0, 0, 0, 1.<,
81., 0, 0, 0, 0, 0, 0<, 80, 0, 0, 1., 0, 0, 0<<<

The actual decomposition of a doubly stochastic matrix into a convex sum of permutation matrices is itself a
type of knapsack problem, albeit one that can be handled by an efficient greedy algorithm. Simple Mathemat−
ica code  for  this  is  given  in  [Lichtblau  1996].  As  a  rule  of  thumb,  when  a  greedy algorithm will  work  to
solve a knapsack problem, nothing will beat it.
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7. Covering a set by subsets
Subset  covering  is  an  important  task  that  appears,  for  example,  in  the  Quine−McCluskey  algorithm  for
finding an optimal disjunctive normal form for a boolean expression [McCluskey 1956]. We give an example
that  arose  in  the  Usenet  news  group  comp.soft−sys.math.mathematica.  The  approach  we  use  appeared
previously in [Lichtblau 2002b]. We are given a set of sets, each containing integers between 1 and 64. Their
union is the set of  all  integers in that range, and we want to find a set of  12 subsets that covers that entire
range (we are given in advance that that number can be achieved).

subsets = 881, 2, 4, 8, 16, 32, 64<, 82, 1, 3, 7, 15, 31, 63<,
83, 4, 2, 6, 14, 30, 62<, 84, 3, 1, 5, 13, 29, 61<, 85, 6, 8, 4, 12, 28, 60<,
86, 5, 7, 3, 11, 27, 59<, 87, 8, 6, 2, 10, 26, 58<, 88, 7, 5, 1, 9, 25, 57<,
89, 10, 12, 16, 8, 24, 56<, 810, 9, 11, 15, 7, 23, 55<, 811, 12, 10, 14, 6, 22, 54<,
812, 11, 9, 13, 5, 21, 53<, 813, 14, 16, 12, 4, 20, 52<, 814, 13, 15, 11, 3, 19, 51<,
815, 16, 14, 10, 2, 18, 50<, 816, 15, 13, 9, 1, 17, 49<, 817, 18, 20, 24, 32, 16, 48<,
818, 17, 19, 23, 31, 15, 47<, 819, 20, 18, 22, 30, 14, 46<,
820, 19, 17, 21, 29, 13, 45<, 821, 22, 24, 20, 28, 12, 44<,
822, 21, 23, 19, 27, 11, 43<, 823, 24, 22, 18, 26, 10, 42<,
824, 23, 21, 17, 25, 9, 41<, 825, 26, 28, 32, 24, 8, 40<, 826, 25, 27, 31, 23, 7, 39<,
827, 28, 26, 30, 22, 6, 38<, 828, 27, 25, 29, 21, 5, 37<, 829, 30, 32, 28, 20, 4, 36<,
830, 29, 31, 27, 19, 3, 35<, 831, 32, 30, 26, 18, 2, 34<, 832, 31, 29, 25, 17, 1, 33<,
833, 34, 36, 40, 48, 64, 32<, 834, 33, 35, 39, 47, 63, 31<,
835, 36, 34, 38, 46, 62, 30<, 836, 35, 33, 37, 45, 61, 29<,
837, 38, 40, 36, 44, 60, 28<, 838, 37, 39, 35, 43, 59, 27<,
839, 40, 38, 34, 42, 58, 26<, 840, 39, 37, 33, 41, 57, 25<,
841, 42, 44, 48, 40, 56, 24<, 842, 41, 43, 47, 39, 55, 23<,
843, 44, 42, 46, 38, 54, 22<, 844, 43, 41, 45, 37, 53, 21<,
845, 46, 48, 44, 36, 52, 20<, 846, 45, 47, 43, 35, 51, 19<,
847, 48, 46, 42, 34, 50, 18<, 848, 47, 45, 41, 33, 49, 17<,
849, 50, 52, 56, 64, 48, 16<, 850, 49, 51, 55, 63, 47, 15<,
851, 52, 50, 54, 62, 46, 14<, 852, 51, 49, 53, 61, 45, 13<,
853, 54, 56, 52, 60, 44, 12<, 854, 53, 55, 51, 59, 43, 11<,
855, 56, 54, 50, 58, 42, 10<, 856, 55, 53, 49, 57, 41, 9<,
857, 58, 60, 64, 56, 40, 8<, 858, 57, 59, 63, 55, 39, 7<, 859, 60, 58, 62, 54, 38, 6<,
860, 59, 57, 61, 53, 37, 5<, 861, 62, 64, 60, 52, 36, 4<, 862, 61, 63, 59, 51, 35, 3<,
863, 64, 62, 58, 50, 34, 2<, 864, 63, 61, 57, 49, 33, 1<<;

Union@Flatten@subsetsDD � Range@64D

True

To cast this as a standard knapsack problem we first transform our set of subsets into a  "bit vector" represen−
tation; each subset is represented by a positional list of zeros and ones. We will show the first such bit vector.

densevec@spvec_, len_D := Module@8vec = Table@0, 8len<D<,
Do@vec@@spvec@@jDDDD = 1, 8j, Length@spvecD<D;
vecD

mat = Map@densevec@ð, 64D &, subsetsD;
mat@@1DD
81, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1<

To form a knapsack problem, the idea is to add component−wise as few bitvectors as possible, subject to the
constraint  that  each component  sum be greater than zero (indicating we have "covered" that  position).  We
remark that this example is in a sense harder than might otherwise be the case due to the presence of inequali−
ties. This also provides a clue that it might be wise to employ discrete optimization methods. We thus code it
as such and use the Mathematica function NMinimize in order to solve it.
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spanningSets@set_, iter_, sp_, seed_, cp_: .5D :=
Module@8vars, rnges, max= Length@setD, nmin, vals<,
vars = Array@xx, maxD; rnges = Map@H0 £ ð £ 1L &, varsD;
8nmin, vals< = NMinimize@8Apply@Plus, varsD, Join@rnges,

8Element@vars, IntegersD<, Thread@vars.set ³ Table@1, 8max<DDD<,
vars, MaxIterations ® iter, Method ® 8DifferentialEvolution ,

CrossProbability ® cp, SearchPoints ® sp, RandomSeed ® seed<D;
vals = vars �. vals;
8nmin, vals<D

8min, sets< = spanningSets@mat, 2000, 100, 0, .9D
812., 80, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1<<

Information regarding NMinimize and in particular the selection and setting of its various options, may be
found in advanced documentation for Mathematica,  or in [Champion 2002].  The fascinating engine behind
the  optimizer  utilized  in  the  example  above  is  described  in  [Price  and  Storn  1997].  While  it  is  primarily
intended for continuous optimization, one lesson we learn here is that applications of evolutionary methods
can themselves evolve.  Several related discrete optimization examples are attacked using this functionality
in [Lichtblau 2002b] where further mention is made of option settings for NMinimize appropriate for such
problems.  In  that  article  we  also  show  a  very  different  way  to  approach  this  particular  example  using
NMinimize.

8. In search of those elusive Keith numbers

Keith numbers are defined as follows. Suppose we are given a number s of n digits (we work in base 10, but
these can be defined with respect to arbitrary bases). Form a sequence in Fibonacci style as follows. The first

n elements are the digits themselves. The Hn+ 1Lth  element is the sum of the first n digits. Subsequent ele−
ments are the sums of the preceding n elements. Then s is called a Keith number (for Mike Keith, who first
discussed  these),  if  it  appears  in  this  sequence.  For  example,  the  sequence  for  197  is
81, 9, 7, 17, 33, 57, 107, 197, ...< and so 197 is a Keith number.  Keith originally referred to these as repfig−
its, for "replicating Fibonacci digits".

Keith numbers tend to be quite rare (there are only 71 of them below 1019), and known methods for finding
them, while flawless (in the sense that they find all of them), are limited in range due to algorithmic complex−
ity and memory requirements. At the time the present work was begun the state of the art, from [Keith 1998],
was that all  such numbers up to 19 digits had been found but no larger ones were known. We will  remedy
that situation.

We begin with some background remarks on the nature of  two methods on which we have relied thus far.
One,  lattice  reduction,  can  be  used  to  find  small  integer  solutions  to  diophantine  linear  problems.  It  is
particularly useful  for  finding small  null  vectors to  a  given homogeneous integer equation.  The other  tool,
differential evolution, can frequently enforce "reasonable" linear inequality constraints if provided with input
that is not too far from satisfying the constraints, especially when that input contains small components and
the constraints are directly influenced by (integer) perturbations in the optimization variables. Both methods
in a sense form new vectors from old by their respective means of recombination. The fact that one tries to
find small  things,  and the other can more readily impose constraints on sets comprised of  small  values (as
well as the fact that we discuss them together in this section), suggests that it might be profitable to use the
two methods in tandem. That is exactly what we will do.

To begin we must find equations to describe these things. If the digits are 8d0, d1, ..., dn-1< then the number

is Új=0
n-1dj 10n-1- j . Meanwhile we form the sequence using a Fibonacci matrix of dimension n. This is simply

a matrix that, when operating on a vector, replaces each element up to the last by its successor, and replaces

the last by the sum of the elements. For n= 2 this is simply 
0 1

1 1
. For, say, n= 4, it is 

0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1

.
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If we multiply this matrix by itself k- 1 times then the dot product of the bottom row with the digit sequence

will  give  the  Hn+ kLth  term  in  the  sequence.  Some  simple  inequality  considerations  will  give  fairly  tight
bounds  on  how many  such  multiples  can  possibly  work  for  a  given  number  of  digits  n.  We will  use  each
possibility to form a homogeneous linear diophantine equation (that is, the sum will be zero). For efficiency,
in the actual code we take advantage of the structure of the matrix to avoid forming explicit matrix products.

keithEquations@len_Integer �; len > 0D :=
Module@8matrow, n, list, res, vecs<,
res = list@D;
Do@
matrow@jD = Table@KroneckerDelta@k, j+ 1D, 8k, len<D, 8j, len- 1<D;

matrow@lenD = Table@1, 8len<D;
n = len;
While@9 * Apply@Plus, matrow@nDD < 10^Hlen - 1L, n++;
matrow@nD = Sum@matrow@kD, 8k, n- len, n- 1<D;D;

While@First@matrow@nDD £ 10^Hlen - 1L, res = list@res, matrow@nDD;
n++;
matrow@nD = Sum@matrow@kD, 8k, n- len, n- 1<D;D;

vecs = Apply@List, Flatten@res, Infinity, listDD;
Map@Hð - 10^Range@len - 1, 0, -1DL &, vecsDD

Next we need to solve such systems. This is really just an integer null space computation. For convenience
we strip down code from [Lichtblau 2003b].

integerNullSpace@vec :8_Integer ..<D := Module@8mat, hnf<,
mat = Transpose@Join@8vec<, IdentityMatrix@Length@vecDDDD;
hnf = Last@Developer‘HermiteNormalForm@matDD;
LatticeReduce@Map@Drop@ð, 1D &, Drop@hnf, 1DDD
D

We demonstrate with a short example. We start by obtaining the set of candidate equation vectors for 5 digit
examples.

k5 = keithEquations@5D;
We find the small null vectors for one of these candidates.

nulls@5, 2D = integerNullSpace@k5@@4DDD

88-3, -1, -3, -3, -1<, 8-2, -4, -3, 3, -3<,
81, 6, -5, 6, -2<, 87, -3, -15, 5, 26<<

Notice that for any solution vector, its negative is also a solution vector. Thus we see that 31 331 is a Keith
number of five digits. That was not too difficult. We now look at examples with 6 digits.

k6 = keithEquations@6D;
We find the small null vectors for one of these candidates.

nulls@6, 2D = integerNullSpace@k6@@2DDD

880, 3, -3, 0, 4, 0<, 8-1, 1, -3, -2, -4, -4<,
80, -6, -3, 1, 0, -2<, 80, -1, 1, 5, 0, -6<, 80, 4, -12, 15, -12, 9<<

We  arrive  at  a  set  of  small  null  vectors,  none  of  which  have  entirely  nonnegative  or  entirely  nonpositive
values (with the first being nonzero, in order that they give a legitimate six digit  number). It  turns out that
this will be the case for all possible equations given by k6. We now need a way to recombine these so that
the first component is positive and the rest are nonnegative. This job can be tackled by differential evolution
with integer variables. The idea is quite simple.  For each null  vector we create an integer−valued variable.
We allow arbitrary linear combinations of these vectors subject to the constraints that all  resulting compo−
nents be nonnegative, and the first be positive. Since this is a constraint satisfaction problem we can either
use a constant objective function or else use some function that would have the effect of imposing a penalty
on combinations that violate the constraints. As the NMinimize constraint handler already do this, we will
opt  for the former (actually,  since the zero vector is  close to satisfying the constraints, one should perhaps
add emphasis to the constraint that the first value is nonzero). The code for this is below.
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keithSolution@nulls_, iters_: AutomaticD :=
Module@8len = Length@nullsD, vars, x, vec,

constraints , program, min, vals<, vars = Array@x, lenD;
vec = vars.nulls;
constraints = Join@8Element@vars, IntegersD, 1 £ First@vecD £ 9<,

Map@0 £ ð £ 9 &, Rest@vecDDD;
program = 81, constraints<;
8min, vals< = NMinimize@program , vars, MaxIterations® itersD;
vec �. valsD

keithSolution@nulls@6, 2DD

81, 4, 7, 6, 4, 0<
We note from [Keith 1998] that 147 640 is in fact in the list. Now we will try for something more ambitious.
As there are no known Keith numbers of 20 digits, we will attempt to find one.

k20 = keithEquations@20D;
nulls@20, 3D = integerNullSpace@k20@@3DDD;
Timing@keithSolution@nulls@20, 3D, 200DD

~
NMinimize::incst : NMinimize was unable to generate

any initial points satisfying the inequality constraints
8-2 Round@x$1808@2DD + Round@x$1808@3DD + 3 Round@x$1808@4DD + 2 Round@x$1808@

5DD +�4�+ Round@x$1808@10DD - 2 Round@x$1808@11DD - 4 Round@x$1808@
12DD +�5�£ 0, �10�<. The initial region specified

may not contain any feasible points. Changing the initial region
or specifying explicit initial points may provide a better solution.

846.29 Second, 82, 7, 8, 4, 7, 6, 5, 2, 5, 7, 7, 9, 0, 5, 7, 9, 3, 4, 1, 3<<
We have found the first known example of a 20 digit Keith number (hooray for us!). It is, moreover, the first
pandigital  example  (that  is,  containing  all  10  digits).  The  warning  message  tells  us,  not  surprisingly,  that
none of  the initial  combinations satisfied the constraints. Letting differential evolution work its magic over
the course of 200 generations sufficed to overcome that defect.

We check that  this  is  in  fact  a  Keith  number.  The code below will  bracket the original  value with  the last
value  in  the  sequence  that  is  strictly  less,  and  its  successor.  We  have  a  Keith  number  if  and  only  if  that
successor is the original value. We code this to take a list of digits as input.

f@list_D := Append@Rest@listD, Apply@Plus, listDD
knumsums@list_D := With@8val = FromDigits@listD<,

Take@NestWhile@f, list, Last@ðD < val &D, -2DD
knum@list_D := Last@knumsums@listDD === FromDigits@listD
knum@82, 7, 8, 4, 7, 6, 5, 2, 5, 7, 7, 9, 0, 5, 7, 9, 3, 4, 1, 3<D
True

Utilizing a clever search algorithm that relies on large tables, Mike Keith found all examples up to 19 digits
using  about  500  hours  of  computation  time  with  hardware of  mid−to−late  1990’s  vintage.  To  be  fair  in  a
comparison, the method we show above is by no means guaranteed to work. It just happens to do a nice job,
and  in  the  example  above  required no  tuning  beyond  setting  the  MaxIterations  (though  possibly  other
option tuning would make it  more effective).  But clearly it  is much faster than the direct search and by no
means requires much memory.

A  tentative  conclusion  is  that  for  some types  of  knapsack  problem,  the  tandem of  lattice  and  optimization
tools can be quite powerful. Actually the scenario is not quite so nice. It turns out that the method above got
fairly  lucky  with  the  example  we  did.  With  substantial  work  one  can  get  another  such  set  of  20  digits:
81, 2, 7, 6, 3, 3, 1, 4, 4, 7, 9, 4, 6, 1, 3, 8, 4, 2, 7, 9<.  This  uses  the  second  rather  than  third  of  the
candidate equations.  So we can regard this  approach as something that  will  sometimes work, perhaps after
substantial  tuning,  and  more importantly  it  provides evidence to  the  effect  that  lattice  reduction in  tandem
with integer programming methods can be a powerful combination for attacking knapsack problems.

Even  alone,  lattice  methods  can  find  sporadic  large  Keith  numbers.  For  example,  in  the  code  below  we
borrow a method from [Schnorr and Euchner 1991] to improve our chances of getting a valid result from the
lattice reduction step. The idea is to augment each null vector with a zero, and augment the lattice with a row
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lattice reduction step. The idea is to augment each null vector with a zero, and augment the lattice with a row

consisting of some nonzero value (typically one) in the new column of zeros, and 
9

2
 everywhere else. Thus if

there is a valid solution then in this augmented lattice contains the vector consisting of that nonzero value (or

its negative) and the remaining entries in the range 9- 9

2
,

9

2
=. As this would be a fairly "small" vector, one can

hope that it  will  appear in the reduced basis (this is essentially the idea used by Schnorr and Euchner, in a
binary setting, to raise the density at which one can hope to solve subset sum problems). In practice we get a
few Keith numbers this way, as well as a larger number of near misses.

integerNullSpace2@origvec :8_Integer ..<D :=
Module@8vec, mat, hnf, red, vecs, m<, vec = origvec;
mat = Transpose@Join@8vec<, IdentityMatrix@Length@vecDDDD;
hnf = Drop@Last@Developer‘HermiteNormalForm@matDD, 1D;
vec = Table@-9 � 2, 8Length@vecD + 1<D;
vec@@1DD = 1;
hnf = LatticeReduce@hnfD;
hnf = Prepend@hnf, vecD;
red = LatticeReduce@hnfD;
vecs = Cases@red, 81 -1, ___<D;
vecs = Map@Rest@ð � Sign@First@ðDDD &, vecsD;
vecs + 9 � 2
D

Using this code we found the following digit lists for Keith numbers.

87, 6, 5, 7, 2, 3, 0, 8, 8, 2, 2, 5, 9, 5, 4, 8, 7, 2, 3, 5, 9, 3<
82, 6, 8, 4, 2, 9, 9, 4, 4, 2, 2, 6, 3, 7, 1, 1, 2, 5, 2, 3, 3, 3, 7<
82, 2, 9, 1, 4, 6, 4, 1, 3, 1, 3, 6, 5, 8, 5, 5, 5, 8, 4, 6, 1, 2, 2, 7<
81, 8, 3, 5, 4, 9, 7, 2, 5, 8, 5, 2, 2, 5, 3, 5, 8, 0, 6, 7, 7, 1, 8, 2, 6, 6<

of 22,  23,  24, and 26 digits respectively. The last is again pandigital.

As a side remark, one might well wonder what is the probability that a number of ndigits is pandigital. the
code below will compute it via recursion.

p@n_, 1D = H1 � 10L^Hn - 1L;
p@10, 10D = 10! � 10^10;
p@n_, j_D �; j > n = 0;
p@n_, j_D �; j £ 10 :=
p@n, jD = Hj � 10L * p@n - 1, jD + H10 - j + 1L � 10 * p@n - 1, j- 1D

It turns out that for 20 or 26 digits the probabilities are about 21% and 48% respectively.

N@8p@20, 10D, p@26, 10D<D

80.214737, 0.478985<

9. Set covering via branch−and−bound
The method we showed above for handling the set cover uses a heuristic sort of integer programming based
on the DifferentialEvolution  method of NMinimize.  While this is useful,  it  would be nice to have
the capability to search for solutions in a way that is more exhaustive and guaranteed to find at least one if it
exists.  This  can be  attained by  the  "branch−and−bound"  method of  implicitly  enumerating through a  con−
strained linear problem. The method is discussed in [Schrijver 1986]. We give a brief synopsis below.

The  idea  is  to  solve  what  are  termed  relaxations  of  the  problem  wherein  integrality  is  not  enforced  but
inequality constraints are in use. For any solution one looks for noninteger parts. If all are integer the solution
is fine. Otherwise one takes, say, the first coordinate that is not an integer and spawns a pair of new prob−
lems, one constraining the corresponding variable to be less or equal to the floor of the value in the solution,
and the other constraining it to be greater or equal to the ceiling of that value. This is the "branching". The
"bounding" part comes once we obtain solutions that are integer valued. We evaluate the objective function
and  now  can  ignore  all  spawned  relaxed  problems  for  which  the  evaluation  of  the  objective  function  is
greater, as these can only get worse when integrality is enforced. Note that this approach is also useful  for
what  are referred to  as mixed problems, wherein some but  not  all  variables may be constrained to  take on
integer values. One simply branches only on those so constrained.
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The  code  below  is  tailored  for  the  set  partition  problem  previously  discussed.  We  keep  a  counter  of  the
number of  times we actually  solve  a  linear  programming problem. For  simplicity  we use NMinimize  but
one  might  avoid  preprocessing  and  thus  obtain  greater  speed  by  setting  up  a  direct  call  to
LinearProgramming.  Also  we  provide  for  the  possibility  that  one  might  know  in  advance  roughly  the
minimum value, and hence more quickly discard subproblems (and candidate solutions) that will eventually
turn out  to be suboptimal.  We also set  up the code in such a way as to stop once we have found some set
number of solutions beneath the given bound. Even without this it is quite possible that the code above may
miss some solutions (though it is not too hand to alter in such a way as to find all possible solutions). As is, it
will find many, and perhaps most.

setCover@vecs_, startmin_: 0, maxsols_: InfinityD :=
Module@8len = Length@vecsD, x, vars, c1, c2, program, min, vals, stack,

counter = 0, tmp, solns = 8<, mylist, obj, constraints , numsols= 0<,
min = If@startmin � 0, Length@vecsD, startminD;
vars = Array@x, lenD;
c1 = Join@Map@GreaterEqual@ð, 0D &, varsD,

Map@LessEqual@ð, 1D &, varsDD;
c2 = Map@GreaterEqual@ð, 1D &, Apply@Plus, vars* vecsDD;
obj = Apply@Plus, varsD;
program = 8obj, Join@c1, c2D, min<;
stack = 8program,8<<;
While@stack =!= 8<,
program = First@stackD; stack = Last@stackD;
If@Last@programD > min, Continue@DD;
counter++; program = Drop@program,-1D;
Internal‘DeactivateMessages@
soln = NMinimize@program, varsD, NMinimize ::"nsol"D;

If@! FreeQ@soln, IndeterminateD, Continue@DD;
8tmp, soln< = soln; If@tmp > min, Continue@DD;
soln = Chop@vars �. solnD;
badpos = Position@soln,
Ha_ �; Chop@a - Round@aDD =!= 0L, 81<, 1, Heads ® FalseD;

If@badpos � 8<,
If@tmp < min, solns = 8<; min = tmp; numsols = 0D;
numsols++; solns = 8Apply@mylist, solnD, solns<;
If@startmin ¹ 0 && numsols � maxsols, Break@DD;
,
badpos = badpos@@1, 1DD; constraints = Last@programD;
stack =
88obj, Append@constraints , vars@@badposDD � 0D, tmp<, stack<;

stack = 88obj, Append@constraints , vars@@badposDD � 1D, tmp<,
stack<;D;D;

8numsols, counter, Flatten@solns, InfinityD �. mylist ® List<D
We use this to find several solution to the set covering problem in question. We will use the knowledge that
solutions have length 12 in order to gain a speed advantage.
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Timing@Round@setCover@mat, 12.1, 10DDD

8156.11 Second,
810, 166, 881, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0<,
81, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1<,
81, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0<,
81, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0<,
81, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,
0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0<,
81, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0<,
81, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0,
0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0<,
81, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0<,
81, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0<,
81, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0<<<<

One will observe that the speed for this problem is quite reasonable. This is due in large part to the power of
bounding relaxed problems, so we can avoid many of them. It takes about eight hours on the same machine
to find all solutions (there are 1875 in total), and over 30 000 linear subproblems are solved in the effort.

Note that our use of a stack is naive in the case where we do not know in advance a good upper bound on the
objective function. One can attempt to make faster initial  progress with a priority queue (also known as an
ordered heap) [Aho, Hopcroft, and Ullman 1974]. The idea is to inspect subproblem relaxations ordered by
objective  function  values,  hence  looking  earlier  at  more  promising  candidates.  A  simple  Mathematica
implementation  of  this  data  structure,  along  with  some  applications,  is  discussed  in  [Lichtblau  2003a].
Another reason to proceed by objective function values is to rule out more quickly any possibility of solu−
tions  of  low  values.  For  example,  our  problem  above  has  a  lower  bound  for  the  relaxation  of  something
under 11. This means the problem with integer constraints might have a solution of size 11. Early exploration
of relaxations with lower objective function values will tend to show relatively soon that the actual solutions
must have size 12 or larger.  If we do not do this then generally we must try more possibilities before we can
rule out smaller solution sets.

We should point out that a variety of related problems of modest size can be handled in an essentially similar
manner. For example, the travelling salesman problem on n cities, and variants thereof, may be set up as a
0 −1 problem with variables xj,k  for each pair 8 j, k<  of  cities. We interpret xj,k = 1to  mean there is a direct

path in the tour from city j to city k. One has the obvious restrictions that
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xj, j = 0 for all 1£ j £ n
0£ xj,k £ 1 for all 1£ 8 j, k< £ n

â
j=1

n

xj,k = 1 for all 1£ j £ n

â
k=1

n

xj,k = 1 for all 1£ k£ n

These, coupled with the 0 −1 integrality condition, force any solution to be a permutation of the cities (e.g.
one path leads into each city and another leads out). They do not impose that it be a tour, so such a solution
might in fact have nontrivial cycles. The tour condition may be enforced in various ways. One is to make it a
branching condition. That is, for any integer solution we check for cycles and, if present, add new conditions
and  spawn  subproblems  accordingly.  A  simpler  approach  is  given  in  [Dantzig  1963,  26−3]  and  is  there
attributed to  A.  W.  Tucker.  For 2£ j £ n we add variables uj  and constraints uj - uk + n xj,k £ n- 1 for  all

pairs 1£ 8 j, k< £ n. It can be shown that this suffices to enforce that all solutions be tours, and moreover that
no actual tours are excluded from consideration.

Again, one can improve the method we indicate using heuristics to speed the process such as starting with a
known value near the minimum (to make pruning faster). That said, for combinatorial problems involving n

entities we have OIn2M variables and a comparable number of constraints. Beyond modest size one is gener−
ally  better  off  applying  heuristic  (or,  in  some  cases,  deterministic)  methods  dedicated  to  combinatorial
optimization.

10. A logic puzzle with 0 −1 inequality constraints
This next example illustrates a type of popular logic puzzle often found in supermarket and airport publica−
tions. This one is called "Dinner on the run" [Hannagan 2004]; I cribbed it from my son’s puzzle magazine.
A description of the problem is as follows. Five men order five sandwiches from Max’s Deli, such that each
has a  distinct  fillings,  toppings,  spreads,  and breads.  Further clues  are as  below,  and we are to  deduce the
components  of  each  person’s  sandwich.  We  follow  customary  rules  of  interpretation  of  such  puzzles,  e.g.
"Neither the sandwich with cheese nor the one with mayo was on white bread" means, among other things,
that the cheese and mayo sandwiches are themselves distinct.

(1) One filling is salami.  One topping is tomatoes. One spread is butter. One bread is pumpernickel. Frank
placed the order.
(2) Regardless of order, Max refuses to put mustard or ketchup on tuna salad, or onions on turkey.
(3) Tim does not like onions.
(4) The roast beef was not on rye, and did not contain pickles.
(5) The tuna salad was not on seven−grain bread.
(6) Neither tuna salad nor sandwhich with lettuce was spread with mayo.
(7) The turkey, which was on whole wheat, did not have mustard.
(8) The sandwich with lettuce did not have mustard.
(9) Neither Nick nor the person requesting ketchup and onions used white bread.
(10) The ham sandwich had neither pickes nor onions.
(11) The sandwich with pickles did not have mayo.
(12) Jim did not order relish.
(13) The sandwich with lettuce did not have relish.
(14) The sandwich with cheese did not have mustard. Moreover it did not go to Tim.
(15) Neither the sandwich with cheese nor the one with mayo was on white bread.
(16) Elmer does not eat rye bread.
(17) Tim did not order his with whole wheat bread.
(18) The sandwich with whole wheat did not have mayo.
(19) Nick did not order tuna salad.
(20) Jim did not order seven−grain bread.
(21) Neither Jim nor Nick used lettuce.
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We first use the information just to figure out the five items in each of five categories. The men are Frank,
Jim, Nick, Tim, and Elmer. The fillings are salami, tuna salad, turkey, ham, and roast beef. The toppings are
tomatoes,  lettuce,  onions,  cheese,  and  pickles.  The  spreads are  butter,  ketchup,  mustard,  mayo,  and  relish.
The  breads  are  pumpernickel,  seven−grain,  white,  rye,  and  wheat.  Note  that  this  preprocessing  step  is  in
itself a bit of a challenge. (Is relish a topping or spread? Is cheese a filling or topping?)

As there are a scant H5!L4 possibilities we could, with some work, do a brute force search. A better approach
would be the enumerate−and−prune method used in  [Trott  1999].  But  we will  use a  constraint  satisfaction
approach via linear programming as we believe it is instructive to demonstrate handling of inequations in this
setting.

Conceptually,  we arbitrarily number the men Frank= 1, ..., Elmer= 5.  We create variables for  each of  the
categories: filling, top, spread, and bread. For each such variable we create subvariables, one per sandwich
number. These must be zero or one and sum to one. For example, we will have the equation

â
j=1

5

mayo@jD = 1

Moreover we have transposes of the above type of equation. That is, we know the sum of all subvariables for
a particular sandwich and category must be also be one. For example, we have

mayo@1D + ketchup@1D + mustard@1D + relish@1D + butter@1D = 1
We furthermore have equations relating the basic variables to their corresponding subvariables, such as

mayo = mayo@1D + 2 mayo@2D + 3 mayo@3D + 4 mayo@4D + 5 mayo@5D
For efficiency we only work with the knapsack variables, using tactics equivalent to these above equations at
the end to put the solution into a reasonable form.

Finally  we have all  the  inequations and the handful  of  equations implied by  the 21 rules above.  These we
handle as follows. From rule 7, say, we know that turkey = wheat. This means we equate all the corre−
sponding  subvariables.  From  rule  11  we  know  that  pickles ¹ mayo.  Some  reflection  shows  that  this
equivalent  to  the  set  of  subvariable  inequalities  mayo@jD + pickles@jD £ 1  for  1£ j £ 5.  When  we
equate a pair of items, e.g. turkey and wheat, we realize that by equating each pair of their five subvariables
we can remove one. Similarly observe that, for example, Jim did not take lettuce, so we have an equation for
the variable representing lettuce used by Jim (it is zero). Again we can remove it from further consideration
after we use it  to simplify  whatever constraints contained that  variable. Use of  such equations as means to
remove  variables  and  constraints  tends  to  make  the  computation  much  faster.  In  this  case  it  gave  a  speed
improvement by a factor of 10.

The  code  below  will  quit  after  finding  one  valid  solution.  We  are  trusting  that  the  author  used  adequate
conditions to ensure that a solution exists and is unique (which is in fact the case). As in previous examples
we see that it is not hard to modify the code to allow for other possibilities.

findSandwiches@D :=
Module@8consumers , fills, tops, spreads, breads, frank, jim, nick, tim,

elmer, salami, tuna, turkey, ham, roastbeef , tomatoes, lettuce,
onions, cheese, pickles, butter, ketchup, mustard, mayo, relish,
pumpernickel , sevengrain , white, rye, wheat, fillvars, topvars,
spreadvars , breadvars , varlists, all01vars , pv, prodvars,
constraints1 , constraints2 , constraints3 , constraints4 ,
constraints , vars, program, stack, soln, soln01, badpos,
counter = 0, eps = 10^H-6L, names, suffix, partsoln, psvars<,

consumers = 8frank, jim, nick, tim, elmer<;
fills = 8salami, tuna, turkey, ham, roastbeef<;
tops = 8tomatoes, lettuce, onions, cheese, pickles<;
spreads = 8butter, ketchup, mustard, mayo, relish<;
breads = 8pumpernickel , sevengrain , white, rye, wheat<;
fillvars = Outer@ð1@ð2D &, fills, consumersD;
topvars = Outer@ð1@ð2D &, tops, consumersD;
spreadvars = Outer@ð1@ð2D &, spreads, consumersD;

;
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spreadvars = Outer@ð1@ð2D &, spreads, consumersD;
breadvars = Outer@ð1@ð2D &, breads, consumersD;
varlists = 8fillvars, topvars, spreadvars , breadvars<;
all01vars = Flatten@varlistsD;
constraints1 = Map@0 £ ð £ 1 &, all01varsD;
constraints2 = Map@Apply@Plus, ðD � 1 &,
8fillvars, topvars, spreadvars , breadvars<, 82<D;

constraints3 = Map@Apply@Plus, ðD � 1 &,
Map@Transpose ,8fillvars, topvars, spreadvars , breadvars<D, 82<D;

ineq@v1_, v2_, v3__D := 8ineq@v1, v2D, ineq@v1, v3D, ineq@v2, v3D<;
ineq@v1_, v2_D := Map@v1@ðD + v2@ðD £ 1 &, consumersD;
eq@v1_, v2_D := Map@v1@ðD � v2@ðD &, consumersD;
constraints4 =
8ineq@mustard, tunaD, ineq@ketchup, tunaD, ineq@onions, turkeyD,
ineq@roastbeef , ryeD, ineq@roastbeef , picklesD,
ineq@tuna, sevengrainD, ineq@tuna, lettuce, mayoD,
ineq@turkey, mustardD, ineq@mustard, lettuceD,
ineq@ketchup, whiteD, ineq@ham, picklesD, ineq@ham, onionsD,
ineq@pickles, mayoD, ineq@lettuce, relishD, ineq@cheese, mustardD,
ineq@cheese, mayo, whiteD, ineq@mayo, wheatD<;

constraints = Flatten@
Join@constraints1 , constraints2 , constraints3 , constraints4DD;

partsoln = Flatten@8eq@turkey, wheatD, eq@ketchup, onionsD,
onions@timD � 0, rye@elmerD � 0, wheat@timD � 0, white@nickD � 0,
onions@nickD � 0, relish@jimD � 0, cheese@timD � 0, tuna@nickD � 0,
sevengrain@jimD � 0, lettuce@jimD � 0, lettuce@nickD � 0<D;

psvars = Map@First, partsolnD;
partsoln = partsoln �. Equal ® Rule;

constraints = constraints ��. partsoln �.
8True ® Sequence@D, HHaa_ �; Head@aaD =!= PlusL £ 1L ® Sequence@D<;

all01vars = Complement@all01vars , psvarsD;
program = constraints ;
stack = 8program,8<<;
While@stack =!= 8<,
counter++; program = stack@@1DD; stack = stack@@2DD;
Internal‘DeactivateMessages@
soln = NMinimize@81, program<, all01varsDD;

If@! FreeQ@soln, IndeterminateD, Continue@DD;
soln = Chop@soln@@2DD, epsD;
soln01 = all01vars �. soln;
badpos = Position@soln01,
Haa_ �; Chop@aa - Round@aaD, epsD =!= 0L, 81<, 1, Heads ® FalseD;

If@badpos � 8<,
partsoln = partsoln �. soln;
soln = Join@soln, partsolnD;
soln = Split@Sort@Hsoln �. aa_?NumberQ ¦ Round@aaDL �.

8HoldPattern@_ ® 0D ¦ Sequence@D, HoldPattern@hh_@bb_D ® 1D ¦
bb � hh, HoldPattern@Rule@_, bb_ �; Not@NumberQ@bbDDDD ¦
Sequence@D<D, ð1@@1DD === ð2@@1DD &D;

names = Map@ð@@1, 1DD &, solnD;
soln = MapThread@Prepend,8soln �. aa_ � bb_ ¦ bb, names<D;
soln = Map@ToString, soln,82<D;
suffix = soln@@1, 1DD;
suffix =
StringDrop@suffix, StringPosition@suffix, "$"D@@1, 1DD - 1D;

soln = Map@StringReplace@ð, suffix ® ""D &, soln, 82<D;
Break@D,
badpos = badpos@@1, 1DD;
stack = 8Append@program, all01vars@@badposDD � 0D, stack<;

;
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stack = 8Append@program, all01vars@@badposDD � 0D, stack<;
stack = 8Append@program, all01vars@@badposDD � 1D, stack<;
D;
D;
8counter, soln<
D

SetOptions@LinearProgramming , Method® InteriorPointD;

Timing@orders = findSandwiches@DD

80.95606 Second,
833, 88elmer, butter, lettuce, turkey, wheat<, 8frank, cheese, relish,

rye, tuna<, 8jim, ketchup, onions, pumpernickel, roastbeef<,
8nick, ham, mayo, sevengrain, tomatoes<,
8tim, mustard, pickles, salami, white<<<<

11. Keith numbers via branch−and−cut
One might wonder whether this branching method using relaxed linear problems might be help in the Keith
number problem. In that case we deal with simple constraint satisfaction and there is no objective function
per se;  hence the bounding aspect  is  not  of  use.  A first attempt similar to the code above took tremendous
effort  to  handle  even 6 digits.  The problem is  that  the variables can take on fractional  values in  ways that
combine to make most but not all of the constraints integer valued. Branching on the vector (that is, the digit)
values is thus a slow process because this persists even after many such constraints have been added.

What  turns out  to  work well  is  to  branch on the  variables themselves.  We know that  solutions  arise when
they are integer valued.  Forcing them away from fractional  values tends to  take us to  actual  solutions in  a
fairly efficient manner. A bare−bones implementation revealed that this works reasonably well although, not
surprisingly,  it  exhibits  exponential  behavior.  Specifically  it  takes  approximately  twice  as  long  for  each
increase by one digit. The output reveals that the number of subproblems for which a relaxation was solved
is small compared to the total size of the search space.

This method is quite similar to one employed in [Aardal and Lenstra 2002] for solving an ILP known as the
Frobenius instance problem. Their work has a simple but important refinement. In the setting of a branching
algorithm it is as follows. We order the null vectors by decreasing norm and branch on the first one encoun−
tered with noninteger coefficient. The idea, roughly, is that this tends to move us more quickly through the
polytope  corresponding  to  the  relaxed  LP,  by  forcing  us  first  to  take  directions  in  which  that  polytope  is
thinner. (More technically, the polytope is likely to intersect fewer hyperplanes orthogonal to larger direction
vectors  and  spaced  by  integral  multiples  of  those  vectors.)  For  difficult  Frobenius  instance  problems  one
lattice vector will be significantly larger than the rest and this reordering is crucial. For finding Keith num−
bers typically the vector lengths in the lattice spans a factor of two or so. In such cases we do not see tremen−
dous improvement but experiments indicate the advantage may be as much as a factor of two or more.

The picture below may give some idea of why this vector norm based branching is a good idea. The "bad"
directions 8b1, b2< can cause us to wander in the triangle (imagine it to be longer but not wider), whereas we
can  quickly  learn  that  not  many  integer  multiples  of  the  good  direction  c2  (which  comes  from  the  lattice
reduction of 8b1, b2<) will stay inside it.
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 Among other possible ways to improve speed we mention the following.
è Use LinearProgramming directly (as mentioned earlier for set covering). Possibly this should be done
with nondefault option settings.
è Use the dual simplex method on the relaxed problems after adding new constraints. It can be started at the
previous LP solution and hence might be expected to finish faster than an LP begun from scratch.
è  Use  other  methods  to  spawn more subproblem constraints.  This  might  be  done,  say,  with  cutting  planes
(see  [Schrijver  1986]).  For  example  we  can  use  relaxations  to  find  minimal  and  maximal  values  of  the
separate variables and then enforce integrality. That is, we take ceilings and floors to obtain what are often
tighter constraints.  This  in  turn may yield new restictions so iterating the process can give bounds that  are
tighter still.
è Use some basis vectors from integerNullSpace2 as they are often very close to solutions to the fully
constrained problem (as we saw, in a few cases they even are solutions). We would not want to have linear
dependencies as dimensional components of null vectors tend to make the branching difficult. So we would
need  to  augment  these  with  vectors  produced  by  integerNullSpace  in  such  a  way  as  to  generate  the
same  lattice.  One  could  check  the  Hermite  normal  form to  see  that  this  has  been  done  correctly.  In  some
preliminary experiments we obtained a factor of two or so improvement in speed by using a solution basis so
constructed.

The idea of utilizing cutting planes has appeal in part because we do not have a specific function to optimize.
This  being  the  case,  we  are  free  to  utilize  any  linear  function  of  the  variables.  For  example,we  could  the
values of those variables or their negatives, or small integer combinations of them. For each minimal value
obtained for such an objective function we might then add a constraint that in future the actual value be no
less than its ceiling. We show below a version that works reasonably well.  It  does several rounds of initial
cuts for all variables and then makes subsequent cuts based on extremal values of randomly chosen variables.
We note that,  as cutting methods go,  this  one is  naive.  So one might  hope for substantial  improvement by
more detailed analysis of the inequalities.

We also make small modification so that once a solution is found, further branching will be done as needed
until  all  solutions  have  been  obtained.  In  this  way  we  can  generate  all  solutions  for  such  numbers  of  a
specified size.
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keithSolutions@onulls_D :=
ModuleB:nulls, vars, x, len= Length@onullsD, vecs, constraints , program,

stack, soln, solns= 8<, badvar, varvals, val, counter= 1, var, extra,

maxs, mins, ctmp= 8<, bad = False, vnum, vval, eps=
1

105
, rndvar>,

nulls = Reverse@onullsPOrdering@Norm �� N@onullsDDTD;
vars = Array@x, lenD; vecs = vars.nulls;
constraints = Join@81 £ First@vecsD £ 9<, H0 £ ð1 £ 9 &L �� Rest@vecsDD;
Do@mins = Table@Internal‘DeactivateMessages@

val = NMinimize@8varsPjT, Join@constraints , ctmpD<, varsD;
If@Head@valD === NMinimize ÈÈ ! FreeQ@val, IndeterminateD, bad = True;
Break@DD; val = First@valD, NMinimize ::"nsol"D, 8j, len<D;

maxs = Table@Internal‘DeactivateMessages@
val = NMaximize@8varsPjT, Join@constraints , ctmpD<, varsD;
If@Head@valD === NMaximize ÈÈ ! FreeQ@val, IndeterminateD, bad = True;
Break@DD; val = First@valD, NMaximize ::"nsol"D, 8j, len<D; ctmp =

Join@Thread@vars £ Floor@maxs + epsDD, Thread@vars ³ Ceiling@mins - epsDDD;,
84<D; If@bad, Return@8counter, 8<<DD;

constraints = Join@constraints , ctmpD;
program = constraints ; stack= 8program, 8<<;
While@stack =!= 8<, counter++; program = stackP1T; stack = stackP2T;
rndvar = varsPRandomInteger@81, len<DT; program = 8rndvar, program<;
Internal‘DeactivateMessages@vals = NMinimize@program , varsD,
NMinimize ::"nsol"D; If@Head@valsD � NMinimize , Continue@DD;

vval = Ceiling@First@valsD - epsD; vals = Chop@valsP2TD;
soln = Chop@vecs �. valsD; If@! FreeQ@soln, IndeterminateD, Continue@DD;
constraints = programP2T; varvals = vars �. vals; badvar=
Position@varvals, a_�; Chop@a - Round@aDD =!= 0, 81<, 1, Heads® FalseD;

If@badvar � 8<, soln = Round@solnD; solns = 8soln, solns<;
Do@extra = Table@vecsPkT � solnPkT, 8k, j - 1<D;
stack = 8Join@constraints , Append@extra, vecsPjT £ solnPjT - 1DD, stack<;
stack = 8Join@constraints , Append@extra, vecsPjT ³ solnPjT + 1DD, stack<;,
8j, Length@solnD<D; Continue@DD;

badvar = badvarP1, 1T; var = varsPbadvarT; val = var �. vals;
stack = 8Join@constraints ,8rndvar ³ vval, var£ Floor@valD<D, stack<;
stack = 8Join@constraints ,8rndvar ³ vval, var³ Ceiling@valD<D, stack<;D;
8counter, Partition@Flatten@solnsD, Length@First@nullsDDD<F

The  function  above  returns all  solutions  for  a  candidate  Keith  number  equation,  as  well  as  the  number  of
linear programs that were actually solved (after the initial ones used to find cuts). We used this code to find
all Keith numbers up to 23 digits. We first find the appropriate sets of integer equations along with spanning
sets of solutions that do not in general satisfy the digit constraints.

Do@
keqns@jD = keithEquations@jD;
Do@vecs = integerNullSpace@keqns@jD@@kDDD;
nulls@j, kD = Reverse@vecs@@Ordering@Map@Norm, N@vecsDDDDDD,
8k, Length@keqns@jDD<D,
8j, 2, 23<
D;

Now we solve these. For brevity the full output will not be shown.

Timing@knums = Table@Print@"digits ", jD;
Print@Timing@digits = Table@

8j, k, First@Timing@knumlist = keithSolutions@nulls@j, kDD;DD,
knumlist<, 8k, Length@keqns@jDD<DDD; digits,8j, 2, 23<DD
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Here  are  all  the  Keith  numbers  between  20 and  23 digits.  Note  that  some  had  not  been  found  using  the
heuristic  methods  from the  earlier  section.  The  total  run time  was  about  four  hours  on  a  machine  roughly
twice as fast as that used for the other computations in this paper. The time spent in recovering those already
known since 1998 (up through 19 digits) was roughly a half hour. We leave it as an open problem whether a
better type of cutting or other optimizations might lead to substantial further improvement in speed.

81, 2, 7, 6, 3, 3, 1, 4, 4, 7, 9, 4, 6, 1, 3, 8, 4, 2, 7, 9<
82, 7, 8, 4, 7, 6, 5, 2, 5, 7, 7, 9, 0, 5, 7, 9, 3, 4, 1, 3<
84, 5, 4, 1, 9, 2, 6, 6, 4, 1, 4, 4, 9, 5, 6, 0, 1, 9, 0, 3<
88, 5, 5, 1, 9, 1, 3, 2, 4, 3, 3, 0, 8, 0, 2, 3, 9, 7, 9, 8, 9<
87, 6, 5, 7, 2, 3, 0, 8, 8, 2, 2, 5, 9, 5, 4, 8, 7, 2, 3, 5, 9, 3<
82, 6, 8, 4, 2, 9, 9, 4, 4, 2, 2, 6, 3, 7, 1, 1, 2, 5, 2, 3, 3, 3, 7<
83, 6, 8, 9, 9, 2, 7, 7, 5, 9, 3, 8, 5, 2, 6, 0, 9, 9, 9, 7, 4, 0, 3<
86, 1, 3, 3, 3, 8, 5, 3, 6, 0, 2, 1, 2, 9, 8, 1, 9, 1, 8, 9, 6, 6, 8<

A similar but substantially longer run yielded all such numbers through 29 digits.

82, 2, 9, 1, 4, 6, 4, 1, 3, 1, 3, 6, 5, 8, 5, 5, 5, 8, 4, 6, 1, 2, 2, 7<
89, 8, 3, 8, 6, 7, 8, 6, 8, 7, 9, 1, 5, 1, 9, 8, 5, 9, 9, 2, 0, 0, 6, 0, 4<
81, 8, 3, 5, 4, 9, 7, 2, 5, 8, 5,
2, 2, 5, 3, 5, 8, 0, 6, 7, 7, 1, 8, 2, 6, 6<
81, 9, 8, 7, 6, 2, 3, 4, 9, 2, 6, 4, 5, 7,
2, 8, 8, 5, 1, 1, 9, 4, 7, 9, 4, 5<
89, 8, 9, 3, 8, 1, 9, 1, 2, 1, 4, 2, 2, 0,
7, 1, 8, 0, 5, 0, 3, 0, 1, 3, 1, 2<
81, 5, 3, 6, 6, 9, 3, 5, 4, 4, 5, 5, 4, 8,
2, 5, 6, 0, 9, 8, 7, 1, 7, 8, 3, 4, 2<
81, 5, 4, 6, 7, 7, 8, 8, 1, 4, 0, 1, 0, 0,
7, 7, 9, 9, 9, 7, 4, 5, 6, 4, 3, 3, 6<
81, 3, 3, 1, 1, 8, 4, 1, 1, 1, 7, 4, 0, 5,
9, 6, 8, 8, 3, 9, 1, 0, 4, 5, 9, 5, 5<
81, 5, 4, 1, 4, 0, 2, 7, 5, 4, 2, 8, 3, 3,
9, 9, 4, 9, 8, 9, 9, 9, 2, 2, 6, 5, 0<
82, 9, 5, 7, 6, 8, 2, 3, 7, 3, 6, 1, 2, 9,
1, 7, 0, 8, 6, 4, 5, 2, 2, 7, 4, 7, 4<
89, 5, 6, 6, 3, 3, 7, 2, 0, 4, 6, 4, 1, 1,
4, 5, 1, 5, 8, 9, 0, 3, 1, 8, 4, 1, 0<
89, 8, 8, 2, 4, 2, 3, 1, 0, 3, 9, 3, 8, 6,
0, 3, 9, 0, 0, 6, 6, 9, 1, 1, 4, 1, 4<
89, 4, 9, 3, 9, 7, 6, 8, 4, 0, 3, 9, 0, 2, 6,
5, 8, 6, 8, 5, 2, 2, 0, 6, 7, 2, 0, 0<
84, 1, 7, 9, 6, 2, 0, 5, 7, 6, 5, 1, 4, 7, 4,
2, 6, 9, 7, 4, 7, 0, 4, 7, 9, 1, 5, 2, 8<
87, 0, 2, 6, 7, 3, 7, 5, 5, 1, 0, 2, 0, 7, 8,
8, 5, 2, 4, 2, 2, 1, 8, 8, 3, 7, 4, 0, 4<

It is interesting that most of these larger ones prior to 29 digits all have leading digit in the set 81, 2, 9<. One
might well wonder if there is a deep reason for this, and whether the trend returns after 29 digits.

This  general  method  of  computing  bounded  solutions  by  feeding  a  lattice−reduced set  of  vectors  to  linear
programming code also  appears in  [Aardal,  Hurkens,  and Lenstra 2000].  They solve  several  problems that
are demonstrably difficult for classical linear programming branching methods alone. A related possibility is
to convert to a  0 −1 problem by creating, for each digit, ten auxiliary variables, similar to how we handled
the sandwich problem. This would give a far larger set  of  Diophantine equations to solve but  in return the
lattice and branching steps would now work with smaller values.

The ILP refinements of [Aardal and Lenstra 2002] are motivated in large part by Frobenius instance prob−
lems. Recent work of [Einstein, Lichtblau, Strzebonski, and Wagon 2005] indicates how it may play a role in
the  more  difficult  task  of  finding  Frobenius  numbers.  In  brief,  we  have  a  set  B= Hb1, ..., bnL  of  positive
integers with  gcdHBL = 1.   There is  a  largest  integer m such that  m cannot  be represented as  a  nonnegative

integer combination of elements of B, but every integer m can be thusly represented. This m is called the
B
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integer combination of elements of B, but every integer s>m can be thusly represented. This m is called the
Frobenius number of the set B.

We finish with general remarks regarding the branching methods presented in this and preceding sections. It
is  clear that  the implementations are quite similar.  This is,  not  surprisingly, because the main ideas behind
them are essentially  the same.  While  one may not  be terribly interested in,  say,  set  covering, or in  finding
large Keith  numbers, the important thing is that the method (along with a basic code framework) is simple
and applies to a very large class of integer programming problems. Indeed, the entire body of code presented
above for finding Keith  numbers is but a few dozen lines. The task of  putting together the right tools (e.g.
lattice  reduction and linear programming) is  much easier  than that  of  building the tools  themselves.  Better
still,  future versions of  Mathematica will  automatically  apply  branching methods  similar  to  those we have
seen, in the functions FindInstance, Minimize, and Reduce.

12. Notes on implementations and related work
There is  a  large body  of  literature regarding attatcks  on  knapsacks  via  lattice  reduction methods.  Methods
and  applications  to  cryptosystems  are  discussed  in  [Lagarias  and  Odlyzko  1985],  [Schnorr  and  Euchner
1991], [von zur Gathen and Gerhard 1999], and [Nguyen 1999]. It seems that many such cryptosystems were
vanquished in the 1980s and 1990s due to lattice methods. In [Schnorr 1993] there is moreover an attempt to
apply lattice methods to integer factorization and computation of discrete logarithms (which could have the
effect of breaking RSA−type cryptosystems). This has not yet been successful (to my knowledge!).

Computation of reduced lattices may be done in various ways. The original method of [Lenstra, Lenstra, and
Lovász 1982] utilized rational arithmetic. It was recognized even that that integer arithmetic sufficed. A nice
exposition may be found in [Cohen 1993, chapter 2]. Efficient variations using floating point (machine and
higher  precision)  arithmetic  and  integer  arithmetic  appear  in  [Schnorr  and  Euchner  1991]  and  [Storjohann
1996] respectively. At various times in the past the default Mathematica implementation has utilized approxi−
mate  arithmetic  but  as  of  this  writing  it  uses  techniques  from  the  latter  paper.  A  considerable  amount  of
unpleasant  experience  (my  own)  indicates  that  an  approximate  arithmetic  version  can  be  difficult  to  keep
both  fast  and  free  of  bugs;  other  programmers/implementations may  have  fared  better  in  this  regard.  One
might  experiment  with  LatticeReduce  in  Mathematica via  approximate  arithmetic  by  using  the  line
below.

Developer‘SetSystemOptions@"LatticeReduceOptions "®
8"LatticeReduceArithmetic "® ApproximateNumbers<D;

For restoration of default behavior one sets it to Integers.

There are several methods for ILPs and knapsack problems that we did not show herein. One with origins in
computational commutative algebra is done via Gröbner bases. A nice Mathematica demonstration notebook
(with some nontrivial examples) may be found in [Kapadia 2003].

Another  example  discussed  in  [Lichtblau  2002b]  is  as  follows.  Take  the  set  of  reciprocals of  the  first  100
integers.  Divide  it  into  two  subsets  each  of  size  50 in  such  a  way  that  the  difference between the  sums is
minimized (that  is,  they are the closest  pair  to half  the total).  Clearly this  can be set  up as an approximate
subset sum problem; in the reference it is handled in two ways (one as a knapsack), both utilizing the Mathe−
matica function NMinimize as the underlying solver. It would be interesting to see a successful attack based
on lattice reduction. We remark that it is effectively a high density subset problem and this alone makes for
trouble  with  lattice  methods.  But  the  real  problem  seems  to  be  the  presence  of  large  null  sets  containing
many small vectors. Possibly the tandem of lattice reduction and integer programming methods might be of
use? We leave this as an open problem.

As  NMinimize  uses  several  methods  and  is,  in  my  opinion,  an  interesting  polyalgorithm,  some  remarks
about  its  history  are  in  order.  First,  as  one  might  notice,  the  example  involving  the  coin  problem  is  not
terribly exciting in and of iteself. It is included because it was the first sort of discrete optimization problem
we successfully made to work at WRI using differential evolution. In 1999 I had the good fortune to teach a
course on nonlinear programming as a visitor in the mathematics department at the University of Illinois. In
the class were two graduate students who went on to do work at Wolfram Research: Serguei Chebalov and
Brett Champion (the official spelling of the former has since changed twice and is now Sergey Shebalov;  I’d
not venture to guess what it might be in future). Sergey spent that summer and the next as an intern at WRI
working  primarily  on  what  would  become  NMinimize.  By  the  end  of  that  first  summer  we  had  the  coin
example working using a sort of penalty method to enforce integrality. This is similar in spirit to a method
from [Gisvold and Moe 1972]. We had the advantage that we worked with a method that made no require−
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example working using a sort of penalty method to enforce integrality. This is similar in spirit to a method
from [Gisvold and Moe 1972]. We had the advantage that we worked with a method that made no require−
ment of smoothness and hence we were free to use penalties with properties better suited to push solutions
toward integer values.

The next summer was spent by Sergey in tuning the code, developing tests, and adding simulated annealing
and random search to the existing Nelder−Mead and differential  evolution methods.  As he wrapped up his
work and headed back to school, Brett obtained a degree, joined the company, and jumped (fell?) right into
the  project.  He  set  to  work  finding  and  fixing  bugs,  engaged  in  code  refinement  and  robustification  (the
process  by  which  solid  proof−of−concept  work  gets  transformed  into  actual  production  code),  vastly
extended  the  test  suite,  wrote  substantial  elementary  and  advanced  documentation,  participated  in  design
review  for  the  interface  to  the  functionality,  and  overhauled  various  tactics  for  handling  of  constraints
(equalities,  in  particular,  can  be  troublesome).  He  also  performed the  requisite  if  messy  deity  placification
(an elaborate process whereby both major and lesser software gods are propitiated according to  their  rank;
the specifics involve proprietary trade secrets and in any case are not for the faint of heart).

We decided  after  substantial  experimentation on  his  part  that  enforcing integrality  could  better  be  accom−
plished by judicious use of  Round  in  function evaluation.  A year or so later we obtained a copy of  [Storn
1999]  and learned that  the  inventors  of  differential  evolution  had had much the  same experience with  this
manner of discrete optimization (though curiously enough, 0−1 knapsack problems such as those presented
above often seem to be an exception in that they can behave better when integrality is enforced via penal−
ties).  Moreover,  in  the  book  containing  that  reference some of  the  immediately  following  chapters  discuss
examples where differential evolution works well  with discrete and mixed optimization problems. Even so,
in  private correspondence the inventors were mildly  (albeit  pleasantly)  surprised that  we had,  with  modest
success,  applied  differential  evolution  to  nontrivial  examples  that  are  entirely  discrete  and  in  some  cases
combinatorial in nature.

My own role in the development of NMinimize was, primarily, to offer the two basic types of advise (that is
to say, wanted and unwanted). Mostly this involved the heuristics for handling various sorts of missbehaved
examples. As for actual code, I wrote the original code for the DifferentialEvolution method. Brett
and Sergey being a pair of fine young cannibals, I rather doubt any shred of it remains.

While linear programming code has been a part of Mathematica since the early days, it was only in version
4.2 that code was in place that was both fast and reliable. This work was done by Yifan Hu. Since that time
he has worked on development of various methods such as interior point, so for some classes of problems it
might get faster still  As we now had strong linear programming we decided it should become a specialized
method in NMinimize, as linear problems are not infrequent. The preprocessing code used by NMinimize
to determine that a system is linear was written by Rob Knapp with some assistance and debugging by Brett
Champion.  While  one  sees  in  some  examples  above  that  on  occasion  the  heuristics  need  to  be  kicked  by
option settings, a nice feature is that often does its magic with little or no intervention on the part of the user.

Puzzle  problems  of  the  sort  we  showed  are  often  handled  using  an  enumerate−and−prune  mechanism.
Another approach is via constraint satisfaction, utilizing the type of linear programming we employed for set
covering and Keith  numbers. A distinguishing feature is that  problems with mostly equality constraints are
readily handled in  this  way.  For example,  the infamous "Who owns the zebra" problem, which an internet
search indicates  to  be  over  four  decades  old,  can  be  formulated as  a  linear  CSP in  terms of  (mostly)  0 −1
variables. It  can also be done by enumerate−and−prune, as in [Trott 1999]. The only troublesome part is in
handling inequalities e.g. "Kools are smoked in the house next to the house where the horse is kept." As there
are only a few such inequalities one can simply split  into a disjunction of several problems and solve each
separately; all but one give an empty solution.

Alternatively  one  might  use  methods  from  nonlinear  programming.  For  example  a  constraint  such  as

HKools- horseL2 = 1 can be rewritten as a quadratic in 0 −1 variables. But such quadratic constraints can in
turn  be  reformulated  as  linear  ones  (with  new  variables)  so  that  0 −1 solutions  also  satisfy  the  original
quadratic. One fairly common method for doing this is discussed in [Adams and Sherali  1986].  One might
then  work  with  a  relaxation  of  the  problem,  imposing  linearity  via  branching  and/or  cutting  planes.  This
method is quite general for quadratic knapsack problems and can even be used to factor integers (albeit not
competitively with methods used in practice).

Surveying the technologies we used to attack knapsack and related problems, we find linear~ and, to some
extent, nonlinear~ programming, integer lattice normal forms and reduction, and solving systems of nonlin−
ear  algebraic  equations.  These  all  contain  sophisticated  mathematical  algorithms underneath  the  hood.  For
our purposes, however, they by and large can be taken as "black boxes" that do very useful things. The code
we show above, while not in all instances trivial, is by no means strictly for experts. While the tools we used
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our purposes, however, they by and large can be taken as "black boxes" that do very useful things. The code
we show above, while not in all instances trivial, is by no means strictly for experts. While the tools we used
are themselves complex, they may be put together in ways that are relatively simple in order to solve knap−
sack and related problems.
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