
Solving Algebraic
Systems of Equations

Daniel Lichtblau

Wolfram Research, Inc.

July 2000

Presented at: SCI2000, Orlando

Overview
Systems of polynomial equations with finitely many solutions arise in
many areas of industrial and applied mathematics. Among these are
motion planning, robotics, computer- aided design, and graphics. In this
talk I discuss the design and implementation of a numeric solver for
algebraic systems. It makes use of hybrid symbolic/numeric functionality
present in the Mathematica kernel: numeric Grö bner bases and
arbitrary-precision numeric eigenvalue computation. I will present some
examples that demonstrate how this enhances considerably the
capabilities of Mathematica in this area.

The key ingredients

(1) Numeric Groebner basis computation.

This gives equivalent equations from which convenient linear
algebra methods may be applied to extract solutions.

(2) Eigenvalue computation. This solves for one variable.

(3) Solve linear equations to obtain solutions for other
variables in terms of the one obtained in step (1).

Alternatively, plug the solution for the last variable into the
equations and redo the process for each new system in order to
solve for the remaining variables. This is effective because we
usually spawn much smaller sub- problems.

2 nsolve_sci2000_talk.nb

Step (1)

First question: What is a Grö bner basis?

A full answer would take too long. In brief, it is a tool from
computational commutative algebra that generalizes the notion
from matrix algebra of row- reducing a system of linear
equations to echelon form. For example, given a system of
polynomials one can, in some sense, "triangulate" that system.

Here is a quick example.

polys = 92 x2 - 3 x y + x + y - 4,

x3 + 4 x y2 - y2 + 3 x - 2 y + 6=;

gb = GroebnerBasis@polys, 8x, y<D

9346 - 875 y + 1445 y2 -

833 y3 + 521 y4 - 25 y5,
483642 + 218447 x - 489124 y +

387939 y2 - 52124 y3 + 1725 y4=

nsolve_sci2000_talk.nb 3

We have a new set of polynomials with the following
properties.

(i) They generate the same ideal (in the sense of abstract
algebra) as the original polynomials. This means, in essence,
that they have identical solution sets.

(ii) They are "triangulated". Specifically we have a univariate
polynomial in y, and a polynomial that is linear in x. Thus to
solve the system, one merely finds roots in y, then plugs into
the second polynomial to get solutions in x. In a sense I will
not try to make specific, this is the typical state of affairs for
Grö bner bases.

4 nsolve_sci2000_talk.nb

Why all the fuss?

As a practical matter, computation of Grö bner bases can be
extremely time- consuming. Coefficient swell can be a severe
bottleneck, and moreover the computation is sensitive to
something called the term order. What is term order? Again,
being intentionally vague, it is the way that we choose to order
powers of variables. In the example, we take powers of x to be
"larger" than all powers in y alone. This is called a
"lexicographic" term order. Such orders are obviously useful
(we can get solutions quite easily, as noted above), but they are
typically very expensive to compute. Term orders that are
based on total degree of monomials tend to be cheaper for
purposes of computing a Grö bner basis, but the result is less
convenient for our purposes. Hence the need for steps (2) and
(3).

nsolve_sci2000_talk.nb 5

Step (2)

Suppose we have the Grö bner basis shown above. Here is a
seemingly roundabout way to get solutions to the polynomial
system. First take the polynomial in y . It is

346 - 875 y + 1445 y2 -
833 y3 + 521 y4 - 25 y5

To this polynomial we can associate a companion matrix.

companionMatrix@
poly_?PolynomialQD :=
Module@8vars, coeffs, newcoeffs,
n, m<, vars = Variables@polyD;
If@! ListQ@varsD ÈÈ
Length@varsD ¹ 1, Return@DD;

coeffs = CoefficientList@poly,
varsD;

newcoeffs =
Drop@coeffs� H-Last@coeffsDL,

-1D;
n = Exponent@poly, First@varsDD -
1;

m = Prepend@IdentityMatrix@nD,
Table@0, 8n<DD;

Transpose@Append@Transpose@mD,
newcoeffsDDD

6 nsolve_sci2000_talk.nb

MatrixForm@
mat = companionMatrix@gb@@1DDDD

i

k

jjjjjjjjjjjjjjjjjjjj

0 0 0 0 ������346
25

1 0 0 0 -35

0 1 0 0 ������289
5

0 0 1 0 - ������833
25

0 0 0 1 ������521
25

y

{

zzzzzzzzzzzzzzzzzzzz

nsolve_sci2000_talk.nb 7

What comes next?

We will now find numeric eigenvalues of this matrix.

Sort@Eigenvalues@N@matDDD

80.38675 - 0.47624 ä,
0.38675 + 0.47624 ä,
0.402705 - 1.32171 ä,
0.402705 + 1.32171 ä, 19.2611 + 0. ä<

So why did we compute those
eigenvalues?

So here is the crux of step (2). We can use a Grö bner basis
computed with respect to ANY term order, to obtain what is
called a "generalized companion matrix" relative to any give
variable. Its eigenvalues will be the same as those of the
ordinary companion matrix for that variable. So we find a
Grö bner basis in step (1) using some order that is less
expensive to compute than lexicographic, and in step (2) we set
up and extract eigenvalues from a generalized companion
matrix.

8 nsolve_sci2000_talk.nb

Step (3)

Now that we have our solutions in one variable, we can use
back- substitution to spawn what are often simpler systems, in
order to solve recursively for the other variables.

But other tactics are (typically) faster. One method uses linear
algebra to "convert" polynomials from the Grö bner basis into
polynomials that are linear in the remaining variables (so
back- substitution becomes trivial).

Another method makes use of corresponding eigenvectors to
get solutions in the remaining variables. Suffice it to say that
they are computationally not much more strenuous than the
eigenvalue extraction of step (2).

Again, why all the fuss?

Obtaining a numerical Grö bner basis is a tricky business. One
must use arithmetic that can keep track of precision, and one
must have a way to recognize when "small" values are zero.

The gain, though, is in speed. Coefficient swell is not a
problem (the number of digits does not increase from its initial
value). Also as noted above, we can use cheaper term orders.

Thus for hard problems we have a much better chance of
completion in reasonable time than an exact computation.

nsolve_sci2000_talk.nb 9

A stroll through a simple example

We use the same polynomials as before. The numeric Grö bner
basis for a degree- based term order is given below.

ngb = GroebnerBasis@N@polysD,
8x, y<, MonomialOrder ®
DegreeReverseLexicographicD

9-2. + 0.5 x + 1. x2 + 0.5 y - 1.5 x y,
-28.8 - 12.94 x + 26.3 y - 1.38 x y -
20.52 y2 + 1. y3, 0.8 + 0.84 x +

0.2 y - 0.32 x y - 0.28 y2 + 1. x y2=

We break the Grö bner basis into head terms and "tail"
polynomials. This is a main step in finding the endomorphism
matrix.

fdl =
Internal‘FromDistributedTermsList

@
Internal‘DistributedTermsList@
ngb, 8x, y<,
MonomialOrder ®
DegreeReverseLexicographicD,

ListD;

10 nsolve_sci2000_talk.nb

8heads, tails< =
8Map@First, fdlD, Map@Rest, fdlD<

991. x2, 1. y3, 1. x y2=,

98-1.5 x y, 0.5 x, 0.5 y, -2.<,

9-1.38 x y, -20.52 y2, -12.94 x,

26.3 y, -28.8=, 9-0.32 x y,

-0.28 y2, 0.84 x, 0.2 y, 0.8===

nsolve_sci2000_talk.nb 11

Here is the list of "exponent tuples" for the head monomials of
the Grö bner basis: 882, 0<, 80, 3<, 81, 2<<

All tuples that lie strictly under the "staircase" they form give
basis elements in a representation of the vector space
C@x, yD � HpolysL.

Here is the list of the tuples under the staircase (sounds like the
name of a horror flick):
880, 2<, 80, 1<, 82, 0<, 81, 0<, 80, 0<<

To see how the endomorphism "multiply by y" transforms the
vector space basis monomial y2, we can do

LastAPolynomialReduceAy3, ngb,

MonomialOrder ®

DegreeReverseLexicographicEE

28.8 + 12.94 x -
26.3 y + 1.38 x y + 20.52 y2

This will become a column in our endomorphism matrix.

Here is the full endomorphism matrix. It is 5 x 5, because
there are 5 basis elements.

i

k

jjjjjjjjjjjjjjj

20.52 0.28 1 0 0
1.38 0.32 0 1 0

-26.3 -0.2 0 0 1
12.94 -0.84 0 0 0
28.8 -0.8 0 0 0

y

{

zzzzzzzzzzzzzzz

12 nsolve_sci2000_talk.nb

We see that the action on the basis element y2 became column
one. This is no surprise because the tuple 80, 2<
corresponding to y2 was the first one listed.

The eigenvalues are the values of y for the solutions. There are
five such, because the matrix is 5 x 5. Here is one of the
values obtained: 19.26108948234646. We plug in this
value and next solve for x in the overdetermined system below.

97.63054 - 28.3916 x + 1. x2,
10.724 - 39.5203 x,
-99.2249 + 365.666 x=

We arrive at a solution for x. It is 0.271354. If we continue
in this manner we will obtain:

88x ® 0.271354, y ® 19.2611<,
8x ® 1.00317 + 0.698106 I,
y ® 0.402705 + 1.32171 I<,

8x ® 1.00317 - 0.698106 I,
y ® 0.402705 - 1.32171 I<,

8x ® -1.25884 + 0.437825 I,
y ® 0.38675 + 0.47624 I<,

8x ® -1.25884 - 0.437825 I,
y ® 0.38675 - 0.47624 I<<

nsolve_sci2000_talk.nb 13

A benchmark example from the
literature

polys = 845*P + 35*S - 165*B - 36,
35*P + 40*Z + 25*T - 27*S,
15* W + 25*P*S + 30*Z - 18*T -
165*B^2,

-9* W + 15*P*T + 20*Z*S,
W *P + 2*Z*T - 11*B^3,
99* W - 11*S*B + 3*B^2<;

vars = 8P, S, B, Z, T, W<;

Timing@
sol = NSolve@polys � 0, varsD;D

83.41 Second, Null<

Let us check the solutions. We plug them into the original
polynomials and then truncate values less than ��������1

1010
 to zero.

Apply@Plus, polys �. solD �� Chop

80, 0, 0, 0, 0, 0<

14 nsolve_sci2000_talk.nb

Competing methods

(i) Sparse homotopy methods.

(ii) Multipolynomial resultant methods (can be quite similar to
our method; depends on how one obtains and/or uses the
resultant).

These, and the method of this talk, have all blossomed in the
past 10- 12 years or so.

Methods that do not compete (very
well)

(i) Exact methods (frequently they are MUCH too slow).

(ii) Newton’s method and its relatives. It only finds one root,
and needs a reasonable initial guess. If this fits your needs, by
all means use it. But it is not a reliable way to find ALL
solutions.

nsolve_sci2000_talk.nb 15

Summary

We have presented a method to find all numeric solutions to
systems of algebraic equations that have finitely many
solutions. Underlying technology: numeric Grö bner basis
computed to moderate precision, eigenvalue extraction, and
simple linear algebra.

Gain: Demonstrated capability to solve problems previously
inaccessible to Mathematica.

Possible task for future development:

Use a multivariate version of residues from complex analysis
to obtain solutions ONLY for roots that lie in a specified
region. This might be useful e.g. to obtain only real- valued
roots (an important problem with no satisafactory solution to
date).

16 nsolve_sci2000_talk.nb

