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Overview
Systems of polynomial equations with finitely many solutions arise in 
many areas of industrial and applied mathematics. Among these are 
motion planning, robotics, computer- aided design, and graphics. In this 
talk I discuss the design and implementation of a numeric solver for 
algebraic systems. It makes use of hybrid symbolic/numeric functionality 
present in the Mathematica kernel: numeric Grö bner bases and 
arbitrary-precision  numeric eigenvalue computation. I will present some 
examples that demonstrate how this enhances considerably the 
capabilities of Mathematica in this area.



The key ingredients

(1) Numeric Groebner basis computation.

This gives equivalent equations from which convenient linear 
algebra methods may be applied to extract solutions.

(2) Eigenvalue computation. This solves for one variable.

(3) Solve linear equations to obtain solutions for other 
variables in terms of the one obtained in step (1).

Alternatively, plug the solution for the last variable into the 
equations and redo the process for each new system in order to 
solve for the remaining variables. This is effective because we 
usually spawn much smaller sub- problems.
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Step (1)

First question: What is a Grö bner basis?

A full answer would take too long. In brief, it is a tool from 
computational commutative algebra that generalizes the notion 
from matrix algebra of row- reducing a system of linear 
equations to echelon form. For example, given a system of 
polynomials one can, in some sense, "triangulate" that system.

Here is a quick example.

polys = 92 x2 - 3 x y + x + y - 4,

x3 + 4 x y2 - y2 + 3 x - 2 y + 6=;

gb = GroebnerBasis@polys, 8x, y<D

9346 - 875 y + 1445 y2 -

833 y3 + 521 y4 - 25 y5,
483642 + 218447 x - 489124 y +

387939 y2 - 52124 y3 + 1725 y4=
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We have a new set of polynomials with the following 
properties.

(i) They generate the same ideal (in the sense of abstract 
algebra) as the original polynomials. This means, in essence, 
that they have identical solution sets.

(ii) They are "triangulated". Specifically we have a univariate 
polynomial in y, and a polynomial that is linear in x. Thus to 
solve the system, one merely finds roots in y, then plugs into 
the second polynomial to get solutions in x. In a sense I will 
not try to make specific, this is the typical state of affairs for 
Grö bner bases.
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Why all the fuss?

As a practical matter, computation of Grö bner bases can be 
extremely time- consuming. Coefficient swell can be a severe 
bottleneck, and moreover the computation is sensitive to 
something called the term order. What is term order? Again, 
being intentionally vague, it is the way that we choose to order 
powers of variables. In the example, we take powers of x to be 
"larger" than all powers in y  alone. This is called a 
"lexicographic" term order. Such orders are obviously useful 
(we can get solutions quite easily, as noted above), but they are 
typically very expensive to compute. Term orders that are 
based on total degree of monomials tend to be cheaper for 
purposes of computing a Grö bner basis, but the result is less 
convenient for our purposes. Hence the need for steps (2) and 
(3).
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Step (2)

Suppose we have the Grö bner basis shown above. Here is a 
seemingly roundabout way to get solutions to the polynomial 
system. First take the polynomial in y . It is

346 - 875 y + 1445 y2 -
833 y3 + 521 y4 - 25 y5

To this polynomial we can associate a companion matrix.

companionMatrix@
poly_?PolynomialQD :=
Module@8vars, coeffs, newcoeffs,
n, m<, vars = Variables@polyD;
If@! ListQ@varsD ÈÈ
Length@varsD ¹ 1, Return@DD;

coeffs = CoefficientList@poly,
varsD;

newcoeffs =
Drop@coeffs� H-Last@coeffsDL,

-1D;
n = Exponent@poly, First@varsDD -
1;

m = Prepend@IdentityMatrix@nD,
Table@0, 8n<DD;

Transpose@Append@Transpose@mD,
newcoeffsDDD
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MatrixForm@
mat = companionMatrix@gb@@1DDDD

i

k

jjjjjjjjjjjjjjjjjjjj

0 0 0 0 ������346
25

1 0 0 0 -35

0 1 0 0 ������289
5

0 0 1 0 - ������833
25

0 0 0 1 ������521
25

y

{

zzzzzzzzzzzzzzzzzzzz
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What comes next?

We will now find numeric eigenvalues of this matrix.

Sort@Eigenvalues@N@matDDD

80.38675 - 0.47624 ä,
0.38675 + 0.47624 ä,
0.402705 - 1.32171 ä,
0.402705 + 1.32171 ä, 19.2611 + 0. ä<

So why did we compute those 
eigenvalues?

So here is the crux of step (2). We can use a Grö bner basis 
computed with respect to ANY term order, to obtain what is 
called a "generalized companion matrix" relative to any give 
variable. Its eigenvalues will be the same as those of the 
ordinary companion matrix for that variable. So we find a 
Grö bner basis in step (1) using some order that is less 
expensive to compute than lexicographic, and in step (2) we set 
up and extract eigenvalues from a generalized companion 
matrix.
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Step (3)

Now that we have our solutions in one variable, we can use 
back- substitution to spawn what are often simpler systems, in 
order to solve recursively for the other variables.

But other tactics are (typically) faster. One method uses  linear 
algebra to "convert" polynomials from the Grö bner basis into 
polynomials that are linear in the remaining variables (so 
back- substitution becomes trivial).

Another method makes use of corresponding eigenvectors to 
get solutions in the remaining variables. Suffice it to say that 
they are computationally not much more strenuous than the 
eigenvalue extraction of step (2).

Again, why all the fuss?

Obtaining a numerical Grö bner basis is a tricky business. One 
must use arithmetic that can keep track of precision, and one 
must have a way to recognize when "small" values are zero.

The gain, though, is in speed. Coefficient swell is not a 
problem (the number of digits does not increase from its initial 
value). Also as noted above, we can use cheaper term orders.

Thus for hard problems we have a much better chance of 
completion in reasonable time than an exact computation.

nsolve_sci2000_talk.nb 9



A stroll through a simple example

We use the same polynomials as before. The numeric Grö bner 
basis for a degree- based term order is given below.

ngb = GroebnerBasis@N@polysD,
8x, y<, MonomialOrder ®
DegreeReverseLexicographicD

9-2. + 0.5 x + 1. x2 + 0.5 y - 1.5 x y,
-28.8 - 12.94 x + 26.3 y - 1.38 x y -
20.52 y2 + 1. y3, 0.8 + 0.84 x +

0.2 y - 0.32 x y - 0.28 y2 + 1. x y2=

We break the Grö bner basis into head terms and "tail" 
polynomials. This is a main step in finding the endomorphism 
matrix.

fdl =
Internal‘FromDistributedTermsList

@
Internal‘DistributedTermsList@
ngb, 8x, y<,
MonomialOrder ®
DegreeReverseLexicographicD,

ListD;
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8heads, tails< =
8Map@First, fdlD, Map@Rest, fdlD<

991. x2, 1. y3, 1. x y2=,

98-1.5 x y, 0.5 x, 0.5 y, -2.<,

9-1.38 x y, -20.52 y2, -12.94 x,

26.3 y, -28.8=, 9-0.32 x y,

-0.28 y2, 0.84 x, 0.2 y, 0.8===
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Here is the list of "exponent tuples" for the head monomials of 
the Grö bner basis: 882, 0<, 80, 3<, 81, 2<<

All tuples that lie strictly under the "staircase" they form give 
basis elements in a representation of the vector space 
C@x, yD � HpolysL.

Here is the list of the tuples under the staircase (sounds like the 
name of a horror flick): 
880, 2<, 80, 1<, 82, 0<, 81, 0<, 80, 0<<

To see how the endomorphism "multiply by y" transforms the 
vector space basis monomial y2, we can do

LastAPolynomialReduceAy3, ngb,

MonomialOrder ®

DegreeReverseLexicographicEE

28.8 + 12.94 x -
26.3 y + 1.38 x y + 20.52 y2

This will become a column in our endomorphism matrix.

Here is the full endomorphism matrix. It is 5 x 5, because 
there are 5 basis elements.

i

k

jjjjjjjjjjjjjjj

20.52 0.28 1 0 0
1.38 0.32 0 1 0

-26.3 -0.2 0 0 1
12.94 -0.84 0 0 0
28.8 -0.8 0 0 0

y

{

zzzzzzzzzzzzzzz
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We see that the action on the basis element y2 became column 
one. This is no surprise because the tuple 80, 2< 
corresponding to y2 was the first one listed.

The eigenvalues are the values of y for the solutions. There are 
five such, because the matrix is 5 x 5. Here is one of the 
values obtained: 19.26108948234646. We plug in this 
value and next solve for x in the overdetermined system below.

97.63054 - 28.3916 x + 1. x2,
10.724 - 39.5203 x,
-99.2249 + 365.666 x=

We arrive at a solution for x. It is 0.271354. If we continue 
in this manner we will obtain:

88x ® 0.271354, y ® 19.2611<,
8x ® 1.00317 + 0.698106 I,
y ® 0.402705 + 1.32171 I<,

8x ® 1.00317 - 0.698106 I,
y ® 0.402705 - 1.32171 I<,

8x ® -1.25884 + 0.437825 I,
y ® 0.38675 + 0.47624 I<,

8x ® -1.25884 - 0.437825 I,
y ® 0.38675 - 0.47624 I<<
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A benchmark example from the 
literature

polys = 845*P + 35*S - 165*B - 36,
35*P + 40*Z + 25*T - 27*S,
15* W + 25*P*S + 30*Z - 18*T -
165*B^2,

-9* W + 15*P*T + 20*Z*S,
W *P + 2*Z*T - 11*B^3,
99* W - 11*S*B + 3*B^2<;

vars = 8P, S, B, Z, T, W<;

Timing@
sol = NSolve@polys � 0, varsD;D

83.41 Second, Null<

Let us check the solutions. We plug them into the original 
polynomials and then truncate values less than ��������1

1010
 to zero.

Apply@Plus, polys �. solD �� Chop

80, 0, 0, 0, 0, 0<
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Competing methods

(i) Sparse homotopy methods.

(ii) Multipolynomial resultant methods (can be quite similar to 
our method; depends on how one obtains and/or uses the 
resultant).

These, and the method of this talk, have all blossomed in the 
past 10- 12 years or so.

Methods that do not compete (very 
well)

(i) Exact methods (frequently they are MUCH too slow).

(ii) Newton’s method and its relatives. It only finds one root, 
and needs a reasonable initial guess. If this fits your needs, by 
all means use it. But it is not a reliable way to find ALL 
solutions.
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Summary

We have presented a method to find all numeric solutions to 
systems of algebraic equations that have finitely many 
solutions. Underlying technology: numeric Grö bner basis 
computed to moderate precision, eigenvalue extraction, and 
simple linear algebra.

Gain: Demonstrated capability to solve problems previously 
inaccessible to Mathematica.

Possible task for future development:

Use a multivariate version of residues from complex analysis 
to obtain solutions ONLY for roots that lie in a specified 
region. This might be useful e.g. to obtain only real- valued 
roots (an  important problem with no satisafactory solution to 
date).
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