
Hensel Lifting via Gröbner bases

Daniel Lichtblau

Wolfram Research, Inc.
100 Trade Centre Dr.
Champaign IL USA, 61820

danl@wolfram.com

ACA ’05, Nara, Japan
August 1, 2005

1

Abstract
In this talk I will show how one may use Gröbner bases
over Euclidean domains to perform Hensel lifting in some
polynomial rings. The algorithm is quite simple. Moreover,
for the ring of univariate polynomials over the integers, dedi−
cated polynomial arithmetic code of around two dozen lines
can implement this method quite efficiently (it compares
well to tree lifting, which appears to be the most effective
approach known). We will also see how the Gröbner basis
approach to lifting may be applied to bivariate polynomials
over finite fields.

2

Introduction
We begin with Gröbner bases over Euclidean domains. This
goes back to work by Buchberger, Kandri−Rody and
Kapur, Möller, L. Pan, and others in the 1980s, with roots
in earlier work. Roughly, we find such bases in the same
way as when working over a field except we use the
Euclidean algorithm in lieu of division. An analogy to keep
in mind is that of row reduction vs. Hermite normal form
computation, as these are what ordinary Gröbner bases and
bases over Euclidean rings become when the input polynomi−
als are linear.

The material for this talk originates in work I did a few
years ago. The primary purpose was to simplify the theory
and methods in this earlier body of work on Gröbner bases
over Euclidean rings. The next step was to investigate vari−
ous applications. There are several that involve special
cases of such bases. The form of Hensel lifting to be shown
is among them.

This appears to be perhaps related to work by Gianni and
Trager, also from the 1980s, describing a way to do multi−
variate polynomial factorization over a finite field. They pre−
sent a Gröbner basis computation to do, in one step, Hensel
lifting and recombination of factors over a specialization to
a univariate ring.

3

poly =
Expand@Hx^5 + 18 x^4 + 34 x^3 +

5 x^2 + 21 x + 30L *
Hx^4 + 24 x^3 + 22 x^2 + 17 x + 15LD

450 + 825 x + 1092 x2 +
1777 x3 + 1492 x4 + 1210 x5 +
1234 x6 + 488 x7 + 42 x8 + x9

We will first factor the polynomial modulo a small prime,
removing the constant factor.

mod = 11;
fax =

FactorList@poly, Modulus ® modD;
fax = First �� Rest@faxD

94 + 6 x + 2 x3 + x4,

8 + 10 x + 5 x2 + x3 + 7 x4 + x5=

Next we wish to make the factors correct modulo a power
of the prime. This correction step is of course our desired
Hensel lifting , used in most algorithms for factoring polyno−
mials over the rationals. It is typically done by iterations of
Newton’s method in a p−adic setting, but we will instead
use Gröbner bases. In effect we take separate "p−adic gcds"
of our polynomial and each factor raised to the indicated
power. These gcds are the lifted factors.

4

For this particular example we take the factors, square
them, compute Gröbner bases over the integers of the set
{poly,squaredfactor,squaredmodulus}, and extract the
last elements of these bases. This will correspond to
quadratic Hensel lifting, insofar as factors correct modulo p
becomes correct modulo p2.

HLast@GroebnerBasis@
8mod^2, poly, ð1<,
CoefficientDomain ->

IntegersDD & L �� Hfax^2L

915 + 17 x + 22 x2 + 24 x3 + x4,
30 + 21 x + 5 x2 + 34 x3 + 18 x4 + x5=

Lo and behold, we recover the correct factors in this simple
example. In real life we only get p−adic images that might
need to be recombined. There is a nice knapsack algorithm
due to van Hoeij (2002) that will do this.

5

Theorem: Given a square free univariate polynomial f over
the rationals, and an integer p such that the leading coeffi−
cient of f is not divisible by p, f is square free modulo p,
and f ºp g 0 h0. Assume s = GCDAg0

2, f E exists modulo

p2.Then s is the Hensel lift of g 0 modulo p2.

Remark: the notion of a gcd existing in the setting of an inte−
gral domain is just a convenient shorthand for the result of
running the Euclidean algorithm under the assumption that
we encounter no zero divisors along the way. Also note that
this p−adic "gcd" may be computed, as above, by a Gröbner
basis over the integers.

Remark: One could lift further than quadratically. The for−
mulation above is convenient in that the proof is simple and
iterated quadratic lifting is generally more efficient than
going higher in one lift.

Remark: As we increase powers we are effectively working
in the univariate ring Zpn. This is a finite chain ring, and
these were discussed in work by Norton and S+l+gean
(2001).

6

Proof: We are given f ºp g 0 h0. Suppose the quadratically
lifted equation is f ºp2 g 1 h1 where g 1 ºp g0 and h 1 ºp h0.
The assumptions imply that the degrees of g0 and g 1 are
equal, and likewise with the h cofactors. We may write
g 1 = g0+ p t0. Then a simple computation shows that
g 1 Hg0- p t0L ºp2 g0

2. We see that g 1 f and g 1 g0
2 mod−

ulo p2. Now let s = GCDAg0
2, f E. Then we have g 1 s. In

order to show these are equal up to unit multiples (which
proves the theorem), it suffices to show that
degreeHg 1L ³ degreeHsL.

Suppose degreeHsL > degreeHg 1L. Then
degreeHsL > degreeHg 0L. Since s f modulo p2 we have s f

modulo p. But also s g0
2 so the strict degree inequality

implies that s is not square free modulo p. Hence f is not
square free modulo p, in contradiction to the assumption
that it is. á

7

Here is an example from van Hoeij’s 2002 paper on knap−
sack factorization. Timings are on a 3 GHz Pentium 4 run−
ning under Linux.First we create the polynomial in ques−
tion. Its roots are comprised of sums of pairs of roots of a
smaller polynomial.

poly1 = x20 - 5 x18 + 864 x15 -
375 x14 - 2160 x13 + 1875 x12 +
10 800 x11 + 186 624 x10 -
54 000 x9 + 46 875 x8 + 270 000 x7 -
234 375 x6 - 2 700 000x5 -
1 953 125x2 + 9 765 625;

rts = x �. Solve@poly1 == 0, xD;
sums =

Flatten@Table@rtsPiT + rtsPjT,
8i, 19<, 8j, i + 1, 20<DD;

newpoly = Expand@Times ��
Hx - N@sums, 200DLD;

newpoly = Chop@newpolyD �.
a_Real ® Round@aD;

We now extract factors modulo a certain prime.

mod = Prime@4000D;
fax = FactorList@

newpoly, Modulus ® modD;
fax = First �� Rest@faxD;

8

We lift to the 36th power of our prime.

liftFactors@fax_, poly_, mod_,
pow_D := Module@8modpow = mod,
top = Ceiling@Log@2, powDD,
liftedfax = fax<,

Do@modpow = If@j � top,
mod ^pow, modpow^2D;

liftedfax = Expand@liftedfax^2,
Modulus ® modpowD;

liftedfax = Map@
Last@GroebnerBasis@
8modpow, poly, ð<,
CoefficientDomain ®
IntegersDD &,

liftedfaxD, 8j, top<D;
liftedfaxD

Timing@liftedfax = liftFactors@
fax, newpoly, mod, 36D;D

82.87056 Second, Null<

9

Remark: Dedicated univariate polynomial code will do this
still faster. Up to fairly high lifting size it appears to be gen−
erally more efficient than Shoup’s tree−lifting (described in
the 1999 book by von zur Gathen and Gerhard), though
asymptotically the latter is superior. Below we show dedi−
cated code and apply it to our previous example.

liftFactors2@ofax_, opoly_, mod_, bnd_D :=
Module@8p, p1, pow = bnd, pow1, liftedfax, liftedfax2,

liftedfax3, top, tm, PT, tot = 0, i, fax, poly, x<,
x = First@Variables@opolyDD;
fax = CoefficientList@ofax, xD;
poly = CoefficientList@opoly, xD;
liftedfax = fax;
p = p1 = mod;
top = Ceiling@Log@2, powDD;
pow1 = 2 * pow;
PT = Table@pow1 = Ceiling@pow1 � 2D, 8top<D;
pow1 = 1;
Do@p = p^2;
pow1 *= 2;
If@pow1 ¹ PT@@top - i + 1DD, pow1 = PT@@top - i + 1DD;
p = p � p1;
liftedfax = Mod@liftedfax, pDD;

liftedfax2 = Map@Algebra‘PolynomialTimesModList@ð, ð, pD &, liftedfaxD;
liftedfax = Map@Algebra‘PolynomialGCDModList@poly, ð, pD &, liftedfax2D;
tot = tot + tm;
, 8i, top<D;

Map@Internal‘FromCoefficientList@ð, xD &, liftedfaxDD

Timing@
liftedfax2 = liftFactors2@fax,

newpoly, mod, 36D;D
80.934858 Second, Null<

10

We now show an example in a bivariate ring modulo a
prime. The upshot is that we can do Hensel lifting in the
same way, resorting to Gröbner bases over the Euclidean
domain given by univariate polynomials modulo the prime.

randpoly@deg_, mod_, x_, y_D :=
Sum@Random@Integer,
8If@i + j � deg && i * j � 0, 1,

0D, mod - 1<D * x ^i * y ^j,
8i, 0, deg<, 8j, 0, deg - i<D

mod = 19;
SeedRandom@1111D;
totdeg = 6;
poly1 =

randpoly@totdeg � 2, mod, x, yD;
poly2 = randpoly@

totdeg � 2, mod, x, yD;
poly = Expand@poly1 * poly2,

Modulus ® modD

18 x + 6 x2 + 18 x3 + 16 x4 + 12 x5 + 8 x6 +
13 y + 12 x y + 17 x2 y + 11 x3 y +
7 x4 y + 16 x5 y + 16 y2 + 17 x y2 +
6 x2 y2 + 2 x3 y2 + 14 x4 y2 + 14 y3 +
18 x y3 + 5 x2 y3 + 2 x3 y3 + y4 +
4 x y4 + 16 x2 y4 + 18 y5 + 18 x y5 + 7 y6

11

We will evaluate at x = 11 and factor, removing the con−
stant term.

fax = Map@First,
Drop@FactorList@poly �. x ® 11,

Modulus ® modD, 1DD

98 + y, 14 + 3 y + y2,

14 + 13 y + 9 y2 + y3=

We will lift a factor modulo a power of the ideal Hx - 11L
that is sufficient to reclaim factors of degree 3 in x. Note
that here we lift to 12th power in one step. We might
instead have fashioned this as an iterated quadratic lifting,
as in earlier examples.

subst = x - 11;
power = 12;
substpower = subst^power;
liftedfactor =
Last@GroebnerBasis@8poly,

substpower, fax@@1DD^power<,
y, Modulus ® mod,
CoefficientDomain ->
Polynomials@xDDD

3 + 14 x + 2 x2 + 15 x3 +
2 x4 + 15 x5 + 18 x6 + 18 x7 +
18 x8 + 13 x9 + 5 x10 + x11 + y

12

As in A. Lenstra’s 1985 paper, we can use this to recover
the true factor via reducing appropriately in a univariate
polynomial lattice. This requires some basic tools which we
also built from Gröbner bases. First is a routine to compute
a basis over a module. This is not completely general by
any means in that term orderings are not general, but it will
suffice to give us what we’ll need for lattice reduction.

moduleGroebnerBasis@polys_,
vars_, cvars_, opts___D :=

Module@8newpols, rels,
len = Length@cvarsD,
gb, j, k, ruls<,

rels = Flatten@
Table@cvars@@jDD * cvars@@kDD,
8j, len<, 8k, j, len<DD;

newpols = Join@polys, relsD;
gb = GroebnerBasis@newpols,

Join@cvars, varsD, optsD;
rul = Map@Hð ® 8<L &, relsD;
gb = Flatten@gb �. rulD;
Collect@gb, cvarsDD

13

Now we can implement the lattice reduction using the mod−
ule Gröbner basis computation. The key thing is to weight
polynomials by total degree.

polynomialLatticeReduce@
mat_?MatrixQ,
mod_: 0D := Module@
8len = Length@First@matDD,
newvars, generators, mgb<,

newvars = Array@v, lenD;
generators = mat.newvars;
mgb = moduleGroebnerBasis@

generators, Variables@matD,
newvars, CoefficientDomain ®
Rationals , Modulus® mod,

MonomialOrder ®
DegreeReverseLexicographicD;

Outer@D, Reverse@mgbD, newvarsDD

14

We next create the appropriate lattice from our lifted factor.

deg = Exponent@liftedfactor, yD;
lattice1 =

Table@If@i � j, substpower, 0D,
8i, deg<, 8j, totdeg - 2<D;

coeffs = PadRight@CoefficientList@
liftedfactor, yD, totdeg - 2D;

lattice2 = Table@
RotateRight@coeffs, jD,
8j, 0, totdeg - 3 - deg<D;

lattice = Join@lattice1, lattice2D

99H-11 + xL12, 0, 0, 0=,

93 + 14 x + 2 x2 + 15 x3 + 2 x4 +
15 x5 + 18 x6 + 18 x7 + 18 x8 +
13 x9 + 5 x10 + x11, 1, 0, 0=,

90, 3 + 14 x + 2 x2 + 15 x3 + 2 x4 +

15 x5 + 18 x6 + 18 x7 + 18 x8 +
13 x9 + 5 x10 + x11, 1, 0=,

90, 0, 3 + 14 x + 2 x2 + 15 x3 +

2 x4 + 15 x5 + 18 x6 + 18 x7 +
18 x8 + 13 x9 + 5 x10 + x11, 1==

15

A reduction will now recover an actual factor, up to a multi−
plier in the base field Z19.

fac = First@redlat =
polynomialLatticeReduce@
lattice, modDD.

y^Range@0, totdeg � 2D

12 x + 4 x2 + x3 +
I15 + 2 x + 11 x2M y + 5 x y2 + 5 y3

poly2

10 x + 16 x2 + 4 x3 +
3 y + 8 x y + 6 x2 y + x y2 + y3

PolynomialMod@5 * poly2 - fac, modD
0

16

Summary
We used Gröbner bases over the integers to perform Hensel
lifting of factors of univariate polynomials. This is quite
computationally efficient, and requires but a few lines of
code. We then saw how essentially the same idea applies to
bivariate polynomials, using univariate polynomials over a
field as our coefficient ring for the Gröbner bases. We also
saw in brief how one may recover true factors using
Lenstra’s method, again with Gröbner as the engine to do
lattice reduction in a univariate polynomial ring.

We also mention that code similar to the polynomial lattice
reduction can be used to compute Hermite normal forms.
The tandem can be put to use finding low degree solutions
to univariate polynomial systems. While efficiency is less
than the best possible, it is by no means unreasonable, and
the code simplicity is hard to beat. Hence we have Gröbner
bases playing a role both in Hensel lifting and lattice algo−
rithms over polynomial rings.

17

References
W. Adams and P. Loustaunau (1994). An Introduction to
Gröbner Bases. Graduate Studies in Mathematics 3. Ameri−
can Mathematical Society.

B. Buchberger (1985). Gröbner bases: An algorithmic
method in polynomial ideal theory. In Multidimensional Sys−
tems Theory, chap 6. N. K. Bose, ed. D. Reidel Publishing
Company.

J. von zur Gathen and J. Gerhard (1999). Modern Computer
Algebra. Cambridge University Press.

P. Gianni and B. Trager (1985). GCD’s and factoring multi−
variate polynomials using Gröbner bases. Proceedings of
Eurocal 1985.

M. van Hoeij (2002). Factoring polynomials and the knap−
sack problem. Journal of Number Theory 95:167−181.

A. Kandri−Rody and D. Kapur (1988). Computing a Gröb−
ner basis of a polynomial ideal over a Euclidean domain.
Journal of Symbolic Computation 7:55−69.

A. Lenstra(1985). Factoring multivariate polynomials over
finite fields. Journal of Computer and System Sciences
30:235−248.

D. L. Revisiting strong Gröbner bases over Euclidean
domains. Submitted.

H. M. Möller (1988). On the construction of Gröbner bases
using syzygies. Journal of Symbolic Computation 6:
345−359.

18

G. Norton and A. S+l+gean (2001). Strong Gröbner bases
and cyclic codes over a finite−chain ring. Workshop on Cod−
ing and Cryptography, Paris 2001. Preprint.

L. Pan (1989). On the D−bases of polynomial ideals over
principal ideal domains. Journal of Symbolic Computation
7: 81−88.

19

