Hensel Lifting via Grobner bases

Daniel Lichtblau

Wolfram Research, Inc.
100 Trade Centre Dr.
Champaign IL USA, 61820

danl @wl fram com

ACA 05, Nara, Japan
August 1, 2005

Abstract

In this talk | will show how one may use Grébner bas:
over Euclidean domains to perform Hensel lifting in so
polynomial rings. The algorithm is quite simple. Moreo\
for the ring of univariate polynomials over the integers, |
cated polynomial arithmetic code of around two dozen
can implement this method quite efficiently (it compar
well to tree lifting, which appears to be the most effect
approach known). We will also see how the Grébner b
approach to lifting may be applied to bivariate polynom
over finite fields.

Introduction

We begin with Grobner bases over Euclidean domains.
goes back to work by Buchberger, Kandri—-Rody anc
Kapur, Moller, L. Pan, and others in the 1980s, with ro
In earlier work. Roughly, we find such bases in the sa
way as when working over a field except we use the
Euclidean algorithm in lieu of division. An analogy to ke
In mind is that of row reduction vs. Hermite normal for
computation, as these are what ordinary Grébner base
bases over Euclidean rings become when the input pol
als are linear.

The material for this talk originates in work | did a few
years ago. The primary purpose was to simplify the the
and methods in this earlier body of work on Grobner bz
over Euclidean rings. The next step was to investigate
ous applications. There are several that involve spec
cases of such bases. The form of Hensel lifting to be sl
IS among them.

This appears to be perhaps related to work by Gianni
Trager, also from the 1980s, describing a way to do mi
variate polynomial factorization over a finite field. They |
sent a Grobner basis computation to do, in one step, H
lifting and recombination of factors over a specializatiol
a univariate ring.

poly =
Expand[(Xx*"5+18x"4 +34 x"3 +
5xM2+21x+30) %

(XN4 +24XN3+22X72+17 X +15)]

450 + 825 X + 1092 x2 +
1777 x3 + 1492 x* + 1210 x° +
1234 x% + 488 x’ + 42 x® + x°

We will first factor the polynomial modulo a small prim
removing the constant factor.

fax =
Fact or Li st [pol y, Modul us » nod];
fax = First /@Rest [fax]

{4+6X+2X3+X4,
8+1OX+5X2+X3+7X4+X5}

Next we wish to make the factors correct modulo a po
of the prime. This correction step is of course our desi
Hensel lifting , used in most algorithms for factoring pol
mials over the rationals. It is typically done by iterations
Newton’s method in @—adic setting, but we will insteac
use Grobner bases. In effect we take sepapaiadic gcds'
of our polynomial and each factor raised to the indica
power. These gcds are the lifted factors.

For this particular example we take the factors, squa
them, compute Grobner bases over the integers of the
{pol y, squar edf act or, squar ednodul us}, and extract the
last elements of these bases. This will correspond t
guadratic Hensel lifting, insofar as factors correct mogu

becomes correct modulw.

(Last [G oebner Basi s [
{nmod” 2, poly, #€1},
CoefficientDomain ->

| ntegers]] &) /e (fax”?2)

{15+17X+22x2+24x3+x4,
30+21X+5x2+34x3+18x4+x5}

Lo and behold, we recover the correct factors in this sir
example. In real life we only get-adic images that migh
need to be recombined. There is a nice knapsack algo
due to van Hoeij (2002) that will do this.

Theorem: Given a square free univariate polynorhialer
the rationals, and an integprsuch that the leading coeffi
cient of f is not divisible byp, f Iis square free modulp,

and f =, gy ho. Assume s= GCD|go?, f| exists modulo
p2.Thensis the Hensel lift ofy , modulop?.

Remark: the notion of a gcd existing in the setting of an
gral domain is just a convenient shorthand for the resu
running the Euclidean algorithm under the assumption
we encounter no zero divisors along the way. Also note
this p—adic "gcd" may be computed, as above, by a Grc
basis over the integers.

Remark: One could lift further than quadratically. The fi
mulation above is convenient in that the proof is simple
iterated quadratic lifting is generally more efficient tha
going higher in one lift.

Remark: As we increase powers we are effectively wor
In the univariate ringZ ». This is a finite chain ring, and

these were discussed in work by Norton armthidgzan
(2001).

Proof: We are givenf =, g, ho. Suppose the quadratical
lifted equation isf =. g, h; whereg,; =, go andh; = ho.
The assumptions imply that the degreegpbndg, are

equal, and likewise with thle cofactors. We may write
g, =00+ pto. Then a simple computation shows tha

g1 (o — Pto) =2 o”. We see thag, | f andg, | go* mod-

ulo p?. Now lets= GCD|g¢?, f|- Then we have, |s. In

order to show these are equal up to unit multiples (wh
proves the theorem), it suffices to show that

degre€g ;) = degrees).
Suppose degree¢s) > degreéqg). Then
degreés) > degreég). Sinces| f modulop? we haves| f

modulo p. But alsos| go> SO the strict degree inequality

Implies thats is not square free modulm Hencef is not
square free modul@, in contradiction to the assumptiol
that it is.

Here is an example from van Hoelj’'s 2002 paper on kn
sack factorization. Timings are on a 3 GHz Pentium 4 1
ning under Linux.First we create the polynomial in que
tion. Its roots are comprised of sums of pairs of roots
smaller polynomial.

pol y1 = x?Y -5 x8 + 864 x1° -
375 x4 - 2160 x*3 + 1875 x1? +
10800 x*! + 186 624 x1V -
54 000 x° + 46 875 x® + 270 000 x’ -
234 375 x°% - 2700 000 x° -

1953 125x% + 9765 625;
rts =x /. Solve[polyl ==0, x]J;
Suns =
Flatten[Table[rts[iJ+rts[j1,
{i, 19}, {, | +1, 20}17;
newpol y = Expand [Ti nes ee
(X = N[suns, 2001)7;
newpol y = Chop[newpol y] /.
a Real - Round[a];

We now extract factors modulo a certain prime.

nmod = Pri me [40007;
fax = FactorLi st [

newpol y, Modul us -» nod];
fax = First /@eRest [fax];

We lift to the36™ power of our prime.

|1 ft Factors[fax , poly , nod |,
pow] : = Modul e[{nodpow = nod,
top=Ceiling[Log[2, pow]],
|1 ftedfax = fax},
Do[nodpow=1f [|] =1o0p,

nod * pow, nodpow” 2];

1 ftedf ax = Expand[liftedfax”"?2,

Modul us -» nodpow];

i1 ftedfax = Map[

Last [G oebner Basi s
{nodpow, poly, #},
Coefficient Domai n -»

| nt egers]] &,

i1 ftedfax], {J, top}];

|1 ftedfax]

Timng[liftedfax =liftFactors]
fax, newpoly, nod, 367;]

2.87056 Second, Nul |}

Remark: Dedicated univariate polynomial code will do
still faster. Up to fairly high lifting size it appears to be g
erally more efficient than Shoup’s tree-lifting (describe
the 1999 book by von zur Gathen and Gerhard), thou
asymptotically the latter is superior. Below we show de
cated code and apply it to our previous example.

liftFactors2[ofax_, opoly_, nod_, bnd_]:=
Modul e[{p, pl, pow=bnd, powl, |iftedfax, |iftedfax2,
liftedfax3, top, tm PT, tot =0, i, fax, poly, x},
x = First [Variabl es[opol y]1;
fax = Coef fici entList [of ax, x];
poly = Coef ficientList [opoly, x]I;
li ftedfax =fax;
p =pl=nod;
top =Ceiling[Log[2, pow]];
powl = 2 % pow;
PT = Tabl e[powl = Cei | i ng[powl /2], {top}];
powl = 1;
Do[p =p"2;
powl x= 2;
I f [powl # PT[[top-i +1]], powl = PT[[top-i +1]17;
p=p/pl
[iftedfax = Mod[liftedfax, p11;
[iftedfax2 = Map[Al gebra’ Pol ynonmi al Ti nesModLi st [#, #, p] & |iftedfax];
i ftedfax = Map[Al gebra‘ Pol ynom al GCDVbdLi st [pol y, #, p]l & |iftedfax2];
tot =tot +tng
, {i, top}l;
Map [l nternal * FronmCoef fi ci entLi st [#, x] & |iftedfax]]

Timng][
|1 ftedfax2 =11 ftFactors2[fax,
newpol y, nod, 36];]
0. 934858 Second, Nul | }

10

We now show an example in a bivariate ring modulo
prime. The upshot is that we can do Hensel lifting in t
same way, resorting to Grobner bases over the Euclic
domain given by univariate polynomials modulo the prir

randpoly[deg , nod , x , y]:=
Sum[Random[I| nt eger ,
{If[I +] ==deg &&i »| =0, 1,
0], nod =1}] *x™i =y ™|,
{i, 0, deg}, {J, O, deg -11}]
SeedRandom[11117;
t ot deg = 6;
polyl =
randpol y[totdeg /2, nod, X, y];
pol y2 = randpol y [
totdeg /2, nod, X, y];
pol y = Expand [pol y1 = pol y2,
Modul us -» nod]

18X +6 X% +18x3+16 x*+12 x> +8x°+
13y +12Xy +17x%2y +11x3y +
77Xy +16X°y +16y2 +17 x y? +
6X°y2+2x3y?+14x%y?+14y3 +
18xy3 +5x%y3+2x3y3+y*y
4xy*+16x°y*+18y°+18xy° +7y°

11

We will evaluate ak = 11 and factor, removing the con-
stant term.

fax = Map [Fi rst
Drop[FactorList [poly /. x » 11,
Modul us -» nod], 1]]

[8+y, 14+3y+y?
14+13y+9y2+y3}

We will lift a factor modulo a power of the idegd— 11)
that is sufficient to reclaim factors of degree XirNote

that here we lift tol2" power in one step. We might
instead have fashioned this as an iterated quadratic lif
as in earlier examples.

subst =x -11;
power = 12;
subst power = subst * power ;
|1 ftedfactor =
Last [G oebner Basi s[{pol vy,
subst power, fax[[1]]" power },
y, Modul us - nod,
Coeffici ent Domai n ->
Pol ynom al s[x]]]

3+14x +2x2+15x3+

2x*+15%x°>+18x%+18x" +
18 x%+13x%+5x0 x4y

12

As in A. Lenstra’s 1985 paper, we can use this to recc
the true factor via reducing appropriately in a univaria
polynomial lattice. This requires some basic tools whicl
also built from Grébner bases. First is a routine to com
a basis over a module. This is not completely general
any means in that term orderings are not general, but i
suffice to give us what we’ll need for lattice reduction.

nodul eG oebner Basi s [pol ys
vars , cvars , opts__]:=
Modul e[{newpol s, rels,
len = Lengt h[cvars],
gb, j, k, rul s},
rels =Flatten]
Tabl e[cvars[[]]] *cvars[[k]],
{I, len}, {k,], len}]I;
newpol s = Joi n[pol ys, relsy;
gb = & oebner Basi s [newpol s,
Join[cvars, vars], opts];
rul = Map[(2-> {}) & rels];
gb =Flatten[gb /. rul J;
Col | ect [gh, cvars]]

13

Now we can implement the lattice reduction using the n
ule Grobner basis computation. The key thing is to we
polynomials by total degree.

pol ynom al Latti ceReduce]
mat _ ?Matri xQ,
nod : 0] : =Modul e[
{len =Length[First [nmat]],
newars, generators, ngb},
newars = Array[v, |enj;
gener at ors = nat . newars;
ngb = nodul eG oebner Basi S|
generat ors, Vari abl es[nat],
newars, CoefficientDomain-
Rati onal s, Modul us- nod,
Monom al Or der -»
Degr eeRever seLexi cographi c];
Qut er [D, Reverse[ngb], newars]]

14

We next create the appropriate lattice from our lifted fac

deg = Exponent [l i ftedfactor, y];
| atticel =

Tabl e[l f [I =], substpower, 0],

{I, deg}, {], totdeg-2}1];
coeffs = PadRi ght [CoefficientList]

i ftedfactor, y], totdeg -2];

| attice2 = Tabl e[

Rot at eRI ght [coeffs, |],

{j], 0, totdeg -3 -deg}];
lattice =Join[latticel, lattice2]

[{(-11+x)*%, 0, 0, 0},
JL3+14X+2X2+15X3+2X4+

15x° +18x%+18x" +18 x8 +
13x? +5x10 . x1 1, 0, O},

{O, 3+14xXx+2x2+15x3+2x%+

15%x° +18x%+18x7 +18 x8 +
13x? + 5 x10 . x11 1, O},

{O, 0, 3+14x+2x%2+15x3+

2x%+15x°+18x%+18x" +
18 x8 + 13 x° + 5 x10 , x11 1}}

15

A reduction will now recover an actual factor, up to a mi
plier in the base fiel@ .

fac = First [redl at =
pol ynom al Latti ceReduce]
|attice, nod]].
y ' Range[0, totdeg /2]
12X + 4 x°% +x3 +
(15+2x +11x%) y +5xy?+ 5y’

pol y2

10 X + 16 X% + 4 x5 +

3y +8XYy+6X°y +Xy2+ys

Pol ynom al Mod [5 % pol y2 -fac, nod]
0

16

Summary

We used Grobner bases over the integers to perform H
lifting of factors of univariate polynomials. This is quit
computationally efficient, and requires but a few lines
code. We then saw how essentially the same idea appl
bivariate polynomials, using univariate polynomials ove
field as our coefficient ring for the Grobner bases. We .
saw in brief how one may recover true factors using
Lenstra’s method, again with Grobner as the engine tc
lattice reduction in a univariate polynomial ring.

We also mention that code similar to the polynomial lat
reduction can be used to compute Hermite normal for
The tandem can be put to use finding low degree solul
to univariate polynomial systems. While efficiency is le
than the best possible, it is by no means unreasonable
the code simplicity is hard to beat. Hence we have GrG
bases playing a role both in Hensel lifting and lattice al
rithms over polynomial rings.

17

References

W. Adams and P. Loustaunau (1994). An Introduction
Grobner Bases. Graduate Studies in Mathematics 3. Al
can Mathematical Society.

B. Buchberger (1985). Grobner bases: An algorithmi
method in polynomial ideal theory. In Multidimensional .
tems Theory, chap 6. N. K. Bose, ed. D. Reidel Publis|
Company.

J. von zur Gathen and J. Gerhard (1999). Modern Com
Algebra. Cambridge University Press.

P. Gianni and B. Trager (1985). GCD’s and factoring m
variate polynomials using Grébner bases. Proceeding
Eurocal 1985.

M. van Hoeij (2002). Factoring polynomials and the kn.
sack problem. Journal of Number Theory 95:167-181.

A. Kandri-Rody and D. Kapur (1988). Computing a Gr«
ner basis of a polynomial ideal over a Euclidean dome
Journal of Symbolic Computation 7:55-69.

A. Lenstra(1985). Factoring multivariate polynomials o
finite fields. Journal of Computer and System Scienc
30:235-248.

D. L. Revisiting strong Grobner bases over Euclidea
domains. Submitted.

H. M. Moller (1988). On the construction of Grobner ba
using syzygies. Journal of Symbolic Computation 6:
345-359.

18

G. Norton and A. 8agean (2001). Strong Grobner bas
and cyclic codes over a finite—chain ring. Workshop on
iIng and Cryptography, Paris 2001. Preprint.

L. Pan (1989). On the D-bases of polynomial ideals o
principal ideal domains. Journal of Symbolic Computat
/. 81-88.

19

