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Abstract
In this talk I  will  show how one may use Gröbner bases
over Euclidean domains to perform Hensel lifting in some
polynomial rings. The algorithm is quite simple. Moreover,
for the ring of univariate polynomials over the integers, dedi−
cated polynomial arithmetic code of around two dozen lines
can implement  this  method quite  efficiently  (it  compares
well to tree lifting, which appears to be the most effective
approach known). We will also see how the Gröbner basis
approach to lifting may be applied to bivariate polynomials
over finite fields.
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Introduction
We begin with Gröbner bases over Euclidean domains. This
goes  back  to  work  by  Buchberger,  Kandri−Rody  and
Kapur, Möller, L. Pan, and others in the 1980s, with roots
in earlier work. Roughly, we find such bases in the same
way  as  when  working  over  a  field  except  we  use  the
Euclidean algorithm in lieu of division. An analogy to keep
in mind is that of row reduction vs. Hermite normal form
computation, as these are what ordinary Gröbner bases and
bases over Euclidean rings become when the input polynomi−
als are linear.

The material  for this  talk  originates in  work I  did a few
years ago. The primary purpose was to simplify the theory
and methods in this earlier body of work on Gröbner bases
over Euclidean rings. The next step was to investigate vari−
ous  applications.  There  are  several   that  involve  special
cases of such bases. The form of Hensel lifting to be shown
is among them.

This appears to be perhaps related to work by Gianni and
Trager, also from the 1980s, describing a way to do multi−
variate polynomial factorization over a finite field. They pre−
sent a Gröbner basis computation to do, in one step, Hensel
lifting and recombination of factors over a specialization to
a univariate ring.
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poly =
Expand@Hx^5 + 18 x^4 + 34 x^3 +

5 x^2 + 21 x + 30L *
Hx^4 + 24 x^3 + 22 x^2 + 17 x + 15LD

450 + 825 x + 1092 x2 +
1777 x3 + 1492 x4 + 1210 x5 +
1234 x6 + 488 x7 + 42 x8 + x9

We will first factor the polynomial modulo a small prime,
removing the constant factor.

mod = 11;
fax =

FactorList@poly, Modulus ® modD;
fax = First �� Rest@faxD

94 + 6 x + 2 x3 + x4,

8 + 10 x + 5 x2 + x3 + 7 x4 + x5=

Next we wish to make the factors correct modulo a power
of the prime. This correction step is of course our desired
Hensel lifting , used in most algorithms for factoring polyno−
mials over the rationals. It is typically done by iterations of
Newton’s method in a p−adic setting, but we will  instead
use Gröbner bases. In effect we take separate "p−adic gcds"
of our polynomial  and each factor raised to the indicated
power. These gcds are the lifted factors.
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For  this  particular  example  we  take  the  factors,  square
them, compute Gröbner bases over the integers of the set
{poly,squaredfactor,squaredmodulus},  and  extract  the
last  elements  of  these  bases.  This  will  correspond  to
quadratic Hensel lifting, insofar as factors correct modulo p
becomes correct modulo p2.

HLast@GroebnerBasis@
8mod^2, poly, ð1<,
CoefficientDomain ->

IntegersDD & L �� Hfax^2L

915 + 17 x + 22 x2 + 24 x3 + x4,
30 + 21 x + 5 x2 + 34 x3 + 18 x4 + x5=

Lo and behold, we recover the correct factors in this simple
example. In real life we only get p−adic images that might
need to be recombined. There is a nice knapsack algorithm
due to van Hoeij (2002) that will do this.
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Theorem: Given a square free univariate polynomial f  over
the rationals, and an integer p such that the leading coeffi−
cient of f  is not divisible by p, f  is square free modulo p,
and  f ºp g 0 h0.  Assume   s = GCDAg0

2, f E  exists  modulo

p2.Then s is the Hensel lift of g 0 modulo p2.

Remark: the notion of a gcd existing in the setting of an inte−
gral domain is just a convenient shorthand for the result of
running the Euclidean algorithm under the assumption that
we encounter no zero divisors along the way. Also note that
this p−adic "gcd" may be computed, as above, by a Gröbner
basis over the integers.

Remark: One could lift further than quadratically. The for−
mulation above is convenient in that the proof is simple and
iterated  quadratic  lifting  is  generally  more  efficient  than
going higher in one lift.

Remark: As we increase powers we are effectively working
in the univariate ring Zpn.  This is a finite chain ring, and
these  were  discussed  in  work  by  Norton  and  S+l+gean
(2001).
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Proof: We are given f ºp g 0 h0. Suppose the quadratically
lifted equation is f ºp2 g 1 h1 where g 1 ºp g0 and h 1 ºp h0.
The assumptions imply that the degrees of g0 and g 1 are
equal,  and  likewise  with  the  h  cofactors.  We  may  write
g 1 = g0+ p t0.  Then  a  simple  computation  shows  that
g 1 Hg0- p t0L ºp2 g0

2. We see that g 1 f  and g 1 g0
2 mod−

ulo p2. Now let s = GCDAg0
2, f E. Then we have g 1 s. In

order to show these are equal up to unit multiples (which
proves  the  theorem),  it  suffices  to  show  that
degreeHg 1L ³ degreeHsL.

Suppose  degreeHsL > degreeHg 1L.   Then
degreeHsL > degreeHg 0L. Since s f  modulo p2 we have s f

modulo  p.  But  also s g0
2  so  the strict  degree inequality

implies that s is not square free modulo p. Hence f  is not
square free modulo p,  in  contradiction to  the assumption
that it is. á
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Here is an example from van Hoeij’s 2002 paper on knap−
sack factorization. Timings are on a 3 GHz Pentium 4 run−
ning under Linux.First we create the polynomial in ques−
tion. Its roots are comprised of sums of pairs of roots of a
smaller polynomial.

poly1 = x20 - 5 x18 + 864 x15 -
375 x14 - 2160 x13 + 1875 x12 +
10 800 x11 + 186 624 x10 -
54 000 x9 + 46 875 x8 + 270 000 x7 -
234 375 x6 - 2 700 000x5 -
1 953 125x2 + 9 765 625;

rts = x �. Solve@poly1 == 0, xD;
sums =

Flatten@Table@rtsPiT + rtsPjT,
8i, 19<, 8j, i + 1, 20<DD;

newpoly = Expand@Times ��
Hx - N@sums, 200DLD;

newpoly = Chop@newpolyD �.
a_Real ® Round@aD;

We now extract factors modulo a certain prime.

mod = Prime@4000D;
fax = FactorList@

newpoly, Modulus ® modD;
fax = First �� Rest@faxD;
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We lift to the 36th power of our prime.

liftFactors@fax_, poly_, mod_,
pow_D := Module@8modpow = mod,
top = Ceiling@Log@2, powDD,
liftedfax = fax<,

Do@modpow = If@j � top,
mod ^pow, modpow^2D;

liftedfax = Expand@liftedfax^2,
Modulus ® modpowD;

liftedfax = Map@
Last@GroebnerBasis@
8modpow, poly, ð<,
CoefficientDomain ®
IntegersDD &,

liftedfaxD, 8j, top<D;
liftedfaxD

Timing@liftedfax = liftFactors@
fax, newpoly, mod, 36D;D

82.87056 Second, Null<
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Remark: Dedicated univariate polynomial code will do this
still faster. Up to fairly high lifting size it appears to be gen−
erally more efficient than Shoup’s tree−lifting (described in
the  1999 book  by  von  zur  Gathen and Gerhard),  though
asymptotically the latter is superior. Below we show dedi−
cated code and apply it to our previous example.

liftFactors2@ofax_, opoly_, mod_, bnd_D :=
Module@8p, p1, pow = bnd, pow1, liftedfax, liftedfax2,

liftedfax3, top, tm, PT, tot = 0, i, fax, poly, x<,
x = First@Variables@opolyDD;
fax = CoefficientList@ofax, xD;
poly = CoefficientList@opoly, xD;
liftedfax = fax;
p = p1 = mod;
top = Ceiling@Log@2, powDD;
pow1 = 2 * pow;
PT = Table@pow1 = Ceiling@pow1 � 2D, 8top<D;
pow1 = 1;
Do@p = p^2;
pow1 *= 2;
If@pow1 ¹ PT@@top - i + 1DD, pow1 = PT@@top - i + 1DD;
p = p � p1;
liftedfax = Mod@liftedfax, pDD;

liftedfax2 = Map@Algebra‘PolynomialTimesModList@ð, ð, pD &, liftedfaxD;
liftedfax = Map@Algebra‘PolynomialGCDModList@poly, ð, pD &, liftedfax2D;
tot = tot + tm;
, 8i, top<D;

Map@Internal‘FromCoefficientList@ð, xD &, liftedfaxDD

Timing@
liftedfax2 = liftFactors2@fax,

newpoly, mod, 36D;D
80.934858 Second, Null<
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We now show an  example  in  a  bivariate  ring modulo  a
prime. The upshot is that we can do Hensel lifting in the
same way, resorting to Gröbner bases over the Euclidean
domain given by univariate polynomials modulo the prime.

randpoly@deg_, mod_, x_, y_D :=
Sum@Random@Integer,
8If@i + j � deg && i * j � 0, 1,

0D, mod - 1<D * x ^i * y ^j,
8i, 0, deg<, 8j, 0, deg - i<D

mod = 19;
SeedRandom@1111D;
totdeg = 6;
poly1 =

randpoly@totdeg � 2, mod, x, yD;
poly2 = randpoly@

totdeg � 2, mod, x, yD;
poly = Expand@poly1 * poly2,

Modulus ® modD

18 x + 6 x2 + 18 x3 + 16 x4 + 12 x5 + 8 x6 +
13 y + 12 x y + 17 x2 y + 11 x3 y +
7 x4 y + 16 x5 y + 16 y2 + 17 x y2 +
6 x2 y2 + 2 x3 y2 + 14 x4 y2 + 14 y3 +
18 x y3 + 5 x2 y3 + 2 x3 y3 + y4 +
4 x y4 + 16 x2 y4 + 18 y5 + 18 x y5 + 7 y6
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We will evaluate at x = 11 and factor, removing the con−
stant term.

fax = Map@First,
Drop@FactorList@poly �. x ® 11,

Modulus ® modD, 1DD

98 + y, 14 + 3 y + y2,

14 + 13 y + 9 y2 + y3=

We will lift a factor modulo a power of the ideal Hx - 11L
that is sufficient to reclaim factors of degree 3 in x. Note
that  here  we  lift  to  12th power  in  one  step.  We  might
instead have fashioned this as an iterated quadratic lifting,
as in earlier examples.

subst = x - 11;
power = 12;
substpower = subst^power;
liftedfactor =
Last@GroebnerBasis@8poly,

substpower, fax@@1DD^power<,
y, Modulus ® mod,
CoefficientDomain ->
Polynomials@xDDD

3 + 14 x + 2 x2 + 15 x3 +
2 x4 + 15 x5 + 18 x6 + 18 x7 +
18 x8 + 13 x9 + 5 x10 + x11 + y
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As in A. Lenstra’s 1985 paper, we can use this to recover
the  true factor  via  reducing appropriately in  a  univariate
polynomial lattice. This requires some basic tools which we
also built from Gröbner bases. First is a routine to compute
a basis over a module. This is not completely general by
any means in that term orderings are not general, but it will
suffice to give us what we’ll need for lattice reduction.

moduleGroebnerBasis@polys_,
vars_, cvars_, opts___D :=

Module@8newpols, rels,
len = Length@cvarsD,
gb, j, k, ruls<,

rels = Flatten@
Table@cvars@@jDD * cvars@@kDD,
8j, len<, 8k, j, len<DD;

newpols = Join@polys, relsD;
gb = GroebnerBasis@newpols,

Join@cvars, varsD, optsD;
rul = Map@Hð ® 8<L &, relsD;
gb = Flatten@gb �. rulD;
Collect@gb, cvarsDD
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Now we can implement the lattice reduction using the mod−
ule Gröbner basis computation. The key thing is to weight
polynomials by total degree.

polynomialLatticeReduce@
mat_?MatrixQ,
mod_: 0D := Module@
8len = Length@First@matDD,
newvars, generators, mgb<,

newvars = Array@v, lenD;
generators = mat.newvars;
mgb = moduleGroebnerBasis@

generators, Variables@matD,
newvars, CoefficientDomain ®
Rationals , Modulus® mod,

MonomialOrder ®
DegreeReverseLexicographicD;

Outer@D, Reverse@mgbD, newvarsDD
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We next create the appropriate lattice from our lifted factor.

deg = Exponent@liftedfactor, yD;
lattice1 =

Table@If@i � j, substpower, 0D,
8i, deg<, 8j, totdeg - 2<D;

coeffs = PadRight@CoefficientList@
liftedfactor, yD, totdeg - 2D;

lattice2 = Table@
RotateRight@coeffs, jD,
8j, 0, totdeg - 3 - deg<D;

lattice = Join@lattice1, lattice2D

99H-11 + xL12, 0, 0, 0=,

93 + 14 x + 2 x2 + 15 x3 + 2 x4 +
15 x5 + 18 x6 + 18 x7 + 18 x8 +
13 x9 + 5 x10 + x11, 1, 0, 0=,

90, 3 + 14 x + 2 x2 + 15 x3 + 2 x4 +

15 x5 + 18 x6 + 18 x7 + 18 x8 +
13 x9 + 5 x10 + x11, 1, 0=,

90, 0, 3 + 14 x + 2 x2 + 15 x3 +

2 x4 + 15 x5 + 18 x6 + 18 x7 +
18 x8 + 13 x9 + 5 x10 + x11, 1==
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A reduction will now recover an actual factor, up to a multi−
plier in the base field Z19.

fac = First@redlat =
polynomialLatticeReduce@
lattice, modDD.

y^Range@0, totdeg � 2D

12 x + 4 x2 + x3 +
I15 + 2 x + 11 x2M y + 5 x y2 + 5 y3

poly2

10 x + 16 x2 + 4 x3 +
3 y + 8 x y + 6 x2 y + x y2 + y3

PolynomialMod@5 * poly2 - fac, modD
0
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Summary
We used Gröbner bases over the integers to perform Hensel
lifting  of  factors  of  univariate polynomials.  This  is  quite
computationally  efficient,  and requires but  a few lines of
code. We then saw how essentially the same idea applies to
bivariate polynomials, using univariate polynomials over a
field as our coefficient ring for the Gröbner bases. We also
saw  in  brief  how  one  may  recover  true  factors  using
Lenstra’s method, again with Gröbner as the engine to do
lattice reduction in a univariate polynomial ring.

We also mention that code similar to the polynomial lattice
reduction can be used to compute Hermite normal forms.
The tandem can be put to use finding low degree solutions
to univariate polynomial systems. While efficiency is less
than the best possible, it is by no means unreasonable, and
the code simplicity is hard to beat. Hence we have Gröbner
bases playing a role both in Hensel lifting and lattice algo−
rithms over polynomial rings.
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