
Symbolic Computation: An (Almost)
Indispensible Tool For R & D

Daniel Lichtblau
danl@wolfram.com
Wolfram Research, Inc.
100 Trade Center Dr.
Champaign IL 61820

NSF Workshop:
Future Directions of Symbolic
Computation Research and their
Applications to the Domain Sciences

University of Rhode Island
April 30−May 1, 2009

¢ | £

1

ABSTRACT

I hope to explain some of the myriad ways in which
symbolic computation, once the province of
computational physics and math, is now percolating
(sometimes flooding, sometimes trickling, sometimes,
alas, reversing course) to the "real world". I also will try
to explain why we might believe we have something of
value to offer, and what I believe that something to be.

¢ | £

2

Disclaimer

(1) To state what should be obvious: everything mentioned is my own
opinion. I do not speak for my employer (Wolfram Research). And I do
not pretend to speak for anyone else in this session, and may offer
opinions on what symbolic computation was, or is, that are at odds with
the views of others, or with previous versions of myself.

(2) What I state will be, of necessity, heavily influenced by the work I do.
This includes 17+ years of development in the kernel of Mathematica.
That said, many aspects to functionality I describe have a flavor in other
programs.

¢ | £

3

Historically

Symbolic computation, aka computer algebra, aka symbolic manipulation,
is a merging of many tools from computational physics and algorithmic
algebra. Possibly the main point of commonality between these two
streams is that neither was particularly numeric in nature.

In 70’s and 80’s we see evolution toward algorithmic algebra.

èSome important computational achievements were the
development of algorithms for:
éMultivariate polynomial GCDs
éPolynomial factorization
éGröbner bases and triangular sets ==> solving systems of

equations
é Lattice reduction (sounds like a salad dressing at an upscale

restaurant)
éSymbolic integration and summation

¢ | £

4

Digression for a pop quiz

èQuestion 1:
In 1982, when it first appeared (okay, 1981), how many people
here regarded lattice reduction as a part of symbolic
computation? (My guess: one. Until Kaltofen misbehaves and
we send him out of the room.)

èQuestion 2:
How many people today would even consider that lattice
reduction is not an important part of symbolic computation?

My point being, what we regard as symbolic computation is evolving,
mostly growing. I see this as a very healthy reaction to an influx of good
algorithms, challenging problems, and adaptability of tools. And
toolsmiths.

¢ | £

5

Important additions along the way

èAcquisition of language
éOf necessity, every symbolic computation program has

developed a bona fide computer language.

èUse of computer graphics

èNumerics
é I cannot emphasize how important this is, both for general usage

and, specifically, for symbolic computation.
éSince mid−90’s we have seen the emergence of hybrid

symbolic−numeric computation.

èGeneral purpose interfaces
éOkay, some people still like a raw "terminal window" interface

(I do my Mathematica kernel debugging via that type of
interface). But for most purposes e.g. getting good graphics,
writing a paper (or slide show like this one), etc., the interactive
interfaces are quite desirable.

è Interface capabilities to external programs

¢ | £

6

More recent additions...

èSupport for web services

èSupport for parallelization

è Importing and exporting from/to a slew of standard data formats

è Integrated Development Environment tools
éProfiling
éDebugging
éProject management

èConfigurable GUI interfaces to graphics
éReally powerful in conjunction with e.g. computational

dynamics code

èAnd~ lest we forget~ an ever increasing body of "classical"
symbolic computation algorithms and functions
éGCDs over algebraic fields (including prime characteristic case)
é Limits of exp−log functions
é Improvements to real solving
éBetter capabilities to utilize some functionality to improve other

parts, e.g. using a real solver to locating singularities on an
integration path
é The above just scratch the surface. This is a vibrant field.

¢ | £

7

What do our programs and technologies offer?

Side remark: Few users give much thought to whether the code under the
hood can find common factors in rational functions. Yet they want such
functionality even when they do not realize it e.g. for "canonical forms" or
simplification of expressions.

èA plethora of built−in mathematical tools
éEfficient arithmetic (NEVER underestimate the importance of

this, or forget how horribly slow we all were in the "bad old
days")
éSymbolic and numeric calculus (this is sweeping a huge amount

of technology into one sub−item)
éSymbolic and numeric linear and nonlinear algebra
éSymbolic and numeric support for elementary and special

functions
éNumber theory functions such as lattice reduction (or is that

symbolic computation functionality?)
éOptimization (linear and nonlinear, unconstrained and

constrained, local and global)
éStatistics functionality
éComputational geometry (necessary for good graphics, useful in

a variety of other ways)
¢ | £

8

What our programs offer...

èRich programming languages
éCan even emulate a Turing machine (okay, maybe that’s not so

special...)
éNecessary for bootstrap development; much development is now

done in the language itself, and this offers considerable
advantage in terms of development time and later maintainance.

è Interfaces to other software
éAbility to import from and export to various programs. Quite

useful for researchers working with e.g. large data sets, or
programs by colleagues in other languages.

¢ | £

9

Uses of these programs

èClassrooms (in first year college math, at least since 80’s)

èMath & physics research (since 70’s, and even some in 60’s)
éAutomated theorem proving in geometry comes to mind as a

huge success story in the field of symbolic computation. It
fueled algorithm development and refined notions of what
symbolic computation can do, what are the questions to ask, etc.
éUniversity algebra is now commonly taught with an eye toward

computational methods, and even efficiency in those methods.
¢ | £

10

Uses...(more recently)

èFinance community (quants, financial modellers/analysts,
actuarial work)

èEngineering R&D (automakers, jet manufacturers, chemical and
electronics companies)

è Life sciences (medical imaging, compartmental models,
cell/tissue/population dynamics, pharmaceutical design)

èComputer science (algorithm development and analysis)

èGovernment and university labs (avionics, biophysics,
chemistry, data analysis, environmental science, fishery
management, ..., materials sciences, nanotechnology, operations
research, physics, ..., zoology)

èEconomics/econometrics departments and organizations

èOther social sciences, modelling and simulation, insurance
modelling, law analysis

èArts and music (sculpture design, graphic art, electronic
composition,...)

è Literature (okay, not really in literature, but certainly in
mathematical text analysis)

¢ | £

11

Mathematica−specific use

èwww.wolfram.com� solutions

éProvides a wealth of information about domain−specific usage
in industrial and related settings.

è demonstrations.wolfram.com
éVarious visualizations created with, but not requiring,

Mathematica. Many arise in domain sciences.
¢ | £

12

What the Symbolic Computation community has to
offer

èExperienced developers, development tools, etc.
éWe now have numerous professors, in departments around the

world, training grad students in algorithm development.
éWe see an increased emphasis on software engineering, both in

the academic world and more especially in the development
sector (commercial and otherwise).
éProgram development, commercial and noncommercial, seems

to be healthy.

èA growing experience base with "real world" problems.

èA growing user base (important for spreading the experience
base). Their success is good for everyone (that is, everyone who
thinks of R&D as a "good thing").

¢ | £

13

What the community can offer...

è Increasing availability of quality software numeric libraries e.g.
Lapack, PHCPack, ...
é We do not write all of these, but as a group have put them to

good use.
é These are important in their own right: numeric linear algebra,

for example, is used in more ways than any of us can imagine.
é Also they dovetail nicely with symbolic computation: LinBox

and hybrid polynomial algebra methods can make use of them.

èAvailability of quality "exact" math libraries e.g. GMP (and
MPIR, soon if not already), LinBox, ...
é From point of view of general purpose math programs, these are

something of a common good that can be made available to the
user base.

èA confluence of interests between those of us in symbolic
computation, and the user community in domain sciences and
elsewhere.

¢ | £

14

What the community can offer...

èWe are well positioned to assist users, in effect passing along
our expertise to the domain sciences.
éAnectodally, I would guess this comprises 10−15% of my own

work day, in responding to a myriad of questions that come
through our Tech Support, Usenet users’ group, and private
email.
é I often know little to nothing of the users’ areas. In the past

several months I have taken on problems in cartography (quickly
determine if a given pixel resides in Canada), an intricate
economic−and−climate model based on that of Nordhaus (the
challenge: make it crank through a few hundred iterations), a
mixed two−level optimization problem from chemistry,
extraction of a planar slice from a complicated surface, and
maybe another dozen or more I have forgotten.

èOnce in a while, pursuit of our own research interests leads to
applicable functionality. A few examples from my own
backyard:
éA Wolfram Research colleague received "best paper" award at

ISSAC 2008 in recognition of some work he has done in real
solving.
éA silly computational number theory problem lead to some of

our integer programming capabilities.
éDevelopment of numeric Gröbner bases, more or less for the

challenge of doing so, lead a few years later to a global solver
for numeric polynomial systems.

¢ | £

15

What are the failures of our field?

èHistorically, an over−emphasis on pure "symbolic" functionality
as opposed to numerics, user interface issues, programming
language design and function, and more.
éHappily, that seems to be in the past (declares victory, goes

home).

èWe have fallen quite short of the mark in convincing the
potential user base that what we offer can increase productivity
of researchers in virtually all fields that use computer programs.
é I would classify this as the single largest failing in our field.
éAgain, this provides us with a challenge: Figure out those things

we are not doing well, improve them, package them as
"symbolic computation" if need be, and show people how to use
them.

èAs a field we have been slow to recognize, and support
development of, "common good" libraries (GMP would be an
example of one such). There are places where it simply does not
make sense to reinvent wheels several times over.

¢ | £

16

Failures...

èSomething I have heard from a few people at conferences: we
have adopted too much of a "mathematical" attitude, at the
expense of sound computer, computational, and engineering
science.
éOne indication, anecdotal though it may be, is that twenty or so

years ago the field was more heavily populated with physicists
than is the case today.
éMore anecdote: I have heard from four or five people over the

years that they will not submit work to publications in symbolic
computation (due to poor treatment in past, I gather. Been there.)
Much as I would prefer that people evolve thicker skins, the
possibility remains that we might be losing good researchers.

èWe have sometimes let differences over arcane issues obscure
the fact that users in most application domains could care less.
éOur time would be better spent insulting one another’s parentage

than software development efforts.
é There is but little to gain from the open/free vs.

commercial/proprietary squabble that sometimes raises its tiny
head. People want good software, not arguments over whether
some of it might conceivably be provided via commercial
products.
éSquandering potential resources in bickering over what is, for

most end users, obscurata, will not further development of good
software. I’ve yet to see this debate do harm to the commercial
players, but it seems not to be helping the academic side, on
which much future research depends.

¢ | £

17

Other weak areas

We all have bugs in need of fixing. Everyone knows this (discussion
thereof is even something of a cottage industry in one Usenet group). But
why do we appear to have so many relative to other types of software?

èMathematical code tends to have tremendous level of
interdependency. For example...
éSymbolic integration sits on top of rational function

manipulation, limit and series functionality, real solving, and
more.
é Limits and series tend to use one another (that at least, has been

my experience, although perhaps this is more specific to
Mathematica than other programs).
éComplicated graphis may require serious computational

geometry under the hood
éOne is always to some extent at the mercy of library code, even

when it is better than what we ourselves might separately write.
¢ | £

18

Weak areas...

èSpeed. While improvements are coming along, many of us
remain slow due to interpreter speed, deficiencies in sound just−
in−time compilation, etc.

èMathematical algorithms are sometimes complicated, hence easy
to mess up in edge cases.
éMany "standard" algorithms are "easy". But we all want code

that is faster, and often go beyond standard to gain that order−of−
magnitude improvement (e.g. in going from Euclidean algorithm
to asymptotically fast gcd). Lemme tell you, it’s easy to incur
the wrath of the bug wraith, when you go all out for speed.

èMathematical functionality is in some places simply incomplete.
That is, we have methods for handling some problems, but
cannot always tell (at least, not without substantial work) when
they might fail. Finding path singularities of elliptic integrals is
an example where this can happen.

¢ | £

19

Weak areas...

è In the commercial sector (and perhaps most heavily in
Mathematica), there has been far too little emphasis on
apportionment of academic credit to those who develop the
algorithms. But we need this because...
é It is only fair.
é Those who develop good algorithms then are further encouraged

to do more of that. And the recognition of their work makes it
easier to get grants, tenure, and all those little things that make
their research continue.
é Those who use the software, then have references to which they

can go, should they be so inclined. Some people require details
regarding how the software works, particularly when they rely
upon it for work that goes into scientific publication.

¢ | £

20

Future tasks

What can we do?

è Improve our software systems engineering so that we better
understand and can more readily track down and kill, or better
still, prevent, these bugs.

èEncourage development and maintainance of "common good"
libraries such as for bignum arithmetic, linear algebra, etc.
éShould this be extended to polynomial algebra or other areas?

I’m not sure but do sometimes wonder about this.

è Improve documentation in regards to areas for which
functionality, and algorithm development as a whole, are
incomplete at best.
éDefinite integration comes immediately to mind. It is the La

Brea Tar Pit of symbolic computation.

èObviously the field will be well served by some of us continuing
to develope symbolic computation, in the classical sense.

èFigure out the important open problems for the next generation
in Symbolic Computation to tackle.

èWhile we are seeing improved communication with numerics
and applications domain experts, there is a need for still more.

¢ | £

21

Future...

è In the commercial sector, it is important that we continue to
incorporate some of the notable work from the academic sector.
é Impossible to include everything.
éDifferent R&D teams will have different priorities.It is

increasingly clear that we must be attentive to user base, both
actual and potential.
éSometimes this means saying "no".
éSometimes it means less exciting development work that one

might like.
éSometimes, no, often, it means working on program

documentation.
é It certainly means paying attention to bugs.
éBut overall, we need to keep thinking about what is useful in the

literature (both new and old), and strive to put it to good use.

è Improve speed
éProbably bad to sacrifice language semantics.
éBut can often be done on a subset of the language, in a way that

improves capabilities for a diverse set of uses and users.
¢ | £

22

Summary

Always more work to do...

èOver past two+ decades Symbolic Computation has seen a
tremendous transfer of technology to the private and non−
academic, non−commerical sectors.
é Availability in a plethora of scientific and other Research and

Development environments means we have considerable
leveraging of our community’s research efforts.

èWe do not develop a plethora of "killer apps" in this game...
éRather, we amass a large repertoire of generally useful

capabilities. Much of the development is, or at least seems to be,
incremental.
é The importance is in putting them together for general usage,

and then teaching people how to use the software. With
hundreds of thousands of users doing sophisticated R&D, a case
can readily be made that...

è ...but these programs are themselves the Killer Applications.

¢ | £

23

