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Abstract

Abstract. We address the following question: Given five points in R3,
determine a right circular cylinder containing those points. We obtain al-
gebraic equations for the axial line and radius parameters and show that
these give six solutions in the generic case. An even number (0, 2, 4, or
6) will be real valued and hence correspond to actual cylinders in R®. Of
these possibilities we will see that none is nongeneric; there are sets with
nonempty interiors in the configuration space that give rise to each case.
We will also investigate several computational and theoretical issues re-
lated to this problem. In particular we will show how Grobner bases and
equation solving techniques may be used to advantage in pursuit of this
and related problems.
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1. Outline of the problem

Given five points in R®, we are to determine all right circular cylinders containing
those points. We will do this by using the input data to set up and solve
equations for the axial line and radius parameters. We will see that generically
one obtains six solutions to these equations. Not surprisingly, an even number
of the six must be real valued, as the complex valued ones appear in conjugate
pairs. Moreover there are open regions in the real configuration space that
give each of these possibilities and hence none are generically disallowed. In
the sequel we frequently use the term "real cylinders" to denote real valued
solutions to the cylinder equations that arise from a given configuration of five
points. Sometimes we refer to arbitrary solutions as "cylinders" even if they



have complex values. The meaning should be clear from context. As worded the
problem appears to dwell in the realm of enumerative geometry, but note that
it may be recast in a computational geometry setting: Given five points in R3,
find the smallest 7 and orientation parameters such that the cylinder of radius
2 r with those parameters encloses tangentially the balls of radius r centered
at the points. Several related topics we discuss will also have computational
geometry intepretations.

We will discuss both approximate and exact computational methods for find-
ing the (real or complex) cylinders. We show how certain specific configurations
give rise to open sets in our domain for which we obtain the extreme cases, that
is, either zero or six real cylinders. Here are a few of the related questions we
will consider.

(1) Given the points and corresponding cylinder parameters, how might we dis-
play them graphically?

(2) Given the cylinder parameters, how may we obtain its implicit equation as
a hypersurface in R3?

(3) Reversing this, how can one obtain parameters from the implicit form?

(4) Given six or more points, how do we find the coordinates of a (generically
unique) cylinder in R? that "best" fits those points?

(5) Given five points chosen with random uniform distribution in a cube, what
is the expected probability that one lies inside the convex hull of the other four
(this is related to the "no real cylinder" case).

Some of the material below was posted in response to a Usenet news group
query on this topic [24]. Related techniques and results were similarly presented
by Dave Rusin [29]. That one obtains six cylinders was previously demonstrated
in [5], though by rather different means. Independent of this work, similar
theory is developed in [13]. A related problem, finding cylinders of a given
radius through four given points in R?, is discussed in [15] and [26]. A nice
survey of computational commutative algebra methods that are applicable to
nonlinear problems in computational geometry can be found in [7]. Another
good general treatment of theoretical and practical aspects of using Grobner
bases in computational geometry is chapter 7 of [18]. Computations in the sequel
were performed with the version of Mathematica [33] under development at the
time of this writing ( Mathematica (TM) is a registered trademark of Wolfram
Research, Incorporated). Most were done on a 1.4 GHz Athelon machine under
Linux.

The remainder of this paper is structured as follows. In section 2 we present
several computational sides to the problem. These include finding and count-
ing cylinder solutions. In section 3 we handle various associated computational
geometry problems, and basics of point/cylinder visualization. Considerable
attention is given to the ways in which these specialized methods intersect com-
putational mathematics in general. Section 4 delves into the frequencies of real
cylinders containing suitably random point sets. These investigations are again
largely computational, though we relate some to a recent result in integral geom-
etry. In section 5 we state and prove several theorems regarding the enumerative
geometry of the problem. Following that are summary and acknowledgements.



2. Computing cylinders through five points

Finding cylinder parameters from a set of 5 points

We will assume unless otherwise stated that our points are generic. In particular,
no three are collinear, no four are coplanar, cylinder axes do not lie in coordinate
planes, and so forth. These assumptions allow us to avoid avoid computational
complexity that would arise from parametrizing axial directions using a sphere
(this gives rise to two problems: we have one extra variable, and so to eliminate
it we would add an equation that normalizes the direction. Moreover we would
double the size of our solution set because any direction is equivalent to its
negative). Given these stipulations we proceed as follows.

With our assumptions in place, given a cylinder axis line L in R® we may
parametrize it as { y= a z+ b, 2= ¢ z+ d}. Given r;0 there is a unique
circular cylinder C of radius r with center axis L. Supposing we have five
points on that cylinder the following questions now arise. How do we find L
and r? How do we use them to parametrize C e.g. for purposes of plotting
it? Why do we even expect this will determine finitely many cylinders?

This last is answered as follows. Given a point on C we will project orthog-
onally onto L in order to get an equation involving the parameters we wish to
find. We have five parameters to determine in the setup used above, and each
point will give us an algebraic equation of the form ||perp||*=r2. For generic
choice of points the equations should be algebraically independent, hence the
dimension of the solution set would be zero. In more detail, if we take five
points with indeterminate coordinates (that is, coordinates expressed as vari-
ables) then we obtain a system of five equations of the form f;[ a, b, ¢, d,
r]=0 for which we want to solve for the cylinder parameters in terms of the
coordinates. To show there are finitely many solutions it suffices by the implicit
function theorem to show that the Jacobian of the map { f1, f2, f3, f1, f5} has
full rank for these generic coordinates. One can do this explicitly by finding the
symbolic Jacobian, plugging in random values for the coordinates, and checking
that the resulting matrix has full rank. We will instead show a computation in
the last section that demonstrates there are generically at most nine solutions.
Simple reasoning will further reduce this to eight. Following that is a more
elaborate proof that the actual number is six.

Let us demonstrate how to solve for the cylinder parameters with a specific
example. We will take as our parameter values =3, b=2, c=4, d=-1,and
r=+/21.

The locus of points on C is obtained as sums of a vector on L plus a vector
of length r perpendicular to L. All vectors perpendicular to L are spanned
by any independent pair. We can obtain an orthonormal pair {171) ,175} in the
standard way by finding the null space to the matrix whose one row is the vector
along the axial direction, that is, ﬁ:{l, a, ¢}, and then using Gram-Schmidt
to orthogonalize that pair.

We will then select five "random" points on C. We do this by selecting five
values for an axial vector scale factor z and five values for an angle 6 such that



0<60<2 7. Our points will be of the form ¥+ where

—
7 = xvet + offset

@ = rCos[f]w} + rSin[f]ws.

We will then show how to recover a set of cylinder parameters from these
five points.
{a') b7 ¢, da ‘I‘} = {37 21 47 _17 Sqrt[ZI]};
vec = {1, a, c}; offset = {0, b,d};
pair = NullSpace[{vec}];
{wl,w2} = GramSchmidt[pair]

{=5.0, =} A= /5. -6,/ 1}
SeedRandom[111111];

xvals = Table[Random[Real, {—10, 10}], {5}];
thetas = Table[Random[Real, {0, 27}], {5}];
points =

Table[xvals[[j]]vec + offset + rCos[thetas[[5]]]w1+
rSinthetas([j]]]w2, {5, 5}];

Given a point on C we want to project orthogonally onto L, to get an equa-
tion involving the parameters we wish to find. This cannot be done immediately
because L is not a subspace so we first translate our point by subtracting offset.
We then project onto the line spanned by vet. Subtracting this projection from
the translated vector gives us our perp.
perp[vecl_, vec_, offset_]:=
vecl — offset — Projection[vecl — offset, vec]
perps = Table[perp[points|[j]], vec, offset], {5, 5};

One can readily check this by taking the five points and seeing that all perps
have length-squared equal to 21.

Map[#.#&, perps]
{21.,21.,21.,21.,21.}

When we use this point set to find r and the parameters describing L we will
of course clear those that we set above so they become symbolic indeterminates.
Using these points we will obtain the needed algebraic expressions for which we
extract roots.

Clear[vec, offset, a, b, ¢, d, r]

vec = {1, a, c}; offset = {0,b,d};

perps = Map|[perp[#, vec, offset]&, points];

exprs = Map[Numerator[Together[#.# — r"2]]&,
perps];

We can use numerical methods to find some roots. This is apparently very
sensitive to initial conditions and often simply fails.
rt1l = FindRoot[Evaluate[Thread[exprs == 0]],

{a,3.4},{b,2.8},{c,3.7},{d, —1.6}, {r, 3.3},
MaxIterations — 500]



{a—=3.,b>2,c—>4,d—> —1.,r —» 4.58258}
rt2 = FindRoot[Evaluate[Thread[exprs == 0]],
{a,2.7},{b,1.8},{c,3.2},{d, -.7},{r, 3},
MaxIterations — 500]

{a — 1.90555,b — 7.08893,

¢ — 2.48119,d — 7.02234,r — —4.4421}

Here is another well known method to find numeric roots. We will sum the
squares of the polynomials for which we just found zeroes and then minimize
this sum. This too is sensitive to initial guesses.
esquares = Apply[Plus, Map[#/2&, exprs]J;

{m3, rt3} = FindMinimum[Evaluate[esquares],
{a,2.4},{b,1.8},{c,3.2},{d, —.8},{r, 3},
MaxIterations — 500,

Method — LevenbergMarquardt]
FindMinimum::fmlim :

The minimum could not be bracketed in 500 iterations.
{2.52309 x 105, {a — 0.174607,b — —0.257527,
¢ — 0.217278,d — —4.56064,r — 6.93507}}
{m4, rt4} = FindMinimum[Evaluate[esquares],
{a,2.4},{b,1.8},{c,2.2},{d,—1.8},{r,3},
MaxIterations — 500,

Method — LevenbergMarquardt]

{3.61685 x 10722, {a — 1.90555,b — 7.08893,
¢ — 2.48119,d — 7.02234, 7 — 4.4421}}

Clearly the above methods are not terribly robust. Next we will show how
to find cylinder parameters using a global solver for nonlinear algebraic systems
of equations.

Solving simultaneously for all roots of the cylinder param-
eter equations

An obvious drawback to the methods seen thus far is the need for good initial
guesses. We may instead take advantage of the fact that the equations are all
polynomial, and use a global solver suitable for such systems. We demonstrate
below the utility of this approach. For simplicity we will only use integer coor-
dinates. Specifically, we will take five points whose coordinates are all integers
in the range {-10,10}, and show how to find our parameter values. To simplify
matters we will solve for the square of the radius this time. This will avoid so-
lutions with negative values for r as well as cut in half the number of complex
valued solutions.

SeedRandom[1111];

intpoints = Table[Random[Integer, {—10, 10}],

{5}’ {3}]1

perps = Table[perp[intpoints|[5]], vec, offset],

{4,5});



exprs = Map[Numerator[Together[#.# — rsqr])&,
perps];

Suprising though it may seem, it turns out to be computationally painless
to get all solutions to this system, rather than just a particular solution. We
do this with the Mathematica NSolve function, which uses a hybrid symbolic-
numeric technique to efficiently find all roots. Explanations of this technology
may be found in [9] [10] [25].

Timing[solns = NSolve[exprs, {a, b, ¢, d, rsqr}]]
{0.27Second,

{{a — —1.03253 + 0.760393i,b — 6.11349 — 3.37419;,
¢ — —0.322931 — 1.37768i,d — —0.295427 + 6.8709,
rsqr — 344.25 + 23.8554i},

{a = —1.03253 — 0.760393¢,b — 6.11349 + 3.37419;,
¢ — —0.322931 + 1.37768i,d — —0.295427 — 6.87091,
rsqr — 344.25 — 23.8554i}, {a — 30.9362, b — 93.172,
¢ — 37.1186,d — 92.7034, rsqr — 198.258},

{a = 0.151635,b — —1.25748, ¢ — 1.58897,

d — —6.45046, rsqr — 83.0554},

{a — 0.613253 — 0.359335i,b — —4.49777 — 3.771324,
¢ — 0.102934 + 0.159852i,d — —1.56979 + 2.232754,
rsqr — 57.5606 + 13.75344},

{a — 0.613253 + 0.359335i,b — —4.49777 + 3.771324,
¢ — 0.102934 — 0.159852i,d — —1.56979 — 2.232751,
rsqr — 57.5606 — 13.75344}}}

Actually we can get exact solutions in the same way, albeit at greater compu-
tational cost. This illustrates a sort of cascading "hybrid" algorithm: one starts
with asymbolic-numeric method to handle numeric problems, then modifies it
to give exact rather than approximate results.

Timing[exactsolns =
NSolve[exprs, {a, b, ¢, d, rsqr},
WorkingPrecision — Infinity];]
{1.71Second, Null}

The solution set in exact form is a bit larger than merits printing:
LeafCount[exactsolns]

12139

We can improve considerably on the computational efficiency of finding cylin-
der parameters from five points. For one, a different formulation of the problem,
to be utilized later, finds directions for which all points project onto the same
circle in a plane perpendicular to the direction. Using this we can reduce the
computational time by a substantial factor vs. the method shown above.

In addition to changing the formulation of the problem to one that is com-
putationally easier, one might also change the solver method. We discuss one
very efficient alternative. This is the sparse homotopy method described in [30].
Here one constructs a readily solved system using information from the Newton
polytope. One then forms a homotopy to move from each solution of the first
system to a solution of the new system. If we call the systems F(x) and G(x)



respectively, where xdenotes a vector of variables, then one adds a new vari-
able, t, and sets up the homotopy between solutions in each set as a relation
(1-t)F(x)+t G(x)=0. At time t=0 we have a solution to the first system, and a
time t=1 we have a solution to the new system. Techniques for moving along
the homtopy path generally involve some sort of predictor-corrector method to
increment t by a small amount and then alter the coordinates of x to maintain
the relation above; a general introduction to this method is presented in [23].
For our cylinder problem there is a nice refinement that goes by the name of
the "cheater’s homotopy" wherein we start with known solutions for one set of
points and hence can skip the first step of the general approach. In order to find
cylinder parameters for each subsequent set of points we simply use a homotopy
appropriate for the new set of equations.

An occasional disadvantage to the general sparse homotopy technique is
that in some cases one has fewer actual solutions than are given by the starting
system. When this occurs, in the process of following the homotopies some
must wander off to infinity. This can pose difficulties for the software in terms
of deciding when a path is diverging rather than merely wandering afar prior to
converging. As we will explain later, the sparse homotopy method will predict
that there are eight solutions for cylinder parameters, two more than are actually
present. Hence the cheater’s homotopy is all the more appealing for this class
of problems. It should be noted, however, that the general sparse method is far
better at approximating the correct number of solutions than any predecessor
approach based on homotopies, and moreover it tends to handle systems with
far more solutions than can be successfully tackled by methods such as [9] that
require computation of matrix eigensystems. See [31] for further details.

The size of the solution set

In examples that use NSolve we get six possibly complex valued solutions. To
find out what is happening we will continue with the example above. We now
form a (lexicographic) Grobner basis for ezprs. This is a standard tactic for
computational equation manipulation [1] [3] [6] [L1] [17]. The idea is that it
effectively triangulates the polynomial system in a manner that will become
clear below. As we do not care about the ordering among the variables, we use
the built in heuristic sorting algorithm (which was designed for the purpose of
speed enhancement).
Timing[gb = GroebnerBasis[exprs, Sort — True];]
gbl[1]
{0.88Second, Null}
—36556110913245 +
220390657872336¢ — 1091903566289090¢2 +
412701818100667¢® — 375539205226535¢* +
327695756151531¢° — 8563282997415¢°

The coefficients are large so we will only show that first polynomial. It is
also instructive to see the structure of the full set of polynomials. The code
fragment below serves for this purpose. We see that the first polynomial is of



degree 6 in the variable ¢ (as we already knew), and the rest are quintic in ¢
and linear in each of the respective other variables. So now we see what was
meant by triangularizing the system. To solve it one could find the six roots
in ¢ and back substitute each into the remaining equations in order to get six
corresponding solutions in each of the remaining variables.

list1 = Map[Apply[List, #]&, gb]/. Integer * x_ — x;

list2 = Map[Cases[#, a_/;!IntegerQ[a]]&, list1]

{{e,32,¢3, ¢4, P, 81,

{a,c,c?,c3,ct, P}, {e, 2,3, ¢t P, dY,

{b,c,c?,c3,c*, 5}, {c, 2,3, ¢, P rsqr}}

This tells us to expect six solutions in general. While a theorem and proof
will be deferred until later, two reasons to believe this are offered below.

Reason 1: In the theory of lexicographic Grobner bases there is a fact known
as the Shape Lemma [2], which may be stated as follows. As is well known, a
generic zero dimensional polynomial ideal over an infinite field is radical and in
general position with respect to the last variable in any ordering of the vari-
ables. In other words, the variety has no multiplicity and moreover its finitely
many points do not share any coordinates. The lemma states that under these
circumstances any lexicographic Grébner basis will have exactly one polynomial
with leading term a pure product in each variable, all but the one in the smallest
variable will be linear, and that one in the smallest variable will have degree
equal to the size of the solution set. One interpretation of the Shape Lemma, is
almost a matter of philosophy: one proves the above fact given a radical ideal in
general position, and then asserts that generic ideals satisfy these hypotheses.
In addition to the Shape Lemma there is the following result: lexicographic
Grobner bases of ideals defined over rational function fields remain Grobner
bases after generic specialization of coefficients [16] [21]. In other words, there
is a Zariski-open set in the parameter space for which specializations do not
alter the skeleton of the basis. We use these facts as follows: if our selection
of coefficients was generic, we may conclude that the generic Grébner basis has
the same shape as that of the basis we just obtained. Moreover we may believe
that our selection was generic because (i) it had the correct shape of a generic
basis, and (ii) we chose the data at random from a fairly large set.

Reason 2: The simulation indicated below tested over 4000 randomly cho-
sen configurations. Every one gave exactly six solutions, and this too strongly
suggests that six is the generic value.

We will also use the results of these tests to say a bit about percentages of
examples for which one obtains given numbers of real solutions.

One might ask why we do not simply compute a lexicographic basis for our
system using generic coefficients. The answer is that it does not finish in finite
time. Indeed, even making one coordinate a parameter leads to tremendous
computational effort (nearly an hour on a Pentium 2 333Mh processor) and
very large coefficients for the basis; polynomials in that parameter are of high
degree with large integer coefficients.

Another thing to note is that Grobner bases computations never leave their
base field. In other words, if we begin with real data then the polynomials in



the basis will have real coefficients. As we now know the form of the generic
Grobner basis for our systems, an immediate conclusion is that we will get
complex solutions in pairs, and thus we might have zero, two, four, or six (real)
cylinders in R®. In the case of the example above we have two.

3. Computational geometry of the solution cylin-
ders

Finding the implicit equation of a cylinder from its para-
metric form

Given the parameters of a cylinder, it is natural to ask how one might obtain
the implicit form. The first method we show, best described as "applied brute
force", is from modern elimination theory. Some references for this technique
are [1] [11] [18] [22]. We begin with equations for { z, y, 2} in terms of the
five parameters and the sine and cosine of an (unrestricted) angular parameter.
In more detail, we have a parametrization for the cylinder in terms of a scalar
multiplier ¢ for the direction vector vet and an angle 6 to determine a unit vector
in the plane orthogonal to vet. To make this parametrization algebraic we can
use the usual pair of trigonometric functions, abbreviated below as (algebraic
variables) sin and cos. This gives one parameter more but of course we also now
have the polynomial cos?>+sin?-1. We use a standard Grébner basis method for
elimination of variables, which involves a term ordering that is typically efficient
for partially triangularizing the polynomials. In particular it weights terms that
involve any of the elimination variables higher than all other terms. We form a
Grobner basis with respect to such an ordering and remove all polynomials that
contain any of the elimination variables { t, sin, cos}. What remains, a single
polynomial, is the implicit relation in the variables { z, y, 2}. The code snippet
below uses some simplifications such as clearing of denominators.

Clear|a, b, ¢, d, t,r];

vec = {1, a, c}; offset = {0, b, d};

pair = NullSpace[{vec}];

{w1l,w2} = GramSchmidt[pair];

polys =

Append[tvec + offset + r coswl + rsinw2 — {z,y, 2},

sin” + cos? —1];

ee = Numerator[MapAll[Together, polys]];

ff = Numerator[Together[PowerExpand|ee]]];

Timing][

imp =

First[GroebnerBasis|ff, {z, y, 2}, {t, sin, cos},

Sort — True,

MonomialOrder — EliminationOrder,

CoefficientDomain — RationalFunctions]]]



{1.63Second, b% + b*c? — 2abcd + d? + a®d? — r? —
a’r? — 2r? + (2ab + 2cd)r + (a® + 2)z? +

(—2b — 2bc? + 2acd)y — 2axy + (1 + c)y? +

(2abc — 2d — 2a%d)z — 2cwz — 2acyz + (1 + a?)2?%}

Note that, as one might expect, the implicit polynomial is a function of r2.

We now check this implicit polynomial with the example we used above.
i3 =imp/.{a = 3,b > 2,¢ = 4,d > —1,r — Sqrt[21]}
i3/ Map[Thread[{z, y, z}-;,#]&, points]//

Chop

—420 + 4z + 2522 — 92y — 6xy +
17y? + 682 — 8xz — 24yz + 102>
{0,0,0,0,0}

Here is a more clever way to find the implicit form. Just use the formulation
we gave to find the distance from a point to the axial line. This gives an equation
satisfied by every point on the cylinder. Hence it will be the hypersurface
expression we seek.
pp = perp[{z,y, 2}, vec, offset];
imp2 = Numerator[Together[pp.pp — r2]];

Together[imp — imp2]
0

As is so often the case, we see that brute force can be useful but it is no
match for finesse. Why is the first approach of interest? Simply because it
is a standard technique in computational algebraic geometry, and works when
geometric intuition may not be so readily available.

Finding cylinder parameters from the implicit form

Now we look into the reverse problem of finding parameters from the implicit
form. Algebraic parametrization of algebraic objects is in general difficult, when
it can be done at all. That said, parametrization of quadric surfaces in R® can
be done and in fact is not terribly hard; general methods for this are presented
in [18, chapter 5]. For the case of cylinders we will show a very simple approach.
Note that we are using a trigonometric parameter to describe circle coordinates
and thus it is not algebraic (though it suits our purposes quite well). If so
desired, one can convert to the usual algebraic parametrization after a rotation
of coordinates. We leave the details to the interested reader. We will illustrate
our method for cylinders using the example above. As we know the general
implicit form, it suffices merely to equate coefficients with those of the specific
implicit form and solve for the parameters. Some of the coefficients are linear
in the cylinder parameters so this is computationally quite easy.
generallmplicitForm = imp/.r2 — rsqr;

thiscase = generallmplicitForm/.

{a—=3,b>2,c—>4,d—> —1,rsqr > 21};

SolveAlways[thiscase == generallmplicitForm,

{2,9,2}]

{{rsqr —» 21,b > 2,d - —1,a = 3,¢c — 4}}

10



Were the coefficient equations not so readily solvable we could instead do
as follows. Starting with that cylinder in implicit form we generate at least
five points that lie on it. To this end we might simply take values for x and
ycoordinates, and solve for z. We then form equations for the parameters from
the first five points and solve them. This gives candidate parameter values.
Last we find the implicit equation corresponding to each set of parameters: the
correct parameters will be the ones that recover the original implicit form (up
to scalar multiple).
points =
Partition|
Flatten[

{2,9,2}/.

Table[Solve[{thiscase == 0,z == j,y == 0},
{=,9,2},{4,0,2}]],3};

perps = Table[perp[points[[k]], vec, offset], {k, 5}];
exprs = (Numerator[Together[#1.#1 — rsqr]]&)/@

perps;
Select[candidates,
NumericQ [Together[ge““ﬂlflﬂzg';z°rm/ #111&]

{{rsqr —» 21,b - 2,d > —1,¢ > 4,a — 3}}

Solving for overdetermined cylinders

A natural question to ask, regarding computations related to this problem, is
what we might do to find a cylinder (approximately) containing more than five
given points? The typical case is where the points all lie approximately on
a cylinder and we wish to find the best fitting one (perhaps to assess toler-
ance). We will use FindMinimum for this task. We can set up an expression
to minimize as follows. First form the list perps of orthogonal complements
to projections of our points onto the axial line. Then take a sum of squares of
differences between projected lengths and radius. To illustrate we reconstruct
our original example, but this time we will use more points chosen at random,
and we will add random noise to these. We know approximately the correct
values for the parameters, and at this value our sum of squares will be near
zero. An important issue is how to find good starting values. We do this by
taking five points, solving for cylinder parameters, and then using other points
to decide which of the six possibilities we should utilize.

{a,b,c,d,rspr} = {3,2,4,—1,21}; numpts = 8;

vec = {1, a, c}; offset = {0, b, d};

pair = NullSpace[{vec}];

{w1, w2} = GramSchmidt[pair];

xvals = Table[Random[Real, {—10, 10}], {numpts}];

thetas = Table[Random[Real, {0, 27}], {numpts}];

randomNoise3D[max_]:= max Table[Random][], {3}]

points =

Table[xvals|[[j]]vec + offset+

11



/1sarCos[thetas([j]]]w1+

/r8arSin[thetas[[;]]]w2+
randomNoise3D[0.001], {j, numpts}];

First we will get a set of candidate starting values.
Clear|a, b, ¢, d, rsqr]
perps = Table[perp[points[[]], vec, offset],
{j, numpts}];
exprs =
Map|
Numerator|
Together[Rationalize[#.4t, 0] — rsqr]]&,
Take[perps, 5]];
Timing[solns = NSolve[exprs, {a, b, ¢, d, rsqr}]]
{0.23Second,
{{a - —0.126422 — 0.717553¢,b — 15.0555 + 8.16833i,
¢ — —0.0773551 + 0.7272944,
d — 24.6363 — 0.3076374, rsqr — 96.45 + 59.8042i},
{a = —0.126422 + 0.717553i,b — 15.0555 — 8.16833¢,
c — —0.0773551 — 0.727294:,
d — 24.6363 + 0.3076374, rsqr — 96.45 — 59.8042i},
{a — 2.1017,b — 9.66139, c — 2.35744,
d — 9.4369,rsqr — 35.0918},
{a — 3.52001 — 2.7712i,b — 5.33062 + 23.81314,
¢ — 7.31272 — 2.08636¢,d — —12.7639 + 30.83961,
rsqr — 7.67878 + 13.8389i},
{a — 3.52001 4 2.7712i,b — 5.33062 — 23.81311,
c— 7.31272 + 2.08636¢,d — —12.7639 — 30.8396¢,
rsqr — 7.67878 — 13.8389i},
{a — 3.00057,b — 1.99012, c — 3.99872,
d — —1.01676, rsqr — 21.0378}}}

Next we select the best candidate by calculating values of the six implicit
equations at all points, summing absolute values for each equation over all
points, and using the parameters that correspond to the implicit equation that

yields the smallest such sum.

squaresums =

Apply[Plus, Abs[(generallmplicitForm/.solns)/.
Map[Thread[{z,y, 2} = #]&, points]]]

{195.805, 195.805, 240.623, 10683., 10683., 2.20873}

Clearly the sixth solution is the one to use. This may be found program-

matically as below.
candidate =
solns[[Position[squaresums, Min[squaresums]][[
1, 1]]]
{a — 3.00057,b — 1.99012,
¢ — 3.99872,d - —1.01676, rsqr — 21.0378}
Now we form our sum of squares and minimize it.
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sumsquarelens =

Plus@@((v/#1.#1 — r)2&) /@perps;

startvals = (List@QQ#1&)/@candidate;

newstartvals = startvals/.{rsqr,v_} :— {r, /v};
{min, ee} = FindMinimum[Evaluate[sumsquarelens],
Evaluate[Sequence@@newstartvals])

{8.48222 x 1078, {a — 2.9999, b — 1.99926,

¢ — 3.99985,d —» —1.00179,r — 4.58278}}

As a general remark, attempts with different optimization methods indicate
that this sort of expression is quite problematic to minimize without reasonable
starting points.

There is an interesting application that can make use of the this. In the
industrial realm of geometric tolerancing one wishes to measure how well an
object conforms to specifications. The cylinder is of course a very common
object in manufacture. A good approach to metrology involving cylinders may
be found in [14]. The technology discussed therein is especially effective when
the object in question is small and may be readily positioned, but one might
accept a cruder approach e.g. to check an underground pipeline. For this sort of
task one could probe five points, obtain from them a set of approximate cylinder
parameters, then probe several others and obtain parameters for a least-squares
nearest cylinder as above. One can then simply check whether all probed points
are within specification tolerance in actual radial measure from the computed
axial line.

Visualization of the real cylinders containing a set of points

It can be a challenge to visualize how a given set of points fit on the cylinders
that are computed to contain those points. Below we present a viable approach.
The idea is to draw the cylinder, its axis, and the points connected by segments.
We then decrease the radius of the drawn cylinder to 70% of its actual value as
this frequently maintains visibility and also more readily shows how the points
belong on the cylinder. Another idea would be to punch holes in the cylinder
where points are obscured, so that they might be made visible, but this involves
considerably more programming effort.

showlines[points_List, rest___]:=

Module[{plotpoints, plotlines, len = Length[points]},

plotpoints =

Table[Graphics3D|

{Blue, PointSize[0.03], Point[points[[j]]] }],

{j,1,len}];

plotlines =

Table[Graphics3D[

{Hue[%(j? + k — 1)),

Line[{points[[j]], points([k]] }]}],

{k, lalen - 1}’ {J)k + lalen}];

Show[plotpoints, plotlines, rest,
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DisplayFunction — Identity, Boxed — False,
Axes — False, Shading — False,

ViewPoint — {—1,2,1},

ImageSize — {300, 480}]]

cylinderplot[rt_, pts_List, vec_, offset._,

showcyl_ : True]:=

Module[{r, vec2, lin, z, 8, w1, w2, circ,

cylplot, axis},r = {/rsqr/.rt; vec2 = vec/.rt;

lin = zvec + offset/.rt; pair = NullSpace[{vec2}];
{w1,w2} = GramSchmidt[pair];

circ = 0.7rCos[f]w1 + 0.7rSin[0]w2/.rt;

cylplot = ParametricPlot3D[Evaluate(lin + circ],
{z,-3,3},{6,—0.57,0.857},

Shading — True, DisplayFunction — Identity];
axis = ParametricPlot3D[lin, {2, —3.5, 3.5},
DisplayFunction — Identity];

If[showcyl, showlines|pts, axis, cylplot,
DisplayFunction — Identity],

showlines[pts, axis, DisplayFunction — Identity]]]

Let us look at an illustrative configuation. One notes that it is hardly generic
in the sense that the points form a double regular tetrahedron (with edge length
of v/3). In fact it was necessary to change the direction and offset parameters
to get all six solutions for this example.
dpoints = {{1: 0: 0}: {_%) 32§a 0}: {_%a _32§7 0})

{07 07 \/5}7 {07 07 _\/i}};

vec = {a, ¢, 1}; offset = {b,d,0};
solveCylinders[pts_List, vec_, offset_,

prec_: Automatic]:=

Module[{exprs, k, perps},

perps = Table[perp[pts[[k]], vec, offset], {k, 5}];
exprs = (Numerator[Together[#1.#1 — rsqr]]&)/@
perps;

solns = NSolve[exprs, {a, b, ¢, d, rsqr},
WorkingPrecision — prec]; rs = N|rsqr/.solns]]
solveCylinders[dpoints, vec, offset]
{0.81,0.81,0.81,0.81,0.81,0.81}

We see that the radii are all equal for this configuration. In fact (as may be
verified by setting the optional fourth argument to co) the radii are all 1%.

We used a global variable, solns, as a convenience so that we can make
further use of the full solution set. While this is poor programming style, it
suits our immediate purpose.
nsols = N[solns]

{{rsqr —» 0.81,d — 0.,b — 0.1,
a — 0.,¢ — 0.816497}, {rsqr — 0.81,
d—0.,b—0.1,a = 0.,c > —0.816497},
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{rsqr — 0.81,d — 0.0866025, b — —0.05,
a — 0.707107, ¢ — 0.408248},
{rsqr — 0.81,d — —0.0866025,b — —0.05,
a — —0.707107, ¢ — 0.408248},
{rsqr — 0.81,d — —0.0866025,b — —0.05,
a — 0.707107, ¢ — —0.408248},
{rsqr — 0.81,d — 0.0866025, b — —0.05,
a = —0.707107,c — —0.408248}}

Here are plots of two of the cylinders.
nsols = NJ[solns];
Show[GraphicsArray[
Table[cylinderplot[nsols|[[4]], dpoints, vec,
offset, True], {j, 2}]]];

It is interesting to note that from this double regular tetrahedron construc-
tion one may obtain twelve real cylinders of a certain radius that intersect four
particular points. Such an example was first presented in [26]; here we show
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how it arises naturally from our construction above. We begin with a regular
tetrahedron and this time glue four others onto it, one on each face. The vertices
of the original tetrahedron will be our four points. Clearly from one of the glued
on tetrahedra we get the six cylinders from above, each intersecting those four
points and all having the same radius. Indeed, each glued tetrahedron gives rise
to six cylinders, but they pair off so that the actual total is twelve. We remark
that computational techniques essentially identical to those we have shown can
also be used to solve for cylinder parameters for this problem. A different ap-
proach, using homotopy continuation methods as described e.g. in [30], was
employed in chapter 4 of [15]. A generalization of finding a the cylinder of given
radius through four points has been studied by [19].

4. Real cylinders: probabilities and configura-
tions

Enumerating real cylinders

We now investigate cases in which a configuration of five points will give rise
to the various possible numbers of real cylinders containing it. First we note
one obvious situation for which there can be no real cylinders: if one point is
inside the convex hull of the other four then no cylinder can contain all five,
because right circular cylinders are convex. It would be interesting to know how
frequently this arises. To this end we employ a simple simulation. More than
4000 random examples were run to get some idea of how frequently one gets
zero, two, four, or six real cylinders, given a certain random distribution for the
configuration parameters.

Clear|a, b, ¢, d, rsq|;

vec = {1, a, c}; offset = {0, b, d};

pair = NullSpace[{vec}];

{w1l,w2} = GramSchmidt[pair];

vars = {a, b, c,d,rsqr};

SeedRandom[1111];

len = 212;

intpoints =

Table|[Table[Random[Integer, {—100,100}], {5}, {3}],

{len});

Timing][

rvals =

Table[

perps = Table[perp[intpoints|[4, k]], vec, offset],

{k,5};

exprs =

Map[Numerator[Together[#.# — rsqr]]&,

perps];

solns = NSolve[exprs, {a, b, ¢, d, rsqr}];
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rs = N{rsqr/.solns];

{4, Cases|rs, Reall}, {j,len}];]

{1113.48Second, Null}

rvals2 =

Sort]rvals, Length[#1[[2]]] < Length{#2[[2][1&};
lens = (Length[#1[[2]]]&) /@rvals2;

lenlens = Length/@Split[lens]

{931, 2206, 865,94}

Roughly 23% of the cases give no real cylinders. It is natural to ask whether
these are all cases in which one point is enclosed by the other four. This turns
out not to be so. We first discuss the frequency of random examples for which
one point is enclosed by the hull of the other four. Later we will see an open
set in the configuration space for which no point lies inside the hull of the rest,
and for which there are no real cylinders through all points.

Below is a simulation of the one-enclosed-by-four situation. The code below
will generate random configurations and then check to see in how many cases
one point lies within the convex hull of the rest.
plane[pl_,p2_,p3]:=
With[{norm = Cross[pl — p2,pl — p3]},

{norm, norm.p1}]
sameside[{p1-,p2_,p3.},p4-, p5.]:=
Module[{norm, d},

{norm, d} = plane[pl, p2, p3];

(norm.p4 — d) * (norm.p5 — d) > 0]
encloses[pnts : {pl_,p2_,p3_,p4-},p5]:=
Module[{combos, 5},

combos = Table[{Drop[pnts, {5}], pnts[[5]]},
{/, Lengthpnts]};

Apply[And, Mapl[sameside[#{[1]], #[[2]], p5]&,
combos]]]

anyenclosed[pnts : {p1-,p2_,p3_, p4_,p5-}]:=
Module[{combos, j},

combos = Table[{Drop[pnts, {5}], pnts[[5]]},
{j, Lengthpnts]};

Apply[Or, Map[encloses[#][[1]], #[[2]]]&,
combos]]]

SeedRandom[1111];

len = 214;

realpoints =

Table[Table[Random[Real, {—100,100}], {5}, {3}],
{len});

Timing][

enclosedlist =

Transpose|

{Range[len], Map[anyenclosed, realpoints] }];]
{140.66Second, Null}
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hasenclosed = Cases[enclosedlist, {-, True}];
numenclosed = Length[hasenclosed)]
N[numenclosed/len]

1147

0.0700073

In this simulation run between six and seven per cent of the examples had
one point enclosed by the hull of the other four. Thus, for the no-real-cylinder
examples, we surmise that roughly three out of four cases do not arise in this
way. We will return to this when we discuss enumerative geometry aspects of
this cylinder problem.

The frequency of one point being enclosed by the others is related to some old
problems in integral geometry. One way to pose this is as a three dimensional
version of Sylvester’s problem [11]: What is the probability that five points
chosen at random in a unit cube all lie on the convex hull they define? Another
variant is to find the expected volume of a random tetrahedron in the unit cube
(several other variations are posed in the reference). We will call this expected
volume vTet. To see how these problems are related, we order the five random
points, then ask what is the probability that the first is enclosed by the others.
This is exactly that expected volume. Now observe that the expected likelihood
that any one point is enclosed by the other four is 5 wvTet, as these are each
pairwise exclusive events. Indeed, by taking the average of the five cases of
one-point-enclosed-by-the-rest one obtains a Monte Carlo simulation of vTet:
it appears to be in the ballpark of =5.

Taking this another step we might refine the estimate with a low precision
quadrature. The option settings used below were obtained by trial and error,
and the nondefault MaxPoints setting causes NIntegrate to do a quasi-Monte
Carlo evaluation. The result is clearly in accord with that above.
vol[pl.,p2.,p3_,pd ]:=
Abs[(p2 — p1).Cross[p3 — pl, p4 — p1]]/6
NIntegrate[

Evaluate[vol[{x1,y1,z1}, {x2,y2,22}, {x3,y3,23},
{x4,y4,24}]],

{x1,0,1},{y1,0,1},{z1,0,1}, {x2,0,1},
{v2,0,1},{22,0,1},

{X37 0’ 1}7 {y37 0’ 1}7 {z3’ 07 1}’ {X4’ 0’ 1}’

{y47 0’ 1}7 {Z4’ 07 1}’

PrecisionGoal — 2, AccuracyGoal — 6,
MaxPoints — 1000000]

0.0136429

The problem of finding the expected volume of a tetrahedron with vertices
independently and uniformly distributed inside a cube was recently solved [34]
using an elaborate breakdown of the region and many multivariate integral
computations. The actual value is %—%, or approximately .013843.
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Configurations that give six real cylinders

We previously obtained six real cylinders above by starting with a regular tetra-
hedron and gluing a copy of itself to one face to obtain five points. If the common
face is in the z- y plane (so that one tetrahedron points up, the other down),
then three cylinders intersect the three faces of the upper tetrahedron (and cut
through the edges of the lower), while the other three do just the opposite. In
fact it is quite clear by symmetry that if we have one real cylinder then we must
have six: we get two "conjugates" by rotating, and three more by reflecting
through the z- y plane. There is another configuration, from [29], that can be
seen to give six cylinders. We have four points forming vertices of a square in the
z- y plane. This is the base of a pyramid with the fifth point as its apex above
the centroid of this square. We obtain two horizontal cylinders each passing
through a pair of opposite triangular faces of the pyramid. The remaining four
each pass through a triangular face, angled upward, and an edge of the base.
Some are illustrated below. Note that we again must take care in our choice of
axis direction vector and offset, because once again we have a nongeneric choice
of coordinates for illustrative purposes. Accordingly the code for showlines has
been altered to use a ViewPoint of {0,0,1}.

dpoints = {{1,0,0},{-1,0,0},{0,1,0},

{0, _1) 0}7 {0) 07 3/2}};

vec = {1, a, c}; offset = {0, b, d};

solveCylinders[dpoints, vec, offset]

nsols = NJsolns];

{0.818182, 0.818182, 0.818182,

0.818182,0.840278, 0.840278}

Show[GraphicsArray[

Map|cylinderplot[nsols[[#]], dpoints, vec,

offset, True]&, {3, 5}]]];
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Conjecture: All five point configurations that give rise to six cylinders in R®
are small perturbations of one of these two configurations. This idea, admittedly
difficult to quantify, is based on visual experimental evidence. It is interesting
that one of these examples has a four-fold symmetry rather than exclusively
two-or-three-fold symmetries.

(More) configurations that give no real cylinders

As noted earlier, we get no real cylinders whenever one point is in the convex
hull of the other four. It is also clear from experiments that there are other
configurations that give no real cylinders. To describe one family of such, we
return to the double tetrahedron glued along a common face. If we alter either
or both of the upper and lower vertices we can jump from having six cylinders
through the five points to having none. In the code below we explicitly show
this phenomenon by allowing the upper vertex to vary (actually there is no way
to impose a positivity constraint so it could be negative. In this case we get no
cylinders because either it or the other negative vertex will be in the tetrahedron
hull of the remaining four vertices).

dpointslong = {{1, 0,0}, {—1/2, Sqrt[3]/2, 0},
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{_1/21 —Sqrt[3]/2, 0}’ {01 0, Z}, {Oa 0, _1}};
perps = Table[perp[dpointslong[[k]], vec, offset],
{k,5};

exprs = Map[Numerator[Together[#.# — rsqr]]&,
perps]

{a® + 2ab + b + ¢* + b*c® + 2cd —

2abed + d? + a?d? — rsqr — a’rsqr — c?rsqr,

3+ 2v3a + a® — 4v/3b — 4ab + 4b*> + 4¢% —
4/3bc? + 4b2c? — ded + 4v/3acd — 8abed +

4d? + 4a%d? — 4rsqr — 4a’rsqr — 4c?rsqr,

3 —2v3a + a® + 4v/3b — dab + 4b% + 4% +
4v/3bc? + 4b%c? — ded — 4/3acd — 8abed +

4d? + 4a>d? — 4rsqr — 4a’rsqr — 4c?rsqr,

b? + b2c® — 2abed + d? + a%d? — rsqr — a’rsqr —
c2rsqr + 2abcz — 2dz — 2a%dz + 22 + a222,

1+ a? +b* — 2abc + b*c? + 2d + 2a’d —

2abed + d? + a?d? — rsqr — a’rsqr — c*rsqr}

gb = GroebnerBasis[exprs, {rsqr, d, b, a, c},
CoefficientDomain — RationalFunctions]
{2+3c® =4z + A (-2 +22), -1 — 22 + 22 + a®(—1 + 22),
—a+ac(l —2) +b(1 + 22),
4—c+c*(2-22)—4z+d(4+ 82),

— 5 =202 + rsqr(4 + 162 + 1622)}

We already know from the symmetry argument that we obtain at least one
real solution if and only if we obtain six real solutions. So it suffices to indicate
situations where we cannot have six. For this we focus on the univariate poly-
nomial. Dividing by the leading coefficient we have a polynomial that, for z
sufficiently large, approximates c3-2. Clearly these do not have three real roots.
Hence the system cannot give rise to six real solutions, and by the symmetry
argument there are in fact none.

5. Enumerative geometry of cylinders through
five points

Basic theory

The above investigations indicate ways in which one might approach the prob-
lem computationally. Now we state and prove several results suggested by the
computations of the previous sections.

Proposition 1: Generic configurations of five points in R? lie of the surface
of finitely many cylinders. Moreover an upper bound on the number of these
cylinders is nine.

Proof: This is largely a computational proof which we first describe. We
set up some linear algebra similar to that already seen, but now we reduce
to two equations in two variables and several configuration parameters. The
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linear algebra is as follows. Without loss of generality we have one point at the
origin, another at {1,0,0}, and a third in the z-y coordinate plane. We project
these onto the set of planes through the origin, parametrized (generically) by a
normal vector {a,b,1}. We then obtain equations that must be satisfied by the
parameters {a,b} in order for the remaining two points to project onto the same
circle in that plane as the first three; this is exactly the condition that all five
lie on some cylinder. Factoring shows that they are irreducible and hence are
relatively prime. So generically they have finite intersection, with upper bound
given by the Bezout theorem. In fact, as each polynomial has degree three in
the variables {a,b}, we see that there are at most nine solutions for the cylinder
axis direction parameters, hence at most nine solutions for the set of cylinder
parameters.

Clear|a, b];

normal = {a,b,1};

spanners = GramSchmidt[NullSpace[{normal}]];

points = {{0’ 0, 0}’ {1; 0, 0}; {$2, Y2, 0}: {1;‘3, Y3, 2.'3},

{3‘4, Ya, 24}};
Length[span]

projpointfp-,span.J:= 3,  p.span{[jlispan(lsl};
j=

projpoints =

Table|[Together[projpoint[points|[[4]], spanners]],

{7, Length{points]

circle[{pl_,p2_, p3_}, normal ]:=

Module[{rsqr, c1, ¢2, ¢3, ¢, cpl, cp2, cp3, gb},

¢ ={cl,c2,c3};

cpl = ¢ —pl;cp2 = ¢ — p2;¢cp3 = ¢ — p3;

polys =

Append|

Thread[{cpl.cpl, cp2.cp2, cp3.cp3} — rsqr],

c.normal);

gb = GroebnerBasis[polys, {c1, c2, ¢3,rsqr},

CoefficientDomain — RationalFunctions];

{{c1,c2,c3},rsqr}/.

Solve[gb == 0, {c1, c2, c3, rsqr}]]

{cen,radsqr} =

First[circle[Take[projpoints, 3], normal]);

vecl = projpoints[[4]] — cen;

vec2 = projpoints[[5]] — cen;

polys =

Numerator|

Together[{vecl.vecl — radsqr,

vec2.vec2 — radsqr}]]

{—z3ys — bm3y2 + 23y2 + b?2iys + T2y3 +

b?xays — 3y — b223ys + 2abzayoys —

2abx3yays — ysys — a*y3ys + yay3 + ayay3 —
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brozs — b3T223 + br32s + b3xi23 + ayazs +
ab?yz23 — 2abwoys23 — 2ax3Y223 + by2 23 +
a’byszs — 2bysyszz + a’ysz3 + bPya23,
— 24y2 — b?24ys + 25y2 + V22iys + Toys +
b22oys — x3ys — b?23ys + 2abxoyoys —
2abzsy2ya — Y3y4 — A*Y3ys + Y2y + a*yayi —
brozy — b3T224 + bx324 + 32324 + ayozs +
ab?yszs — 200222224 — 20T 4Y224 + by§z4 +
a’by2zy — 2bysysza + a’yaz3 + b2y223}
One verifies the claims made above from this computation. O

Remark: We will presently give two proofs that the correct number is six.
One method will use the computation shown above.

Remark: In [13] it is noted that this projected circles approach is related
to the Delaunay triangulation of projections of the five points on all possible
planes. Specifically, directions of projection where the triangulation changes are
important, as these occur exactly when four points become collinear. This gives
a direct tie between the enumerative and computational geometry aspects to
the problems under scrutiny.

Proposition 2: Real valued solutions always have positive values for the
square of the radius.

Remark: The significance of this proposition is that all real valued solutions
do indeed give cylinders in R®.

Proof: Suppose we form a lexicographic Grobner basis with the radius-
square variable ordered as smallest. Then generically (shape lemma) we have
a basis containing a univariate polynomial in that variable. For each of the
other variables there will correspond a linear polynomial in the basis, and it will
have real valued coefficients. Suppose a solution to that univariate polynomial
is real valued. Then the remaining cylinder parameters, on back substitution,
will also be real valued as they are given by linear polynomials over the reals.
Now recall that our original equations were of the form sum-of-squares=radius-
squared where the left hand side is a polynomial function of the input data
and cylinder parameters. Hence all the original equations will have positive left
hand sides, so the radius squared must also be positive. I

Theorem 1: Five generic points in R® determine six distinct sets of cylinder
parameters, of which an even number are real valued.

The proofs of this theorem are deferred to the following subsection.

Remark: One way to prove this would be to do a brute force computation of
a Grobner basis for a system with generic configuration parameters. But this is
not possible with software and methods available to the author. Some evidence
furthermore suggests that the problem is computationally quite difficult. Indeed,
using the linear algebra setup first shown, it was quite strenuous to compute a
Grdébner basis when we made a generic parameter of just one coordinate of one
point.

Proposition 3: Configurations that give rise to an empty solution set or to
a solution set of positive dimension lie on a variety.

Outline of proof: One obtains, in principle, a description of the generic
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solutions by forming a lexicographic Grébner basis for the system with indeter-
minate data. The process of doing this gives rise to the generic basis because at
steps along the way one is allowed to divide by polynomials in the indetermi-
nates. All inputs that fail to give the generic basis thus must satisfy conditions
among the coordinates that cause these polynomials, upon specialization, to
vanish. As there are finitely many steps in forming the basis, there are finitely
many such conditions. As thesevanishing conditions are defined by polynomials,
their union is a variety. We may further refine it. Some configurations might
fail to give the generic basis but still yield a nonzero finite solution set. If we
exclude the conditions that give this situation, we are still left with a variety
for which we get either zero or infinitely many (complex valued) solutions. O

Definition: Generically we have six solutions for the cylinder parameters,
given five points in R® (or C?, for that matter). Above we saw that the subset
of nongeneric configurations that give either zero or infinitely many solutions
comprises a variety. We refer to this as the "bad variety", denoted Vj,4. Several
results below are stated in terms of configurations that miss this variety.

Theorem 2: There is a nonempty open set in our configuration space (which
is, in effect, R!®) for which we obtain no cylinders in R3.

Proof: Suppose we have a configuration that gives no real cylinders. Again
consider a Grébner basis with a univariate polynomial in the radius-squared.
Then all of its roots are complex valued. Small perturbations of this configu-
ration will still give complex valued roots because the real and imaginary parts
vary continuously in the configuration parameters. We already know there ex-
ist configurations that give no real cylinders, which establishes that the set is
nonempty. [

Corollary: The maximum number of cylinders, already shown to be bounded
by nine, is in fact no larger than eight.

Proof: This is a consequence of the following facts. (i) Restricting to real
inputs does not move us out of the generic case because this restriction is not
algebraic. (ii) Given real data, complex solutions appear in pairs. (iii) The case
where one coordinate lies in the hull of the other four contains an open subset
in the real part of the parameter space. Hence there is an open set in parameter
space for which there are only complex solutions. So in general there must be
an even number of solutions. O

Remark: This also shows that the the number cannot be seven. So we know
it is either six or eight.

Theorem 3: There is a closed set with nonempty interior in R'5-V;,4 for
which we obtain six cylinders real cylinders provided we count solutions to the
cylinder parameter equations by multiplicity.

Outline of proof: We may count the number of real roots using the Rule of
Signs [28] on the univariate polynomial in the lexicographic Grobner basis. This
gives a closed condition for the boundary of the set of configurations that yield
six sets of real valued cylinder parameters. To show it has nonempty interior it
suffices to demonstrate one such configuration that has no multiple solutions.
But this was the case for both six-real-cylinder examples shown earlier. O

Remark: Similar argument shows that the sets in R'®-14,,4 that give rise to
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two or four cylinders real cylinders also have nonempty interiors.

Theorem 4: Suppose we have four non-coplanar points in R®. They are the
vertices of some tetrahedron. Then there is an open set S containing the open
tetrahedron and a dense subset of its boundary in the configuration space, such
that if the fifth is chosen in S there will be no real cylinders containing all five
points.

Remark: If the fifth point is inside the convex hull of the other four then
we already know this result. Now take the tetrahedron formed by the four
points. Through each vertex the planes containing the three coincident faces
form a cone with triangular base. If the fifth point lies within that cone then it
obscures that vertex, i.e. the vertex lies inside the new tetrahedron formed by
the fifth point and the remaining three. Hence this case is also covered by the
"one point in the hull of the others" situation. Note that in this case the fifth
point need not be near in distance to the other four.

Algebraic proof: Suppose the fifth point lies on a face of the tetrahedron
formed by the other four. Then the convexity argument still tells us that no
cylinder in R® can contain all five points. As we assumed the tetrahedron co-
ordinates are generic, we are in one of two situations: either having the fifth
coordinate lie on a face formed by three others puts the configuration in Viaq
or it does not. We show that generically it does not, or in other words, the
algebraic condition that four points are coplanar is not a condition for the bad
variety. That this is so follows from the trivial observation (verified computa-
tionally) that there are configurations with four coplanar points that give rise to
lexicographic Grobner basis with the generic "shape"; were this a condition to
lie in the bad variety then every configuration with four coplanar points would
be in it.

The preceding argument shows that generically the fifth point is not on V}.q,
so the set of such fifth points is dense in the set of all boundary points of the
tetrahedron. By genericity we may assume that we have a univariate poly-
nomial of degree six for one of the cylinder parameters. As there are no real
cylinders containing this configuration, this polynomial has exclusively nonreal
roots. These roots vary continuously with the configuration, hence the imagi-
nary parts remain nonzero under small perturbations of the five points. Thus
there is an open set around this point on the boundary for which we still obtain
no real roots. As we require real roots in order to obtain cylinders in R3this
suffices to finish the proof. O

Outline of a geometric proof: (This line of proof was suggested by Dick
Bishop [4].) In order for all five points to lie on a cylinder there must be a
plane tangent to the unit sphere, and a circle in that plane, such that they all
project onto that circle. Suppose the fifth point is inside or on the boundary
of the tetrahedron formed by the other four. Then it is clear that the projec-
tion of the five points onto any such plane will have the projection of this last
point contained in the quadrilateral formed by the projection of the other four.
Hence any quadratic in the plane that contains all five projected points must
be a hyperbola (because all other quadratic curves are convex). Moreover the
parameters of the hyperbola equation are continuous in the locations of the five
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points. As the set of projection planes is compact, a small perturbation of the
fifth point beyond the hull of the other four will not alter the situation that the
five points project onto hyperbolas in all such planes, hence they cannot lie on
any cylinder in R3. Hence from every boundary point on the tetrahedral hull
of the four points, we may perturb outward some minimal distance (depending
on that boundary point) and still have no real cylinders. As the tetrahedron
boundary is compact we deduce that there is a minimum positive distance we
can move outside and still not get real cylinders. [

Corollary to proof: There is an open set S containing the closed tetrahedron,
such that if the fifth is chosen in S there will be no cylinders in R?® containing
all five points. In other words, the "bad" variety in configuration space is not
an issue.

Open question: Might one use similar ideas to get a geometrical descrip-
tion of what configurations will give rise to the various numbers of real valued
cylinders? Perhaps there is some way to use more refined information about
the convex hull to determine when such projections, say in directions that inter-
sect the six faces (if origin is placed appropriately e.g. at the centroid), cannot
possibly give circles?

Proof and further remarks for theorem 1

Proof: We know from the proposition that the generic solution set is finite.
Moreover as the ideal formed by the cylinder equations is generically radical
and in general position with respect to all variables one may apply the Shape
Lemma. Hence we may assert that the generic lexicographic Grébner basis has
a univariate polynomial in one variable, say a, of the form

pla] = ppa® + pn_1a™ P+ .+ pra+ po

where each p; is a polynomial in the configuration data, that is the coordi-
nates of the five points. We know from the preceding theory that either n=6 or
n=8 and wish to show that it must be the former. Note that each of the more
than four thousand examples run in the simulation gave exactly six solutions.
So we must now show that we did not choose in excess of four thousand un-
fortunate examples. It will turn out we need only work with one such "good"
choice.

Let Cy denote a configuration of five points that gives rise to exactly six
solutions to the cylinder equations. We will show it is generic in the sense that
this is the number of solutions in an open set around Cj in the configuration
space. Suppose this is not the case. Then in an open dense set around Cp-
Vbaq there are configurations that give n=8 solutions. We take a sequence of
these configurations that approaches Cy. As solutions vary continuously with
the configuration in the generic case (which comprises a dense open connected
subset of C'®) we see that some solutions for the variable a must go to infinity as
the configurations approach Cy. This is so because the leading coefficient of p[a]
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is going to zero; if not then we would have n solutions for Cy in contradiction
to our hypotheses.

A similar argument shows that solutions for the other radial direction param-
eter, b, also go to infinity. Hence the axial direction for these excess solutions
must lie in the z-y coordinate plane, assuming our axial direction was set up to
be {a,b,1}. Now we recompute the solution set for Cy with the axial direction
taken to be {a,1,b}, and again repeat with direction vector of {1,a,b}. If we still
have only six solutions in all cases then the same reasoning as above demon-
strates that the axial directions of the sequence of configurations approaching
Co must also lie in the z-z and y-z coordinate planes. As no nonzero vector
lies in all three coordinate planes we obtain a contradiction.

To finish the proof it suffices to demonstrate a configuration that gives six
solutions using all three forms of axial direction vector. For example, take
dpoints = {{1,2,-4},{-1,1,3},{-1,-1,1},

{1, 0) 1}’ {6’ 1) _1}};

Now simply use the procedure solveCylinders above to compute the number
of solutions obtained using all three possibilities indicated above for direction
vector; verify that six solutions are obtained in each case.

An alternative argument is as follows. Take a given configuration with six
solutions, using the setup that forces axial directions going to infinity to do so
in the -y coordinate plane. Rotate it so that no axis moves into that plane,
and the axis of rotation does not lie in that plane. Then a symmetry argument
shows that the axial directions going to infinity can no longer lie in that plane,
but a computational argument shows that they must, a contradiction. O

Remark: A similar argument can be used to show that, if we have nj
0 solutions at some point counting multiplicity, then n must be six (that is,
it cannot be less). Note, however, that using the computational setup from
previous sections one may construct examples with only four solutions. This is
an artifact of how we choose coordinates. For example, by insisting that the axis
direction vector have a z coordinate value of 1 (which generically is allowable)
we may lose valid cylinders in examples that are not generic for that choice. As
remarked at the outset, we could instead have worked in projective space, rather
than in an affine open set thereof and similarly made the displacement vector
generic, but at some computational expense. In particular we would need to
use a pair of extra equations (e.g. normalize the direction vector to unity length
and make the displacement perpendicular to the direction), and we would also
have to work with doubled solutions because a given direction and its negative
are equivalent in this setting.

Remark concerning computational approaches to theorem 1: One might wish
to use the method of mixed volume to compute the number of solutions [30].
One finds the convex hull of the Newton polytopes of the exponent vectors for
each polynomial and then computes a mixed volume. This is easy to do using
the computation from the proof of proposition 1. Each of the two polynomials
has the same set of power products in {a,b} and specifically the hull of the
exponent vectors is given by the vertex set:
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{{0,0},{2,0}, {2,1},{1,2},{0,3}}

The volume of this region is 4. The Minkowski sum of the two polytopes
is just the same hull scaled to twice its size, and the mixed volume is equal
to the total volume minus the sum of the volumes of each separate hull, or
16-2 *4/=8. So the generic number of solutions for equations with these sets of
exponent vectors is 8 rather than 6. Indeed, one can verify this immediately by
solving a pair of random equations that use the same power products. We thus
conclude that the entire family of cylinder problems is nongeneric with respect
to the theory presented in [30]. A hint as to why this is so may be gleaned from
the computational proof of theorem 1 presented next. This sort of nongeneric
example is also noted in [20]. The related problem discussed in [15] and [26]
similarly fails to be generic for the polyhedral homotopy solving method.

Second proof of theorem 1: We will look at the solutions at infinity for the
polynomials shown in the proof of proposition 1. First we will homogenize and
then set the homogenizing variable to zero to get the initials (that is, the degree
forms).
hompolys = Expand[apolys/.{a — at,b — bt}]/.
to- — '”4; ha
initials = hompolys/.w — 0
{—b3z223 + V32223 + ab’yaz3 —
2ab’Tay223 + a?bys 2z, —b3wazs + V31324 +
abyszq — 2ab%way224 + a®by324}

We now solve for {a,b}.
solns = Solve[initials == 0, {a, b}]

Solve::svars : Equations may not give solutions for all solve variables.
{{a » =272 fa — b2} {b — 0}}

We thus obtain three solutions at infinity for the homogenized system (these
are simply the directions of the three lines between any pair of the first three
points). The number of solutions from the Bezout theorem, nine, counts these
three, and hence there are six solutions in affine space. To understand why
this is not generic for the mixed volume computation, note that the initials are
identical up to a constant multiple; any random perturbation (say, add % to
the first polynomial) will give only one solution at infinity, and therefore yield
8 finite solutions. O

Purely computational proofs of theorem 1: We can form a Grébner basis
with respect to a degree based term ordering for the polynomials we created in
proposition 1. Looking at the head terms we find that there are 6 monomials in
{a,b} that lie are not reducible with respect to this basis and hence 6 solutions
to the system [9] [10].

Alternatively we can compute the resultant of the pair of polynomials with
respect to one of the two variables. We obtain a (very large) polynomial of
degree 6 in the other. This means there are at most 6 solutions. As we already
know there can be that many, this suffices to show that there are generically 6
solutions. O
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Remark: Tt may be useful to look at theorem 1 in the context of what
are known as comprehensive Grébner bases [3] [32]. This construction in effect
allows one to circumvent the problem that Grébner bases are not continuous
in their input data (and indeed it seems designed in part for the purpose of
addressing that defect). Such a basis contains encoded all Grébner bases for a
given ideal under all specializations of the parameters. It does so in essence by
doing multiple polynomial reductions, in the sense of Grébner basis literature, on
a given polynomial in the basis. This has the desirable effect of allowing for the
possibility that any (nonnumeric) leading coefficients may be zero. The upshot
is that the coefficients of the comprehensive Grébner basis vary continuously in
the parameters of the configuration. The typical use of such a basis is in concrete
examples when one wishes to make case distinctions based on parameter values.
When a lexicographic term ordering is utilized we can say a bit about the
structure of such bases in the (generic) case of finite solution sets, using insight
gained from our examples.

For instance, suppose we have six distinct solutions in a situation where the
Shape Lemma does not apply (we have seen this in the two examples where we
obtained six real valued cylinders; in one case all radii were equal and in the
other there were two distinct radii, but of course the cylinders were all distinct
in both examples). Then the degree of the univariate polynomial in this variable
(say, r), in a lexicographic Grobner basis, must be less than six (otherwise we
would have solutions with multiplicity). We also know from the Shape Lemma
that the comprehensive Grobner basis with respect to the same lexicographic
term ordering must contain linear polynomials in each of the higher variables,
with lead coefficients that generically do not vanish. But by [21] one or more
such linear polynomials must vanish for the type of example under consideration
(otherwise we would have fewer than six solutions). Hence there must be, in
the comprehensive basis, polynomials of higher degree in those variables. Again
invoking results from [21] we know that for the corresponding linear polynomials,
when their coefficients do not vanish, they are satisfied at values for which their
higher degree counterparts must also be satisfied. So such a linear polynomial
(say, in the variable b) must have the form

plparameters|(b — g[r])

where the second factor divides any corresponding polynomial(s) of higher
degree in b. In other words, when the first factor, which involves only param-
eters, is nonzero, then where the second is satisfied all those in higher degree
must also be satisfied; moreover they cannot all vanish when the first factor
vanishes, so they must be divisible by the second factor.

Nongeneric configurations

Thus far we have discussed exclusively the generic situation. It is of interest to
make a few observations about the nongeneric case. This in turn sheds light on
cylinder solutions for point configurations that are generic but "near" to such
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nongeneric ones.

Proposition 4: Sets of five coplanar points are not generic insofar as they
do not give six solutions to the cylinder equations. In general they give four
such solutions.

Proof: This follows from the computation performed in the proof of propo-
sition 1. We take the pair of polynomials generated, substitute zero for the two
nontrivial z parameters, and compute a Grobner basis in terms of the cylinder
normal parameters {a,b}. This is in the form specified by the shape lemma, and
has a univariate polynomial of degree four with a second polynomial linear in
the remaining variable. Hence for coplanar configurations there are generically
four solutions rather than six. Of course there are further degeneracies that
can arise. For example, if four of the points are collinear then there will be
infinitely many cylinders containing all five. To finish the proof we must show
that there are no cylinders parallel to the x-y coordinate plane (as we tacitly
set the z coordinate of the normal vector to 1). But this is clear from the fact
that such a cylinder would intersect the coordinate plane in a pair of lines, and
generically the five coplanar points do not lie on any pair of lines.[]

Corollary: As configurations of five points move toward a (generic) coplanar
configuration, two of the six (possibly complex) cylinder solutions go to infinity.

Remark: This shows that in any comprehensive Grobner basis for the sys-
tem, using a lexicographic ordering, the univariate polynomial of generic degree
six has leading and second coefficients vanish when the points are coplanar. The
third coefficient will in general not vanish in this situation. Note also that the
solutions set at infinity, consisting of three direction values, was computed in a
way that implicitly depended on the five points not being coplanar. Hence the
corollary does not conflict with our prior count of solutions at infinity.

We give a converse to proposition 4. We state it as a conjecture because the
proof is not rigorous in all details.

Conjecture: Any nongeneric configuration of five distinct points must be
coplanar.

Idea of proof: First assume no three points are collinear. We need to show
that there cannot be a dimensional component of solutions. For this to happen,
the algebraic curves that are solution sets to the two polynomial equations for
two direction variables must share a component. That is, on a component of
directions in which four points project onto a circle, the fifth must project onto
that same circle. But for the first three points fixed and no three collinear, that
direction curve component uniquely defines the fourth point. Hence the fifth
must coincide with one of the other four. The case of three points collinear
forces the direction vector to define that line, and one must look at the other
cylinder parameters to deduce a contradiction. The fifth point cannot lie on the
line containing the threesome (otherwise the five are coplanar). As the set of
cylinders containing the first four now uniquely defines the line containing the
fourth and parallel to the cylinder axis (that is, parallel to the line containing
the collinear threesome), the fifth must lie on that line. But this too makes the
five points coplanar. O

Remark: The above argument leads one to believe that the cases that give
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infinitely many solutions involve either four collinear points or three collinear
with the line between the remaining two parallel to the collinear triad. Further
evidence to support this may be deduced from dimensional considerations. First
note that, once three noncollinear points are fixed in a plane, there are finitely
many ways to combine the remaining two points such that one of the above
conditions holds. For any such combination, there are two degrees of freedom
in how the points are placed. Now observe that cubic equations of the form
imposed by our choices above has eight degrees of freedom (general cubics have
ten coefficients but ours lose one degree three term, and the cubics are only
defined up to nonzero scalar multiplication, giving eight degrees of freedom).
Hence pairs of cubics of that form have sixteen parameters. The set of pairs
we can actually attain has eight degrees of freedom (from the eight coordinates
not a priori known). In order that a pair share a component, they must factor
(they cannot be identical unless a pair of points coincides, in contradiction of
hypotheses). The set of pairs that share a common factor has dimension ten.
Thus we expect the dimension of the set of attainable cubic pairs that share a
component to be given by the intersection dimension, which is two.

We now describe what happens in the generic coplanar case.

Theorem 5: Given five coplanar points in R® there are four (complex)
cylinders containing them. Of those, either zero or two will be real cylinders.

Remark: It is interesting to note that the full set of four solutions cannot
all be real valued.

Proof: That there are four complex cylinders was noted in the proof to
proposition 4. As is well known, the five points uniquely determine a quadratic
curve in the plane in which they lie. The intersection of a cylinder with a
plane is likewise a quadratic in that plane, and hence any cylinder containing
five coplanar points contains the entire quadratic curve they determine. If
that curve is a hyperbola then no (real) cylinder can contain it. If instead it
is an ellipse then there are two cylinders that contain it. These cylinders have
radial axes that each go through the center of the ellipse and lie in the plane
perpendicular to the ellipse minor axis. Their angle of intersection is determined
by the eccentricity of the ellipse. O

Corollary: Five point configurations sufficiently close to coplanar are con-
tained by at most two real cylinders.

Remark: The example we constructed from a pair of elongated tetrahedra
that gives no real cylinders is a case where a configuration approaches copla-
narity.

We can use the computational construction of proposition 1 to shed light on
the problem of counting the number of cylinders of a given fixed radius through
four points (which, as noted in [26], is equivalent to the problem of counting the
number of lines simultaneously tangent to four given spheres of equal radius).
As the radius is fixed (say, to 1), we are no longer free to rescale so we would use
{21,0,0} for our second point. We would modify circleto use only two points
along with the given radius. One change now is that for projections of two
points onto any given plane, there are two circles of the given radius containing
them. This ansatz would lead us to expect twice as many solutions for this
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problem as we obtained for counting cylinders through five points. That there
are in fact twelve (not necessarily real valued) cylinders of given radius through
four generically placed points is a theorem in [26]. In the special case that the
points are coplanar, that there are eight such cylinders is a result of [27]. In
contrast to theorem 5 above, all of them can be real valued.

A partial converse to theorem 4

We wish to show that all configurations that give no real cylinders arise in the
setting of theorem 4. Specifically we state the following conjecture.

Conjecture: Suppose we have a configuration of five points in R® for which
no real cylinders exist, and moreover assume that no point lies in the hull of the
others. Then one of the points can be moved anywhere inside the convex hull of
the full set and still we will get no real cylinders. In particular we could move
this point along a line segment from outside to inside the hull of the other four,
and at no point on that path would we get real cylinders. Thus we could regard
the given configuration as a perturbation of one that has one point inside the
hull of the other four, effectively providing a converse to theorem 4.

We make observations of sufficient conditions for a proof, then state as a
theorem a special case wherein we can fullfill the conditions. First we observe
that the two curves in direction parameter space, as given by solutions to the
two polynomials we constructed in proposition 1, are cubics that have one or
more closed topological components in two dimensional real projective space,
and because they are cubic they each have at least one real component that
go to infinity. (It is well known that they are connected as complex curves; by
"components" we mean the obvious thing with respect to intersections with real
space.)

We regard each point on such a curve as a solution to the direction parameter
equations given by the four points in configuration space lying on a cylinder
with axis in that direction. In other words, each point on the solution curve
in parameter space defines a cylinder through the four points in configuration
space that were used to form that equation. Suppose that at solution on one such
component, the fifth point lies inside the cylinder thus obtained (we are being
loose with terminology but trust the meaning of "inside a cylinder" is clear).
Then it must lie inside all cylinders defined by points on that affine component of
the solution curve. The proof of this remark has a small complication. We next
claim that the fifth point, in order to "escape" outside the cylinder containing
the other four, must cross the cylinder (in contradiction to our hypothesis that
there are no real cylinders containing all five points). A priori there is another
way it might escape: the cylinder containing four can degenerate to a plane and
subsequently reverse its "open" side, if the four points project onto a line for
some solution direction. To see this does not happen for generic configurations,
note that any such direction must lie in all four planes containing three of
the four points. Thus the fifth point stays inside the cylinders defined by all
directions on that component of the solution curve for directions of cylinders
containing the other four points.
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Next we observe that, were this true not just on one topological component of
the direction solution curve, but on all of them, then that fifth point works in the
conjecture. We see this as follows. When the fifth point lies inside all cylinders
defined by a solution curve component, then it projects along the cylinder axis
to a point inside the circle that intersects the projections of the other four. The
same must hold for any other point in the interior of the convex hull of the five
points. This is because such a point, written as a convex combination of the five,
must either be in the interior of the tetrahedron defined by the first four (and
thus project to the interior of the circle they define), or else have a nontrivial
component of that fifth point and again project to that circle interior.

We now proceed to construct a solution on one direction curve, that is, a
cylinder containing four of the points, such that the fifth is inside it. We can
arrange our four so that three are in the x-y coordinate plane, and the remaining
two have a segment joining them that intersects the triangle defined by the first
three (such an arrangement can always be found for a configuration of five points
in R®). We place the fourth point on the z axis beneath the origin. Projecting
from the fourth point onto a plane in the direction of the segment between the
fourth and fifth points gives a unique a circle containing the first three. The
cylinder along that direction and containing that circle thus encloses the fourth
and fifth points. Now we simply move one of the direction coordinates, forming
new projections and cylinders containing the first three points, until one of the
remaining points (say, the fourth) hits that cylinder. What we have done is to
arrive on the first of the two solution curves for the equation for directions for
cylinders containing the first four four points, as set up in proposition one. We
now have a cylinder containing four points and enclosing the fifth. From the
discussion above we know that this holds for all cylinders defined by this affine
component of the curve of directions.

At this point we have a sufficient condition for the conjecture to hold. We
simply require that each of the solution curves have only one affine component.

Theorem 6: Given five points in R? for which there are no real solutions to
the cylinder equations, suppose there are three such that
(i) The segment joining the remaining two lies in the triangle defined by those
three.
(if) The two curves of solution directions for cylinders containing those three
and either the fourth or fifth respectively, each have only one component in real
projective space.
Then either the fourth or fifth point can be moved anywhere inside the hull of
the five and there will be no real cylinder containing this new point and the
other four.

As remarked above, we can always order the points in such a way that the
first condition holds. But then in general the second condition will not hold.
We believe the conjecture to be true all the same, though we do not have a
proof as yet. We also mention that extensive graphical evidence suggests that
most often these curves have one component in two dimensional real projective
space. This is found by taking random examples with three points in the x-y
coordinate plane and the fourth and fifth above and below respectively, throwing
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away those that have real solutions, throwing away from the rest those for which
the segment between fourth and fifth points does not go through the triangle
bounded by the first three, and plotting the zero level sets for the two cylinder
equations in remaining cases. In any case it would seem that this method applies
to "most" of the configurations that give no real cylinder solutions.

Indeed, we can weaken the second hypothesis of theorem 6 so that the curves
may have multiple components, provided the components for one are not sep-
arated by any component of the other. Graphical evidence supports the belief
that this weaker requirement is always satisfied. Clearly a proof to this effect
would suffice to prove the conjecture.

6. Summary

We have discussed computational methods for finding cylinders through a given
set of five points in R3. Along the way we have covered several related prob-
lems and computational approaches thereto. We have investigated the various
real valued scenarios using first simulation and then theoretical approaches. In
particular we have combined geometric reasoning with Grobner bases and sev-
eral related tools from computational algebra, in order to study a rich family of
problems from enumerative and computational geometry.
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