
MODEL DEVELOPMENT AND OPTIMIZATION
WITH Mathematica™

János D. Pintér and Frank J. Kampas1 2

1 Pintér Consulting Services, Inc., Halifax, Nova Scotia, Canada
jdpinter@hfx.eastlink.ca http://www.pinterconsulting.com http://www.dal.ca/~jdpinter

2 WAM Systems, Inc., Plymouth Meeting, PA, USA
fkampas@wamsystems.com http://www.wamsystems.com

Appeared in:

Golden, B. L., Raghavan, S. and Wasil, E. A., Editors
The Next Wave in Computing, Optimization, and Decision Technologies
pp. 285-302.

Springer Science + Business Media, New York, 2005.

http://www.pinterconsulting.com/
http://www.wamsystems.com/

MODEL DEVELOPMENT AND OPTIMIZATION
WITH Mathematica™

János D. Pintér1 and Frank J. Kampas2

1 Pintér Consulting Services, Inc., Halifax, Nova Scotia, Canada
jdpinter@hfx.eastlink.ca http://www.pinterconsulting.com http://www.dal.ca/~jdpinter

2 WAM Systems, Inc., Plymouth Meeting, PA, USA
fkampas@wamsystems.com http://www.wamsystems.com

Abstract: Mathematica is an integrated scientific and technical computing system, with

impressive numerical calculation, programming, symbolic manipulation,
visualization and documentation capabilities. In recent years Mathematica's
optimization related features have been significantly expanded, both by in-
house development and by application packages. Such developments make it
an increasingly useful tool also in Operations Research studies. We review and
illustrate these features, placing added emphasis on nonlinear (global and
convex) optimization, and – within this context – discussing the application
packages MathOptimizer and MathOptimizer Professional.

Key words: Mathematica; built-in optimization functions; modeling and optimization

packages; MathOptimizer; MathOptimizer Professional; illustrative examples
and applications.

1. INTRODUCTION

Mathematica – an integrated scientific and technical computing
environment by Wolfram Research (2004) – is arguably one of the most
sophisticated software products available today. Its capabilities and range of
applications are documented in the massive Mathematica tome (Wolfram,
2003) and in the supplementary documentation. Further information is found
in nearly 400 topical books, and in thousands of articles and presentations.
According to Wolfram Research, the software is used by well over a million
people worldwide.

Mathematica can also increasingly meet the needs of Operations
Research professionals, including business analysts, model, algorithm and
software developers, researchers, professors, and students. O.R. related

http://www.pinterconsulting.com/
http://www.wamsystems.com/

features include data analysis and management, model prototyping, concise
programming (in several paradigms), advanced computing, visualization,
and documentation – all in the same ‘live’ notebook document, if preferred.
Such notebooks can also be directly converted to tex, html, xml, ps, and pdf
file formats. Mathematica also supports direct links to external application
packages, to other software products, and to the Internet. A significant
further advantage is portability across a broad range of hardware platforms
and operating systems, due to the standardized notebook document format.

For further general information, visit the websites of Wolfram Research,
specifically including the Mathematica Information Center (2004) that
provides extensive details and links. We also refer to a recent review of
Mathematica in ORMS Today (Sodhi, 2003), as well as to an illustrative list
of Mathematica books with a modeling and/or optimization related content
(Bahder, 1995; Schwalbe and Wagon, 1996; Gass, 1998; Bhatti, 2000;
Maeder, 2000; Jacob, 2001; Hollis, 2003; Pemmaraju and Skiena, 2003;
Kampas and Pintér, 2004). Let us note here that MathReader, a freely
available viewer, can be used to display and print Mathematica notebooks,
animate graphics, play sounds, and copy information from notebooks to
other documents; MathReader can also be used in most web browsers.

In this work we review and illustrate Mathematica's O.R. modeling and
optimization related features. Within the broad category of optimization
models, we see particularly strong application potentials for Mathematica in
the analysis of (possibly complex) nonlinear systems when the
corresponding decision model can not be brought to simple standard forms.
In such cases, problem-specific modeling and code development are
essential, and using Mathematica as the development platform can be a good
choice. For this reason, here we shall place added emphasis on nonlinear
(global and convex) optimization, where – in addition to built-in
functionality – our packages MathOptimizer and MathOptimizer
Professional can be put to good use.

2. NUMERICAL OPTIMIZATION IN Mathematica

We start with a concise summary of built-in optimization functionality.
Most of the related Mathematica functions can be invoked in several
variations, and have a number of optional settings. Here we shall use their
basic forms with default settings; for further details, consult (Wolfram,
2003) and the Mathematica help system. We shall also refer to several
closely related articles and presentations. For simplicity, only minimization
problems are considered: several functions also have a maximization
equivalent, with identical solver functionality.

In the illustrative statements we shall use bold Courier fonts for
displaying Mathematica input and regular Courier fonts for
Mathematica output; however, in the explanatory text we retain the standard

(Times New Roman) fonts used in this article. All input/output statements
and calculations presented in this work are directly imported from a
corresponding Mathematica notebook.

2.1 LinearProgramming

The function LinearProgramming[c, A, b] finds a vector x that solves the
LP problem stated as min cTx subject to Ax≥b and x≥0. Here c and x are
(real) n-vectors; b is an m-vector and A is an m-row, n-column matrix. We
will not discuss the ConstrainedMin (and ConstrainedMax) functions since
these are also LP solvers, and both became obsolete since the release of
Mathematica version 5.

A simple example of using LinearProgramming is shown below. Let us
remark that in Mathematica vectors are denoted by lists: each component of
a list is followed by a comma, and the entire list is enclosed by curly braces
{}. The next three lines describe the model data (semicolon is used to
suppress Mathematica output that in this case would simply echo the input
lines shown):

c={1,2,1,1,3};
A={{2,-3,3,5,4},{-1,2,1,-4,-2},{2,2,2,1,1}};
b={3,8,12};

The solution is then simply obtained by entering the statement

xopt=LinearProgramming[c,A,b]
{0,2,4,0,0}

The result (i.e., the listed components of xopt) is shown in the row

immediately following the Mathematica input statement. The solution is
verified and the optimum value obtained by the following statements (the
symbol . denotes the matrix-vector and vector-vector (dot) products):

A.xopt
{6,8,12}

c.xopt
8

The solution time for this ‘mini-problem’ is less than 0.001 seconds.

Mathematica timings are usually displayed in one-thousandth of a second
precision. All illustrative timing information in this article is measured using
a Pentium 4 1.6 GHz processor based desktop machine that runs under
Windows XP Professional; we are using Mathematica version 5.0.

Let us note here that recent LP related development includes the
Mathematica implementation of the LAPACK package that has been used

worldwide to solve the most common tasks in numerical linear algebra
(Leyk, 2003). Another notable development is discussed by Hu (2003): a
new interior point algorithm option has been added to LinearProgramming
that is now capable of solving large-scale linear optimization problems with
hundreds of thousands of variables and equations.

2.2 FindMinimum

The function FindMinimum locally solves unconstrained nonlinear
optimization problems, optionally using various methods that include
conjugate gradient and BFGS quasi-Newton search strategies. As a simple
illustration, we shall demonstrate its application in the form FindMinimum[f,
{{x, x0},{y, y0}}] that uses the initial solution estimate {x0, y0} in solving
the two-variable problem min f(x,y). The multiplication symbol * is used
below for clarity: it could be replaced by a space between the multiplier
constant and the variable.

FindMinimum[Sin[x2-x]+3*y2, {{x,3},{y,1}}]
8 8 <<−1., x → 2.72764, y→ −2.91001× 10−11

In the result received, -1 is the objective function value, and → denotes a

symbol-to-value assignment. FindMinimum is a local search method: hence,
this could be – in fact, is – only one of the local or global solutions (most
likely, the one closest to the starting point). This point is illustrated by

FindMinimum[Sin[x2-x]+3*y2, {{x,13},{y,11}}]
8 8 <<−1., x → 11.6509, y→ −1.49268× 10−9

2.3 NMinimize

The Mathematica function NMinimize[{f, cons},{x, y,…}] attempts to
find the global minimum of f, subject to the listed constraints cons. The
following simple example illustrates its application; notice the double
equality sign == that denotes a strict equality constraint:

NMinimize[{(x12-x2)2,
x1-x1*x2==0, x1≥-10, x1≤20, x2≥-15, x2≤10},
{x1,x2}]
8 8 <<2.46519×10−30, x1 → 1., x2→ 1.

We will use NMinimize later on in some illustrative comparisons.

3. MODELING AND OPTIMIZATION PACKAGES

There is a range of application packages offered by Wolfram Research
and by independent developers with apparent O.R. relevance. A brief review
of these is provided below, for simplicity in alphabetical order. We will not
mention or display the (quite possibly changing) version numbers, when
discussing the packages: for further details see the related references and
visit the website of Wolfram Research.

All packages discussed can be seamlessly integrated into Mathematica,
when properly installed: in particular, their documentation can be directly
invoked from Mathematica's help system. Since all packages present
detailed application examples, these can be directly used and customized to
create new model development and optimization projects.

Needless to say, we do not intend to specifically endorse any of these
applications, and – in lack of access to all listed packages – we rely partly on
the product descriptions provided by Wolfram Research and the developers.
Packages will be referred to using italics fonts.

Advanced Numerical Methods expands the functionality of the Control
System Professional package with an extensive collection of numerical
algorithms. These algorithms solve a wide class of control and linear algebra
problems.

Combinatorica extends Mathematica‘s capabilities by over 450 new
functions: these serve to construct graphs and other combinatorial objects,
and to display them. The detailed guide to Combinatorica is Pemmaraju and
Skiena (2003) that can also be used as a course textbook.

Control System Professional Suite is an extensible framework of
integrated Mathematica application packages for handling common,
interdisciplinary control problems that arise in engineering, as well as in
chemistry, biology, economics and financial studies.

Database Access Kit brings Mathematica's data analysis and
management tools to large data sets. These capabilities can be interfaced
with relational databases (including Oracle, Microsoft Access, SQLServer,
and DB2) and to a number of flat-file databases (like Excel or dBase files).

DiffEqs is a collection of individual packages that accompanies the
textbook by Hollis (2003): the book presents an introduction to
Mathematica, and to differential equations.

Experimental Data Analyst integrates a set of programs that help to
analyze experimental data, from error analysis and data fitting capabilities to
data visualization and transformation. A collection of examples based on
real experimental data is included.

Fuzzy Logic provides a set of tools for creating, modifying, and
visualizing fuzzy sets and fuzzy logic-based systems. It also includes
practical examples that introduce the basic concepts and demonstrate the
numerical solution of various system design problems.

Global Optimization offers a collection of functions for constrained and
unconstrained nonlinear optimization, as well as several tools of interest for
statistical studies.

Industrial Optimization is designed to solve a range of O.R. models, by
providing algorithms for linear, pure and mixed integer linear, and convex
optimization, as well as some heuristic techniques such as genetic
programming.

Mathematica Link for Excel provides Excel users with a seamless
connection to Mathematica: one can directly activate a range of advanced
Mathematica calculations and functions from the calling spreadsheet.

MathOptimizer and MathOptimizer Professional are our own application
packages (Pintér, 2002b; Pintér and Kampas, 2003): these will be discussed
in more details later on.

ModelMaker serves to build and analyze finite element (FE) models.
The package permits building parametric models, where the FE database
contains both numeric data and symbolic Mathematica expressions which
can be used to morph the model geometry.

Neural Networks provides tools to define, train, visualize, and validate
neural network models. It supports a set of network structures; it also
implements training (unconstrained local optimization) algorithms.

Operations Research offers tools for solving linear optimization,
quadratic programming, shortest path, and combinatorial optimization
problems, including both exact and heuristic approaches.

Optimization Toolbox contains programs that accompany Bhatti's well-
written textbook (2000), targeted primarily to an undergraduate and graduate
student (and instructor) readership. Optimization theory is presented in an
informal style; pedagogical Mathematica algorithms are presented and
illustrated by examples.

Parallel Computing Toolkit brings parallel computation tools to a
computer network, or to multiprocessor machines. It implements parallel
programming primitives and includes high-level commands for the parallel
execution of operations such as animation, plotting, and matrix
manipulation.

VisualDSolve has been developed along with the textbook by Schwalbe
and Wagon (1996) that serves as its reference manual. The book covers
many of the topics in a first course in ordinary differential equations, and
provides a wide variety of tools for visualizing solutions.

4. MathOptimizer

4.1 Introduction and Usage

MathOptimizer (Pintér, 2002b) is a native Mathematica software
package that serves to solve general – global or local – nonlinear
optimization models stated in the form

(1) min f(x) f: D0 Ø R1

g(x)=0 g: D0 Ø Rm1

h(x)§0 h: D0 Ø Rm2

D0 :={x: xl§x§xu} x, xl, xu e Rn

It is assumed that all functions f, g, h are at least continuous, and that xl,

xu are finite (known) real n-vectors. All bound, equality and inequality
constraints are interpreted component-wise. Notice that the equality and
inequality constraints are treated separately: their number is denoted by m1
and m2, respectively.

In addition to MathOptimizer’s built-in local solver methodology, a
special emphasis is placed on finding the global solution of models that may
have a number of local solutions. Fairly comprehensive reviews of global
optimization are presented e.g., in the Handbooks edited by Horst and
Pardalos (1995), Pardalos and Romeijn (2002); see also the topical website
of Neumaier (2004).

MathOptimizer consists of two core solver packages and a solver
integrator package. One of these solver components is called MS,
abbreviating MultiStart (global search). MS serves for the – as a rule,
approximate – global optimization of an exact penalty function that
aggregates f, g, and h in the given n-dimensional interval range. MS uses an
adaptive stochastic search method, combined with a statistical bounding
procedure. The second component package – called CNLP, abbreviating
Constrained NonLinear Programming (for local search) – implements a
Lagrangian approach that is aimed at finding a (global or local) solution that
satisfies the Karush-Kuhn-Tucker optimality conditions. (Note that,
theoretically, this component requires smooth problem structure.) CNLP is
used for ‘precise’ local optimization, based on a given initial solution: the
latter is either produced by the global search phase, or it can be directly
provided by the user. The solver integrator package, called Optimize,
supports the individual or combined use of the two solver packages. It is
planned to add further solver components to MathOptimizer: the presence of
the integrator package directly supports this objective.

The MathOptimizer User Guide is a Mathematica notebook (currently
consisting of over 70 printed pages) that can be directly invoked through
Mathematica's online help system. The manual presents installation and
technical notes, provides concise mathematical background information and

modeling tips, and discusses a number of test problems as well as several
more advanced applications.

MathOptimizer is invoked by the following Mathematica statement.
Observe the notation used to identify the entire package and the integrator
package component: the latter then indirectly activates both MS and CNLP.

Needs["MathOptimizer`Optimize`"];

The following Mathematica code illustrates the definition of a small

non-convex optimization model that is made up by decision variables
(denoted below as vars); lower/upper bounds and nominal (initial) values of
the variables (varlb, varub, and varnom); objective function to minimize
(objf); and the separate lists of equality constraints (eqs) and inequality
constraints (ineqs, by assumption, are stated in §0 form).

vars={x1,x2};
varlb={-10,-15};
varub={20,10};
varnom={8,-14};
objf=10*(x12-x2)2+(x1+3*x2-4)2;
eqs={x14-x1*x23};
ineqs={3*x1+4*x22-8};

The next statement calls MathOptimizer to solve the model:

Optimize[objf, eqs, ineqs, vars, varnom, varlb,
v rub] a
881., 1.<, 6.23774×10−21, 8−3.94744×10−11<,
−1. , 3.94744×10−11, 2.73735× 10−9, 0.8 < 8 <<

The result shows the composite list of the following elements: the list of

global solution components (x1=x2=1), the optimum value (a close
numerical approximation to the theoretical value 0), as well as the lists of
constraint function values at the solution, and finally the list of violation
levels with respect to feasibility, the Kuhn-Tucker equation (defined by the
gradient of the Lagrangian), and the complementary slackness condition at
the solution found. The MathOptimizer runtime is less than 0.5 seconds.

Note that it is very easy to make changes to the model, and then to
immediately repeat the solution procedure. For example, we can replace the
constraints by defining (over-writing)

eqs={x14-Sin[1-x1*x23]-1};
ineqs={3*x1-4*x22+1};

After evaluating these statements – on MS Windows machines, by using

the Shift-Enter key combination while pointing anywhere in the

Mathematica cell that includes the above input (so that they can be evaluated
in a single move) – we can run MathOptimizer again. Observe passing by
that the optimum value should be the same, except numerical rounding
errors, since the previously found global solution {1, 1} meets also the new
constraints.

Optimize[objf, eqs, ineqs, vars, varnom, varlb,
v rub] a
881., 1.<, 5.68314×10−19, 88.07199×10−11<,
−1.07488×10−9 , 8.07199×10−11, 9.53077×10−9, 0.8 < 8 <<

The numerical solution received is essentially the same as the one found

above. For comparison, now we attempt to solve this model by using the
built-in function NMinimize (in default mode, similarly to MathOptimizer).
The NMinimize formulation for the model is slightly different:

NMinimize[objf,
x14-Sin[1-x1*x23}-1==0, 3*x1-4*x22+1≤0,
x1≥-10, x1≤20, x2≥-15, x2≤10}, {x1,x2}]
{2532.29,{x1→1.1892, x2→-10.354}}

The solution found by NMinimize is obviously sub-optimal. Of course,

this finding is not sufficient per se to draw far-reaching conclusions.
However, it certainly shows that the solution of nonlinear models can be
tricky, even in (very) low dimensions.

4.2 Applications

In addition to a number of relatively simple numerical test examples, the
MathOptimizer User Guide discusses illustrative applications from the
following areas: chemical equilibrium modeling, industrial design, acoustic
engineering design, and two numerical mathematics challenges (Problems 4
and 9 from Trefethen (2002)). In solving some of these – specifically, the
sonar transducer model formulated by Purcell and the numerical integration
problem of Trefethen – it is essential that MathOptimizer can handle
arbitrary computable (preferably also continuous) Mathematica functions.
This feature makes it suitable to handle ‘black box’ models defined by
functions that are evalulated by complex, numerically intensive procedures.
Pintér and Purcell (2003) discuss the sonar transducer design problem: its
solution requires a combination of the ModelMaker (Purcell, Dai, and Xue,
2001) and MathOptimizer packages.

To mention other areas of application, Kampas and Pintér (2002) solve
configuration analysis and design models using MathOptimizer: such
problems arise e.g. in applied mathematics, statistics, physics, chemistry,
and robotics. Pintér (2003c) discusses nonlinear model calibration: the

illustrative numerical results demonstrate that MathOptimizer produces
superior results to local search based model fitting. The article then reviews
several case studies in which global optimization has been applied to model
calibration problems related to water quality, environmental engineering,
time series analysis and photoelectron spectroscopy applications.

5. MathOptimizer Professional

5.1 Introduction and Usage

MathOptimizer Professional (Pintér and Kampas, 2003) is another
Mathematica model development and nonlinear optimization package:
however, it is based on an entirely different approach from the native
Mathematica solver systems reviewed and discussed above. MathOptimizer
Professional solves globally or locally nonlinear optimization models stated
in the following general form (notice that the m-vector function g below now
includes both equality and equality constraints):

(2) min f(x) f: D0 Ø R1

g(x)§0 g: D0 Ø Rm

D0 :={x: xl§x§xu} x, xl, xu e Rn

The core of the package is the LGO external solver system that is
activated and then used via MathLink, a general-purpose interface that
supports communication between Mathematica and external programs. LGO
– originally abbreviating the Lipschitz (continuous) Global Optimizer – can
handle general (continuous) nonlinear optimization models, using a suite of
global and local search algorithms. The currently implemented LGO
algorithm options include branch-and-bound (BB), global adaptive random
search (single-start, GARS) and multi-start (MS) based search strategies, as
well as a (local) generalized reduced gradient (GRG) method. Note that in
the global search phase the model functions are aggregated applying an
exact penalty function; in the local search phase – that either automatically
follows one of the global search modes or is used as a ‘local search only’
option – all constraint functions are treated individually.

The global search methods are, in theory, globally convergent
(deterministically, or with probability 1, at least for box-constrained global
optimization models). The actual code implementations are numerical
approximations of the underlying theory. Due to the usage of an aggregated
merit function, the automatic ‘switching point’ from global to local search,
and other parameter settings, there are heuristic elements in LGO (similarly
to most – if not all – numerical optimization methods). The optional choice
of global methods often helps in solving difficult models, since BB, GARS,

and MS apply different search strategies. The parameterization of these
component algorithms (e.g., intensified global search) can also help to solve
difficult models, although the internally set default search effort typically
produces a close numerical approximation of the global solution. The latter
statement has been verified by solving some difficult global optimization
problems in which the solution is reproducible and publicly available: some
examples will be mentioned later on.

Note also that all LGO search algorithms are derivative-free:
specifically, in the local search phase central differences are used to
approximate gradients. This choice reflects our objective to handle models
with merely computable, continuous functions, including ‘black box’
systems.

LGO has been developed and maintained for well over a decade (as of
2004), and the software is discussed in details elsewhere: consult, e.g., Pintér
(1996, 2001, 2002a, 2004a), or the peer review by Benson and Sun (2000).
LGO is currently available for essentially arbitrary C and Fortran compiler
platforms, with seamless links to Excel, GAMS, Maple, Mathematica, and
TOMLAB (the latter provides a solver interface and a collection of solvers
for optimization using MATLAB). The details of these implementation
versions are described in the corresponding documentation: see Frontline
Systems and Pintér Consulting Services (2001); Pintér (2003a); Pintér
(2004b); Pintér, Holmström, Göran and Edvall (2004).

The computational study (Pintér, 2003b) reviews the performance of
LGO in comparison to several state-of-art local nonlinear solvers linked to
the GAMS platform. This evaluation has been done in a fully automated and
reproducible manner using publicly available GAMS model libraries: hence,
it can be considered as reasonably objective, even if the collection of models
and other circumstances (solver options and parameters) always carry
elements of arbitrariness and subjectivity. The numerical experiments
described in this study show that global optimization tools are needed to
solve nearly half of the GAMS models from the chosen library, even when –
possibly quite useful – initial solution points are provided to the local
solvers. (We conjecture that providing random starting points from a search
box that contains the feasible region would demonstrate even more
pronounced need for global scope search.)

MathOptimizer Professional combines the model development power of
Mathematica with the LGO solver suite: this leads to enhanced nonlinear
solver capabilities, and a performance (solution speed) that – especially on
larger models – is comparable to compiler-based solver implementations.

The functionality of MathOptimizer Professional is summarized by the
following steps (all steps are fully automatic, except the first one):
• model formulation in Mathematica
• translation of the Mathematica optimization model into C or Fortran

code (LGO model function file)
• generation of LGO input parameter file

• compilation of the C or Fortran model code into object code or dynamic
link library (dll): this step needs a suitable compiler

• call to the LGO solver engine: the latter is typically provided as object
code or an executable program that is linked together with the model
object or dll file

• model solution and report generation by LGO
• report of LGO results back to the calling Mathematica notebook.

Obviously, the approach outlined supports ‘only’ the solution of models

defined by Mathematica functions that can be directly converted into C or
Fortran program code. This, however, still allows the handling of a broad
range of continuous nonlinear optimization models. A ‘side-benefit’ of using
MathOptimizer Professional is that Mathematica models are automatically
translated into C or Fortran format: this can be useful e.g., in generating new
test models.

Following installation, the MathOptimizer Professional User Guide
(Pintér and Kampas, 2003) can be directly invoked as part of Mathematica's
help system. The package is activated by the following statement

Needs["MathOptimizerPro`callLGO`"];

Upon executing this statement, on MS Windows machines a command

window opens that serves to monitor the MathLink connection that support
external system calls to/from LGO. In our case, this window will display the
background compiler and linker operations.

The numerical solution of an optimization model now can be launched
by a single Mathematica statement of the form callLGO[f, g, {x, xl, xn,
xu}]. Here we use the notation corresponding to (2); in addition, xn is the
nominal setting of x (used in the first model function evaluation and/or as a
starting point of the ‘local search only’ LGO solver mode). The following
call illustrates the basic MathOptimizer Professional functionality:

callLGOAx2+3 y2, x+Sin y ≥1 , x,−2,0,2 , 8y,−2,0,2<<E8 @ D < 88 <
{0.753796,{x→0.757485,y→0.244957},0}

The result shows (again, in Mathematica list format) the optimum value

found, the list of corresponding variable settings, and the maximal model
function infeasibility at the solution: all values are numerical
approximations, of course. Note that the function callLGO currently has 15
optionally set parameters: these are all documented and illustrated in the
User Guide, but their discussion is outside of the scope of this paper. For
further details, consult the manual or Pintér and Kampas (2004).

5.2 Applications

For over a decade, LGO has been applied in a variety of professional, as
well as academic research and educational contexts. In recent years, LGO
has been used to solve models in up to a few thousand variables and
constraints. Some recent applications and case studies – including e.g.,
model fitting in econometrics and laboratory analysis, potential energy
models in computational chemistry, laser design, cancer therapy planning,
and non-uniform sphere packings – are discussed by Pintér (2001a, b,
2002a), Isenor, Pintér, and Cada (2003), Tervo et al. (2003), Kampas and
Pintér (2004a), Pintér and Kampas (2004). Note additionally that some of
the LGO software users in the financial industry, process industries,
biotechnology, etc. develop other advanced (but confidential) applications.
We expect essentially similar performance from the recently released
MathOptimizer Professional that enables the solution of sizeable,
sophisticated nonlinear models formulated in Mathematica. The role of
communication overhead between Mathematica and the external solver suite
becomes relatively less significant in solving larger models, in which the
external LGO solver time dominates.

The MathOptimizer Professional User Guide (an approximately 150-
page document when printed) describes several tens of test problems starting
with simple LP problems, through convex and non-convex nonlinear
models, to a number of fairly challenging optimization models originating
from mathematics, physics, chemistry, engineering and economics. For
illustration, we shall consider here a pair of transcendental equations:

eq1= Hx − Sin@2 x+3 yD − Cos@3 x−5 yDL2;
eq2= y − Sin x−2 y + Cos x+3 y 2;H @ D @ DL

L]

We wish to find a solution in the region -2 ≤ x ≤ 3, -2.5 ≤ y ≤ 1.5, or to
numerically verify that there is no solution in the region specified. The
surface and contour plots of eq1+eq2 (this corresponds to the squared l2-
norm based error function) reveal the rather complex multi-extremality of
the induced optimization model: see Figures 1 and 2.

Let us apply MathOptimizer Professional to solve this problem. First,
we define the equations (eqs), the constraints (cons: note here that the
relations eq1=eq2=0 can be expressed by using the Mathematica function
Thread), and the variables with bounds and nominal values
(varswithbounds). Then we call LGO.

eqs={eq1,eq2};
cons=Thread[eqsm0];
varswithbounds={{x,-2,1,3},{y,-2.5,1,1.5}};
call GO[0,cons,varswithbounds
8 8 < <0, x→ −0.173363, y→ −0.256098 , 1.44819 ×10−9

-2
-1

0
1

2
3

-2

-1

0

1

0
5

10
15
20

2
-1

0
1

2

Figure 1. Surface plot of error function in solving a system of equations.

-2 -1 0 1 2 3

-2

-1

0

1

Figure 2. Contour plot of error function in solving a system of equations.

As the result shows, MathOptimizer Professional finds a numerical
solution that is precise to about 1.45ÿ10-9, when substituted into the
equations. The external LGO runtime is 0.03 seconds. (In total, 7843 search
steps – model function evaluations, including gradient estimates in the local
search phase – are done in using the default MS+LS search mode with
default parameterization; all results are exactly reproducible.) Note also that
the User Guide addresses the issue of finding (possible) multiple solutions to
systems of equations and inequalities.

As for another illustrative application, in (Kampas and Pintér, 2004a) we
state and solve a challenging new model type: our objective is to find the
‘best’ non-overlapping arrangement of a set of given non-uniform size
circles in an embedding circle. The best packing is defined here by a
combination of two criteria: the size (radius) of the circumscribed circle, and
the average pair-wise distance between the centers of the embedded circles.
The relative weight of the two objective function components can be
selected as a model-instance parameter.

Detailed numerical results are reported in (Kampas and Pintér, 2004a)
for circles defined by the radii ri=i-0.5, i=3,…,N, up to 40-circle
configurations. For illustration, the configuration found for the case N=20
circles using MathOptimizer Professional is displayed below. In this
example, equal consideration (weight) is given to minimizing the radius of
the circumscribed circle and the average distance between the circle centers.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Figure 3. A non-uniform circle packing result for N=20 circles.

Let us remark in this context that in Kampas and Pintér (2002) we have

attempted to solve instances of the circle packing problem applying the
built-in Mathematica function NMinimize, but (in default mode) it could not
find a solution of acceptable quality even for the case N=5. MathOptimizer
worked better and found good quality solutions for small configurations (up
to N=10), but – due to its native Mathematica solver functions – solution
times are increasing far more rapidly than for MathOptimizer Professional.
Again, this is just a numerical observation, as opposed to a conclusion: we
plan to make a more systematic comparison of global solvers (available for
use with Mathematica) in the near future, based on detailed numerical tests.

Let us also mention finally that both MathOptimizer and MathOptimizer
Professional are included in a recent peer review of optimization capabilities
using Mathematica (Cogan, 2003).

6. CONCLUDING REMARKS

This article discusses the potentials of Mathematica in Operations
Research related modeling and optimization studies. Within this context, we
review built-in Mathematica optimization functionality and provide an
annotated list of relevant application packages. Next, we introduce the
packages MathOptimizer and MathOptimizer Professional, and discuss their
usage by solving a few illustrative (yet non-trivial) optimization problems.
We think that integrated modeling and solver environments will have a
significant role in O.R. modeling and optimization studies, in an increasing
range of business, research, and educational contexts.

ACKNOWLEDGEMENTS

JDP wishes to acknowledge the support received from Wolfram
Research over the years, in forms of a visiting scholarship, books, software,
and professional advice. The MathOptimizer software development project
has profited from advice and comments by Dr. Christopher J. Purcell
(DRDC Atlantic Region), and it has been partially funded by DRDC
(Contract No. W7707-01-0746/001/HAL), and by NRC IRAP (Project No.
362093). We also wish to thank Dr. Mark Sofroniou (Wolfram Research) for
his kind permission to use – and to modify – the Format.m Mathematica
package in our MathOptimizer Professional development work.

The comments received from an anonymous referee helped us to
improve the content and style of the paper.

REFERENCES

Bahder, T.B. (1995) Mathematica for Scientists and Engineers. Addison-Wesley, Reading,

MA.
Benson, H.P. and Sun, E. (2000) LGO – Versatile Tool for Global Optimization. ORMS

Today 27 (5) 52-55. See also http://www.lionhrtpub.com/orms/orms-10-00/swr.html.
Bhatti, M.A. (2000) Practical Optimization Methods With Mathematica Applications.

Springer, New York.
Frontline Systems and Pintér Consulting Services (2001) Premium Solver Platform – LGO

Global Solver Engine for Excel. Published by Frontline Systems, Inc., Incline Village,
NV. See also http://www.solver.com/xlslgoeng.htm.

Cogan, B. (2003) How to get the best out of optimization software. Scientific Computing
World 71 (2003) 67-68. See http://www.scientific-computing.com/scwjulaug03review_
optimisation.html.

Gass, R. (1998) Mathematica for Scientists and Engineers: Using Mathematica to do Science.
Prentice Hall, Englewood Cliffs, NJ.

Hollis, S. (2003) A Mathematica Companion for Differential Equations. Prentice Hall, NJ.
Horst, R. and Pardalos, P.M., eds. (1995) Handbook of Global Optimization, Vol. 1. Kluwer

Academic Publishers, Dordrecht.
Hu, Y. (2003) Solving large linear optimization problems. Lecture presented at the 2003

Mathematica Developer Conference, Champaign, IL.
Isenor, G., Pintér, J.D., and Cada, M. (2003) A global optimization approach to laser design.

Optimization and Engineering 4, 177-196.
Jacob, C. (2001) Illustrating Evolutionary Computation with Mathematica. Morgan

Kaufmann Publishers, San Francisco, CA.
Kampas, F.J. and Pintér, J.D. (2002) Configuration analysis and design by using optimization

tools in Mathematica. The Mathematica Journal (to appear).
Kampas, F.J. and Pintér, J.D. (2004a) Generalized circle packings: model formulations and

numerical results. Proceedings of the 2004 International Mathematica Symposium,
Banff, AB.

Kampas, F.J. and Pintér, J.D. (2004b) Advanced Optimization: Scientific, Engineering, and
Economic Applications with Mathematica Examples. Elsevier, Amsterdam (to appear).

Leyk, Z. (2003) Fast linear algebra in Mathematica. Lecture presented at the 2003
Mathematica Developer Conference, Champaign, IL.

Maeder, R.E. (2000) Computer Science with Mathematica. Cambridge University Press,
Cambridge, UK.

Mathematica Information Center (2004) http://library.wolfram.com/infocenter/.
Neumaier, A. (2004) Global Optimization. http://www.mat.univie.ac.at/~neum/ glopt.html.
Pardalos, P.M. and Romeijn, H.E., eds. (2002) Handbook of Global Optimization, Vol. 2.

Kluwer Academic Publishers, Dordrecht.
Pemmaraju, S. and Skiena, S. (2003) Computational Discrete Mathematics: Combinatorics

and Graph Theory with Mathematica. Cambridge University Press, Cambridge, UK.
Pintér, J.D. (1996) Global Optimization in Action. Kluwer Academic Publishers, Dordrecht.
Pintér, J.D. (2001a) Computational Global Optimization in Nonlinear Systems: An Interactive

Tutorial. Lionheart Publishing, Atlanta, GA.
Pintér, J.D. (2001b) Globally optimized spherical point arrangements: Model variants and

illustrative results. Annals of Operations Research 104, 213-230.
Pintér, J.D. (2002a) Global optimization: software, test problems, and applications; Chapter 15

(pp. 515-569) in: Pardalos and Romeijn, eds. Handbook of Global Optimization, Vol. 2.

Pintér, J.D. (2002b) MathOptimizer – An Advanced Modeling and Optimization System for
Mathematica Users. User Guide. Published and distributed by Pintér Consulting
Services, Inc., Halifax, NS, Canada.

Pintér, J.D. (2003a) GAMS/LGO User Guide. Published and distributed by the GAMS
Development Corporation, Washington, DC. See http://www.gams.com/solvers/lgo.pdf.

Pintér, J.D. (2003b) GAMS/LGO nonlinear solver suite: key features, usage, and numerical
performance. (Submitted for publication.) Available for download at http://www.gams.
com/solvers/solvers.htm#LGO.

Pintér, J.D. (2003c) Globally optimized calibration of nonlinear models: techniques, software,
and applications. Optimization Methods and Software 18, 335-355.

Pintér, J.D. (2004a) LGO – An Integrated Model Development and Solver Environment for
Continuous Global Optimization. User Guide. (Current edition.) Published and
distributed by Pintér Consulting Services, Inc., Halifax, NS, Canada.

Pintér (2004b) The Maple Global Optimization Toolbox. Published and distributed by
Maplesoft, Inc., Waterloo, ON. See http://www.maplesoft.com/products/toolboxes/
globaloptimization/index.shtml.

Pintér, J.D. and Kampas, F.J. (2003) MathOptimizer Professional – An Advanced Modeling
and Optimization System for Mathematica Users with an External Solver Link. User
Guide. Published and distributed by Pintér Consulting Services, Inc., Halifax, NS,
Canada.

Pintér, J.D. and Kampas, F.J. (2004) Global optimization in Mathematica with
MathOptimizer Professional. (Submitted for publication.)

Pintér, J.D. and Purcell, C.J. (2003) Optimization of finite element models with
MathOptimizer and ModelMaker. Lecture presented at the 2003 Mathematica Developer
Conference, Champaign, IL.

Pintér, J.D., Holmström, K., Göran, A.O. and Edvall, M.M. (2004) TOMLAB /LGO User
Guide. Published and distributed by TOMLAB Optimization AB, Västerås, Sweden and
Arcata, CA. See http://tomlab.biz/docs/TOMLAB_LGO.pdf.

Purcell, C.J., Dai, N.M. and Xue, L. (2001) Modelling, analysis & prototyping for rapid
manufacturing. Lecture presented at the 2001 Mathematica Developer Conference,
Champaign, IL.

Schwalbe, D. and Wagon, S. (1996) VisualDSolve: Visualizing Differential Equations with
Mathematica. Springer, New York.

Sodhi, M.S. (2003) Mathematica 5. ORMS Today 30 (6), 44-47.
Tervo, J., Kolmonen, P., Lyyra-Laitinen, T., Pintér, J.D., and Lahtinen, T. (2003) An

optimization-based approach to the multiple static delivery technique in radiation
therapy. Annals of Operations Research 119, 205-227.

Trefethen, N.L. (2002) A Hundred-dollar, Hundred-digit Challenge. SIAM News 35 (1), p. 3.
See also http://www.siam.org/siamnews/01-02/challenge.pdf.

Wolfram, S. (2003) The Mathematica Book. (5th Edition.) Wolfram Media, Inc., Champaign,
IL.

Wolfram Research (2004) http://www.wolfram.com/.

