™

WOLFRAM TECHNOLOGY CONFERENCE 2(

Queues: an Exercise in Data Type Design

Dr. Roman E. Maeder
MathConsult Dr. R. Mader
Samstagernstrafle 58a
CH-8832 Wollerau

mailto:maeder@mathconsult.
http://www.mathconsult.ch

Part ofParallel Computing Toolkits an extensible queueing system. We discuss the design of the interfa
reference implementations of different kinds of queues in an object-oriented way.

e The use of interfaces

Queue data type requirements

Interface design

Implementations

e Comparison

| Pluggable Data Types

Goal: Users oParallel Computing Toolki(PCT) should be able to specify a data type of their choice for tr
process queue. The PCT has certain requirements for possible data types and any type actually used r
these requirements. How it does that is no longer a concern of PCT.

These considerations lead naturally to the definition dhtemfacebetween the user of a data type (PCT) an
its implementor.

Let me show you how to formalize such an interface and make good Msg¢haimatic&s programming
features for a clean design and easy implementation.

Queues—pub.nb 2

| Interfaces

In C++ interfaces take the form of abstract base clasgava uses similar ideas (and they are actually call¢
“interfaces). In Mathematicave do not have to be dogmatic about the limitations imposed on abstract cli
or interfaces. We will end up with amostabstract base class.

| Use of Queues
PCT uses a queue to manage processes created withehe[] command.
In[3]:= ids = {Queue[l+1], Queue[2 +2], Queue[3 +3]}
Qut[3]= {pid ., pid ,, pid 5}
In[4]:= Vit [ids]

Qut[4]= {2,4,6 }

The order in which processes are sent to available remote processors is determined either by the order
they were queued or it may depend on properties of the processes, such as their intended priorities.

In[5]:= ids =Functionln,
Queue[First [Tim ng[N[Pi, 10"n]]], Scheduling-»n]] /e {2, 3, 4, 5}

Qut[5]= {pid ,, pid 5, pid 4, pid ;}
In[6]:= Wit [ids]
out[6] = {2.77827 x107*® Second, 2.77827 x10'® Second, 0.05 Second, 1.66 Second }

| Requirements

In particular, PCT requires the following operations on the process queue.

obtain a fresh, empty queoéa particular type

enter an item into the queue

test whether the queue is empty

retrieve and remove tHargestelement from the queue

Nice to have:
e obtain a list of the items currently in the queue
e count the number of elements in the queue
e output formatting

e atype predicate

| Generalization

Allow to work with several queues. That is, the queue created is not some hidden implicit object, but a \
that can be assigned to variables, passed as paramter, and so on.

A queue is alata typeit has in (internal) representation and methods to access its components and mod
them.

Queues—pub.nb 3

| Mutable or Not?

In Mathematicaas in Lisp, it is easier to designiammutabledata type. Any operation that wants to modify
gueue, must build and return a new queue.

gl = enQueue[q0, item]
go still contains the old queue.

Easier to use amautabledata types. Operations may change the internals of a data object and all variabl
refer to a given element automatically see the modified element.

ql =q; _
enQueue[q, item]

Bothq andgl now point to the new queue.

We will implement mutable queues. For mutable data types, there usually are two additional technical
requirements:

e make a copy of a queue

e free memory associated with a queue that is no longer needed

| Interface Design

In Mathematicaan interface takes the form of a package.

Properties of an interface package:

e no implementation parBegin["Private"] ...End[])

e no declaration of the constructor

| Parallel'Queue’Interface’

Here is the first draft of the queue interface.

| Preamble

Begi nPackage["Paral |l el * Queue' I nterface'"]

| Declaration of essential methods

EnQueue: : usage = "EnQueue[q, item] inserts iteminto the queue qg."

DeQueue: : usage = "DeQueue[q] renoves the largest itemfromthe queue (g.
It returns the itemrenoved."

EnptyQ : usage = "EnptyQ[q] is True if the queue q is enpty."

| More methods

Top: : usage ="Top[q] gives the largest itemin the queue q."
Si ze::usage = "Si ze[q] gives the nunber of elenments in the queue q."

Nor mal : : usage =
Normal : : usage <>" Normal [q] gives a |ist of the el enents of the queue g."

Queues—pub.nb 4

Copy: : usage = "Copy [q] nakes a copy of the queue g."
del ete: :usage ="del ete[q] frees storage associated with the queue q."
The type predicate

gQ :usage ="qQ[queue] is True, if queue
is a valid queue (a subtype of this interface).”

| That'sit!

Pr ot ect [EnQueue, DeQueue, EnptyQ Size, del ete, Copy, Q]

EndPackage[]

| Where is the Constructor?

All operations declared in the interface will work with any queue implementation we may develop. The ¢
tion is the constructor: there we have to make up our mind about which queue type we want to choose.
fore, the constructor does not belong into the interface.

| The Type Predicate

How do we check whether an argument passed to one of the methods is, in fact, a proper queue? The
way to enforce type checks Mathematicas

met hod[x_type]: =...
to restrict data to expression with a certain head (or type).

However, each of our actual queue data types will use its own type of expressions, so this does not wo
(Mathematicas not fully object-oriented, so inheritance of types is not available). We can use a predica
instead, and change the syntax only slightly:

met hod[Xx_?typeQ] : = ...

| Next Steps

e To implement a queue, extend the interface package, declare the constructor and implement all
methods.

e To use a queue, import one of the implementation packages and use its constructor and the mett
declared in the interface (which will be imported as well).

However, we can do some of the implementation work already in the interface, so let us dwell on it som
before we dig into the implementations.
| Generic Operations

Some of the auxiliary methods declared in the interface can be implemented in a way that is completely
dent of the actual queue data type.

Nor mal [q0_?qQ] : =
Mdule[{li = {}, q=Copy[q0]},
Whi l e[! Enpt yQ[q]l, AppendTo[li, DeQueue[q]l]ll;
del ete[q]l;
li
1

Size[q_?qQ] : = Lengt h[Nornmal [q]]

Enpt yQ[gq_?qQ] : = Si ze[q] =0

Queues—pub.nb 5

Top[g0_?9Q] : =

Modul e[{res, q = Copy[q0]}, res = DeQueue[q];
del ete[ql;
res

1

and also formatting, which we skip in this presentation.

Some of these are obviously inefficient.

| RecursionLimit?

Aren’t these implementations circul&riptyQ—Normal —Size)?

Yes they are! Each implementation will haveot@rrideat least one of them. We can choose which one; th
is usually one method that has a particularly efficient implementation, depending on the way we implernr
gueue in question.

| Pure Virtual (or Abstract, or ...)

What happens, if we forget to implement one of the required methods, De€aleue with an empty queue?
We can decide right here in the interface be providing fallback definitions (that should never be used).

EnQueue[q_?qQ _]:= (Message[EnQueue:: NIM EnQueue, Head[q]]; $Fail ed)
DeQueue[q_?qQ] : = (Message[DeQueue: : N'M DeQueue, Head[q]]; $Fail ed)
Copy [9_?qQ] : = (Message[Copy: : NIM Copy, Head[q]]; $Fail ed)

General : : NNM="Method ‘1" not inplemented in class ‘2°."
gQ[_] = Fal se

Top[q_?EnptyQ] : = (Message[DeQueue: : enpty, ql; $Fail ed)
DeQueue[q_?EnmptyQ] : = (Message[DeQueue: : enpty, ql; $Fail ed)

| Finally: an Implementation

Let us now implement the first of any possible number of queue data types that satisfies the given inter:
Technically, these data types are subtypes of the interface, which becomes apparent in their package c

Begi nPackage["Paral | el * Queue* WAWA' ", "Paral | el * Queue' I nterface' "]

| How to make them Mutable?

The only destructive operation Mathematicas the assignment of a value to a variable. Values can be
changed, and everywhere we look at a variable we see the same value.

Therefore, queue data elements will be expressions that contain a private variable (in unevaluated form
which we can assign new value as we modify the queue.

Each data type will use its own symbol as the head of the data elements.

| Quick, but not Dirty

Here are Lisp lists.
Begi nPackage["Paral | el * Queue' Li sp*", "Parall el ‘ Queue‘Interface'"]

Li spQueue: : usage = "Li spQueue[] creates an enpty queue."

Queues—pub.nb 6

| Implementation

The items are stored asns[elcons[e2...,cons[]...]] , just as in Lisp

Set Attri but es[cons, Hol dAI | Conpl et e]
‘enpty =cons[] (xshared nil x)

car [cons[car_, cdr_]]:=car

cdr [cons[car_, cdr_]]:=cdr

Data type head
Set Attri butes[{queue}, Hol dAI'l]

Constructors. Note how we create a new variable with a value and and insert it into the unevaluated da
Li spQueue[] : = Modul e[{r =enpty}, queue[r]]
queue /: Copy[queue[s_]1]:=Mdule[{r =s}, queuel[r]]

| Methods

Note how we isolate the variable inside the data element and obtain and change its value.

queue /: EnQueue[q: queue[r_1], val _]:= (Wth[{rv=r}, r =cons[val, rvl]; Q)

queue /: DeQueue[q: queue[r_] /; ! EnptyQ[q]l] : =
Wth[{res=car([r]}, r =cdr [r]; res]

Override generics as desired.
queue /: EnmptyQ[queue[r_]]:=r ===enpty
queue /: Top[q: queue[r_]1 /; ! EnptyQ[q] :=car [r]
queue /: del ete[queue[r_]]:= (r =enpty;)

Use generic implementations f8ize[] , Normal[] (we could overrid®&ormal for speed).

| Wrapping Up

Predicate
queue /: qQ[queue[r _]] : = Val ueQr]
End[]
EndPackage[]
| Testing

In[1]:= Needs["Parallel*Queue'Lisp'"]
The construct creates a new queue.

In[2]:= ¢ =LispQueuel]

Qut[2]= ()

Here is its internal representation.

Queues—pub.nb

In[3]:= Full Form[q]
Qut[3]//Ful | Form= Parallel'Queue‘Lisp‘Private‘queue [Parallel'Queue‘Lisp‘Private'r$15]
In[4]:= List eeq

Qut[4] = {Parallel'Queue’Lisp‘Private‘cons [1}

| Exercise the Methods
In[4]:= EnQueue[q, a]

Qut[4]= (a)

In[5]:= Sizel[q]
Qut[5]= 1

In[6]:= EnQueue[q, b]

aut[6]= (b a)

In[7]:= EnQueue[q, c]
Qut[7]= (¢ b a)
In[8]:= Normal [q]

Qt[8]= {c,b,a }

In[9]:= EnmptyQ[q]

Qut[9]= False

| n[10] T = [bQJeUe [q]
Qut[10]= ¢
| n[11] s = mQ,leUe [q]
aut[11]= b
In[12]: = DeQueue[q]
Qt[12]= a

In[13]: = DeQueue[q]
DeQueue:empty : Queue () is empty.

Qut[13]= $Failed

In[14] : = EnQueue[q, #] &/@Range[20];
q

Qut [14] (20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1)

| Other Implementations
e FIFO: first-in first-out, the default queue of PCT

Uses a circular buffer that is expanded as needed.

Queues—pub.nb

e LIFO: last-in first—out (just like Lisp)
uses an array that is expanded as needed
e Priority :atrue priority queue

uses a heap in an array

| Comparisons

Tabl eFor m[Qut er [Fi rst [#1e@e#2] /. Second » 1 &, tests, $QueueTypes],
Tabl eHeadi ngs » {tests, $QueueTypes}]

FIFOQueue priorityQueue LIFOQueue LispQueue
testl 1.54 5.45 0.95 0.63
test2 1.64 5.82 0.86 0.78
test3 0. 4.42 0.01 0.69
test4 1.99 6.56 1.18 1.12

testl: enQueue, then deQueue

test2: repeated sequences of enQueue/deQueue
test3: Normal[]

test4: random positive walk

| Summary
e aMathematicarealization of a clean data type design and implementation

interface specification

generic operations

implementations as subtypes

mutable data

TheParallel'Queue'* packages are bundled with PCT Version 2 in source form.

