
 

Polyhedron Evolver

 

—Evolution of 3D Shapes with 

 

Evolvica

 

Christian J. Jacob  and Aamer Nazir

 

Department of Computer Science, University of Calgary
2500 University Drive N.W., Calgary, T2N 1N4, CANADA

jacob@cpsc.ucalgary.ca

 

ABSTRACT

 

We present a programming environment for interactive,
evolutionary design by genetic programming. The feasi-
bility of using a stochastic system, that mimicks evolu-
tion through mutation and recombination, for automatic
construction of design programs is demonstrated by
example of evolved polyhedral objects. 

 

Keywords: 

 

Evolutionary design, genetic programming, creativ-
ity through evolution, evolutionary optimization.

 

DESIGN THROUGH EVOLUTION

 

Nature has been creating fascinating designs of its organ-
isms since life first appeared on our planet about 4 billion
years ago. The enormous potential of nature’s creative
design ideas originates from a surprisingly simple experi-
mental technique: random mutation and selection
through evolution. Therefore, it is no wonder that evolu-
tionary principles have inspired engineers and computer
scientists alike, in order to find better ways to cope with
increasingly complex system designs.

 

Genetic Programming

 

However, most of these “design” problems have only
been considered as parameter optimization tasks. Only
recently has evolutionary computation started to utilize
more sophisticated ways of specifying designs through
"programs." Prominent examples in this area of evolu-
tionary computation are electronic circuit designs [7],
architectural layout, or furniture design [1]. Genetic L-
system Programming, which is implemented in our

 

Evolvica

 

 framework, is another recent approach demon-
strating how to use evolutionary techniques to breed
growth programs for plant structures, encoded by biolog-
ically motivated parallel rule systems in the form of Lin-
denmayer systems [2]. The symbolic computation
environment of 

 

Mathematica

 

 [9] provides an excellent
platform for implementing the major state-of-the-art
classes of evolutionary computation (EC): genetic pro-
gramming, genetic algorithms, evolution strategies, and
evolutionary programming [6]. The last three of these EC
classes are mainly concerned with parameter optimiza-
tion. In this paper we focus on genetic programming (GP)
for developing or "breeding" design programs for 3-
dimensional shapes with known mathematical descrip-
tions, such as polyhedra. 

 

Evolutionary Design

 

Evolvica

 

 is a package of notebooks for evolutionary com-
putation in 

 

Mathematica

 

 [6]. In particular, 

 

Evolvica

 

 pro-
vides packages (libraries) for evolutionary computation
on symbolic expressions. We have recently extended

 

Evolvica

 

 by the 

 

Polyhedron Evolver

 

 package, an interac-
tive application for the evolutionary design of 3-dimen-
sional shapes using genetic programming techniques.
The general idea behind 

 

Polyhedron Evolver

 

 is to support
designers, artists, and engineers in their efforts to both
explore new design ideas as well as optimize already
accomplished designs. We demonstrate that genetic pro-
gramming, through simple selection and mutation, fol-
lowing Darwin's principles of natural evolution, can serve
designers in both of these purposes: (1) providing a tool
to enhance creativity and (2) supporting fine-tuning
within a set of predefined constraints.

We have chosen to use 3D shape design and, in particular,
the design of polyhedra as our example application, as
these very well illustrate the power of evolutionary
design in combination with 

 

Mathematica'

 

s sophisticated
library of graphics functions, which make it relatively
easy to generate a large variety of three dimensional
forms.

 

THE POLYHEDRON EVOLVER

Exploration of Design Spaces

 

The Polyhedron Explorer from the 

 

Mathematica

 

 Help
Browser is an excellent example of how to explore an
extensive design space [8]. Starting from basic polyhe-
dral shapes—such as tetrahedron, cube, dodecahedron,
etc.—the Explorer provides a set of functions to manipu-
late these designs by adding stellating effects, or shrink-
ing, truncating and indenting selected polygonal shapes.
Through a simple button interface, the Polyhedron
Explorer enables a user to step through a polyhedral
design space, where each design is described by a sym-
bolic expression that contains the graphics manipulation
functions in 

 

Mathematica

 

 (Fig. 1). Consequently, the
Explorer does not only graphically display the resulting
polyhedral shape, but also provides access to an associ-
ated program that generates the particular polyhedron
design. 

One drawback of the Polyhedron Explorer is, however,



 

that all the designs have to be created by hand. Instead,
wouldn't it be nice to have a tool that allows a much more
efficient and faster way of browsing through a polyhedral
shape space? In our view, an evolutionary system pro-
vides a perfect basis for the exploration of this and other
design spaces. The 

 

Polyhedron Evolver

 

 is our first step in
implementing such an evolutionary design system, the
details of which we describe in the following sections.

 

Fig. 1. Examples of a step-by-step composition of design pro-
grams describing transformations on a polyhedral object
(dodecahedron).

 

Creation of Design Programs

 

An evolutionary system has to work on some sort of
"genetic representation" that describes the building
blocks as the entities from which design desriptions or
programs can be composed. In the case of evolvable

polyhedral shapes we use templates to specify both the
building blocks and their possible compositions (Fig. 2).
  

 

Fig. 2. Building blocks for programs of polyhedral objects.

 

When (polyhedral) design programs (Fig. 1) have to be
built from scratch, as is usually the case for the initializa-
tion of an evolutionary system, these templates are used
to recursively build random compositions. Furthermore,
each template has an associated weight (subscripts in Fig.
2), such that during the composition process some tem-
plates can be given higher preference over others. Start-
ing with the template 

 

_poly

 

, for example, the building
blocks in Fig. 2 provide six different templates
(

 

poly[_Graphics3D]

 

, ..., 

 

poly[_Geodesate]

 

), where the
last three are given a slightly higher rank.

 

1

 

 So, the system
might choose

 

poly[_PerforatePolygons]

 

as a first intermediate step. Using the only matching
expression for _

 

PerforatePolygons

 

, this template would
then be extended into

 

poly[PerforatePolygons[_poly, _pOpts]].

 

Now, again, we have the choice among the 

 

_poly

 

 expres-
sions, which might be expanded to

 

poly[PerforatePolygons[Stellate[_poly, _pOpts], 
_pOpts]].

 

This recursive composition process only stops when the

 

Graphics3D

 

 pattern is chosen, which then leads to the
final insertion of a basic polyhedral shape, the selection

p := Dodecahedron[] p := Stellate[p]

p := Truncate[d, 0.3] p := ShrinkPolygons[p, 0.8]

p := PerforatePolygons[p, 0.2] p := PerforatePolygons[p, 0.5]

(a) (b)

(c) (d)

(e) (f)

 

1. We are using 

 

Mathematica

 

’s pattern notation, where
‘_

 

x

 

’ denotes a pattern that matches any symbolic
expression with a head of 

 

x

 

. For example, _

 

Sin

 

would match 

 

Sin[a]

 

, 

 

Sin[Cos[t]]

 

, 

 

Sin[ ]

 

, etc. The
‘|‘ denotes alternative expressions, such that the pat-
tern 

 

f[a | b]

 

 matches both 

 

f[a]

 

 and 

 

f[b]

 

.

poly [ _Graphics3D6| _Stellate1 | _Truncate1 | 

| _OpenTruncate1 | _PerforatePolygons2
| _ShrinkPolygons2 | _Geodesate2 ],

Stellate[_poly, _pOpts],
Truncate[_poly, _pOpts],
...
Geodesate[_poly],

Graphics3D[_object],

object [ Tetrahedron[]1 | Cube[]1 

| Octahedron[]2 | Dodecahedron[]2
| Icosahedron[]3 ]

pOpts[ Random[Real, {0.1, 0.5}] ]

π



 

of which can also be controlled using the template
weights. The remaining patterns denote additional
parameters for the modifier functions, such that one
might end up with the polyhedral design program

 

poly[PerforatePolygons[Stellate[Cube[], 0.3], 0.45]].

 

Figure 1 shows a more complicated example of such an
expression that could be composed in a similar manner.
This composition process is used both by the mutation
operators (whenever new sub-expressions have to be cre-
ated) and for generating random designs that consitute
the initial set of design programs.

 

Fig. 3. Step-by-step variations involving both creative and fine-
tuning mutations.

 

DESIGN VARIATIONS

 

Starting from a set of randomly generated initial design
expressions, composed recursively as desribed in the pre-
vious section, the user can evaluate each shape on a scale
from 0 to 10. These assigned “fitness” values determine
the survival of the programs into the next iteration. Using
various selection functions (fitness proportionate, elitist,
rank-based, etc.), programs that receive a higher rating
have a better chance of creating offspring designs [6]. 

 

Filters and Genetic Operators

 

Analogous to the templates that are used to define the
building blocks to generate random design programs, the
variational operators, such as mutation and recombina-
tion, use weighted templates as filters to identify specific
subexpressions, on which the variations are allowed to

occur. In the case of recombinations, pattern matching
mechanisms are also used to specify the compatibility of
expressions that can be interchanged without violating
any syntactic constraints. Each genetic operator is associ-
ated with a weight for automatic operator selection, or
can be switched on/off manually at any time during the
evolution process.

In 

 

Polyhedron Evolver

 

 there are two categories of muta-
tion operators for generating new variants of already
evolved shapes—

 

creative

 

 mutations and 

 

fine-tuning

 

mutations.

 

Creative Mutations

 

Usually, during the initial phase of the breeding process,
the evolutionary system attempts to present "innovative"
design ideas, accomplished by major structural variations
on the expressions. Mutations may (1) change the basic
polyhedral shape, (2) exchange a modifier function for
another, (3) delete a modifier function, (4) insert a new
modifier function, or (5) replace a subexpression by a
completely new expression. Some of these modifications
are illustrated in Figure 3. For example, in the mutation
from shape expression (b) to expression (c) another

 

Geodesate

 

 modifier was added. The mutation from (c) to
(d) replaces the inner 

 

Geodesate

 

 by 

 

Stellate

 

, which also
introduces a new parameter. Creative mutations like these
should happen during the initial, exploratory phase of the
design process.

 

Fig. 4. The design program editor and interactive 3D display
with ranking buttons. 

OpenTruncate[Geodesate[Geodesate[Octahedron[]]],0.3]

OpenTruncate[Geodesate[Geodesate[Octahedron[]]],0.5]

Geodesate[OpenTruncate[Geodesate[Geodesate[Octahedron[]]],0.4]]

Geodesate[OpenTruncate[Geodesate[Stellate[Octahedron[]], 0.3],0.4]]

(a) (b)

(c) (d)



 

 

 

Fig. 5. Examples of mutations and recombination of two poly-
hedral shape programs. The following abbreviations are used: g
= Geodesate, p = PerforatePolygons, s = Stellate, t = OpenTrun-
cate.

 

Fine-tuning Mutations

 

Once a satisfactory design solution has been bred, the
user might want to “optimize” or adjust a given shape. In

the 

 

Polyhedron Evolver

 

 this can be achieved through fine-
tuning mutations, which mostly modify the numeric
parameters that occur in the design programs. For exam-
ple, the mutations from shape (a) to (b) and (c) both
involve slight changes of the numeric parameters (Fig. 3).

 

Interactive Design Modification

 

In addition to the built-in automatic mutations, any of the
evolved designs can also be modified manually. For each
polyhedral shape the generating program can be dis-
played, edited, and re-inserted into the evolution loop
(Fig. 4). Thus, the 

 

Polyhedron Evolver

 

 utilizes the cre-
ative power of an evolutionary system, but does not
exclude any direct control over and interaction with the
design programs. In the same context, the 

 

Evolver

 

 also
allows to load designs from previously performed evolu-
tion experiments.

 

Recombinations

 

The 

 

Polyhedron Evolver

 

 also uses a number of recombi-
nation operators which combine subexpressions from two
design programs into a new program. These operators
resemble the various crossover mechanisms resulting
from sexual reproduction in natural organisms, where an
offspring’s genes are a merge of genes inherited from its
mother and father. However, natural genomes are
encoded by a flat, linear structure, whereas symbolic
expressions have a hierarchical, tree-like structure. Con-
sequently, recombination schemes on expressions are
slightly more difficult to handle than for linear strings or
number vectors. 

Figure 5 illustrates one such recombination operator. Two
design programs ((c), (d))—both resulting from a
sequence of mutations from two initial shapes ((a), (b))—
are merged into a new symbolic expression (e). The

 

g[s[_, 0.3]

 

 building block of program (c) is composed
into program (d), where the icosahedron base object is
substituted for the ‘_’ pattern.

 

1

 

 Therefore, the recombina-
tion operators allow to create new designs through com-
binations of characteristics of already evolved programs.
The recombination operators and further biologically
inspired genetic operators are described in more detail in
[3], [4], [5], and [6].

 

THE EVOLUTIONARY ALGORITHM

 

The interactive evolutionary design process can be
described as follows:

1. The system generates an initial set  of random
design programs, based on the problem-specific
building blocks.

2. The designer interactively evaluates each design on a

g[g[Octahedron[]]]

g[t[g[s[Octahedron[], 0.3]]]]

...

p[Icosahedron[], 0.9]

p[Icosahedron[], 0.5]

p[g[s[Icosahedron[], 0.3]], 0.5]]

p[g[s[Octahedron[], 0.3]], 0.6]]

(a) (b)

(c) (d)

(e)

(f)

 

1. Remember that in 

 

Mathematica

 

 the ‘_’ pattern
matches any expression.

S



 

scale from 0 to 10. Any design that is not explicitly
evaluated receives a rank of zero.

 

(a) Design programs can be edited at any time.
(b) Design programs from previous experiments can be

retrieved from files.
(c) Edited or loaded designs can either replace others or be

inserted into the current design set .

 

4. Based on the assigned ranks and on the mutational
operators, the system selects designs from  that sur-
vive into the next iteration and—using these designs
as “parent” expressions—generates a new set of
mutated “offspring” design programs .

5. The designs library is updated: 

 

.

 

6. If more designs should be bred, return to step 2.

Again, more details about different selection schemes,
genetic operators, etc. are described in earlier work as,
e.g., [3], [5]. The evolutionary kernel functionality,
including selection functions, pattern-based genetic oper-
ators, and various evolution schemes, are all provided
through our evolutionary computation system Evolvica
[6].

Fig. 6. The main evolution window.

Figure 6 shows an example of the main window that dis-
plays and gives access to all evolved designs during an
experiment. In this notebook, a new section is automati-
cally added for each evolved generation. Using Mathe-
matica’s notebook control functionality, any of these
generational sections can be expanded or collapsed,
which gives easy access to the whole set of evolved
designs, and can also be utilized for easy structuring and
categorization. The snapshot in Figure 6 shows the
expanded section for generation 2, with ten evolved poly-
hedral objects. A row of buttons below each graphics

allows to rank the designs on a scale from 1 to 10. These
ranks are then taken into account by the selection func-
tion, that determines which of the designs are going to
survive into the next generation. Three of the objects are
selected, depicted by the horizontal brackets above and
below objects 1, 3, and 10. This selection mechanism,
which works on all evolved objects across the entire note-
book, is also used to access more detailed information
about the design programs through the Profile and Design
Editor (Fig. 4).

POLYHEDRON EVOLVER IN ACTION

Using the described evolutionary algorithms scheme,
Polyhedron Evolver allows to generated a surprisingly
rich variety of three-dimensional objects composed from
basic polyhedral shapes and multiple applications of
transformation functions. The set of these functions,
which we have discussed here, is only a preliminary
selection. However, the set of “mutation” functions can
be extended easily and be made instantly accessible to
the evolutionary system by adding them to the template
library (Fig. 2).

Figure 7 illustrates the diversity of polyhedral designs
that we have evolved so far. Of course, this is only a small
selection and can not adequately represent the evolution-
ary creativity of this system. It demonstrates, however,
that evolutionary mechanisms, combined with appropri-
ate evaluation strategies and instant, interactive access to
the designs through symbolic expressions provide a
promising platform for design problems in a wide num-
ber of fields. We used polyhedra to illustrate the potential
of this approach, as polyhedral objects are mathemati-
cally well defined, as are the transformations we have
used in our examples. But obviously this approach can be
extended to evolutionary designs in engineering, biology,
virtual object and scene designs in computer games or
computer-generated movie scenes, or even painting and
sculpturing. The designed programs do not even have to
be restricted to static images. For example, the same evo-
lutionary approach has been used to evolve growth pro-
grams for virtual plants and flowers [4], [6].

CONCLUSION

We also use Polyhedron Evolver to breed designs
described by 3D implicit plots, 3D plots, 3D contour
plots, as well as 3D implicit surfaces. We are currently
extending the system to include more basic shapes, allow
more sophisticated genetic operators, extend the user
interface, and parallelize the time-consuming graphical
computations.

For more information on evolutionary computing and 3D
shape design with Evolvica and genetic programming,
see http://www.cpsc.ucalgary.ca/~jacob/IEC.

S

S

Snew

S S Snew∪=



REFERENCES

[1] Bentley, P., ed. (1999). Evolutionary Design by
Computers. San Francisco: Morgan Kaufmann Pub-
lishers.

[2] Jacob, C. (1995). Genetic L-System Programming:
Breeding and Evolving Artificial Flowers with
Mathematica. In Mathematics with Vision: IMS'95,
First International Mathematica Symposium.
Southampton, UK: Computational Mechanics Pub-
lications.

[3] Jacob, C. (1996a). Evolution Programs Evolved. In
Parallel Problem Solving from Nature—PPSN-IV.
Berlin: Springer-Verlag.

[4] Jacob, C. (1996b). Evolving Evolution Programs:
Genetic Programming and L-systems. In Genetic
Programming 1996: First Annual Conference. Cam-
bridge, MA: MIT Press.

[5] Jacob, C. (1997). Simulating Evolution with Mathe-
matica. In IMS’97, Second International Mathemat-
ica Symposium. Rovaniemi, Finland. Southampton,
UK: Computational Mechanics Publications.

[6] Jacob, C. (2001). Illustrating Evolutionary Compu-
tation with Mathematica. San Francisco: Morgan
Kaufmann Publishers.

[7] Koza, J., et al. (1999). Genetic Programming III.
San Francisco: Morgan Kaufmann Publishers.

[8] Trott, M. (2001). Polyhedron Explorer. Demo note-
book, Mathematica Help Browser. Champaign, IL:
Wolfram Research, Inc.

[9] Wolfram, S. (1996). The Mathematica Book. Cam-
bridge, MA: Cambridge University Press.

 

Fig. 7. A selection of evolved polyhedral objects.


