
Print also allows mixing of text and graphics.

In[5]:= Print@"A sine wave:", Plot@Sin@xD, 8x, 0, 2 p<DD

A sine wave:
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

The output generated by Print is usually given in the standard Mathematica output format.

You can however explicitly specify that some other output format should be used.

This prints output in Mathematica input form.

In[6]:= Print@InputForm@a^2 + b^2DD

a^2 + b^2

You should realize that Print is only one of several mechanisms available in Mathematica for

generating output. Another is the function Message described in "Messages", used for generat-

ing named messages. There are also a variety of lower-level functions described in "Streams

and Low-Level Input and Output" which allow you to produce output in various formats both as

part of an interactive session, and for files and external programs.

Another command which works exactly like Print, but only shows the printed output until the

final evaluation is finished, is PrintTemporary.

120 Notebooks and Documents

Formatted Output

Ever since Version 3 of Mathematica, there has been rich support for arbitrary mathematical

typesetting and layout. Underlying all that power was a so-called box language, which allowed

notebooks themselves to be Mathematica expressions. This approach turned out to be very

powerful, and has formed the basis of many unique features in Mathematica. However, despite

the power of the box language, in practice it was awkward enough for users to access directly

that few did.

Starting in Version 6, there is a higher-level interface to this box language which takes much of

the pain out of using boxes directly, while still exposing all the same typesetting and layout

power. Functions in this new layer are often referred to as box generators, but there is no need

for you to be aware of the box language to use them effectively. In this tutorial, we will take a

look at box generators that are relevant for displaying a wide variety of expressions, and we

will show some ways in which they can be used to generate beautifully formatted output that

goes beyond simple mathematical typesetting.

Styling Output

The Mathematica front end supports all the usual style mechanisms available in word proces-

sors, for example including menus for changing font characteristics. However, it used to be very

difficult to access those styling mechanisms automatically in generated output. Output contin-

ued to be almost universally plain 12 pt. Courier (or Times for those people using

TraditionalForm). To address this, the function Style was created. Whenever you evaluate a

Style expression, its output will be displayed with the given style attributes active.

You can wrap Style around any sort of expression. Here is an example that displays prime and

composite numbers using different font weights and colors via Style.

In[1]:= Table@If@PrimeQ@iD, Style@i, BoldD, Style@i, GrayDD, 8i, 1, 100<D

Out[1]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100<

There are hundreds of formatting options that you could apply with Style~see the documenta-

tion for Style for a more complete listing~but there are a handful that are by far the most

common, listed here.

Notebooks and Documents 121

Menu Style@D option Style@D directive

Format  Size  14 FontSize -> 14 14

Format  Text Color  Gray FontColor -> Gray Gray

Format  Face  Bold FontWeight -> Bold Bold

Format  Face  Italic FontSlant -> Italic Italic

Format  Background Color  Yellow Background -> Yellow

Format  Font FontFamily -> "Times"

Format  Style  Subsection "Subsection"

Note that Style can be arbitrarily nested, with the innermost one taking precedence if there is

a conflict. Here we wrap Style around the entire list to apply a new font to all elements of the

list.

In[2]:= Style@%, FontFamily Ø "Helvetica"D

Out[2]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100<

Another common thing to want is to have a portion of the output styled like text. It can look

quite strange to have text appear in a font which is intended for use by code. For that purpose,

we have a function Text which ensures that its argument will always be rendered in a text font.

(Those of you familiar with Mathematica graphics will recognize the Text function as a graphics

primitive, but that use does not conflict with this use outside of graphics.)

In[3]:= Text@%%D

Out[3]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100<

Style can be used to set up a region on the screen where any option is active, not just options

related to fonts. Later in this tutorial, we will see how Style can even affect the display charac-

teristics of other formatting constructs, like Grid or Tooltip.

Grid Layout

Using two-dimensional layout structures can be just as useful as applying style directives to

those structures. In Mathematica, the primary function for such layout is Grid. Grid has very

flexible layout features, including the ability to arbitrarily adjust things like alignment, frame

elements, and spanning elements. (Other tutorials go into Grid's features in greater detail, but

we will cover the highlights here.)

Look again at the Style example which displays prime and composite numbers differently.

122 Notebooks and Documents

Look again at the Style example which displays prime and composite numbers differently.

In[11]:= ptable = Table@If@PrimeQ@iD, Style@i, BoldD, Style@i, GrayDD, 8i, 1, 100<D;

To put this into a Grid, we first use Partition to turn this 100-element list into a 10×10 array.

Although you can give Grid a ragged array (a list whose elements are lists of different lengths),

in this case we give Grid a regular array, and the resulting display is a nicely formatted layout.

Grid@Partition@ptable, 10DD

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Notice that the columns are aligned on center, and there are no frame lines. It is an easy mat-

ter to change either of these using Grid's options.

Grid@Partition@ptable, 10D, Alignment Ø Right,
Frame Ø True, Background Ø LightBlueD

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

A complete description of all Grid's options and their syntax is beyond the scope of this docu-

ment, but it is possible to do some remarkable things with them. See the complete Grid docu-

mentation for complete details.

There are a few convenience constructs related to Grid. One is Column, which takes a flat list of

elements and arranges them vertically. This would be slightly awkward to do with Grid. Here is

a simple example, viewing the options of column in, well, a column.

Notebooks and Documents 123

Column@Options@ColumnDD

Alignment Ø 8Left, Baseline<
Background Ø None
BaselinePosition Ø Automatic
BaseStyle Ø 8<

ColumnAlignments Ø Left
DefaultBaseStyle Ø Grid
DefaultElement Ø Ñ

Dividers Ø None
Frame Ø None
FrameStyle Ø Automatic
ItemSize Ø Automatic
ItemStyle Ø None
Spacings Ø 80.8, 1.<

What about laying out a list of things horizontally? In that case, the main question you need to

ask is whether you want the resulting display to line wrap like a line of math or text would, or

whether you want the elements to remain on a single line. In the latter case, you would use

Grid applied to a 1×n array.

In[5]:= Grid@8Range@15D!<D

Out[5]=
1 2 6 24 120 720 5040 40320 362880 3628800 39916800 4790016Ö

00
6227020Ö
800

8717829Ö
1200

1307674Ö
368000

But notice in this example, that the overall grid shrinks so that it fits in the available window

width. As a result, there are elements of the grid which themselves wrap onto multiple lines.

This is due to the default ItemSize option of Grid. If you want to allow the elements of a grid

to be as wide as they would naturally be, set ItemSize to Full.

In[7]:= Grid@8Range@15D!<, ItemSize Ø FullD

Out[7]= 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200 1307674368000

Of course, now the whole grid is too wide to fit on one line (unless you make this window very

wide), and so there are elements in the grid which you cannot see. That brings us to the other

horizontal layout function: Row.

Given a list of elements, Row will allow the overall result to word wrap in the natural way, just

like a line of text or math would. This type of layout will be familiar to those of you who might

have used the old (and now obsolete) SequenceForm function.

Row@Range@15D!D

12624120720504040 320362 880362880039 916800479 001600622702080087 1782912001307674368000

As you can see, Row does not leave space between elements by default. But if you give a sec-

ond argument, that expression is inserted between elements. Here we use a comma, but any

expression can be used.

124 Notebooks and Documents

As you can see, Row does not leave space between elements by default. But if you give a sec-

ond argument, that expression is inserted between elements. Here we use a comma, but any

expression can be used.

Row@Range@15D!, ","D

1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800,
479001600, 6227020800, 87178291200, 1307674368000

If you resize the notebook window, you will see that Grid with ItemSize -> Automatic contin-

ues to behave differently than Row, and each is useful in different circumstances.

Using Output as Input

This is a good time to point out that Style, Grid, and all other box generators are persistent in

output. If you were to take a piece of output that had some formatting created by Style or

Grid and reuse that as input, the literal Style or Grid expressions would appear in the input

expression. Those of you familiar with the old uses of StyleBox and even functions like

MatrixForm will find this a change.

Consider taking the output of this Grid command, which has lots of embedded styles, and

using it in some input expression.

In[17]:= Grid@Partition@Take@ptable, 16D, 4D,
Alignment Ø Right, Frame Ø True, Background Ø LightBlueD

Out[17]=

In[18]:=

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

+ 5

3

êê Expand

Out[18]= 125 + 75

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

+ 15

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

2

+

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

3

Notice that the grid is still a grid, it is still blue, and the elements are still bold or gray as

before. Also notice that having literal Grid and Style in the expression interferes with what

would have otherwise been adding a scalar to a matrix, and raising the result to a power. This

Notebooks and Documents 125

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Notice that the grid is still a grid, it is still blue, and the elements are still bold or gray as

before. Also notice that having literal Grid and Style

distinction is very important, since you almost always want these composite structures to resist

being interpreted automatically in some way. However, if you ever do want to get rid of these

wrappers and get at your data, that is easy enough to do.

In[19]:= % êê. 8Grid@a_, ___D ß a, Style@a_, ___D ß a<

Out[19]= 88216, 343, 512, 729<, 81000, 1331, 1728, 2197<, 82744, 3375, 4096, 4913<, 85832, 6859, 8000, 9261<<

Special Grid Entries

To allow more flexible two-dimensional layout, Grid accepts a few special symbols like

SpanFromLeft as entries. The entry SpanFromLeft indicates that the grid entry immediately to

the left should take up its own space and also the space of the spanning character. There are

also SpanFromAbove and SpanFromBoth. See "Grids, Rows, and Columns" for detailed

information.

Grid@8
81, 2, 3, 4, 5<,
86, 7, SpanFromLeft, SpanFromLeft, 10<,
811, SpanFromAbove, SpanFromBoth, SpanFromBoth, 15<,
816, 17, 18, 19, 20<<, Frame Ø AllD

1 2 3 4 5
6 7 10
11 15
16 17 18 19 20

This approach can be used to create complicated spanning setups. Typing something like the

following as an input would take a long time. Luckily you can create this table interactively by

using Make Spanning and Split Spanning in the Insert  Table/Matrix submenu. If you

want to see what would be involved in typing this, evaluate the cell, which will show how it

should be typed as input.

In[18]:=

1 2 3 4 5 6 7 8 9 10
11 12 13 15 16
21 22 25
31 32 33 34 35

41
51 52 53 54 55
61 62 63
71 72 76 77
81 82 86
91 92 96

êê InputForm

We have already seen how to apply things like alignment and background to a grid as a whole,

or to individual columns or rows. What we have not seen though is how to override that for an

individual element. Say you want your whole grid to have the same background, except for a

few special elements. A convenient way to do that is to wrap each such element in Item, and

then specify options to Item which override the corresponding option in Grid.

126 Notebooks and Documents

We have already seen how to apply things like alignment and background to a grid as a whole,

or to individual columns or rows. What we have not seen though is how to override that for an

individual element. Say you want your whole grid to have the same background, except for a

few special elements. A convenient way to do that is to wrap each such element in Item, and

then specify options to Item which override the corresponding option in Grid.

Grid@Partition@Table@If@PrimeQ@iD, Item@i, Background Ø LightYellowD, iD,
8i, 1, 100<D, 10D, Background Ø LightBlueD

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

You could override this option with Style too, but the purpose of Item is to override it in a way

that knows about the two-dimensional layout of Grid. Notice in the preceeding output that

whenever two of the yellow cells are next to each other, there is no blue space between them.

That would be impossible to do with constructs other than Item.

The same thing goes for all Item's options, not just Background. Consider the Frame option. If

you want no frame elements except around certain specified elements, you might think that

you have to wrap them in their own Grid with the Frame -> True setting. (We will learn a much

easier way to add a frame around an arbitrary expression in the next section.)

Grid@Partition@Table@If@PrimeQ@iD, Grid@88i<<, Frame Ø TrueD, iD, 8i, 1, 100<D, 10DD

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

But notice that adjacent framed elements do not share their boundaries. Compare that with

using Item, below, which has enough information to not draw more frame elements than are

necessary. Notice now the frames of 2 and 11 meet at a single point, and how the frames of 2

and 3 share a single-pixel line, which in turn is perfectly aligned with the left frame of 13 and

23. That is the power of Item.

Notebooks and Documents 127

But notice that adjacent framed elements do not share their boundaries. Compare that with

using Item, below, which has enough information to not draw more frame elements than are

necessary. Notice now the frames of 2 and 11 meet at a single point, and how the frames of 2

and 3 share a single-pixel line, which in turn is perfectly aligned with the left frame of 13 and

23. That is the power of Item.

Grid@Partition@Table@If@PrimeQ@iD, Item@i, Frame Ø TrueD, iD, 8i, 1, 100<D, 10DD

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Frames and Labels

Adding a frame or a label to an expression can be done with Grid, but conceptually these are

much simpler operations than general two-dimensional layout, and so there are correspondingly

simpler ways to get them. For instance, Framed is a simple function for drawing a frame around

an arbitrary expression. This can be useful to draw attention to parts of an expression, for

instance.

Table@If@PrimeQ@iD, Framed@i, Background Ø LightYellowD, iD, 8i, 1, 100<D

:1, 2 , 3 , 4, 5 , 6, 7 , 8, 9, 10, 11 , 12, 13 , 14, 15, 16, 17 , 18, 19 , 20,

21, 22, 23 , 24, 25, 26, 27, 28, 29 , 30, 31 , 32, 33, 34, 35, 36, 37 , 38, 39, 40,

41 , 42, 43 , 44, 45, 46, 47 , 48, 49, 50, 51, 52, 53 , 54, 55, 56, 57, 58, 59 , 60,

61 , 62, 63, 64, 65, 66, 67 , 68, 69, 70, 71 , 72, 73 , 74, 75, 76, 77, 78, 79 , 80,

81, 82, 83 , 84, 85, 86, 87, 88, 89 , 90, 91, 92, 93, 94, 95, 96, 97 , 98, 99, 100>

Labeled is another such function, which allows labels to be placed at arbitrary locations around

a given expression. Here we add a legend to the Grid example from the last section. (Spacer is

just a function that is designed to leave empty space.)

128 Notebooks and Documents

In[19]:= Labeled@
Grid@Partition@ptable, 10D, Alignment Ø Right, Frame Ø TrueD,
Text@Row@8Style@"• Prime", BoldD, Style@"• Composite", GrayD<, Spacer@15DDDD

Out[19]=

Panel is yet another framing construct, which uses the underlying operating system's panel

frame. This is different from Frame, as different operating systems might use a drop shadow,

rounded corners, or fancier graphic design elements for a panel frame.

In[20]:= Panel@%D

Out[20]=

Note that Panel has its own concept of font family and size as well, so the contents of Grid

change font family and size, and the Text changes font size. (Text has its own opinion about

font family though, and so it remains in Mathematica's text font.) We will talk about this in

some detail below in the section on the BaseStyle option.

Finally, we should point out that Panel itself has an optional second argument to specify one or

more labels, which are automatically positioned outside the panel, and an optional third argu-

ment to give details of that position. See the documentation for Panel for more detail.

In[37]:= Panel@ptable, "Primes and Composites"D

Out[37]=

Notebooks and Documents 129

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

• Prime • Composite

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

• Prime • Composite

Primes and Composites

81, 2 , 3 , 4, 5 , 6, 7 , 8, 9, 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 ,
38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 ,
70 , 71 , 72 , 73 , 74 , 75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 86 , 87 , 88 , 89 , 90 , 91 , 92 , 93 , 94 , 95 , 96 , 97 , 98 , 99 , 100 <

In[38]:= Panel@ptable, 8"Primes and Composites"<, 88Bottom, Right<<D

Out[38]=

Other Annotations

The annotations mentioned so far have a very definite visual component. There are a number of

annotations which are effectively invisible, until the user needs them. Tooltip for example

does not change the display of its first argument, and only when you move the mouse pointer

over that display is the second argument shown, as a tooltip.

Table@Tooltip@i, Divisors@iDD, 8i, 1, 100<D

81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100<

Mouseover is another such function, but instead of displaying the result in a tooltip, it uses the

same area of the screen that had been used for the display before you moved the mouse

pointer over it. If the two displays are different sizes, then the effect can be jarring, so it is a

good idea to use displays which are closer to the same size, or use the Mouseover ImageSize

option to leave space for the larger of the two displays, regardless of which is being displayed.

Table@Mouseover@i, Framed@Divisors@iD, Background Ø LightYellowDD, 8i, 1, 100<D

81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100<

Also similar to Tooltip are StatusArea and PopupWindow. StatusArea displays the extra

information in the notebook's status area, typically in the lower-left corner, while PopupWindow

will display extra information in a new window when clicked.

Table@StatusArea@i, Divisors@iDD, 8i, 1, 100<D

130 Notebooks and Documents

{1, 2 , 3 , 4, 5 , 6, 7 , 8, 9, 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 ,
38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 ,
70 , 71 , 72 , 73 , 74 , 75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 86 , 87 , 88 , 89 , 90 , 91 , 92 , 93 , 94 , 95 , 96 , 97 , 98 , 99 , 100}

Primes and Composites

{1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100}

Table@PopupWindow@i, Divisors@iDD, 8i, 1, 100<D

Finally, you can specify an arbitrary location for an annotation by using the pair Annotation

and MouseAnnotation.

Table@Annotation@i, Divisors@iD, "Mouse"D, 8i, 1, 100<D
Dynamic@MouseAnnotation@DD

Null

When using annotations that are triggered merely by moving the mouse pointer over a region

of the screen, it is important to keep the user in mind. Moving the mouse is not something that

should trigger a long evaluation or a lot of visual clutter. But used sparingly, annotations can be

quite helpful to users.

Finally, note that all these annotations work perfectly well in graphics too. So you can provide

tooltips or mouseovers to aid users in understanding a complicated graphic you have created.

In fact, even visualization functions like ListPlot or DensityPlot support Tooltip. See the

documentation for details.

In[2]:= Graphics@8LightBlue, EdgeForm@GrayD, Tooltip@CountryData@Ò, "SchematicPolygon"D,
Panel@CountryData@Ò, "Flag"D, ÒDD & êü CountryData@D<, ImageSize Ø FullD

Out[2]=

Notebooks and Documents 131

81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100<

81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100<

Default Styles

As we saw in the section "Frames and Labels", constructs like Panel actually work much like

Style, in that they set up an environment in which a set of default styles is applied to their

contents. This can be overridden by explicit Style commands, but it can also be overridden for

the Panel itself, through the BaseStyle option. BaseStyle can be set to a style or a list of

style directives, just like you would use in Style. And those directives then become the ambi-

ent default within the scope of that Panel.

As we have already seen, Panel by default uses the dialog font family and size. But that can be

overridden by using this BaseStyle option.

Panel@Range@10DD

81, 2, 3, 4, 5, 6, 7, 8, 9, 10<

In[7]:= Panel@Range@10D, BaseStyle Ø 8"StandardForm"<D

Out[7]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10<

Actually, almost all of these box generators have a BaseStyle option. For instance, here is a

grid in which the default font color is blue. Notice that the elements that were gray stay gray,

since the inner Style wrapper trumps the outer Grid BaseStyle. (This is one of the principal

characteristics of option inheritance, which is beyond the scope of this document to discuss.)

Grid@Partition@ptable, 10D, BaseStyle Ø 8FontColor Ø Blue<D

132 Notebooks and Documents

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Default Options

Say you have an expression with multiple occurrences of the same box generator, like a Framed

or a Panel, and you want to change all of them to have the same set of options. It might be

cumbersome to go through and add the same set of options to every occurrence of that func-

tion. Thankfully, there is an easier way.

DefaultOptions is an option to Style which, when set to a list of elements of the form

head -> 8opt -> val, …<. sets up an environment with the given options as the ambient default

for the given box-generating head. Those options will be active throughout the Style wrapper,

but only in any instances of the associated box generator.

So if you had an expression that contained some Framed items, and you wanted them all to be

drawn with the same background and frame style.

Table@If@PrimeQ@iD, Framed@iD, iD, 8i, 1, 100<D

Actually, that input is too short to see the advantage of this syntax. Say you had this same list,

but specified manually.

biglist = 81, Framed@2D, Framed@3D, 4, Framed@5D, 6, Framed@7D, 8, 9, 10,
Framed@11D, 12, Framed@13D, 14, 15, 16, Framed@17D, 18, Framed@19D, 20,
21, 22, Framed@23D, 24, 25, 26, 27, 28, Framed@29D, 30, Framed@31D, 32, 33,
34, 35, 36, Framed@37D, 38, 39, 40, Framed@41D, 42, Framed@43D, 44, 45, 46,
Framed@47D, 48, 49, 50, 51, 52, Framed@53D, 54, 55, 56, 57, 58, Framed@59D,
60, Framed@61D, 62, 63, 64, 65, 66, Framed@67D, 68, 69, 70, Framed@71D, 72,
Framed@73D, 74, 75, 76, 77, 78, Framed@79D, 80, 81, 82, Framed@83D, 84, 85,
86, 87, 88, Framed@89D, 90, 91, 92, 93, 94, 95, 96, Framed@97D, 98, 99, 100<

:1, 2 , 3 , 4, 5 , 6, 7 , 8, 9, 10, 11 , 12, 13 , 14, 15, 16, 17 , 18, 19 , 20,

21, 22, 23 , 24, 25, 26, 27, 28, 29 , 30, 31 , 32, 33, 34, 35, 36, 37 , 38, 39, 40,

41 , 42, 43 , 44, 45, 46, 47 , 48, 49, 50, 51, 52, 53 , 54, 55, 56, 57, 58, 59 , 60,

61 , 62, 63, 64, 65, 66, 67 , 68, 69, 70, 71 , 72, 73 , 74, 75, 76, 77, 78, 79 , 80,

81, 82, 83 , 84, 85, 86, 87, 88, 89 , 90, 91, 92, 93, 94, 95, 96, 97 , 98, 99, 100>

Now inserting Background and FrameStyle options into every Framed wrapper is prohibitively

time consuming, although you certainly could do it (or you could write a program to do it for

you). But using DefaultOptions, you can effectively set up an environment in which all Framed

wrappers will use your settings for Background and FrameStyle, thus.

Notebooks and Documents 133

Style@biglist,
DefaultOptions Ø 8Framed Ø 8Background Ø LightYellow, FrameStyle Ø Blue<<D

:1, 2 , 3 , 4, 5 , 6, 7 , 8, 9, 10, 11 , 12, 13 , 14, 15, 16, 17 , 18, 19 , 20,

21, 22, 23 , 24, 25, 26, 27, 28, 29 , 30, 31 , 32, 33, 34, 35, 36, 37 , 38, 39, 40,

41 , 42, 43 , 44, 45, 46, 47 , 48, 49, 50, 51, 52, 53 , 54, 55, 56, 57, 58, 59 , 60,

61 , 62, 63, 64, 65, 66, 67 , 68, 69, 70, 71 , 72, 73 , 74, 75, 76, 77, 78, 79 , 80,

81, 82, 83 , 84, 85, 86, 87, 88, 89 , 90, 91, 92, 93, 94, 95, 96, 97 , 98, 99, 100>

This approach makes it easy to create structures that follow uniform style guidelines without

having to specify those styles in more than one place, which makes for considerably cleaner

code, smaller file sizes, and easier maintenance.

Mathematical Typesetting

No discussion of formatted output would be complete without at least a nod toward the format-

ting constructs that are unique to mathematical syntaxes.

8Subscript@a, bD, Superscript@a, bD, Underscript@a, bD,
Overscript@a, bD, Subsuperscript@a, b, cD, Underoverscript@a, b, cD<

:ab, ab, a
b
, a

b
, ab

c, a
b

c
>

We will not discuss these at length, but we will point out that these constructs do not have any

built-in mathematical meaning in the kernel. For example, Superscript@a, bD will not be

interpreted as Power@a, bD, even though their displays are identical. So you can use these as

structural elements in your formatted output without having to worry about their meaning

affecting your display.

In[67]:= Table@Row@8i, Row@Superscript üüü FactorInteger@iD, "µ"D<, "=="D, 8i, 100<D

Out[67]=

Using the Box Language

134 Notebooks and Documents

91 == 11, 2 == 21, 3 == 31, 4 == 22, 5 == 51, 6 == 21 ´31, 7 == 71, 8 == 23, 9 == 32, 10 == 21 ´51, 11 == 111,

12 == 22 ´31, 13 == 131, 14 == 21 ´71, 15 == 31 ´51, 16 == 24, 17 == 171, 18 == 21 ´32, 19 == 191,

20 == 22 ´51, 21 == 31 ´71, 22 == 21 ´111, 23 == 231, 24 == 23 ´31, 25 == 52, 26 == 21 ´131, 27 == 33,

28 == 22 ´71, 29 == 291, 30 == 21 ´31 ´51, 31 == 311, 32 == 25, 33 == 31 ´111, 34 == 21 ´171, 35 == 51 ´71,

36 == 22 ´32, 37 == 371, 38 == 21 ´191, 39 == 31 ´131, 40 == 23 ´51, 41 == 411, 42 == 21 ´31 ´71,

43 == 431, 44 == 22 ´111, 45 == 32 ´51, 46 == 21 ´231, 47 == 471, 48 == 24 ´31, 49 == 72, 50 == 21 ´52,

51 == 31 ´171, 52 == 22 ´131, 53 == 531, 54 == 21 ´33, 55 == 51 ´111, 56 == 23 ´71, 57 == 31 ´191,

58 == 21 ´291, 59 == 591, 60 == 22 ´31 ´51, 61 == 611, 62 == 21 ´311, 63 == 32 ´71, 64 == 26, 65 == 51 ´131,

66 == 21 ´31 ´111, 67 == 671, 68 == 22 ´171, 69 == 31 ´231, 70 == 21 ´51 ´71, 71 == 711, 72 == 23 ´32,

73 == 731, 74 == 21 ´371, 75 == 31 ´52, 76 == 22 ´191, 77 == 71 ´111, 78 == 21 ´31 ´131, 79 == 791,

80 == 24 ´51, 81 == 34, 82 == 21 ´411, 83 == 831, 84 == 22 ´31 ´71, 85 == 51 ´171, 86 == 21 ´431,

87 == 31 ´291, 88 == 23 ´111, 89 == 891, 90 == 21 ´32 ´51, 91 == 71 ´131, 92 == 22 ´231, 93 == 31 ´311,

94 == 21 ´471, 95 == 51 ´191, 96 == 25 ´31, 97 == 971, 98 == 21 ´72, 99 == 32 ´111, 100 == 22 ´52=

Using the Box Language

One final note. Those of you who are already familiar with the box language might occasionally

find that these box generators get in the way of your constructing low level boxes yourselves,

and inserting their display into a piece of output. That can be true for any layered technology

where one abstraction layer attempts to hide the layers on which it sits. However, there is a

simple loophole through which you can take boxes which you happen to know are valid, and

display them directly in output: RawBoxes.

8a, b, RawBoxes@SubscriptBox@"c", "d"DD, e<

8a, b, cd, e<

As with all loopholes, RawBoxes gives you added flexibility, but it also allows you to shoot

yourself in the foot. Use with care. And if you are not yet familiar with the box language, per-

haps you should not use it at all.

Requesting Input

Mathematica usually works by taking whatever input you give, and then processing it. Some-

times, however, you may want to have a program you write explicitly request more input. You

can do this using Input and InputString.

Input@D read an expression as input

InputString@D read a string as input

Input@"prompt"D issue a prompt, then read an expression

InputString@"prompt"D issue a prompt, then read a string

Interactive input.

Exactly how Input and InputString work depends on the computer system and Mathematica

interface you are using. With a text-based interface, they typically just wait for standard input,

terminated with a newline. With a notebook interface, however, they typically get the front end

to put up a “dialog box”, in which the user can enter input.

In general, Input is intended for reading complete Mathematica expressions. InputString, on

the other hand, is for reading arbitrary strings.

Messages

Notebooks and Documents 135

Messages

Mathematica has a general mechanism for handling messages generated during computations.

Many built-in Mathematica functions use this mechanism to produce error and warning

messages. You can also use the mechanism for messages associated with functions you write.

The basic idea is that every message has a definite name, of the form symbol::tag. You can use

this name to refer to the message. (The object symbol::tag has head MessageName.)

Quiet@exprD evaluate expr without printing any messages

Quiet@expr,8s1::tag,s2::tag,…<D evaluate expr without printing the specified messages

Off@s::tagD switch off a message, so it is not printed

On@s::tagD switch on a message

Controlling the printing of messages.

As discussed in "Warnings and Messages", you can use Quiet to control the printing of particu-

lar messages during an evaluation. Most messages associated with built-in functions are

switched on by default. If you want to suppress a message permanently, you can use Off.

This prints a warning message. Also, the front end highlights the extra argument in red.

In[1]:= Log@a, b, cD

Log::argt : Log called with 3 arguments; 1 or 2 arguments are expected. à

Out[1]= Log@a, b, cD

This suppresses the warning message.

In[2]:= Quiet@Log@a, b, cDD

Out[2]= Log@a, b, cD

The message reappears with the next evaluation.

In[3]:= Log@a, b, cD

Log::argt : Log called with 3 arguments; 1 or 2 arguments are expected. à

Out[3]= Log@a, b, cD

You can use On and Off to make global changes to the printing of particular messages. You can

use Off to switch off a message if you never want to see it.

You can switch off the message like this.

136 Notebooks and Documents

You can switch off the message like this.

In[4]:= Off@Log::argtD

Now no warning message is produced.

In[5]:= Log@a, b, cD

Out[5]= Log@a, b, cD

Although most messages associated with built-in functions are switched on by default, there are

some which are switched off by default, and which you will see only if you explicitly switch them

on. An example is the message General::newsym, discussed in "Intercepting the Creation of

New Symbols", which tells you every time a new symbol is created.

s::tag give the text of a message

s::tag=string set the text of a message

Messages@sD show all messages associated with s

Manipulating messages.

The text of a message with the name s::tag is stored simply as the value of s::tag, associated

with the symbol s. You can therefore see the text of a message simply by asking for s::tag. You

can set the text by assigning a value to s::tag.

If you give LinearSolve a singular matrix, it prints a warning message.

In[6]:= LinearSolve@881, 1<, 82, 2<<, 83, 5<D

LinearSolve::nosol : Linear equation encountered that has no solution. à

Out[6]= LinearSolve@881, 1<, 82, 2<<, 83, 5<D

Here is the text of the message.

In[7]:= LinearSolve::nosol

Out[7]= Linear equation encountered that has no solution.

This redefines the message.

In[8]:= LinearSolve::nosol = "Matrix encountered is not invertible."

Out[8]= Matrix encountered is not invertible.

Notebooks and Documents 137

Now the new form will be used.

In[9]:= LinearSolve@881, 1<, 82, 2<<, 83, 5<D

LinearSolve::nosol : Matrix encountered is not invertible. à

Out[9]= LinearSolve@881, 1<, 82, 2<<, 83, 5<D

Messages are always stored as strings suitable for use with StringForm. When the message is

printed, the appropriate expressions are “spliced” into it. The expressions are wrapped with

HoldForm to prevent evaluation. In addition, any function that is assigned as the value of the

global variable $MessagePrePrint is applied to the resulting expressions before they are given

to StringForm. The default for $MessagePrePrint uses Short for text formatting and a combi-

nation of Short and Shallow for typesetting.

Most messages are associated directly with the functions that generate them. There are, how-

ever, some “general” messages, which can be produced by a variety of functions.

If you give the wrong number of arguments to a function F, Mathematica will warn you by

printing a message such as F::argx. If Mathematica cannot find a message named F::argx, it

will use the text of the “general” message General::argx instead. You can use Off@F::argxD

to switch off the argument count message specifically for the function F. You can also use

Off@General::argxD to switch off all messages that use the text of the general message.

Mathematica prints a message if you give the wrong number of arguments to a built-in function.

In[10]:= Sqrt@a, bD

Sqrt::argx : Sqrt called with 2 arguments; 1 argument is expected. à

Out[10]= Sqrt@a, bD

This argument count message is a general one, used by many different functions.

In[11]:= General::argx

Out[11]= `1` called with `2` arguments; 1 argument is expected.

If something goes very wrong with a calculation you are doing, it is common to find that the

same warning message is generated over and over again. This is usually more confusing than

useful. As a result, Mathematica keeps track of all messages that are produced during a particu-

lar calculation, and stops printing a particular message if it comes up more than three times.

Whenever this happens, Mathematica prints the message General::stop to let you know. If

General::stop.

138 Notebooks and Documents

you really want to see all the messages that Mathematica tries to print, you can do this by

switching off General::stop.

$MessageList a list of the messages produced during a particular
computation

MessageList@nD a list of the messages produced during the processing of
the nth input line in a Mathematica session

Finding out what messages were produced during a computation.

In every computation you do, Mathematica maintains a list $MessageList of all the messages

that are produced. In a standard Mathematica session, this list is cleared after each line of

output is generated. However, during a computation, you can access the list. In addition, when

the nth output line in a session is generated, the value of $MessageList is assigned to

MessageList@nD.

This returns $MessageList, which gives a list of the messages produced.

In[12]:= Sqrt@a, b, cD; Exp@a, bD; $MessageList

Sqrt::argx : Sqrt called with 3 arguments; 1 argument is expected. à

Exp::argx: Exp called with 2 arguments; 1 argument is expected. à

Out[12]= 8Sqrt::argx, Exp::argx<

The message names are wrapped in HoldForm to stop them from evaluating.

In[13]:= InputForm@%D

Out[13]//InputForm= {HoldForm[Sqrt::argx], HoldForm[Exp::argx]}

In writing programs, it is often important to be able to check automatically whether any

messages were generated during a particular calculation. If messages were generated, say as a

consequence of producing indeterminate numerical results, then the result of the calculation

may be meaningless.

Check@expr, failexprD if no messages are generated during the evaluation of expr,
then return expr, otherwise return failexpr

Check@expr, failexpr,s1::t1,s2::t2,…D check only for the messages si::ti

Checking for warning messages.

Notebooks and Documents 139

Evaluating 1^0 produces no messages, so the result of the evaluation is returned.

In[14]:= Check@1^0, errD

Out[14]= 1

Evaluating 0^0 produces a message, so the second argument of Check is returned.

In[15]:= Check@0^0, errD

Power::indet : Indeterminate expression 00 encountered. à

Out[15]= err

Check@expr, failexprD tests for all messages that are actually printed out. It does not test for

messages whose output has been suppressed using Off.

In some cases you may want to test only for a specific set of messages, say ones associated

with numerical overflow. You can do this by explicitly telling Check the names of the messages

you want to look for.

The message generated by Sin@1, 2D is ignored by Check, since it is not the one specified.

In[16]:= Check@Sin@1, 2D, err, General::indD

Sin::argx: Sin called with 2 arguments; 1 argument is expected. à

Out[16]= Sin@1, 2D

Message@s::tagD print a message

Message@s::tag,expr1,…D print a message, with the expri spliced into its string form

Generating messages.

By using the function Message, you can mimic all aspects of the way in which built-in Mathemat-

ica functions generate messages. You can for example switch on and off messages using On and

Off, and Message will automatically look for General::tag if it does not find the specific

message s::tag.

This defines the text of a message associated with f.

In[17]:= f::overflow = "Factorial argument `1` too large."

Out[17]= Factorial argument `1` too large.

Here is the function f.

In[18]:= f@x_D := If@x > 10, HMessage@f::overflow, xD; InfinityL, x!D

When the argument of f is greater than 10, the message is generated.

140 Notebooks and Documents

When the argument of f is greater than 10, the message is generated.

In[19]:= f@20D

f::overflow: Factorial argument 20 too large.

Out[19]= ¶

This switches off the message.

In[20]:= Off@f::overflowD

Now the message is no longer generated.

In[21]:= f@20D

Out[21]= ¶

When you call Message, it first tries to find a message with the explicit name you have speci-

fied. If this fails, it tries to find a message with the appropriate tag associated with the symbol

General. If this too fails, then Mathematica takes any function you have defined as the value of

the global variable $NewMessage, and applies this function to the symbol and tag of the

message you have requested.

By setting up the value of $NewMessage appropriately, you can, for example, get Mathematica

to read in the text of a message from a file when that message is first needed.

International Messages

The standard set of messages for built-in Mathematica functions are written in American Eng-

lish. In some versions of Mathematica, messages are also available in other languages. In

addition, if you set up messages yourself, you can give ones in other languages.

Languages in Mathematica are conventionally specified by strings. The languages are given in

English, in order to avoid the possibility of needing special characters. Thus, for example, the

French language is specified in Mathematica as "French".

$Language="lang" set the language to use

$Language=8"lang1","lang2",…<

set a sequence of languages to try

Setting the language to use for messages.

This tells Mathematica to use French-language versions of messages.

Notebooks and Documents 141

This tells Mathematica to use French-language versions of messages.

In[1]:= $Language = "French"

Out[1]= French

If your version of Mathematica has French-language messages, the message generated here
will be in French.

In[2]:= Sqrt@a, b, cD

Sqrt::argx : Sqrt est appel
elax\parskip\zü$$EAcuteDe avec 3 arguments; il faut y avoir 1.

Out[2]= Sqrt@a, b, cD

symbol::tag the default form of a message

symbol::tag::Language a message in a particular language

Messages in different languages.

When built-in Mathematica functions generate messages, they look first for messages of the

form s::t::Language, in the language specified by $Language. If they fail to find any such

messages, then they use instead the form s::t without an explicit language specification.

The procedure used by built-in functions will also be followed by functions you define if you call

Message with message names of the form s::t. If you give explicit languages in message

names, however, only those languages will be used.

Documentation Constructs

When you write programs in Mathematica, there are various ways to document your code. As

always, by far the best thing is to write clear code, and to name the objects you define as

explicitly as possible.

Sometimes, however, you may want to add some "commentary text" to your code, to make it

easier to understand. You can add such text at any point in your code simply by enclosing it in

matching H* and *L. Notice that in Mathematica, "comments" enclosed in H* and *L can be

nested in any way.

142 Notebooks and Documents

You can use comments anywhere in the Mathematica code you write.

In[1]:= If@a > b, H*then*L p, H*else*L qD

Out[1]= If@a > b, p, qD

H*text*L a comment that can be inserted anywhere in Mathematica
code

Comments in Mathematica.

There is a convention in Mathematica that all functions intended for later use should be given a

definite "usage message", which documents their basic usage. This message is defined as the

value of f::usage, and is retrieved when you type ? f .

f::usage="text" define the usage message for a function

? f get information about a function

?? f get more information about a function

Usage messages for functions.

Here is the definition of a function f.

In[2]:= f@x_D := x^2

Here is a "usage message" for f.

In[3]:= f::usage = "f@xD gives the square of x."

Out[3]= f@xD gives the square of x.

This gives the usage message for f.

In[4]:= ? f

f@xD gives the square of x.

?? f gives all the information Mathematica has about f, including the actual definition.

In[5]:= ?? f

f@xD gives the square of x.

f@x_D := x2

When you define a function f , you can usually display its value using ? f . However, if you give a

usage message for f , then ? f just gives the usage message. Only when you type ?? f do you

get all the details about f , including its actual definition.

Notebooks and Documents 143

When you define a function f , you can usually display its value using ? f . However, if you give a

usage message for f , then ? f just gives the usage message. Only when you type ?? f do you

get all the details about f , including its actual definition.

If you ask for information using ? about just one function, Mathematica will print out the com-

plete usage messages for the function. If you ask for information on several functions at the

same time, however, Mathematica will give the name of each function, if possible with a link to

its usage information.

This gives all the symbols in Mathematica that start with "Plot".

In[6]:= ? Plot*

System`

Plot PlotJoined PlotRange PlotStyle

Plot3D PlotLabel
PlotRangeClipÖ
ping

Plot3Matrix PlotMarkers
PlotRangePadÖ
ding

PlotDivision PlotPoints PlotRegion

If you use Mathematica with a text-based interface, then messages and comments are the

primary mechanisms for documenting your definitions. However, if you use Mathematica with a

notebook interface, then you will be able to give much more extensive documentation in text

cells in the notebook.

144 Notebooks and Documents

Manipulating Notebooks

Cells as Mathematica Expressions

Like other objects in Mathematica, the cells in a notebook, and in fact the whole notebook itself,

are all ultimately represented as Mathematica expressions. With the standard notebook front

end, you can use the command Show Expression to see the text of the Mathematica expres-

sion that corresponds to any particular cell.

Show Expression menu item toggle between displayed form and underlying Mathemat -
ica expression

Ctrl+* or Ctrl+8 (between existing
cells)

put up a dialog box to allow input of a cell in Mathematica
expression form

Handling Cell expressions in the notebook front end.

Here is a cell displayed in its usual way in the front end.

Here is the underlying Mathematica expression that corresponds to the cell.

Cell@contents,"style"D a cell with a specific style

Cell@contents,"style",optionsD a cell with additional options specified

Cell@contents,"style1",
"style2",…,optionsD

a cell with several styles

Mathematica expressions corresponding to cells in notebooks.

Within a given notebook, there is always a collection of styles that can be used to determine

the appearance and behavior of cells. Typically the styles are named so as to reflect what role

cells which have them will play in the notebook.

Notebooks and Documents 145

"Title" the title of the notebook

"Section" a section heading

"Subsection" a subsection heading

"Text" ordinary text

"Input" Mathematica input

"Output" Mathematica output

Some typical cell styles defined in notebooks.

Here are several cells in different styles.

Here are the expressions that correspond to these cells.

A particular style such as "Section" or "Text" defines various settings for the options associ-

ated with a cell. You can override these settings by explicitly setting options within a specific

cell.

Here is the expression for a cell in which options are set to use a gray background and to put a
frame around the cell.

This is how the cell looks in a notebook.

146 Notebooks and Documents

option default value

CellFrame False whether to draw a frame around the cell

Background Automatic what color to draw the background for the
cell

Editable True whether to allow the contents of the cell to
be edited

TextAlignment Left how to align text in the cell

FontSize 12 the point size of the font for text

CellTags 8< tags to be associated with the cell

A few of the large number of possible options for cells.

The standard notebook front end for Mathematica provides several ways to change the options

of a cell. In simple cases, such as changing the size or color of text, there will often be a spe-

cific menu item for the purpose. But in general you can use the Option Inspector that is built

into the front end. This is typically accessed using the Option Inspector menu item in the

Format menu.

† Change settings for specific options with menus.

† Look at and modify all options with the Option Inspector.

† Edit the textual form of the expression corresponding to the cell.

† Change the settings for all cells with a particular style.

Ways to manipulate cells in the front end.

Sometimes you will want just to change the options associated with a specific cell. But often

you may want to change the options associated with all cells in your notebook that have a

particular style. You can do this by using the Edit Stylesheet command in the front end to

create a custom stylesheet associated with your notebook. Then use the controls in the

stylesheet to create a cell corresponding to the style you want to change and modify the

options for that cell.

CellPrint@Cell@…DD insert a cell into your currently selected notebook

CellPrint@8Cell@
…D,Cell@…D,…<D

insert a sequence of cells into your currently selected
notebook

Inserting cells into a notebook.

Notebooks and Documents 147

This inserts a section cell into the current notebook.

In[1]:= CellPrint@Cell@"The heading", "Section"DD

This inserts a text cell with a frame around it.

In[2]:= CellPrint@Cell@"Some text", "Text", CellFrame -> TrueDD

CellPrint allows you to take a raw Cell expression and insert it into your current notebook.

The cell created by CellPrint is grouped with the input and will be overwritten if the input is

reevaluated.

Notebooks as Mathematica Expressions

Notebook@8cell1,cell2,…<D a notebook containing a sequence of cells

Notebook@cells,optionsD a notebook with options specified

Expressions corresponding to notebooks.

Here is a simple Mathematica notebook.

148 Notebooks and Documents

Here is the expression that corresponds to this notebook.

Notebook[{
 Cell["Section heading", "Section"],
 Cell["Some text.", "Text"],
 Cell["More text.", "Text"]}]

Just like individual cells, notebooks in Mathematica can also have options. You can look at and

modify these options using the Option Inspector in the standard notebook front end.

option default value
WindowSize 8nx,ny< the size in pixels of the window used to

display the notebook
WindowFloating False whether the window should float on top of

others
WindowToolbars 8< what toolbars to include at the top of the

window
ShowPageBreaks False whether to show where page breaks would

occur if the notebook were printed
CellGrouping Automatic how to group cells in the notebook
Evaluator "Local" what kernel should be used to do evalua-

tions in the notebook
Saveable True whether a notebook can be saved

A few of the large number of possible options for notebooks.

A notebook with the option setting Saveable -> False can always be saved using the Save As

menu item, but does not respond to Save and does not prompt for saving when it is closed.

In addition to notebook options, you can also set any cell option at the notebook level. Doing

this tells Mathematica to use that option setting as the default for all the cells in the notebook.

You can override the default by explicitly setting the options within a particular cell or by using

a named style which explicitly overrides the option.

Here is the expression corresponding to a notebook with a ruler displayed in the toolbar at the
top of the window.

Notebook[{
 Cell["Section heading", "Section"],
 Cell["Some text.", "Text"]},
 WindowToolbars->{"RulerBar"}]

Notebooks and Documents 149

This is what the notebook looks like in the front end.

This sets the default background color for all cells in the notebook.

Notebook[{
 Cell["Section heading", "Section"],
 Cell["Some text.", "Text"]},
 Background->GrayLevel[.7]]

Now each cell has a gray background.

If you go outside of Mathematica and look at the raw text of the file that corresponds to a

Mathematica notebook, you will find that what is in the file is just the textual form of the expres-

sion that represents the notebook. One way to create a Mathematica notebook is therefore to

construct an appropriate expression and put it in a file.

In notebook files that are written out by Mathematica, some additional information is typically

included to make it faster for Mathematica to read the file in again. The information is enclosed

in Mathematica comments indicated by H*…*L so that it does not affect the actual expression

stored in the file.

150 Notebooks and Documents

NotebookOpen@" file.nb"D open a notebook file in the front end

NotebookPut@exprD create a notebook corresponding to expr in the front end

NotebookGet@objD get the expression corresponding to an open notebook in
the front end

Setting up notebooks in the front end from the kernel.

This writes a notebook expression out to the file sample.nb.

In[1]:= Notebook@8Cell@"Section heading", "Section"D, Cell@"Some text.", "Text"D<D >>
"sample.nb"

This reads the notebook expression back from the file.

In[2]:= << sample.nb

Out[2]= Notebook@8Cell@Section heading, SectionD, Cell@Some text., TextD<D

This opens sample.nb as a notebook in the front end.

In[3]:= NotebookOpen@"sample.nb"D;

Once you have set up a notebook in the front end using NotebookOpen, you can then manipu-

late the notebook interactively just as you would any other notebook. But in order to use

NotebookOpen, you have to explicitly have a notebook expression in a file. With NotebookPut,

however, you can take a notebook expression that you have created in the kernel, and immedi-

ately display it as a notebook in the front end.

Here is a notebook expression in the kernel.

In[4]:= Notebook@8Cell@"Section heading", "Section"D, Cell@"Some text.", "Text"D<D

Out[4]= Notebook@8Cell@Section heading, SectionD, Cell@Some text., TextD<D

Notebooks and Documents 151

This uses the expression to set up a notebook in the front end.

In[5]:= NotebookPut@%D

You can use NotebookGet to get the notebook corresponding to a particular
NotebookObject back into the kernel.

In[6]:= NotebookGet@%D

Out[6]= Notebook@8Cell@CellGroupData@
8Cell@TextData@Section headingD, SectionD, Cell@TextData@Some text.D, TextD<, OpenDD<D

Manipulating Notebooks from the Kernel

If you want to do simple operations on Mathematica notebooks, then you will usually find it

convenient just to use the interactive capabilities of the standard Mathematica front end. But if

you want to do more complicated and systematic operations, then you will often find it better to

use the kernel.

Notebooks@D a list of all your open notebooks

Notebooks@"name"D a list of all open notebooks with the specified name

InputNotebook@D the notebook into which typed input will go

EvaluationNotebook@D the notebook in which this function is being evaluated

ButtonNotebook@D the notebook containing the button (if any) which initiated
this evaluation

Functions that give the notebook objects corresponding to particular notebooks.

Within the Mathematica kernel, notebooks that you have open in the front end are referred to

by notebook objects of the form NotebookObject@ fe, idD. The first argument of

NotebookObject specifies the FrontEndObject for the front end in which the notebook resides,

while the second argument gives a unique serial number for the notebook.

152 Notebooks and Documents

Here is a notebook named Example.nb.

This finds the corresponding notebook object in the front end.

In[1]:= Notebooks@"Example.nb"D

Out[1]= {NotebookObject[<<Example.nb>>]}

This gets the expression corresponding to the notebook into the kernel.

In[2]:= NotebookGet@First@%DD

Out[2]= Notebook[{Cell[First Heading, Section],
 Cell[Second Heading, Section]}]

This replaces every occurrence of the string "Section" by "Text".

In[3]:= % ê. "Section" -> "Text"

Out[3]= Notebook[{Cell[First Heading, Text],
 Cell[Second Heading, Text]}]

This creates a new modified notebook in the front end.

In[4]:= NotebookPut@%D

Out[4]= {NotebookObject[<<Untitled-1.nb>>]}

NotebookGet@objD get the notebook expression corresponding to the note -
book object obj

NotebookPut@expr,objD replaces the notebook represented by the notebook object
obj with one corresponding to expr

NotebookPut@exprD creates a notebook corresponding to expr and makes it the
currently selected notebook in the front end

Exchanging whole notebook expressions between the kernel and front end.

If you want to do extensive manipulations on a particular notebook you will usually find it

convenient to use NotebookGet to get the whole notebook into the kernel as a single expres-

sion. But if instead you want to do a sequence of small operations on a notebook, then it is

often better to leave the notebook in the front end, and then to send specific commands from

the kernel to the front end to tell it what operations to do.

Notebooks and Documents 153

If you want to do extensive manipulations on a particular notebook you will usually find it

convenient to use NotebookGet to get the whole notebook into the kernel as a single expres-

sion. But if instead you want to do a sequence of small operations on a notebook, then it is

often better to leave the notebook in the front end, and then to send specific commands from

the kernel to the front end to tell it what operations to do.

Mathematica is set up so that anything you can do interactively to a notebook in the front end

you can also do by sending appropriate commands to the front end from the kernel.

Options@objD give a list of all options set for the notebook corresponding
to notebook object obj

Options@obj,optionD give the option setting

AbsoluteOptions@obj,optionD give the option setting with absolute option values even
when the actual setting is Automatic

CurrentValue@obj,optionD give and set the value of option

SetOptions@obj,option->valueD set the value of an option

Finding and setting options for notebooks.

This gives the setting of the WindowSize option for your currently selected notebook.

In[5]:= Options@InputNotebook@D, WindowSizeD

Out[5]= 8WindowSize Ø 8250., 100.<<

This changes the size of the currently selected notebook on the screen.

In[6]:= SetOptions@InputNotebook@D, WindowSize -> 8250, 100<D

Out[6]= 8WindowSize Ø 8250., 100.<<

Alternatively, use CurrentValue to directly get the value of the WindowSize option.

In[7]:= CurrentValue@InputNotebook@D, WindowSizeD

Out[7]= 8WindowSize Ø 8250., 100.<<

154 Notebooks and Documents

This changes the option using CurrentValue with a simple assignment.

In[8]:= CurrentValue@InputNotebook@D, WindowSizeD = 8400, 300<

Within any open notebook, the front end always maintains a current selection. The selection

can consist for example of a region of text within a cell or of a complete cell. Usually the selec-

tion is indicated on the screen by some form of highlighting. The selection can also be between

two characters of text, or between two cells, in which case it is usually indicated on the screen

by a vertical or horizontal insertion bar.

You can modify the current selection in an open notebook by issuing commands from the kernel.

SelectionMove@obj,Next,unitD move the current selection to make it be the next unit of
the specified type

SelectionMove@obj,Previous,unitD move to the previous unit

SelectionMove@obj,After,unitD move to just after the end of the present unit of the
specified type

SelectionMove@obj,Before,unitD move to just before the beginning of the present unit

SelectionMoveAobj,All,unitE extend the current selection to cover the whole unit of the
specified type

Moving the current selection in a notebook.

Notebooks and Documents 155

Character individual character

Word word or other token

Expression complete subexpression

TextLine line of text

TextParagraph paragraph of text

GraphicsContents the contents of the graphic

Graphics graphic

CellContents the contents of the cell

Cell complete cell

CellGroup cell group

EvaluationCell cell associated with the current evaluation

ButtonCell cell associated with any button that initiated the evaluation

GeneratedCell cell generated by the current evaluation

Notebook complete notebook

Units used in specifying selections.

Here is a simple notebook.

This sets nb to be the notebook object corresponding to the current input notebook.

In[9]:= nb = InputNotebook@D;

This moves the current selection within the notebook to be the next word.

In[10]:= SelectionMove@nb, Next, WordD

156 Notebooks and Documents

This extends the selection to the complete first cell.

In[11]:= SelectionMove@nb, All, CellD

This puts the selection at the end of the whole notebook.

In[12]:= SelectionMove@nb, After, NotebookD

NotebookFind@obj,dataD move the current selection to the next occurrence of the
specified data in a notebook

NotebookFind@obj,data,PreviousD move to the previous occurrence

NotebookFindAobj,data,AllE make the current selection cover all occurrences

NotebookFind@obj,data,dir,elemsD search in the specified elements of each cell, going in
direction dir

NotebookFindAobj,"text",IgnoreCase->TrueE

do not distinguish uppercase and lowercase letters in text

Searching the contents of a notebook.

This moves the current selection to the position of the previous occurrence of the word cell.

In[13]:= NotebookFind@nb, "cell", PreviousD

Notebooks and Documents 157

The letter a does not appear in the current notebook, so $Failed is returned, and the selection
is not moved.

In[14]:= NotebookFind@nb, "a", NextD

Out[14]= $Failed

CellContents contents of each cell

CellStyle the name of the style for each cell

CellLabel the label for each cell

CellTags tags associated with each cell

8elem1,elem2,…< several kinds of elements

Possible elements of cells to be searched by NotebookFind.

In setting up large notebooks, it is often convenient to insert tags which are not usually dis-

played, but which mark particular cells in such a way that they can be found using

NotebookFind. You can set up tags for cells either interactively in the front end, or by explicitly

setting the CellTags option for a cell.

NotebookLocate@"tag"D locate and select cells with the specified tag in the current
notebook

NotebookLocate@8" file","tag"<D open another notebook if necessary

Globally locating cells in notebooks.

NotebookLocate is typically the underlying function that Mathematica calls when you follow a

hyperlink in a notebook. The Insert  Hyperlink menu item sets up the appropriate

NotebookLocate as part of the script for a particular hyperlink button.

158 Notebooks and Documents

NotebookWrite@obj,dataD write data into a notebook at the current selection

NotebookApply@obj,dataD write data into a notebook, inserting the current selection
in place of the first É that appears in data

NotebookDelete@objD delete whatever is currently selected in a notebook

NotebookRead@objD get the expression that corresponds to the current selec -
tion in a notebook

Writing and reading in notebooks.

NotebookWrite@obj, dataD is similar to a Paste operation in the front end: it replaces the cur-

rent selection in your notebook by data. If the current selection is a cell

NotebookWrite@obj, dataD will replace the cell with data. If the current selection lies between

two cells, however, then NotebookWrite@obj, dataD will create an appropriate new cell or cells.

Here is a notebook with a word of text selected.

This replaces the selected word by new text.

In[15]:= NotebookWrite@nb, "<<inserted text>>"D

This moves the current selection to just after the first cell in the notebook.

In[16]:= SelectionMove@nb, After, CellD

Notebooks and Documents 159

This now inserts a text cell after the first cell in the notebook.

In[17]:= NotebookWrite@nb, Cell@"This cell contains text.", "Text"DD

This makes the current selection be the next cell in the notebook.

In[18]:= SelectionMove@nb, Next, CellD

This reads the current selection, returning it as an expression in the kernel.

In[19]:= NotebookRead@nbD

Out[19]= Cell@Here is a second one., SectionD

NotebookWrite@obj, dataD just discards the current selection and replaces it with data. But

particularly if you are setting up palettes, it is often convenient first to modify data by inserting

the current selection somewhere inside it. You can do this using selection placeholders and

NotebookApply. The first time the character "É", entered as î @SelectionPlaceholderD or Esc

splEsc, appears anywhere in data, NotebookApply will replace this character by the current

selection.

160 Notebooks and Documents

Here is a simple notebook with the current selection being the contents of a cell.

In[20]:= nb = InputNotebook@D;

This replaces the current selection by a string that contains a copy of its previous form.

In[21]:= NotebookApply@nb, "x + 1êÉ"D

SelectionEvaluate@objD evaluate the current selection in place

SelectionCreateCell@objD create a new cell containing just the current selection

SelectionEvaluateCreateCell@
objD

evaluate the current selection and create a new cell for the
result

SelectionAnimate@objD animate graphics in the current selection

SelectionAnimate@obj,tD animate graphics for t seconds

Operations on the current selection.

This makes the current selection be the whole contents of the cell.

In[22]:= SelectionMove@nb, All, CellContentsD

This evaluates the current selection in place.

In[23]:= SelectionEvaluate@nbD

SelectionEvaluate allows you to take material from a notebook and send it through the kernel

for evaluation. On its own, however, SelectionEvaluate always overwrites the material you

took. But by using functions like SelectionCreateCell you can maintain a record of the

sequence of forms that are generated~just like in a standard Mathematica session.

This makes the current selection be the whole cell.

Notebooks and Documents 161

This makes the current selection be the whole cell.

In[24]:= SelectionMove@nb, All, CellD

This creates a new cell, and copies the current selection into it.

In[25]:= SelectionCreateCell@nbD

This wraps Factor around the contents of the current cell.

In[26]:= NotebookApply@nb, "Factor@ÉD"D

This evaluates the contents of the current cell, and creates a new cell to give the result.

In[27]:= SelectionEvaluateCreateCell@nbD

Functions like NotebookWrite and SelectionEvaluate by default leave the current selection

just after whatever material they insert into your notebook. You can then always move the

SelectionMove. But functions like NotebookWrite and

SelectionEvaluate can also take an additional argument which specifies where the current

selection should be left after they do their work.

162 Notebooks and Documents

Functions like NotebookWrite and SelectionEvaluate

selection by explicitly using SelectionMove. But functions like NotebookWrite and

SelectionEvaluate can also take an additional argument which specifies where the current

selection should be left after they do their work.

NotebookWrite@obj,data,selD write data into a notebook, leaving the current selection as
specified by sel

NotebookApply@obj,data,selD write data replacing É by the previous current selection,
then leaving the current selection as specified by sel

SelectionEvaluate@obj,selD evaluate the current selection, making the new current
selection be as specified by sel

SelectionCreateCell@obj,selD create a new cell containing just the current selection, and
make the new current selection be as specified by sel

SelectionEvaluateCreateCell@obj,selD

evaluate the current selection, make a new cell for the
result, and make the new current selection be as specified
by sel

Performing operations and specifying what the new current selection should be.

After immediately after whatever material is inserted (default)

Before immediately before whatever material is inserted

All the inserted material itself

Placeholder the first É in the inserted material

None leave the current selection unchanged

Specifications for the new current selection.

Here is a blank notebook.

In[28]:= nb = InputNotebook@D;

This writes 10! into the notebook, making the current selection be what was written.

In[29]:= NotebookWrite@nb, "10!", AllD

Notebooks and Documents 163

This evaluates the current selection, creating a new cell for the result, and making the current
selection be the whole of the result.

In[30]:= SelectionEvaluateCreateCell@nb, AllD

This wraps FactorInteger around the current selection.

In[31]:= NotebookApply@nb, "FactorInteger@ÉD", AllD

This evaluates the current selection, leaving the selection just before the result.

In[32]:= SelectionEvaluate@nb, BeforeD

This now inserts additional text at the position of the current selection.

In[33]:= NotebookWrite@nb, "a = "D

Options@obj,optionD find the value of an option for a complete notebook

Options@NotebookSelection@objD,optionD

find the value for the current selection

SetOptions@obj,option->valueD set the value of an option for a complete notebook

SetOptions@NotebookSelection@objD,option->valueD

set the value for the current selection

Finding and setting options for whole notebooks and for the current selection.

164 Notebooks and Documents

Make the current selection be a complete cell.

In[34]:= SelectionMove@nb, All, CellD

Put a frame around the cell that is the current selection.

In[35]:= SetOptions@NotebookSelection@nbD, CellFrame -> TrueD

CreateWindow@D create a new notebook

CreateWindow@optionsD create a notebook with specified options

NotebookOpen@"name"D open an existing notebook

NotebookOpen@"name",optionsD open a notebook with specified notebook options

SetSelectedNotebook@objD make the specified notebook the selected one

NotebookPrint@objD send a notebook to your printer

NotebookPrint@obj," file"D send a PostScript version of a notebook to a file

NotebookPrint@obj,"!command"D send a PostScript version of a notebook to an external
command

NotebookSave@objD save the current version of a notebook in a file

NotebookSave@obj," file"D save the notebook in a file with the specified name

NotebookClose@objD close a notebook

Operations on whole notebooks.

If you call CreateWindow@D a new empty notebook will appear on your screen.

By executing commands like SetSelectedNotebook and NotebookOpen, you tell the Mathemat-

ica front end to change the windows you see. Sometimes you may want to manipulate a note-

book without ever having it displayed on the screen. You can do this by using the option setting

Visible -> False in NotebookOpen or CreateWindow.

Notebooks and Documents 165

Manipulating the Front End from the Kernel

$FrontEnd the front end currently in use

OptionsA$FrontEnd,optionE the setting for a global option in the front end

AbsoluteOptionsA
$FrontEnd,optionE

the absolute setting for an option

SetOptionsA
$FrontEnd,option->valueE

reset an option in the front end

CurrentValueA$FrontEnd, optionE return option value, and also allow setting of option when
used as the left-hand side of an assignment

Manipulating global options in the front end.

Just like cells and notebooks, the complete Mathematica front end has various options, which

you can look at and manipulate from the kernel.

This gives the object corresponding to the front end currently in use.

In[1]:= $FrontEnd

Out[1]= Ü FrontEndObject Ü

This gives the current directory used by the front end for notebook files.

In[2]:= Options@$FrontEnd, NotebookBrowseDirectoryD

Out[2]= 9NotebookBrowseDirectory Ø C:\Documents and Settings\All Users\Documents=

option default value
NotebookBrowseDirectory (system

dependent)
the default directory for opening and saving
notebook files

NotebookPath (system
dependent)

the path to search when trying to open
notebooks

Language "English" default language for text
MessageOptions (list of settings) how to handle various help and warning

messages

A few global options for the Mathematica front end.

By using NotebookWrite you can effectively input to the front end any ordinary text that you

can enter on the keyboard. FrontEndTokenExecute allows you to send from the kernel any

command that the front end can execute. These commands include both menu items and con-

trol sequences.

166 Notebooks and Documents

By using NotebookWrite you can effectively input to the front end any ordinary text that you

can enter on the keyboard. FrontEndTokenExecute allows you to send from the kernel any

command that the front end can execute. These commands include both menu items and con-

trol sequences.

FrontEndTokenExecute@"name"D execute a named command in the front end

Executing a named command in the front end.

"Indent" indent all selected lines by one tab

"NotebookStatisticsDialog" display statistics about the current notebook

"OpenCloseGroup" toggle a cell group between open and closed

"CellSplit" split a cell in two at the current insertion point

"DuplicatePreviousInput" create a new cell which is a duplicate of the nearest input
cell above

"FindDialog" bring up the Find dialog

"ColorSelectorDialog" bring up the Color Selector dialog

"GraphicsAlign" align selected graphics

"CompleteSelection" complete the command name that is the current selection

A few named commands that can be given to the front end. These commands usually correspond to menu
items.

Front End Tokens

Front end tokens let you perform kernel commands that would normally be done using the

menus. Front end tokens are particularly convenient for writing programs to manipulate

notebooks.

FrontEndToken is a kernel command that identifies its argument as a front end token.

FrontEndExecute is a kernel command that sends its argument to the front end for execution.

For example, the following command creates a new notebook.

In[10]:= FrontEndExecute@FrontEndToken@"New"DD

FrontEndExecute can take a list as its argument, allowing you to execute multiple tokens in a

single evaluation. When you evaluate the following command, the front end creates a new

notebook and then pastes the contents of the clipboard into that notebook.

In[9]:= FrontEndExecute@8FrontEndToken@"New"D, FrontEndToken@"Paste"D<D

Simple and Compound Front End Tokens

Notebooks and Documents 167

Simple and Compound Front End Tokens

Front end tokens are divided into two classes: simple tokens and compound tokens that take

parameters.

Simple Tokens

For simple tokens, FrontEndToken can have one or two arguments.

If FrontEndToken has one argument, the token operates on the input notebook. The following

examples use the front end token "Save". The result is the same as using File  Save.

In[12]:= FrontEndExecute@FrontEndToken@"Save"DD

With two arguments, the arguments of FrontEndToken must be a NotebookObject and a front

end token. For example, to save the notebook containing the current evaluation, the first argu-

ment of FrontEndToken is the notebook object EvaluationNotebook , and the second argu-

ment is the front end token "Save".

In[3]:= FrontEndExecute@FrontEndToken@FrontEnd`EvaluationNotebook@D, "Save"DD

You can execute a simple, one-argument front end token with the command

FrontEndTokenExecute@tokenD. This is equivalent to FrontEndExecute@FrontEndToken@tokenDD.

For example, the following command will save the input notebook.

In[5]:= FrontEndTokenExecute@"Save"D

Compound Tokens

Compound tokens have a token parameter that controls some aspect of their behavior. For a

compound token, the three arguments of FrontEndToken must be a NotebookObject, the front

end token, and the selected token parameter.

For example, this saves the selected notebook as plain text.

In[6]:= FrontEndExecute@
8FrontEndToken@FrontEnd`InputNotebook@D, "SaveRenameSpecial", "Text"D<D

168 Notebooks and Documents

Executing Notebook Commands Directly in the Front
End

When you execute a command like NotebookWrite@obj, dataD the actual operation of inserting

data into your notebook is performed in the front end. Normally, however, the kernel is needed

in order to evaluate the original command, and to construct the appropriate request to send to

the front end. But it turns out that the front end is set up to execute a limited collection of

commands directly, without ever involving the kernel.

NotebookWrite@obj,dataD version of NotebookWrite to be executed in the kernel

FrontEnd`NotebookWrite@obj,dataD

version of NotebookWrite to be executed directly in the
front end

Distinguishing kernel and front end versions of commands.

The basic way that Mathematica distinguishes between commands to be executed in the kernel

and to be executed directly in the front end is by using contexts. The kernel commands are in

the usual System` context, but the front end commands are in the FrontEnd` context.

FrontEndExecute@exprD send expr to be executed in the front end

Sending an expression to be executed in the front end.

Here is a blank notebook.

This uses kernel commands to write data into the notebook.

In[1]:= NotebookWrite@SelectedNotebook@D, "x + y + z"D

Notebooks and Documents 169

In the kernel, these commands do absolutely nothing.

In[2]:= FrontEnd`NotebookWrite@FrontEnd`SelectedNotebook@D, "a + b + c + d"D

If they are sent to the front end, however, they cause data to be written into the notebook.

In[3]:= FrontEndExecute@%D

If you write sophisticated programs for manipulating notebooks, then you will have no choice

but to execute these programs primarily in the kernel. But for the kinds of operations typically

performed by simple buttons, you may find that it is possible to execute all the commands you

need directly in the front end~without the kernel even needing to be running.

The Structure of Cells

Cell@contents,"style"D a cell in a particular style

Cell@contents,"style1","style2",…D a cell with multiple styles

Cell@contents,"style",optionsD a cell with additional options set

Expressions corresponding to cells.

Here is a notebook containing a text cell and a Mathematica input cell.

Here are the expressions corresponding to these cells.

Here is a notebook containing a text cell with Mathematica input inside.

170 Notebooks and Documents

Here is a notebook containing a text cell with Mathematica input inside.

This is the expression corresponding to the cell. The Mathematica input is in a cell embedded
inside the text.

"text" plain text

TextData@8text1,text2,…<D text potentially in different styles, or containing cells

BoxData@boxesD formatted Mathematica expressions

GraphicsData@"type",dataD graphics or sounds

OutputFormData@"itext","otext"D text as generated by InputForm and OutputForm

RawData@"data"D unformatted expressions as obtained using Show
Expression

CellGroupData@
8cell1,cell2,…<,OpenD

an open group of cells

CellGroupData@
8cell1,cell2,…<,ClosedD

a closed group of cells

StyleData@"style"D a style definition cell

Expressions representing possible forms of cell contents.

Styles and the Inheritance of Option Settings

Global the complete front end and all open notebooks

Notebook the current notebook

Style the style of the current cell

Cell the specific current cell

Selection a selection within a cell

The hierarchy of levels at which options can be set.

Here is a notebook containing three cells.

Notebooks and Documents 171

Here is a notebook containing three cells.

This is what happens when the setting CellFrame -> True is made specifically for the third
cell.

This is what happens when the setting CellFrame -> True is made globally for the whole
notebook.

This is what happens when the setting is made for the "Section" style.

In the standard notebook front end, you can check and set options at any level by using the

Option Inspector menu item. If you do not set an option at a particular level, then its value

will always be inherited from the level above. Thus, for example, if a particular cell does not set

the CellFrame option, then the value used will be inherited from its setting for the style of the

cell or for the whole notebook that contains the cell.

172 Notebooks and Documents

In the standard notebook front end, you can check and set options at any level by using the

Option Inspector menu item. If you do not set an option at a particular level, then its value

will always be inherited from the level above. Thus, for example, if a particular cell does not set

the CellFrame option, then the value used will be inherited from its setting for the style of the

cell or for the whole notebook that contains the cell.

As a result, if you set CellFrame -> True at the level of a whole notebook, then all the cells in

the notebook will have frames drawn around them~unless the style of a particular cell, or the

cell itself, explicitly overrides this setting.

† Choose the basic default styles for a notebook

† Choose the styles for screen and printing style environments

† Edit specific styles for the notebook

Ways to set up styles in a notebook.

Depending on what you intend to use your Mathematica notebook for, you may want to choose

different basic default styles for the notebook. In the standard notebook front end, you can do

this by selecting a different stylesheet in the Stylesheet menu or by using the Edit

Stylesheet menu item.

"StandardReport" styles for everyday work and for reports

"NaturalColor" styles for colorful presentation of everyday work

"Outline" styles for outlining ideas

"Notepad" styles for working with plain text documents

Some typical choices of basic default styles.

With each choice of basic default styles, the styles that are provided will change. Thus, for

example, the Notepad stylesheet provides a limited number of styles since it is designed to

work with plain text documents.

Notebooks and Documents 173

Here is a notebook that uses NaturalColor default styles.

option default value
ScreenStyleEnvironment "Working" the style environment to use for display on

the screen
PrintingStyleEnvironment "Printout" the style environment to use for printed

output

Options for specifying style environments.

Within a particular set of basic default styles, Mathematica allows for two different style environ-

ments: one for display on the screen, and another for output to a printer. The existence of

separate screen and printing style environments allows you to set up styles which are sepa-

rately optimized both for low-resolution display on a screen, and high-resolution printing.

"Working" onscreen working environment

"Presentation" onscreen environment for presentations

"Condensed" onscreen environment for maximum display density

"Slideshow" onscreen environment for displaying slides

"Printout" paper printout environment

Some typical settings for style environments.

The way that Mathematica actually sets up the definitions for styles is by using style definition

cells. These cells can either be given in separate stylesheet notebooks, or can be included in the

options of a specific notebook. In either case, you can access style definitions by using the Edit

Stylesheet menu item in the standard notebook front end.

174 Notebooks and Documents

The way that Mathematica actually sets up the definitions for styles is by using style definition

cells. These cells can either be given in separate stylesheet notebooks, or can be included in the

options of a specific notebook. In either case, you can access style definitions by using the Edit

Stylesheet menu item in the standard notebook front end.

Options for Cells

Mathematica provides a large number of options for cells. All of these options can be accessed

through the Option Inspector menu item in the front end. They can be set either directly at

the level of individual cells or at a higher level, to be inherited by individual cells.

option typical default
value

CellDingbat None a dingbat to use to emphasize the cell

CellFrame False whether to draw a frame around the cell

Background None the background color for the cell

ShowCellBracket True whether to display the cell bracket

Magnification 1. the magnification at which to display the
cell

CellOpen True whether to display the contents of the cell

Some basic cell display options.

This creates a cell in "Section" style with default settings for all options.

In[1]:= CellPrint@Cell@"A Heading", "Section"DD

Notebooks and Documents 175

This creates a cell with dingbat and background options modified.

In[2]:= CellPrint@
Cell@"A Heading", "Section", CellDingbat -> "Ê", Background -> GrayLevel@.7DDD

option typical default
value

CellMargins 887,0<,84,4<< outer margins in printer's points to leave
around the contents of the cell

CellFrameMargins 8 margins to leave inside the cell frame

CellElementSpacings list of rules details of the layout of cell elements

CellBaseline Baseline how to align the baseline of an inline cell
with text around it

Options for cell positioning.

The option CellMargins allows you to specify both horizontal and vertical margins to put

around a cell. You can set the horizontal margins interactively by using the margin stops in the

ruler displayed when you choose the Show Ruler menu item in the front end.

Whenever an option can refer to all four edges of a cell, Mathematica follows the convention

that the setting for the option takes the form 88left, right<, 8bottom, top<<. By giving nonzero

values for the top and bottom elements, CellMargins can specify gaps to leave above and below

a particular cell. The values are always taken to be in printer's points.

176 Notebooks and Documents

This leaves 50 points of space on the left of the cell, and 20 points above and below.

In[3]:= CellPrint@Cell@"First text", "Text", CellMargins -> 8850, 0<, 820, 20<<DD

Almost every aspect of Mathematica notebooks can be controlled by some option or another.

More detailed aspects are typically handled by "aggregate options" such as

CellElementSpacings. The settings for these options are lists of Mathematica rules, which

effectively give values for a sequence of suboptions. The names of these suboptions are usually

strings rather than symbols.

This shows the settings for all the suboptions associated with CellElementSpacings.

In[4]:= Options@SelectedNotebook@D, CellElementSpacingsD

Out[4]= 8CellElementSpacings Ø 8CellMinHeight Ø 12., ClosedCellHeight Ø 19.,
ClosedGroupTopMargin Ø 4., GroupIconTopMargin Ø 3., GroupIconBottomMargin Ø 12.<<

Mathematica allows you to embed cells inside pieces of text. The option CellBaseline deter-

mines how such "inline cells" will be aligned vertically with respect to the text around them. In

direct analogy with the option BaselinePosition for a Grid, the option CellBaseline speci-

fies what aspect of the cell should be considered its baseline.

Here is a cell containing an inline formula. The baseline of the formula is aligned with the
baseline of the text around it.

Here is a cell in which the bottom of the formula is aligned with the baseline of the text around
it.

This alignment is specified using the CellBaseline -> Bottom setting.

Notebooks and Documents 177

This alignment is specified using the CellBaseline -> Bottom setting.

option typical default
value

CellLabel "" a label for a cell

ShowCellLabel True whether to show the label for a cell

CellLabelAutoDelete True whether to delete the label if the cell is
modified

CellTags 8< tags for a cell

ShowCellTags False whether to show tags for a cell

ConversionRules 8< rules for external conversions

Options for ancillary data associated with cells.

In addition to the actual contents of a cell, it is often useful to associate various kinds of ancil-

lary data with cells.

In a standard Mathematica session, cells containing successive lines of kernel input and output

are given labels of the form In@nD := and Out@nD =. The option ShowCellLabel determines

whether such labels should be displayed. CellLabelAutoDelete determines whether the label

on a cell should be removed if the contents of the cell are modified. Doing this ensures that

In@nD := and Out@nD = labels are only associated with unmodified pieces of kernel input and

output.

Cell tags are typically used to associate keywords or other attributes with cells, that can be

searched for using functions like NotebookFind. Destinations for hyperlinks in Mathematica

notebooks are usually implemented using cell tags.

The option ConversionRules allows you to give a list containing entries such as "TeX" -> data

which specify how the contents of a cell should be converted to external formats. This is particu-

larly relevant if you want to keep a copy of the original form of a cell that has been converted in

Mathematica notebook format from some external format.

178 Notebooks and Documents

option typical default
value

Deletable True whether to allow a cell to be deleted
interactively with the front end

Copyable True whether to allow a cell to be copied

Selectable True whether to allow the contents of a cell to
be selected

Editable True whether to allow the contents of a cell to
be edited

Deployed False whether the user interface in the cell is
active

Options for controlling interactive operations on cells.

The options Deletable, Copyable, Selectable and Editable allow you to control what interac-

tive operations should be allowed on cells. By setting these options to False at the notebook

level, you can protect all the cells in a notebook.

Deployed allows you to treat the contents of a cell as if they were a user interface. In a user

interface, labels are typically not selectable and controls such as buttons can be used, but not

modified. Deployed can also be set on specific elements inside a cell so that, for example, the

output of Manipulate is always deployed even if the cell it is in has the Deployed option set to

False.

option typical default
value

Evaluator "Local" the name of the kernel to use for
evaluations

Evaluatable False whether to allow the contents of a cell to
be evaluated

CellAutoOverwrite False whether to overwrite previous output when
new output is generated

GeneratedCell False whether this cell was generated from the
kernel

InitializationCell False whether this cell should automatically be
evaluated when the notebook is opened

Options for evaluation.

Mathematica makes it possible to specify a different evaluator for each cell in a notebook. But

most often, the Evaluator option is set only at the notebook or global level, typically using the

Kernel Configuration Options menu item in the front end.

Notebooks and Documents 179

Mathematica makes it possible to specify a different evaluator for each cell in a notebook. But

most often, the Evaluator option is set only at the notebook or global level, typically using the

Kernel Configuration Options menu item in the front end.

The option CellAutoOverwrite is typically set to True for styles that represent Mathematica

output. Doing this means that when you reevaluate a particular piece of input, Mathematica will

automatically delete the output that was previously generated from that input, and will over-

write it with new output.

The option GeneratedCell is set whenever a cell is generated by an external request to the

front end rather than by an interactive operation within the front end. Thus, for example, any

cell obtained as an output or side effect from a kernel evaluation will have

GeneratedCell -> True. Cells generated by low-level functions designed to manipulate note-

books directly, such as NotebookWrite and NotebookApply, do not have the GeneratedCell

option set.

option typical default
value

PageBreakAbove Automatic whether to put a page break just above a
particular cell

PageBreakWithin Automatic whether to allow a page break within a
particular cell

PageBreakBelow Automatic whether to put a page break just below a
particular cell

GroupPageBreakWithin Automatic whether to allow a page break within a
particular group of cells

Options for controlling page breaks when cells are printed.

When you display a notebook on the screen, you can scroll continuously through it. But if you

print the notebook out, you have to decide where page breaks will occur. A setting of

Automatic for a page break option tells Mathematica to make a page break if necessary; True

specifies that a page break should always be made, while False specifies that it should never

be.

Page breaks set using the PageBreakAbove and PageBreakBelow options also determine the

breaks between slides in a slide show. When creating a slide show, you will typically use a cell

with a special named style to determine where each slide begins. This named style will have

one of the page-breaking options set on it.

Additional functionality related to this tutorial has been introduced in subsequent versions
of Mathematica. For the latest information, see Text Styling.

180 Notebooks and Documents

Additional functionality related to this tutorial has been introduced in subsequent versions
of Mathematica. For the latest information, see Text Styling.

Text and Font Options

option typical default
value

PageWidth WindowWidth how wide to assume the page to be
TextAlignment Left how to align successive lines of text
TextJustification 0 how much to allow lines of text to be

stretched to make them fit
Hyphenation False whether to allow hyphenation
ParagraphIndent 0 how many printer’s points to indent the

first line in each paragraph

General options for text formatting.

If you have a large block of text containing no explicit newline characters, then Mathematica

will automatically break your text into a sequence of lines. The option PageWidth specifies how

long each line should be allowed to be.

WindowWidth the width of the window on the screen

PaperWidth the width of the page as it would be printed

Infinity an infinite width (no line breaking)

n explicit width given in printer’s points

Settings for the PageWidth option in cells and notebooks.

The option TextAlignment allows you to specify how you want successive lines of text to be

aligned. Since Mathematica normally breaks text only at space or punctuation characters, it is

common to end up with lines of different lengths. Normally the variation in lengths will give

your text a ragged boundary. But Mathematica allows you to adjust the spaces in successive

lines of text so as to make the lines more nearly equal in length. The setting for

TextJustification gives the fraction of extra space which Mathematica is allowed to add.

TextJustification -> 1 leads to “full justification” in which all complete lines of text are

adjusted to be exactly the same length.

Notebooks and Documents 181

Left aligned on the left

Right aligned on the right

Center centered

x aligned at a position x running from -1 to +1 across the
page

Settings for the TextAlignment option.

Here is text with TextAlignment -> Left and TextJustification -> 0.

With TextAlignment -> Center the text is centered.

TextJustification -> 1 adjusts word spacing so that both the left and right edges line up.

TextJustification -> 0.5 reduces the degree of raggedness, but does not force the left
and right edges to be precisely lined up.

182 Notebooks and Documents

With Hyphenation -> True the text is hyphenated.

When you enter a block of text in a Mathematica notebook, Mathematica will treat any explicit

newline characters that you type as paragraph breaks. The option ParagraphIndent allows you

to specify how much you want to indent the first line in each paragraph. By giving a negative

setting for ParagraphIndent, you can make the first line stick out to the left relative to subse-

quent lines.

LineSpacing->9c,0= leave space so that the total height of each line is c times
the height of its contents

LineSpacing->90,n= make the total height of each line exactly n printer’s points

LineSpacing->9c,n= make the total height c times the height of the contents
plus n printer’s points

ParagraphSpacing->9c,0= leave an extra space of c times the height of the font
before the beginning of each paragraph

ParagraphSpacing->90,n= leave an extra space of exactly n printer’s points before the
beginning of each paragraph

ParagraphSpacing->9c,n= leave an extra space of c times the height of the font plus
n printer’s points

Options for spacing between lines of text.

Here is some text with the default setting LineSpacing -> 81, 1<, which inserts just 1
printer’s point of extra space between successive lines.

Notebooks and Documents 183

With LineSpacing -> 81, 5< the text is “looser”.

LineSpacing -> 82, 0< makes the text double-spaced.

With LineSpacing -> 81, -2< the text is tight.

option typical default
value

FontFamily "Courier" the family of font to use
FontSubstitutions 8< a list of substitutions to try for font family

names
FontSize 12 the maximum height of characters in

printer’s points
FontWeight "Bold" the weight of characters to use
FontSlant "Plain" the slant of characters to use
FontTracking "Plain" the horizontal compression or expansion of

characters
FontColor GrayLevel@0D the color of characters
Background GrayLevel@1D the color of the background for each

character

Options for fonts.

184 Notebooks and Documents

"Courier" text like this

"Times" text like this

"Helvetica" text like this

Some typical font family names.

FontWeight->"Plain" text like this

FontWeight->"Bold" text like this

FontWeight->"ExtraBold" text like this

FontSlant->"Oblique" text like this

Some settings of font options.

Mathematica allows you to specify the font that you want to use in considerable detail. Some-

times, however, the particular combination of font families and variations that you request may

not be available on your computer system. In such cases, Mathematica will try to find the

closest approximation it can. There are various additional options, such as

FontPostScriptName, that you can set to help Mathematica find an appropriate font. In addi-

tion, you can set FontSubstitutions to be a list of rules that give replacements to try for font

family names.

There are a great many fonts available for ordinary text. But for special technical characters,

and even for Greek letters, far fewer fonts are available. The Mathematica system includes

fonts that were built to support all of the various special characters that are used by Mathemat-

ica. There are three versions of these fonts: ordinary (like Times), monospaced (like Courier),

and sans serif (like Helvetica).

For a given text font, Mathematica tries to choose the special character font that matches it

best. You can help Mathematica to make this choice by giving rules for "FontSerifed" and

"FontMonospaced" in the setting for the FontProperties option. You can also give rules for

"FontEncoding" to specify explicitly from what font each character is to be taken.

Notebooks and Documents 185

Options for Expression Input and Output

option typical default
value

AutoIndent Automatic whether to indent after an explicit Return
character is entered

DelimiterFlashTime 0.3 the time in seconds to flash a delimiter
when a matching one is entered

ShowAutoStyles True whether to show automatic style variations
for syntactic and other constructs

ShowCursorTracker True whether an elliptical spot should appear
momentarily to guide the eye if the cursor
position jumps

ShowSpecialCharacters True whether to replace î @NameD by a special
character as soon as the D is entered

ShowStringCharacters True whether to display " when a string is
entered

SingleLetterItalics False whether to put single-letter symbol names
in italics

ZeroWidthTimes False whether to represent multiplication by a
zero width character

InputAliases 8< additional ÇnameÇ aliases to allow

InputAutoReplacements 8"->"->"Ø",…< strings to automatically replace on input

AutoItalicWords 8"Mathematica",
…<

words to automatically put in italics

LanguageCategory "NaturalLanguaÖ
ge"

what category of language to assume a cell
contains for spell checking and hyphenation

Options associated with the interactive entering of expressions.

The option SingleLetterItalics is typically set whenever a cell uses TraditionalForm.

Here is an expression entered with default options for a StandardForm input cell.

186 Notebooks and Documents

Here is the same expression entered in a cell with SingleLetterItalics -> True and
ZeroWidthTimes -> True.

Built into Mathematica are a large number of aliases for common special characters.

InputAliases allows you to add your own aliases for further special characters or for any other

kind of Mathematica input. A rule of the form "name" -> expr specifies that ÇnameÇ should immedi-

ately be replaced on input by expr.

Aliases are delimited by explicit Esc characters. The option InputAutoReplacements allows you

to specify that certain kinds of input sequences should be immediately replaced even when they

have no explicit delimiters. By default, for example, -> is immediately replaced by Ø. You can

give a rule of the form "seq" -> "rhs" to specify that whenever seq appears as a token in your

input, it should immediately be replaced by rhs.

"NaturalLanguage" human natural language such as English

"Mathematica" Mathematica input

"Formula" mathematical formula

None do no spell checking or hyphenation

Settings for LanguageCategory to control spell checking and hyphenation.

The option LanguageCategory allows you to tell Mathematica what type of contents it should

assume cells have. This determines how spelling and structure should be checked, and how

hyphenation should be done.

option typical default
value

StructuredSelection False whether to allow only complete subexpres -
sions to be selected

DragAndDrop False whether to allow drag-and-drop editing

Options associated with interactive manipulation of expressions.

Mathematica normally allows you to select any part of an expression that you see on the

screen. Occasionally, however, you may find it useful to get Mathematica to allow only selec-

tions which correspond to complete subexpressions. You can do this by setting the option

StructuredSelection -> True.

Here is an expression with a piece selected.

Notebooks and Documents 187

Here is an expression with a piece selected.

With StructuredSelection -> True only complete subexpressions can ever be selected.

Unlike most of the other options here, the DragAndDrop option can only be set for the entire

front end, rather than for individual cells or cell styles.

GridBox@data,optsD give options that apply to a particular grid box

StyleBox@boxes,optsD give options that apply to all boxes in boxes

Cell@contents,optsD give options that apply to all boxes in contents

Cell@contents,GridBoxOptions->optsD

give default options settings for all GridBox objects in
contents

Examples of specifying options for the display of expressions.

As discussed in "Textual Input and Output", Mathematica provides many options for specifying

how expressions should be displayed. By using StyleBox@boxes, optsD you can apply such

options to collections of boxes. But Mathematica is set up so that any option that you can give

to a StyleBox can also be given to a complete Cell object, or even a complete Notebook.

Thus, for example, options like Background and LineIndent can be given to complete cells as

well as to individual StyleBox objects.

There are some options that apply only to a particular type of box, such as GridBox. Usually

these options are best given separately in each GridBox where they are needed. But some-

times you may want to specify default settings to be inherited by all GridBox objects that

appear in a particular cell. You can do this by giving these default settings as the value of the

option GridBoxOptions for the whole cell.

For most box types named XXXBox, Mathematica provides a cell option XXXBoxOptions that

allows you to specify the default options settings for that type of box. Box types which take

options can also have their options set in a stylesheet by defining the XXX style. The stylesheets

which come with Mathematica define many such styles.

188 Notebooks and Documents

For most box types named XXXBox, Mathematica provides a cell option XXXBoxOptions that

allows you to specify the default options settings for that type of box. Box types which take

options can also have their options set in a stylesheet by defining the XXX style. The stylesheets

which come with Mathematica define many such styles.

Options for Notebooks

† Use the Option Inspector menu to change options interactively.

† Use SetOptions@obj, optionsD from the kernel.

† Use CreateWindow@optionsD to create a new notebook with specified options.

Ways to change the overall options for a notebook.

This creates a notebook displayed in a 40x30 window with a thin frame.

In[1]:= CreateWindow@WindowFrame -> "ThinFrame", WindowSize -> 840, 30<D

option typical default
value

StyleDefinitions "Default.nb" the basic stylesheet to use for the notebook
ScreenStyleEnvironment "Working" the style environment to use for screen

display
PrintingStyleEnvironment "Printout" the style environment to use for printing

Style options for a notebook.

In giving style definitions for a particular notebook, Mathematica allows you either to reference

another notebook, or explicitly to include the Notebook expression that defines the styles.

option typical default
value

CellGrouping Automatic how to group cells in the notebook
ShowPageBreaks False whether to show where page breaks would

occur if the notebook were printed
NotebookAutoSave False whether to automatically save the notebook

after each piece of output

General options for notebooks.

Notebooks and Documents 189

With CellGrouping -> Automatic, cells are automatically grouped based on their style.

With CellGrouping -> Manual, you have to group cells by hand.

option typical default
value

DefaultNewCellStyle "Input" the default style for new cells created in the
notebook

DefaultDuplicateCellStyle "Input" the default style for cells created by auto -
matic duplication of existing cells

Options specifying default styles for cells created in a notebook.

Mathematica allows you to take any cell option and set it at the notebook level, thereby specify-

ing a global default for that option throughout the notebook.

option typical default
value

Editable True whether to allow cells in the notebook to be
edited

Selectable True whether to allow cells to be selected
Deletable True whether to allow cells to be deleted
ShowSelection True whether to show the current selection

highlighted
Background GrayLevel@1D what background color to use for the

notebook
Magnification 1 at what magnification to display the

notebook
PageWidth WindowWidth how wide to allow the contents of cells to be

A few cell options that are often set at the notebook level.

Here is a notebook with the Background option set at the notebook level.

190 Notebooks and Documents

Here is a notebook with the Background option set at the notebook level.

option typical default
value

Visible True whether the window should be visible on
the screen

WindowSize 9Automatic,
Automatic=

the width and height of the window in
printer’s points

WindowMargins Automatic the margins to leave around the window
when it is displayed on the screen

WindowFrame "Normal" the type of frame to draw around the
window

WindowElements 8"StatusArea",
…<

elements to include in the window

WindowTitle Automatic what title should be displayed for the
window

WindowMovable True whether to allow the window to be moved
around on the screen

WindowFloating False whether the window should always float on
top of other windows

WindowClickSelect True whether the window should become
selected if you click in it

DockedCells 8< a list of cells specifying the content of a
docked area at the top of the window

Characteristics of the notebook window.

WindowSize allows you to specify how large you want a window to be; WindowMargins allows

you to specify where you want the window to be placed on your screen. The setting

WindowMargins -> 88left, right<, 8bottom, top<< gives the margins in pixels to leave around your

window on the screen. Often only two of the margins will be set explicitly; the others will be

Automatic, indicating that these margins will be determined from the particular size of screen

that you use.

WindowClickSelect is the principal option that determines whether a window acts like a

palette. Palettes are generally windows with content that acts upon other windows, rather than

windows which need to be selected for their own ends. Palettes also generally have a collection

of other option settings such as WindowFloating -> True and WindowFrame -> "Palette".

DockedCells allows you to specify any content that you want to stay at the top of a window

and never scroll offscreen. A typical use of the DockedCells option is to define a custom tool-

bar. Many default stylesheets have the DockedCells option defined in certain environments to

create toolbars for purposes such as presenting slideshows and editing package files.

Notebooks and Documents 191

DockedCells allows you to specify any content that you want to stay at the top of a window

and never scroll offscreen. A typical use of the DockedCells option is to define a custom tool-

bar. Many default stylesheets have the DockedCells option defined in certain environments to

create toolbars for purposes such as presenting slideshows and editing package files.

"Normal" an ordinary window

"Palette" a palette window

"ModelessDialog" a modeless dialog box window

"ModalDialog" a modal dialog box window

"MovableModalDialog" a modal dialog box window that can be moved around the
screen

"ThinFrame" an ordinary window with a thin frame

"Frameless" an ordinary window with no frame at all

"Generic" a window with a generic border

Typical possible settings for WindowFrame .

Mathematica allows many different types of windows. The details of how particular windows are

rendered may differ slightly from one computer system to another, but their general form is

always the same. WindowFrame specifies the type of frame to draw around the window.

WindowElements gives a list of specific elements to include in the window.

"StatusArea" an area used to display status messages, such as those
created by StatusArea

"MagnificationPopUp" a popup menu of common magnifications

"HorizontalScrollBar" a scroll bar for horizontal motion

"VerticalScrollBar" a scroll bar for vertical motion

Some typical possible entries in the WindowElements list.

192 Notebooks and Documents

Here is a window with a status area and horizontal scroll bar, but no magnification popup or
vertical scroll bar.

Global Options for the Front End

In the standard notebook front end, Mathematica allows you to set a large number of global

options. The values of all these options are by default saved in a “preferences file”, and are

automatically reused when you run Mathematica again. These options include all the settings

which can be made using the Preferences dialog.

style definitions default style definitions to use for new notebooks

file locations directories for finding notebooks and system files

data export options how to export data in various formats

character encoding options how to encode special characters

language options what language to use for text

message options how to handle messages generated by Mathematica

dialog settings choices made in dialog boxes

system configuration private options for specific computer systems

Some typical categories of global options for the front end.

You can access global front end options from the kernel by using Options@$FrontEnd, nameD.

But more often, you will want to access these options interactively using the Option Inspector in

the front end.

Notebooks and Documents 193

Mathematical and Other Notation

Mathematical Notation in Notebooks

If you use a text-based interface to Mathematica, then the input you give must consist only of

characters that you can type directly on your computer keyboard. But if you use a notebook

interface then other kinds of input become possible.

There are palettes provided which operate like extensions of your keyboard, and which have

buttons that you can click to enter particular forms. You can access standard palettes using the

Palettes menu.

Clicking the p button in this palette will enter a Pi into your notebook.

194 Notebooks and Documents

Clicking the first button in this palette will create an empty structure for entering a power. You
can use the mouse to fill in the structure.

You can also give input by using special keys on your keyboard. Pressing one of these keys

does not lead to an ordinary character being entered, but instead typically causes some action

to occur or some structure to be created.

Esc pEsc the symbol p

Esc infEsc the symbol ¶

Esc eeEsc the symbol ‰ for the exponential constant (equivalent to E)

Esc iiEsc the symbol Â for -1 (equivalent to I)

Esc degEsc the symbol ° (equivalent to Degree)

Ctrl+^ or Ctrl+6 go to the superscript for a power

Ctrl+/ go to the denominator for a fraction

Ctrl+@ or Ctrl+2 go into a square root

Ctrl+Space return from a superscript, denominator or square root

A few ways to enter special notations on a standard English-language keyboard.

Here is a computation entered using ordinary characters on a keyboard.

Notebooks and Documents 195

Here is a computation entered using ordinary characters on a keyboard.

In[1]:= N@Pi^2 ê 6D

Out[1]= 1.64493

Here is the same computation entered using a palette or special keys.

In[2]:= NB
p2

6
F

Out[2]= 1.64493

Here is an actual sequence of keys that can be used to enter the input.

In[3]:= N[Esc pEsc Ctrl+^ 2 Ctrl+Space Ctrl+/ 6 Ctrl+Space]
Out[3]= 1.64493

In a traditional computer language such as C, Fortran, Java or Perl, the input you give must

always consist of a string of ordinary characters that can be typed directly on a keyboard. But

the Mathematica language also allows you to give input that contains special characters, super-

scripts, built-up fractions, and so on.

The language incorporates many features of traditional mathematical notation. But you should

realize that the goal of the language is to provide a precise and consistent way to specify compu -

tations. And as a result, it does not follow all of the somewhat haphazard details of traditional

mathematical notation.

Nevertheless, as discussed in "Forms of Input and Output", it is always possible to get Mathemat-

ica to produce output that imitates every aspect of traditional mathematical notation. And it is

also possible for Mathematica to import text that uses such notation, and to some extent to

translate it into its own more precise language.

Mathematical Notation in Notebooks

If you use the notebook front end for Mathematica, then you can enter some of the operations

discussed here in special ways.

196 Notebooks and Documents

⁄i=imin
imax f Sum@ f,8i,imin,imax<D sum

¤i=imin
imax f Product@ f,8i,imin,imax<D product

Ÿ f „ x Integrate@ f,xD indefinite integral

Ÿxmin
xmax f „ x Integrate@ f,8x,xmin,xmax<D definite integral

∂x f D@ f,xD partial derivative

∂x,y f D@ f,x,yD multivariate partial derivative

Special and ordinary ways to enter mathematical operations in notebooks.

This one of the standard palettes for entering mathematical operations. When you click a button
in the palette, the form shown in the button is inserted into your notebook, with the black
square replaced by whatever you had selected in the notebook.

Notebooks and Documents 197

Esc sumEsc summation sign ⁄

Esc prodEsc product sign ¤

Esc intEsc integral sign Ÿ

Esc ddEsc special differential „ for use in integrals

Esc pdEsc partial derivative ∂

Ctrl+_ or Ctrl+- move to the subscript position or lower limit of an integral

Ctrl+^ or Ctrl+6 move to the superscript position or upper limit of an
integral

Ctrl++ or Ctrl+= move to the underscript position or lower limit of a sum or
product

Ctrl+& or Ctrl+7 move to the overscript position or upper limit of a sum or
product

Ctrl+% or Ctrl+5 switch between upper and lower positions

Ctrl+Space return from upper or lower positions

Ways to enter special notations on a standard English-language keyboard.

You can enter an integral like this. Be sure to use the special differential „ entered as Esc dd
Esc, not just an ordinary d.

In[1]:= ‡ xn „x

Out[1]=
x1+n

1 + n

Here is the actual key sequence you type to get the input.

In[2]:= Esc intEsc x Ctrl+^ n Ctrl+Space Esc ddEsc x

Out[2]=
x1+n

1 + n

When entering a sum, product or integral that has limits, you can create the first limit using the

standard control sequences for subscripts, superscripts, underscripts, or overscripts. However,

you must use Ctrl+% to create the second limit.

You can enter a sum like this.

In[3]:= ‚
x=0

n

x

Out[3]=
1

2
n H1 + nL

Here is the actual key sequence you type to get the input.

198 Notebooks and Documents

Here is the actual key sequence you type to get the input.

In[4]:= Esc sumEsc Ctrl+= x=0 Ctrl+% n Ctrl+Space x

Out[4]=
1

2
n H1 + nL

Special Characters

Built into Mathematica are a large number of special characters intended for use in mathemati-

cal and other notation. "Listing of Named Characters" gives a complete listing.

Each special character is assigned a full name such as \[Infinity]. More common special

characters are also assigned aliases, such as Esc infEsc. You can set up additional aliases

using the InputAliases notebook option discussed in "Options for Expression Input and Out-

put".

For special characters that are supported in standard dialects of TeX, Mathematica also allows

you to use aliases based on TeX names. Thus, for example, you can enter \[Infinity] using

the alias Esc \infty Esc. Mathematica also supports aliases such as Esc¶Esc based on names

used in SGML and HTML.

Standard system software on many computer systems also supports special key combinations

for entering certain special characters. On a Macintosh, for example, Option+5 will produce ¶ in

most fonts. With the notebook front end Mathematica automatically allows you to use special

key combinations when these are available, and with a text-based interface you can get Mathe-

matica to accept such key combinations if you set an appropriate value for

$CharacterEncoding.

† Use a full name such as \[Infinity]

† Use an alias such as Esc infEsc

† Use a TeX alias such as Esc \infty Esc

† Use an SGML or HTML alias such as Esc¶Esc

† Click a button in a palette

† Use a special key combination supported by your computer system

Ways to enter special characters.

In a Mathematica notebook, you can use special characters just like you use standard keyboard

characters. You can include special characters both in ordinary text and in input that you intend

to give to Mathematica.

Notebooks and Documents 199

In a Mathematica notebook, you can use special characters just like you use standard keyboard

characters. You can include special characters both in ordinary text and in input that you intend

to give to Mathematica.

Some special characters are set up to have an immediate meaning to Mathematica. Thus, for

example, p is taken to be the symbol Pi. Similarly, ¥ is taken to be the operator >=, while ‹ is

equivalent to the function Union.

p and ¥ have immediate meanings in Mathematica.

In[1]:= p ¥ 3

Out[1]= True

‹ or î[Union] is immediately interpreted as the Union function.

In[2]:= 8a, b, c< ‹ 8c, d, e<

Out[2]= 8a, b, c, d, e<

ü or î[SquareUnion] has no immediate meaning to Mathematica.

In[3]:= 8a, b, c< ü 8c, d, e<

Out[3]= 8a, b, c< ü 8c, d, e<

Among ordinary characters such as E and i, some have an immediate meaning to Mathematica,

but most do not. And the same is true of special characters.

Thus, for example, while p and ¶ have an immediate meaning to Mathematica, l and  do not.

This allows you to set up your own definitions for l and .

l has no immediate meaning in Mathematica.

In[4]:= l@2D + l@3D

Out[4]= l@2D + l@3D

This defines a meaning for l.

In[5]:= l@x_D := x2 - 1

Now Mathematica evaluates l just as it would any other function.

In[6]:= l@2D + l@3D

Out[6]= 2 2 + 3

Characters such as l and  are treated by Mathematica as letters~just like ordinary keyboard

letters like a or b.

200 Notebooks and Documents

Characters such as l and  are treated by Mathematica as letters~just like ordinary keyboard

letters like a or b.

But characters such as ⊕ and ü are treated by Mathematica as operators. And although these

particular characters are not assigned any built-in meaning by Mathematica, they are neverthe-

less required to follow a definite syntax.

ü is an infix operator.

In[7]:= 8a, b, c< ü 8c, d, e<

Out[7]= 8a, b, c< ü 8c, d, e<

The definition assigns a meaning to the ü operator.

In[8]:= x_ ü y_ := Join@x, yD

Now ü can be evaluated by Mathematica.

In[9]:= 8a, b, c< ü 8c, d, e<

Out[9]= 8a, b, c, c, d, e<

The details of how input you give to Mathematica is interpreted depends on whether you are

using StandardForm or TraditionalForm, and on what additional information you supply in

InterpretationBox and similar constructs.

But unless you explicitly override its built-in rules by giving your own definitions for

MakeExpression, Mathematica will always assign the same basic syntactic properties to any

particular special character.

These properties not only affect the interpretation of the special characters in Mathematica

input, but also determine the structure of expressions built with these special characters. They

also affect various aspects of formatting; operators, for example, have extra space left around

them, while letters do not.

Letters a, E, p, X, , etc.

Letter-like forms ¶, «, ℧, £, etc.

Operators ⊕, ∂, º, F, etc.

Types of special characters.

In using special characters, it is important to make sure that you have the correct character for

a particular purpose. There are quite a few examples of characters that look similar, yet are in

fact quite different.

Notebooks and Documents 201

In using special characters, it is important to make sure that you have the correct character for

a particular purpose. There are quite a few examples of characters that look similar, yet are in

fact quite different.

A common issue is operators whose forms are derived from letters. An example is ⁄ or \@SumD,

which looks very similar to S or \[CapitalSigma].

As is typical, however, the operator form ⁄ is slightly less elaborate and more stylized than the

letter form S. In addition, ⁄ is an extensible character which grows depending on the summand,

while S has a size determined only by the current font.

A A \[CapitalAlpha], A

fi Å \[Angstrom], \[CapitalARing]

„ d \@DifferentialDD, d

‰ e \[ExponentialE], e

œ e \@ElementD , \[Epsilon]

Â i \[ImaginaryI], i

µ m \[Micro], \[Mu]

« Ø \[EmptySet], \[CapitalOSlash]

¤ P \@ProductD , \[CapitalPi]

⁄ S \@SumD, \[CapitalSigma]

 T \@TransposeD, T

‹ U \@UnionD, U

Different characters that look similar.

In cases such as \[CapitalAlpha] versus A, both characters are letters. However, Mathemat-

ica treats these characters as different, and in some fonts, for example, they may look quite

different.

The result contains four distinct characters.

In[10]:= Union@8A, A, A, m, m, µ<D

Out[10]= 8A, A, m, µ<

Traditional mathematical notation occasionally uses ordinary letters as operators. An example is

the d in a differential such as dx that appears in an integral.

To make Mathematica have a precise and consistent syntax, it is necessary at least in

StandardForm to distinguish between an ordinary d and the „ used as a differential operator.

The way Mathematica does this is to use a special character „ or \@DifferentialDD as the

differential operator. This special character can be entered using the alias Esc ddEsc.

202 Notebooks and Documents

Mathematica uses a special character for the differential operator, so there is no conflict with an
ordinary d.

In[11]:= ‡ xd „x

Out[11]=
x1+d

1 + d

When letters and letter-like forms appear in Mathematica input, they are typically treated as

names of symbols. But when operators appear, functions must be constructed that correspond

to these operators. In almost all cases, what Mathematica does is to create a function whose

name is the full name of the special character that appears as the operator.

Mathematica constructs a CirclePlus function to correspond to the operator ⊕, whose full
name is î[CirclePlus].

In[12]:= a ⊕ b ⊕ c êê FullForm

Out[12]//FullForm= CirclePlus@a, b, cD

This constructs an And function, which happens to have built-in evaluation rules in
Mathematica.

In[13]:= a Ï b Ï c êê FullForm

Out[13]//FullForm= And@a, b, cD

Following the correspondence between operator names and function names, special characters

such as ‹ that represent built-in Mathematica functions have names that correspond to those

functions. Thus, for example, ¸ is named \@DivideD to correspond to the built-in Mathematica

function Divide, and fl is named \@ImpliesD to correspond to the built-in function Implies.

In general, however, special characters in Mathematica are given names that are as generic as

possible, so as not to prejudice different uses. Most often, characters are thus named mainly

according to their appearance. The character ⊕ is therefore named \@CirclePlusD, rather

than, say \@DirectSumD, and º is named \@TildeTildeD rather than, say,

\@ApproximatelyEqualD.

Notebooks and Documents 203

µ ä \@TimesD, \@CrossD

fl Ô \@AndD, \@WedgeD

fi Ó \@OrD, \@VeeD

Ø Ø \@RuleD, \@RightArrowD

fl fl \@ImpliesD , \@DoubleRightArrowD

 = \@LongEqualD, =

 { \@PiecewiseD, {

* * \@StarD, *

î \ \@BackslashD, \

ÿ . \@CenterDotD, .

Ô ^ \@WedgeD, ^

˝ | \@VerticalBarD, |

» | \@VerticalSeparatorD, |

X < \@LeftAngleBracketD , <

Different operator characters that look similar.

There are sometimes characters that look similar but which are used to represent different

operators. An example is \@TimesD and \@CrossD. \@TimesD corresponds to the ordinary

Times function for multiplication; \@CrossD corresponds to the Cross function for vector cross

products. The ä for \@CrossD is drawn slightly smaller than µ for \@TimesD, corresponding to

usual careful usage in mathematical typography.

The \@TimesD operator represents ordinary multiplication.

In[14]:= 85, 6, 7< µ 82, 3, 1<

Out[14]= 810, 18, 7<

The \@CrossD operator represents vector cross products.

In[15]:= 85, 6, 7< ä 82, 3, 1<

Out[15]= 8-15, 9, 3<

The two operators display in a similar way~with \@TimesD slightly larger than \@CrossD.

In[16]:= 8a µ b, a ä b<

Out[16]= 8a b, aäb<

In the example of \@AndD and \@WedgeD, the \@AndD operator~which happens to be drawn

slightly larger~corresponds to the built-in Mathematica function And, while the \@WedgeD

operator has a generic name based on the appearance of the character and has no built-in

meaning.

204 Notebooks and Documents

You can mix î[Wedge] and î[And] operators. Each has a definite precedence.

In[17]:= a Ô b Ï c Ô d êê FullForm

Out[17]//FullForm= And@Wedge@a, bD, Wedge@c, dDD

Some of the special characters commonly used as operators in mathematical notation look

similar to ordinary keyboard characters. Thus, for example, Ô or î[Wedge] looks similar to the ^

character on a standard keyboard.

Mathematica interprets a raw ^ as a power. But it interprets Ô as a generic Wedge function. In

cases such as this where there is a special character that looks similar to an ordinary keyboard

character, the convention is to use the ordinary keyboard character as the alias for the special

character. Thus, for example, Esc ^Esc is the alias for \@WedgeD.

The raw ^ is interpreted as a power, but the Esc ^Esc is a generic wedge operator.

In[18]:= {x ^ y, x Esc ^Esc y}

Out[18]= 9xy, xÔy=

A related convention is that when a special character is used to represent an operator that can

be typed using ordinary keyboard characters, those characters are used in the alias for the

special character. Thus, for example, Esc ->Esc is the alias for Ø or \@RuleD, while Esc &&Esc

is the alias for fl or \@AndD.

Esc ->Esc is the alias for \@RuleD, and Esc &&Esc for \@AndD.

In[19]:= {x Esc ->Esc y, x Esc &&Esc y} // FullForm
Out[19]//FullForm= List@Rule@x, yD, And@x, yDD

The most extreme case of characters that look alike but work differently occurs with vertical

bars.

form character name alias interpretation
x y Alternatives@x,yD
x y \@VerticalSeparatorD Esc Esc VerticalSeparator@x,yD
x˝y \@VerticalBarD Esc â Esc VerticalBar@x,yD
†x§ \@LeftBracketingBarD Esc l Esc BracketingBar@xD

\@RightBracketingBarD Esc r Esc

Different types of vertical bars.

Notebooks and Documents 205

Notice that the alias for \@VerticalBarD is Esc â|Esc, while the alias for the somewhat more

common \@VerticalSeparatorD is Esc |Esc. Mathematica often gives similar-looking charac-

ters similar aliases; it is a general convention that the aliases for the less commonly used

characters are distinguished by having spaces at the beginning.

Esc nnnEsc built-in alias for a common character

Esc â nnn Esc built-in alias for similar but less common character

Esc .nnnEsc alias globally defined in a Mathematica session

Esc ,nnnEsc alias defined in a specific notebook

Conventions for special character aliases.

The notebook front end for Mathematica often allows you to set up your own aliases for special

characters. If you want to, you can overwrite the built-in aliases. But the convention is to use

aliases that begin with a dot or comma.

Note that whatever aliases you may use to enter special characters, the full names of the

characters will always be used when the characters are stored in files.

Names of Symbols and Mathematical Objects

Mathematica by default interprets any sequence of letters or letter-like forms as the name of a

symbol.

All these are treated by Mathematica as symbols.

In[1]:= 8x, Sa, R¶, , ¡, —ABC, ‡X, m…n<

Out[1]= 8x, Sa, R¶, , ¡, —ABC, ‡X, m…n<

form character name alias interpretation
p \[Pi] Esc pEsc, Esc piEsc equivalent to Pi
¶ \[Infinity] Esc infEsc equivalent to Infinity
‰ \[ExponentialE] Esc eeEsc equivalent to E
Â \[ImaginaryI] Esc iiEsc equivalent to I
¸ \[ImaginaryJ] Esc jjEsc equivalent to I

Symbols with built-in meanings whose names do not start with capital English letters.

206 Notebooks and Documents

Essentially all symbols with built-in meanings in Mathematica have names that start with capital

English letters. Among the exceptions are ‰ and Â, which correspond to E and I respectively.

Forms such as ‰ are used for both input and output in StandardForm.

In[2]:= 8‰^H2 p ÂL, ‰^p<

Out[2]= 91, ‰p=

In OutputForm ‰ is output as E.

In[3]:= OutputForm@%D

Out[3]//OutputForm= Pi
{1, E }

In written material, it is standard to use very short names~often single letters~for most of the

mathematical objects that one considers. But in Mathematica, it is usually better to use longer

and more explicit names.

In written material you can always explain that a particular single-letter name means one thing

in one place and another in another place. But in Mathematica, unless you use different con-

texts, a global symbol with a particular name will always be assumed to mean the same thing.

As a result, it is typically better to use longer names, which are more likely to be unique, and

which describe more explicitly what they mean.

For variables to which no value will be assigned, or for local symbols, it is nevertheless conve-

nient and appropriate to use short, often single-letter, names.

It is sensible to give the global function LagrangianL a long and explicit name. The local
variables can be given short names.

In[4]:= LagrangianL@f_, m_D = HÑfL2 + m2 f2

Out[4]= m2 f2 + HÑfL2

Notebooks and Documents 207

form input interpretation
xn x Ctrl+_ n Ctrl+Space Subscript@x,nD
x+ x Ctrl+_ + Ctrl+Space SubPlus@xD
x- x Ctrl+_ - Ctrl+Space SubMinus@xD
x* x Ctrl+_ * Ctrl+Space SubStar@xD
x+ x Ctrl+^ + Ctrl+Space SuperPlus@xD
x- x Ctrl+^ - Ctrl+Space SuperMinus@xD
x* x Ctrl+^ * Ctrl+Space SuperStar@xD
x† x Ctrl+^ Esc dgEsc Ctrl+Space SuperDagger@xD
x x Ctrl+& _ Ctrl+Space OverBar@xD
x” x Ctrl+& Esc vecEsc Ctrl+Space OverVector@xD
xè x Ctrl+& ~ Ctrl+Space OverTilde@xD
x` x Ctrl+& ^ Ctrl+Space OverHat@xD
x° x Ctrl+& . Ctrl+Space OverDot@xD
x x Ctrl++ _ Ctrl+Space UnderBar@xD
x StyleAx,BoldE x

Creating objects with annotated names.

Note that with a notebook front end, you can change the style of text using menu items.

option typical default
value

SingleLetterItalics False whether to use italics for single-letter
symbol names

MultiLetterItalics False whether to use italics for multi-letter
symbol names

SingleLetterStyle None the style name or directives to use for
single-letter symbol names

MultiLetterStyle None the style name or directives to use for
multi-letter symbol names

Options for cells in a notebook.

It is conventional in traditional mathematical notation that names consisting of single ordinary

English letters are normally shown in italics, while other names are not. If you use

TraditionalForm, then Mathematica will by default follow this convention. You can explicitly

specify whether you want the convention followed by setting the SingleLetterItalics option

for particular cells or cell styles. You can further specify styles for names using single English

letters or multiple English letters by specifying values for the options SingleLetterStyle and

MultiLetterStyle.

208 Notebooks and Documents

Letters and Letter-like Forms

Greek Letters

form full name aliases
a \[Alpha] ÇaÇ, ÇalphaÇ

b \[Beta] ÇbÇ, ÇbetaÇ

g \[Gamma] ÇgÇ, ÇgammaÇ

d \[Delta] ÇdÇ, ÇdeltaÇ

e \[Epsilon] ÇeÇ, ÇepsilonÇ

ε \[CurlyEpsilon] ÇceÇ, ÇcepsilonÇ

z \[Zeta] ÇzÇ, ÇzetaÇ

h \[Eta] ÇhÇ, ÇetÇ, ÇetaÇ

q \[Theta] ÇqÇ, ÇthÇ, ÇthetaÇ

J \[CurlyTheta] ÇcqÇ, ÇcthÇ, ÇcthetaÇ

i \[Iota] ÇiÇ, ÇiotaÇ

k \[Kappa] ÇkÇ, ÇkappaÇ

ø \[CurlyKappa] ÇckÇ, ÇckappaÇ

l \[Lambda] ÇlÇ, ÇlambdaÇ

m \[Mu] ÇmÇ, ÇmuÇ

n \[Nu] ÇnÇ, ÇnuÇ

x \[Xi] ÇxÇ, ÇxiÇ

o \[Omicron] ÇomÇ, ÇomicronÇ

p \[Pi] ÇpÇ, ÇpiÇ

v \[CurlyPi] ÇcpÇ, ÇcpiÇ

r \[Rho] ÇrÇ, ÇrhoÇ

ϱ \[CurlyRho] ÇcrÇ, ÇcrhoÇ

s \[Sigma] ÇsÇ, ÇsigmaÇ

V \[FinalSigma] ÇfsÇ

t \[Tau] ÇtÇ, ÇtauÇ

u \[Upsilon] ÇuÇ, ÇupsilonÇ

form full name aliases
A \[CapitalAlpha] ÇAÇ, ÇAlphaÇ

B \[CapitalBeta] ÇBÇ, ÇBetaÇ

G \[CapitalGamma] ÇGÇ, ÇGammaÇ

D \[CapitalDelta] ÇDÇ, ÇDeltaÇ

E \[CapitalEpsilon] ÇEÇ, ÇEpsilonÇ

Z \[CapitalZeta] ÇZÇ, ÇZetaÇ

H \[CapitalEta] ÇHÇ, ÇEtÇ, ÇEtaÇ

Q \[CapitalTheta] ÇQÇ, ÇThÇ, ÇThetaÇ

I \[CapitalIota] ÇIÇ, ÇIotaÇ

K \[CapitalKappa] ÇKÇ, ÇKappaÇ

L \[CapitalLambda] ÇLÇ, ÇLambdaÇ

M \[CapitalMu] ÇMÇ, ÇMuÇ

N \[CapitalNu] ÇNÇ, ÇNuÇ

X \[CapitalXi] ÇXÇ, ÇXiÇ

O \[CapitalOmicron] ÇOmÇ, ÇOmicronÇ

P \[CapitalPi] ÇPÇ, ÇPiÇ

R \[CapitalRho] ÇRÇ, ÇRhoÇ

S \[CapitalSigma] ÇSÇ, ÇSigmaÇ

T \[CapitalTau] ÇTÇ, ÇTauÇ

U \[CapitalUpsilon] ÇUÇ, ÇUpsilonÇ

¢ \[CurlyCapitalUpsilon] ÇcUÇ, ÇcUpsilonÇ

Notebooks and Documents 209

form full name aliases
f \[Phi] ÇfÇ, ÇphÇ, ÇphiÇ

j \[CurlyPhi] ÇjÇ, ÇcphÇ, ÇcphiÇ

c \[Chi] ÇcÇ, ÇchÇ, ÇchiÇ

y \[Psi] ÇyÇ, ÇpsÇ, ÇpsiÇ

w \[Omega] ÇoÇ, ÇwÇ, ÇomegaÇ

ϝ \[Digamma] ÇdiÇ, ÇdigammaÇ

ϟ \[Koppa] ÇkoÇ, ÇkoppaÇ

ϛ \[Stigma] ÇstiÇ, ÇstigmaÇ

ª \[Sampi] ÇsaÇ, ÇsampiÇ

form full name aliases
¢ \[CurlyCapitalUpsilon] ÇcUÇ, ÇcUpsilonÇ

F \[CapitalPhi] ÇFÇ, ÇPhÇ, ÇPhiÇ

C \[CapitalChi] ÇCÇ, ÇChÇ, ÇChiÇ

Y \[CapitalPsi] ÇYÇ, ÇPsÇ, ÇPsiÇ

W \[CapitalOmega] ÇOÇ, ÇWÇ, ÇOmegaÇ

Ϝ \[CapitalDigamma] ÇDiÇ, ÇDigammaÇ

¥ \[CapitalKoppa] ÇKoÇ, ÇKoppaÇ

Ϛ \[CapitalStigma] ÇStiÇ, ÇStigmaÇ

µ \[CapitalSampi] ÇSaÇ, ÇSampiÇ

The complete collection of Greek letters in Mathematica.

You can use Greek letters as the names of symbols. The only Greek letter with a built-in mean-

ing in StandardForm is p, which Mathematica takes to stand for the symbol Pi.

Note that even though p on its own is assigned a built-in meaning, combinations such as p2 or

xp have no built-in meanings.

The Greek letters S and P look very much like the operators for sum and product. But as dis-

cussed above, these operators are different characters, entered as î[Sum] and î[Product] respec -

tively.

Similarly, e is different from the œ operator î[Element], and m is different from µ or î[Micro].

Some capital Greek letters such as î[CapitalAlpha] look essentially the same as capital English

letters. Mathematica however treats them as different characters, and in TraditionalForm it

uses î[CapitalBeta], for example, to denote the built-in function Beta.

Following common convention, lower-case Greek letters are rendered slightly slanted in the

standard fonts provided with Mathematica, while capital Greek letters are unslanted. On Greek

systems, however, Mathematica will render all Greek letters unslanted so that standard Greek

fonts can be used.

Almost all Greek letters that do not look similar to English letters are widely used in science and

mathematics. The capital xi X is rare, though it is used to denote the cascade hyperon particles,

the grand canonical partition function and regular language complexity. The capital upsilon U is

also rare, though it is used to denote b b particles, as well as the vernal equinox.

Curly Greek letters are often assumed to have different meanings from their ordinary counter-

parts. Indeed, in pure mathematics a single formula can sometimes contain both curly and

ordinary forms of a particular letter. The curly pi v is rare, except in astronomy.

210 Notebooks and Documents

Curly Greek letters are often assumed to have different meanings from their ordinary counter-

parts. Indeed, in pure mathematics a single formula can sometimes contain both curly and

ordinary forms of a particular letter. The curly pi v is rare, except in astronomy.

The final sigma V is used for sigmas that appear at the ends of words in written Greek; it is not

commonly used in technical notation.

The digamma ϝ, koppa ϟ, stigma ϛ and sampi ª are archaic Greek letters. These letters provide

a convenient extension to the usual set of Greek letters. They are sometimes needed in making

correspondences with English letters. The digamma corresponds to an English w, and koppa to

an English q. Digamma is occasionally used to denote the digamma function PolyGamma@xD.

Variants of English Letters

form full name alias
 \[ScriptL] ÇsclÇ

 \[ScriptCapitalE] ÇscEÇ

 \[ScriptCapitalH] ÇscHÇ

 \[ScriptCapitalL] ÇscLÇ

ℭ \[GothicCapitalC] ÇgoCÇ

ℌ \[GothicCapitalH] ÇgoHÇ

¬ \[GothicCapitalI] ÇgoIÇ

ℜ \[GothicCapitalR] ÇgoRÇ

form full name alias
 \[DoubleStruckCapitalC] ÇdsCÇ

 \[DoubleStruckCapitalR] ÇdsRÇ

 \[DoubleStruckCapitalQ] ÇdsQÇ

 \[DoubleStruckCapitalZ] ÇdsZÇ

 \[DoubleStruckCapitalN] ÇdsNÇ

“ \[DotlessI]
‘ \[DotlessJ]
ƒ \[WeierstrassP] ÇwpÇ

Some commonly used variants of English letters.

By using menu items in the notebook front end, you can make changes in the font and style of

ordinary text. However, such changes are usually discarded whenever you send input to the

Mathematica kernel.

Script, gothic and double-struck characters are, however, treated as fundamentally different

from their ordinary forms. This means that even though a C that is italic or a different size will

be considered equivalent to an ordinary C when fed to the kernel, a double-struck  will not.

Different styles and sizes of C are treated as the same by the kernel. But gothic and double-
struck characters are treated as different.

In[9]:= C + C +C + ℭ + 

Out[9]= 3 C + ℭ + 

In standard mathematical notation, capital script and gothic letters are sometimes used inter-

changeably. The double-struck letters, sometimes called blackboard or openface letters, are

conventionally used to denote specific sets. Thus, for example,  conventionally denotes the set

of complex numbers, and  the set of integers.

Notebooks and Documents 211

In standard mathematical notation, capital script and gothic letters are sometimes used inter-

changeably. The double-struck letters, sometimes called blackboard or openface letters, are

conventionally used to denote specific sets. Thus, for example,  conventionally denotes the set

of complex numbers, and  the set of integers.

Dotless i and j are not usually taken to be different in meaning from ordinary i and j; they are

simply used when overscripts are being placed on the ordinary characters.

î[WeierstrassP] is a notation specifically used for the Weierstrass P function WeierstrassP.

full names aliases
\[ScriptA] | \[ScriptZ] ÇscaÇ | ÇsczÇ lowercase script letters
\[ScriptCapitalA] | \[ScriptCapitalZ]

ÇscAÇ | ÇscZÇ uppercase script letters
\[GothicA] | \[GothicZ] ÇgoaÇ | ÇgozÇ lowercase gothic letters
\[GothicCapitalA] | \[GothicCapitalZ]

ÇgoAÇ | ÇgoZÇ uppercase gothic letters
\[DoubleStruckA] | \[DoubleStruckZ]

ÇdsaÇ | ÇdszÇ lowercase double-struck
letters

\[DoubleStruckCapitalA] | \[DoubleStruckCapitalZ]
ÇdsAÇ | ÇdsZÇ uppercase double-struck

letters
\[FormalA] | \[FormalZ]

Ç$aÇ | Ç$zÇ lowercase formal letters
\[FormalCapitalA] | \[FormalCapitalZ]

Ç$AÇ | Ç$ZÇ uppercase formal letters

Complete alphabets of variant English letters.

Formal Symbols

Symbols represented by formal letters, or formal symbols, appear in the output of certain

functions. They are indicated by gray dots above and below the English letter.

DifferentialRoot automatically chooses the names for the function arguments.

In[83]:= root = DifferentialRootReduce@CosD

Out[83]= DifferentialRootAFunctionA9y
.
., x

.

.=, 9y
.
.Ax

.

.E + y
.
.
££Ax
.
.E ã 0, y

.

.@0D ã 1, y
.
.
£@0D ã 0=EE

212 Notebooks and Documents

Formal symbols are Protected, so they cannot be accidentally assigned a value.

Trying to modify a formal symbol fails.

In[2]:= y
.
. = 0

Set::wrsym: Symbol y.. is Protected. à

Out[2]= 0

In[3]:= y
.
.

Out[3]= y
.
.

This means that expressions depending on formal symbols will not be accidentally modified.

In[4]:= root@@1, 2DD

Out[4]= 9y
.
.Ax
.
.E + y

.

.
££Ax
.
.E ã 0, y

.

.@0D ã 1, y
.
.
£@0D ã 0=

Specific values for formal symbols can be substituted using replacement rules.

Verify that the defining equations hold for cosine.

In[5]:= root@@1, 2DD ê. y
.
. Ø Cos

Out[5]= 8True, True, True<

Formal symbols can be temporarily modified inside of a Block because Block clears all defini-

tions associated with a symbol, including Attributes. Table works essentially like Block, thus

also allowing temporary changes.

Assign a temporary value to y
.
.:

In[6]:= BlockA9y
.
. = Cos=, root@@1, 2DDE

Out[6]= 8True, True, True<

In most situations modifying formal symbols is not necessary. Since in DifferentialRoot

formal symbols are used as names for the formal parameters of a function, the function should

simply be evaluated for the actual values of arguments.

Evaluating the function substitutes x for x
.
. and y for y

.

..

In[7]:= root@@1DD@y, xD

Out[7]= 8y@xD + y££@xD ã 0, y@0D ã 1, y£@0D ã 0<

Notebooks and Documents 213

It is possible to define custom typesetting rules for formal symbols.

Use coloring to highlight formal symbols.

In[84]:= MakeBoxesAx
.
., _E := TagBoxA"x", x

.

. &, AutoDelete Ø True,
BaseStyle Ø 8FontColor Ø RGBColor@.6, .4, .2D, ShowSyntaxStyles Ø False<E

MakeBoxesAy
.
., _E := TagBoxA"y", y

.

. &, AutoDelete Ø True,

BaseStyle Ø 8FontColor Ø RGBColor@.6, .4, .2D, ShowSyntaxStyles Ø False<E

In[86]:= root

Out[86]=

The formatting rules were attached to MakeBoxes. Restore the original formatting:

In[87]:= FormatValuesüMakeBoxes = 8<;

In[88]:= root

Out[88]= DifferentialRootAFunctionA9y
.
., x

.

.=, 9y
.
.Ax

.

.E + y
.
.
££Ax
.
.E ã 0, y

.

.@0D ã 1, y
.
.
£@0D ã 0=EE

Hebrew Letters

form full name alias
¡ \[Aleph] ÇalÇ

º \[Bet]

form full name
ℷ \[Gimel]
æ \[Dalet]

Hebrew characters.

Hebrew characters are used in mathematics in the theory of transfinite sets; ¡0 is for example

used to denote the total number of integers.

214 Notebooks and Documents

Units and Letter-Like Mathematical Symbols

form full name alias
µ \[Micro] ÇmiÇ

℧ \[Mho] ÇmhoÇ

fi \[Angstrom] ÇAngÇ

— \[HBar] ÇhbÇ

¢ \[Cent] ÇcentÇ

£ \[Sterling]
 \[Euro] ÇeuroÇ

¥ \[Yen]

form full name alias
° \[Degree] ÇdegÇ

« \[EmptySet] ÇesÇ

¶ \[Infinity] ÇinfÇ

‰ \[ExponentialE] ÇeeÇ

Â \[ImaginaryI] ÇiiÇ

¸ \[ImaginaryJ] ÇjjÇ

˛ \[DoubledPi] ÇppÇ

˝ \[DoubledGamma] ÇggÇ

Units and letter-like mathematical symbols.

Mathematica treats ° or \[Degree] as the symbol Degree, so that, for example, 30 ° is equiva-

lent to 30 Degree.

Note that µ, fi and « are all distinct from the ordinary letters m (\[Mu]), Å

(\[CapitalARing]) and Ø (\[CapitalOSlash]).

Mathematica interprets ¶ as Infinity, ‰ as E, and both Â and ¸ as I. The characters ‰, Â and ¸

are provided as alternatives to the usual uppercase letters E and I.

˛ and ˝ are not by default assigned meanings in StandardForm. You can therefore use ˛ to

represent a pi that will not automatically be treated as Pi. In TraditionalForm ˝ is interpreted

as EulerGamma.

form full name alias
∂ \@PartialDD ÇpdÇ

„ \@DifferentialDD ÇddÇ

ˇ \@CapitalDifferentialDD ÇDDÇ

“ \@DelD ÇdelÇ

 \@DifferenceDeltaD ÇdiffdÇ

form full name alias

‚ \@SumD ÇsumÇ

‰ \@ProductD ÇprodÇ

 \@TransposeD ÇtrÇ

 \@HermitianConjugateD ÇhcÇ

 \@DiscreteShiftD ÇshiftÇ

 \@DiscreteRatioD ÇdratioÇ

Operators that look like letters.

Notebooks and Documents 215

“ is an operator while —, ° and ¥ are ordinary symbols.

In[1]:= 8“ f, —^2, 45 °, 5000 ¥< êê FullForm

Out[1]//FullForm= ListADel@fD, PowerA\[HBar], 2E, Times@45, DegreeD, TimesA5000, \[Yen]EE

Shapes, Icons and Geometrical Constructs

form full name alias
‰ \[FilledVerySmallSquare] ÇfvssqÇ

„ \[EmptySmallSquare] ÇessqÇ

† \[FilledSmallSquare] ÇfssqÇ

· \[EmptySquare] ÇesqÇ

\[GraySquare] ÇgsqÇ

‡ \[FilledSquare] ÇfsqÇ

Ó \[DottedSquare]
Ò \[EmptyRectangle]
▮ \[FilledRectangle]
Ì \[EmptyDiamond]
Ï \[FilledDiamond]

form full name alias
È \[EmptySmallCircle] ÇesciÇ

Ë \[FilledSmallCircle] ÇfsciÇ

Á \[EmptyCircle] ÇeciÇ

\[GrayCircle] ÇgciÇ

Ê \[FilledCircle] ÇfciÇ

Û \[EmptyUpTriangle]
Ú \[FilledUpTriangle]
ı \[EmptyDownTriangle]
Ù \[FilledDownTriangle]
¯ \[FivePointedStar] Ç*5Ç

˜ \[SixPointedStar] Ç*6Ç

Shapes.

Shapes are most often used as “dingbats” to emphasize pieces of text. But Mathematica treats

them as letter-like forms, and also allows them to appear in the names of symbols.

In addition to shapes such as \[EmptySquare], there are characters such as \@SquareD

which are treated by Mathematica as operators rather than letter-like forms.

form full name alias
Ÿ \[MathematicaIcon] ÇmathÇ

⁄ \[KernelIcon]
¤ \[LightBulb]
‹ \[WarningSign]
› \[WatchIcon]

form full name aliases
Ã \[HappySmiley] Ç : L Ç, Ç:-)Ç

Õ \[NeutralSmiley] Ç:-|Ç

Œ \[SadSmiley] Ç:-(Ç

œ \[FreakedSmiley] Ç:-@Ç

 \[Wolf] ÇwfÇ, ÇwolfÇ

Icons.

You can use icon characters just like any other letter-like forms.

In[1]:= Expand@HÃ +L^4D

Out[1]= Ã
4 + 4 Ã

3  + 6 Ã
2 2 + 4 Ã 3 + 4

216 Notebooks and Documents

form full name
— \[Angle]
¨ \[RightAngle]
∡ \[MeasuredAngle]

form full name
Æ \[SphericalAngle]
Û \[EmptyUpTriangle]
Ø \[Diameter]

Notation for geometrical constructs.

Since Mathematica treats characters like — as letter-like forms, constructs like —BC are treated in

Mathematica as single symbols.

Textual Elements

form full name alias
| \[Dash] Ç-Ç

~ \[LongDash] Ç--Ç

• \[Bullet] ÇbuÇ

¶ \[Paragraph]
§ \[Section]
¿ \[DownQuestion] Çd?Ç

¡ \[DownExclamation] Çd!Ç

form full name alias
£ \[Prime] Ç'Ç

″ \[DoublePrime] Ç''Ç

æ \[ReversePrime] Ç`Ç

ø \[ReverseDoublePrime] Ç``Ç

« \[LeftGuillemet] Çg<<Ç

» \[RightGuillemet] Çg>>Ç

… \[Ellipsis] Ç...Ç

Characters used for punctuation and annotation.

form full name
© \[Copyright]
® \[RegisteredTrademark]
’ \[Trademark]
Ÿ \[Flat]
⁄ \[Natural]
¤ \[Sharp]

form full name alias
† \[Dagger] ÇdgÇ

‡ \[DoubleDagger] ÇddgÇ

® \[ClubSuit]
© \[DiamondSuit]
™ \[HeartSuit]
´ \[SpadeSuit]

Other characters used in text.

Notebooks and Documents 217

form full name alias
\[HorizontalLine] ÇhlineÇ

\[VerticalLine] ÇvlineÇ

… \[Ellipsis] Ç...Ç

 \[CenterEllipsis]
ª \[VerticalEllipsis]
⋰ \[AscendingEllipsis]
 \[DescendingEllipsis]

form full name alias
† \[UnderParenthesis] Çu(Ç

ê \[OverParenthesis] Ço(Ç

Ä \[UnderBracket] Çu[Ç

p \[OverBracket] Ço[Ç

ß \[UnderBrace] Çu{Ç

ó \[OverBrace] Ço{Ç

Characters used in building sequences and arrays.

The under and over braces grow to enclose the whole expression.

In[1]:= Underoverscript@Expand@H1 + xL^4D, ß, óD

Out[1]= 1 + 4 x + 6 x2 + 4 x3 + x4

Extended Latin Letters

Mathematica supports all the characters commonly used in Western European languages based

on Latin scripts.

form full name alias
à \[AGrave] Ça`Ç

á \[AAcute] Ça'Ç

â \[AHat] Ça^Ç

ã \[ATilde] Ça~Ç

ä \[ADoubleDot] Ça"Ç

å \[ARing] ÇaoÇ

ā \[ABar] Ça-Ç

ă \[ACup] ÇauÇ

æ \[AE] ÇaeÇ

ć \[CAcute] Çc'Ç

ç \[CCedilla] Çc,Ç

č \[CHacek] ÇcvÇ

è \[EGrave] Çe`Ç

é \[EAcute] Çe'Ç

ē \[EBar] Çe-Ç

ê \[EHat] Çe^Ç

ë \[EDoubleDot] Çe"Ç

ĕ \[ECup] ÇeuÇ

ì \[IGrave] Çi`Ç

í \[IAcute] Çi'Ç

î \[IHat] Çi^Ç

ï \[IDoubleDot] Çi"Ç

ĭ \[ICup] ÇiuÇ

ð \[Eth] Çd-Ç

ł \[LSlash] Çl/Ç

ñ \[NTilde] Çn~Ç

ò \[OGrave] Ço`Ç

ó \[OAcute] Ço'Ç

ô \[OHat] Ço^Ç

õ \[OTilde] Ço~Ç

ö \[ODoubleDot] Ço"Ç

ő \[ODoubleAcute] Ço''Ç

ø \[OSlash] Ço/Ç

œ \[OE] ÇoeÇ

š \[SHacek] ÇsvÇ

ù \[UGrave] Çu`Ç

ú \[UAcute] Çu'Ç

û \[UHat] Çu^Ç

ü \[UDoubleDot] Çu"Ç

ű \[UDoubleAcute] Çu''Ç

ý \[YAcute] Çy'Ç

þ \[Thorn] ÇthnÇ

ß \[SZ] ÇszÇ, ÇssÇ

form full name alias
À \[CapitalAGrave] ÇA`Ç

Á \[CapitalAAcute] ÇA'Ç

Â \[CapitalAHat] ÇA^Ç

Ã \[CapitalATilde] ÇA~Ç

Ä \[CapitalADoubleDot] ÇA"Ç

Å \[CapitalARing] ÇAoÇ

Ā \[CapitalABar] ÇA-Ç

Ă \[CapitalACup] ÇAuÇ

Æ \[CapitalAE] ÇAEÇ

Ć \[CapitalCAcute] ÇC'Ç

Ç \[CapitalCCedilla] ÇC,Ç

Č \[CapitalCHacek] ÇCvÇ

È \[CapitalEGrave] ÇE`Ç

É \[CapitalEAcute] ÇE'Ç

Ē \[CapitalEBar] ÇE-Ç

Ê \[CapitalEHat] ÇE^Ç

Ë \[CapitalEDoubleDot] ÇE"Ç

Ĕ \[CapitalECup] ÇEuÇ

Ì \[CapitalIGrave] ÇI`Ç

Í \[CapitalIAcute] ÇI'Ç

Î \[CapitalIHat] ÇI^Ç

Ï \[CapitalIDoubleDot] ÇI"Ç

Ĭ \[CapitalICup] ÇIuÇ

Ð \[CapitalEth] ÇD-Ç

Ł \[CapitalLSlash] ÇL/Ç

Ñ \[CapitalNTilde] ÇN~Ç

Ò \[CapitalOGrave] ÇO`Ç

Ó \[CapitalOAcute] ÇO'Ç

Ô \[CapitalOHat] ÇO^Ç

Õ \[CapitalOTilde] ÇO~Ç

Ö \[CapitalODoubleDot] ÇO"Ç

Ő \[CapitalODoubleAcute] ÇO''Ç

Ø \[CapitalOSlash] ÇO/Ç

Œ \[CapitalOE] ÇOEÇ

Š \[CapitalSHacek] ÇSvÇ

Ù \[CapitalUGrave] ÇU`Ç

Ú \[CapitalUAcute] ÇU'Ç

Û \[CapitalUHat] ÇU^Ç

Ü \[CapitalUDoubleDot] ÇU"Ç

Ű \[CapitalUDoubleAcute] ÇU''Ç

Ý \[CapitalYAcute] ÇY'Ç

Þ \[CapitalThorn] ÇThnÇ

218 Notebooks and Documents

form full name alias
à \[AGrave] Ça`Ç

á \[AAcute] Ça'Ç

â \[AHat] Ça^Ç

ã \[ATilde] Ça~Ç

ä \[ADoubleDot] Ça"Ç

å \[ARing] ÇaoÇ

ā \[ABar] Ça-Ç

ă \[ACup] ÇauÇ

æ \[AE] ÇaeÇ

ć \[CAcute] Çc'Ç

ç \[CCedilla] Çc,Ç

č \[CHacek] ÇcvÇ

è \[EGrave] Çe`Ç

é \[EAcute] Çe'Ç

ē \[EBar] Çe-Ç

ê \[EHat] Çe^Ç

ĕ \[ECup] ÇeuÇ

ì \[IGrave] Çi`Ç

í \[IAcute] Çi'Ç

î \[IHat] Çi^Ç

ï \[IDoubleDot] Çi"Ç

ĭ \[ICup] ÇiuÇ

ð \[Eth] Çd-Ç

ł \[LSlash] Çl/Ç

ñ \[NTilde] Çn~Ç

ò \[OGrave] Ço`Ç

ó \[OAcute] Ço'Ç

ô \[OHat] Ço^Ç

õ \[OTilde] Ço~Ç

ö \[ODoubleDot] Ço"Ç

ő \[ODoubleAcute] Ço''Ç

ø \[OSlash] Ço/Ç

œ \[OE] ÇoeÇ

š \[SHacek] ÇsvÇ

ù \[UGrave] Çu`Ç

ú \[UAcute] Çu'Ç

û \[UHat] Çu^Ç

ü \[UDoubleDot] Çu"Ç

ű \[UDoubleAcute] Çu''Ç

ý \[YAcute] Çy'Ç

þ \[Thorn] ÇthnÇ

ß \[SZ] ÇszÇ, ÇssÇ

form full name alias
À \[CapitalAGrave] ÇA`Ç

Á \[CapitalAAcute] ÇA'Ç

Â \[CapitalAHat] ÇA^Ç

Ã \[CapitalATilde] ÇA~Ç

Ä \[CapitalADoubleDot] ÇA"Ç

Å \[CapitalARing] ÇAoÇ

Ā \[CapitalABar] ÇA-Ç

Ă \[CapitalACup] ÇAuÇ

Æ \[CapitalAE] ÇAEÇ

Ć \[CapitalCAcute] ÇC'Ç

Ç \[CapitalCCedilla] ÇC,Ç

Č \[CapitalCHacek] ÇCvÇ

È \[CapitalEGrave] ÇE`Ç

É \[CapitalEAcute] ÇE'Ç

Ē \[CapitalEBar] ÇE-Ç

Ê \[CapitalEHat] ÇE^Ç

Ĕ \[CapitalECup] ÇEuÇ

Ì \[CapitalIGrave] ÇI`Ç

Í \[CapitalIAcute] ÇI'Ç

Î \[CapitalIHat] ÇI^Ç

Ï \[CapitalIDoubleDot] ÇI"Ç

Ĭ \[CapitalICup] ÇIuÇ

Ð \[CapitalEth] ÇD-Ç

Ł \[CapitalLSlash] ÇL/Ç

Ñ \[CapitalNTilde] ÇN~Ç

Ò \[CapitalOGrave] ÇO`Ç

Ó \[CapitalOAcute] ÇO'Ç

Ô \[CapitalOHat] ÇO^Ç

Õ \[CapitalOTilde] ÇO~Ç

Ö \[CapitalODoubleDot] ÇO"Ç

Ő \[CapitalODoubleAcute] ÇO''Ç

Ø \[CapitalOSlash] ÇO/Ç

Œ \[CapitalOE] ÇOEÇ

Š \[CapitalSHacek] ÇSvÇ

Ù \[CapitalUGrave] ÇU`Ç

Ú \[CapitalUAcute] ÇU'Ç

Û \[CapitalUHat] ÇU^Ç

Ü \[CapitalUDoubleDot] ÇU"Ç

Ű \[CapitalUDoubleAcute] ÇU''Ç

Ý \[CapitalYAcute] ÇY'Ç

Þ \[CapitalThorn] ÇThnÇ

Variants of English letters.

Most of the characters shown are formed by adding diacritical marks to ordinary English letters.

Exceptions include \[SZ] ß, used in German, and \[Thorn] þ and \[Eth] ð, used primarily in

Old English.

You can make additional characters by explicitly adding diacritical marks yourself.

char Ctrl+& mark Ctrl+Space add a mark above a character

char Ctrl++ mark Ctrl+Space add a mark below a character

Adding marks above and below characters.

Notebooks and Documents 219

form alias full name
' (keyboard character) \@RawQuoteD acute accent
£ Ç' Ç \[Prime] acute accent
` (keyboard character) \[RawBackquote] grave accent
æ Ç`Ç \[ReversePrime] grave accent
. . (keyboard characters) umlaut or diaeresis
^ (keyboard character) \@RawWedgeD circumflex or hat
È ÇesciÇ \[EmptySmallCirclÖ

e]
ring

. (keyboard character) \@RawDotD dot
~ (keyboard character) \@RawTildeD tilde
_ (keyboard character) \[RawUnderscore] bar or macron
« ÇhcÇ \[Hacek] hacek or check
Ò ÇbvÇ \[Breve] breve
Ú ÇdbvÇ \[DownBreve] tie accent
″ Ç'' Ç \[DoublePrime] long umlaut
fi ÇcdÇ \[Cedilla] cedilla

Diacritical marks to add to characters.

Operators

Basic Mathematical Operators

form full name alias
µ \@TimesD Ç*Ç

¸ \@DivideD ÇdivÇ

- \@SqrtD ÇsqrtÇ

form full name alias
ä \@CrossD ÇcrossÇ

± \@PlusMinusD Ç+-Ç

° \@MinusPlusD Ç-+Ç

Some operators used in basic arithmetic and algebra.

Note that the ä for î[Cross] is distinguished by being drawn slightly smaller than the µ for î

[Times].

220 Notebooks and Documents

xµy Times@x,yD multiplication
x¸y Divide@x,yD division
,x Sqrt@xD square root
xäy Cross@x,yD vector cross product
±x PlusMinus@xD (no built-in meaning)
x±y PlusMinus@x,yD (no built-in meaning)
°x MinusPlus@xD (no built-in meaning)
x°y MinusPlus@x,yD (no built-in meaning)

Interpretation of some operators in basic arithmetic and algebra.

Operators in Calculus and Algebra

form full name alias
“ \@DelD ÇdelÇ

∂ \@PartialDD ÇpdÇ

„ \@DifferentialDD ÇddÇ

‚ \@SumD ÇsumÇ

‰ \@ProductD ÇprodÇ

form full name alias

Ÿ \@IntegralD ÇintÇ

ò \@ContourIntegralD ÇcintÇ

ô \@DoubleContourIntegralD

ö \@CounterClockwiseContourIntegralD ÇcccintÇ

õ \@ClockwiseContourIntegralD ÇccintÇ

Operators used in calculus.

form full name aliases
 \@ConjugateD ÇcoÇ, ÇconjÇ

 \@TransposeD ÇtrÇ

form full name alias
æ \@ConjugateTransposeD ÇctÇ

 \@HermitianConjugateD ÇhcÇ

Operators for complex numbers and matrices.

Notebooks and Documents 221

Logical and Other Connectives

form full name aliases

Ì \@AndD Ç && Ç, ÇandÇ

Î \@OrD Ç »» Ç, ÇorÇ

Ÿ \@NotD Ç! Ç, ÇnotÇ

œ \@ElementD ÇelÇ

" \@ForAllD ÇfaÇ

$ \@ExistsD ÇexÇ

± \@NotExistsD Ç!exÇ

 \@XorD ÇxorÇ

 \@NandD ÇnandÇ

 \@NorD ÇnorÇ

form full name alias
fl \@ImpliesD Ç=>Ç

V \@RoundImpliesD
\ \@ThereforeD ÇtfÇ

ã \@BecauseD
¢ \@RightTeeD
§ \@LeftTeeD
£ \@DoubleRightTeeD
• \@DoubleLeftTeeD
' \@SuchThatD ÇstÇ

\@VerticalSeparatorD Ç|Ç

: \@ColonD Ç:Ç

Operators used as logical connectives.

The operators fl, fi and Ÿ are interpreted as corresponding to the built-in functions And, Or and

Not, and are equivalent to the keyboard operators &&, »» and !. The operators ,  and 

correspond to the built-in functions Xor, Nand and Nor. Note that Ÿ is a prefix operator.

xfly and xVy are both taken to give the built-in function Implies@x, yD. xœy gives the built-in

function Element@x, yD.

This is interpreted using the built-in functions And and Implies.

In[1]:= 3 < 4 Ï x > 5 fl y < 7

Out[1]= Implies@x > 5, y < 7D

Mathematica supports most of the standard syntax used in mathematical logic. In Mathematica,

however, the variables that appear in the quantifiers ", $ and ± must appear as subscripts. If

they appeared directly after the quantifier symbols then there could be a conflict with multiplica-

tion operations.

" and $ are essentially prefix operators like ∂.

In[2]:= "x $y f@x, yD êê FullForm

Out[2]//FullForm= ForAllAx, ExistsAy, \[Phi]@x,yDEE

Operators Used to Represent Actions

222 Notebooks and Documents

Operators Used to Represent Actions

form full name alias
Î \@SmallCircleD ÇscÇ

⊕ \@CirclePlusD Çc+Ç

û \@CircleMinusD Çc-Ç

⊗ \@CircleTimesD Çc*Ç

ü \@CircleDotD Çc.Ç

ù \@DiamondD ÇdiaÇ

ÿ \@CenterDotD Ç.Ç

* \@StarD ÇstarÇ

™ \@VerticalTildeD
ï \@BackslashD Ç\Ç

form full name alias
Ô \@WedgeD Ç^Ç

Ó \@VeeD ÇvÇ

Ê \@UnionD ÇunÇ

­ \@UnionPlusD

Ë \@IntersectionD ÇinterÇ

Æ \@SquareIntersectionD

Ø \@SquareUnionD

ˇ \@CoproductD ÇcoprodÇ

[\@CapD
\ \@CupD
Ñ \@SquareD ÇsqÇ

Operators typically used to represent actions. All the operators except î[Square] are infix.

Following Mathematica’s usual convention, all the operators in the table are interpreted to give

functions whose names are exactly the names of the characters that appear in the operators.

The operators are interpreted as functions with corresponding names.

In[3]:= x ⊕ y [z êê FullForm

Out[3]//FullForm= CirclePlus@x, Cap@y, zDD

All the operators in the table above, except for Ñ, are infix, so that they must appear in

between their operands.

Notebooks and Documents 223

Bracketing Operators

form full name alias
e \@LeftFloorD ÇlfÇ

u \@RightFloorD ÇrfÇ

a \@LeftCeilingD ÇlcÇ

q \@RightCeilingD ÇrcÇ

Q \@LeftDoubleBracketD Ç[[Ç

U \@RightDoubleBracketD Ç]]Ç

form full name alias
Y \@LeftAngleBracketD Ç<Ç

] \@RightAngleBracketD Ç>Ç

° \@LeftBracketingBarD Çl|Ç

• \@RightBracketingBarD Çr|Ç

± \@LeftDoubleBracketingBarD Çl||Ç

µ \@RightDoubleBracketingBarD Çr||Ç

Characters used as bracketing operators.

dxt Floor@xD

`xp Ceiling@xD

mPi, j,…T Part@m,i, j,…D

Xx,y,…\ AngleBracket@x,y,…D

†x,y,…§ BracketingBar@x,y,…D

°x,y,…¥ DoubleBracketingBar@x,y,…D

Interpretations of bracketing operators.

Operators Used to Represent Relations

form full name alias
ã \@EqualD Ç==Ç

 \@LongEqualD Çl=Ç

ª \@CongruentD Ç===Ç

~ \@TildeD Ç~Ç

º \@TildeTildeD Ç~~Ç

> \@TildeEqualD Ç~=Ç

@ \@TildeFullEqualD Ç~==Ç

? \@EqualTildeD Ç=~Ç

P \@HumpEqualD Çh=Ç

Q \@HumpDownHumpD
^ \@CupCapD
U \@DotEqualD

form full name alias
≠ \@NotEqualD Ç!=Ç

T \@NotCongruentD Ç!===Ç

L \@NotTildeD Ç!~Ç

M \@NotTildeTildeD Ç!~~Ç

N \@NotTildeEqualD Ç!~=Ç

= \@NotTildeFullEqualD Ç!~==Ç

O \@NotEqualTildeD Ç!=~Ç

R \@NotHumpEqualD Ç!h=Ç

S \@NotHumpDownHumpD
_ \@NotCupCapD
∝ \@ProportionalD ÇpropÇ

õ \@ProportionD

Operators usually used to represent similarity or equivalence.

The special character ã (or î[Equal]) is an alternative input form for ==. ≠ is used both for input
and output.

224 Notebooks and Documents

The special character ã (or î[Equal]) is an alternative input form for ==. ≠ is used both for input
and output.

In[4]:= 8a == b, a ã b, a != b, a ≠ b<

Out[4]= 8a ã b, a ã b, a ≠ b, a ≠ b<

form full name alias
¥ \@GreaterEqualD Ç>=Ç

§ \@LessEqualD Ç<=Ç

r \@GreaterSlantEqualD Ç>/Ç

b \@LessSlantEqualD Ç</Ç

s \@GreaterFullEqualD
c \@LessFullEqualD
t \@GreaterTildeD Ç>~Ç

d \@LessTildeD Ç<~Ç

p \@GreaterGreaterD
` \@LessLessD
q \@NestedGreaterGreaterD
a \@NestedLessLessD
ò \@GreaterLessD
à \@LessGreaterD
ö \@GreaterEqualLessD
ä \@LessEqualGreaterD

form full name alias
x \@NotGreaterEqualD Ç!>=Ç

h \@NotLessEqualD Ç!<=Ç

y \@NotGreaterSlantEqualD Ç!>/Ç

i \@NotLessSlantEqualD Ç!</Ç

z \@NotGreaterFullEqualD
j \@NotLessFullEqualD
{ \@NotGreaterTildeD Ç! >~Ç

k \@NotLessTildeD Ç! <~Ç

v \@NotGreaterGreaterD
f \@NotLessLessD
w \@NotNestedGreaterGreaterD
g \@NotNestedLessLessD
ô \@NotGreaterLessD
â \@NotLessGreaterD
u \@NotGreaterD Ç!>Ç

e \@NotLessD Ç!<Ç

Operators usually used for ordering by magnitude.

form full name alias
Õ \@SubsetD ÇsubÇ

⊃ \@SupersetD ÇsupÇ

Œ \@SubsetEqualD Çsub=Ç

û \@SupersetEqualD Çsup=Ç

œ \@ElementD ÇelÇ

ú \@ReverseElementD ÇmemÇ

form full name alias
Ã \@NotSubsetD Ç!subÇ

é \@NotSupersetD Ç!supÇ

ç \@NotSubsetEqualD Ç!sub=Ç

è \@NotSupersetEqualD Ç!sup=Ç

– \@NotElementD Ç!elÇ

ù \@NotReverseElementD Ç!memÇ

Operators used for relations in sets.

Notebooks and Documents 225

form full name
ê \@SucceedsD
Ä \@PrecedesD
ë \@SucceedsEqualD
Å \@PrecedesEqualD
í \@SucceedsSlantEqualD
Ç \@PrecedesSlantEqualD
ì \@SucceedsTildeD
É \@PrecedesTildeD
@ \@RightTriangleD
0 \@LeftTriangleD
A \@RightTriangleEqualD
1 \@LeftTriangleEqualD
B \@RightTriangleBarD
2 \@LeftTriangleBarD
| \@SquareSupersetD
l \@SquareSubsetD
} \@SquareSupersetEqualD
m \@SquareSubsetEqualD

form full name
î \@NotSucceedsD
Ñ \@NotPrecedesD
ï \@NotSucceedsEqualD
á \@NotPrecedesTildeD
ñ \@NotSucceedsSlantEqualD
Ü \@NotPrecedesSlantEqualD
ó \@NotSucceedsTildeD
Ö \@NotPrecedesEqualD
C \@NotRightTriangleD
3 \@NotLeftTriangleD
D \@NotRightTriangleEqualD
4 \@NotLeftTriangleEqualD
E \@NotRightTriangleBarD
5 \@NotLeftTriangleBarD
~ \@NotSquareSupersetD
n \@NotSquareSubsetD
å \@NotSquareSupersetEqualD
o \@NotSquareSubsetEqualD

Operators usually used for other kinds of orderings.

form full name alias
˝ \@VerticalBarD Çâ|Ç

˛ \@DoubleVerticalBarD Çâ||Ç

form full name alias
I \@NotVerticalBarD Ç!|Ç

J \@NotDoubleVerticalBarD Ç!||Ç

Relational operators based on vertical bars.

Operators Based on Arrows and Vectors

Operators based on arrows are often used in pure mathematics and elsewhere to represent

various kinds of transformations or changes.

Ø is equivalent to ->.

In[5]:= x + y ê. x Ø 3

Out[5]= 3 + y

226 Notebooks and Documents

form full name alias
Ø \@RuleD Ç->Ç

ß \@RuleDelayedD Ç:>Ç

form full name alias
fl \@ImpliesD Ç=>Ç

V \@RoundImpliesD

Arrow-like operators with built-in meanings in Mathematica.

form full name alias
\@RightArrowD Çâ->Ç

\@LeftArrowD Ç<-Ç

\@LeftRightArrowD Ç<->Ç

\@LongRightArrowD Ç-->Ç

\@LongLeftArrowD Ç<--Ç

\@LongLeftRightArrowD Ç<-->Ç

z \@ShortRightArrowD
y \@ShortLeftArrowD

\@RightTeeArrowD
\@LeftTeeArrowD
\@RightArrowBarD
\@LeftArrowBarD
\@DoubleRightArrowD Çâ=>Ç

\@DoubleLeftArrowD Çâ<=Ç

\@DoubleLeftRightArrowD Ç<=>Ç

\@DoubleLongRightArrowD Ç==>Ç

\@DoubleLongLeftArrowD Ç<==Ç

\@DoubleLongLeftRightArrowD Ç<==>Ç

form full name
\@UpArrowD

\@DownArrowD

\@UpDownArrowD

\@UpTeeArrowD

\@DownTeeArrowD

\@UpArrowBarD

\@DownArrowBarD

\@DoubleUpArrowD

\@DoubleDownArrowD

\@DoubleUpDownArrowD

\@RightArrowLeftArrowD
\@LeftArrowRightArrowD
\@UpArrowDownArrowD

\@DownArrowUpArrowD

é \@LowerRightArrowD
ã \@LowerLeftArrowD
å \@UpperLeftArrowD
ç \@UpperRightArrowD

Ordinary arrows.

Notebooks and Documents 227

form full name alias
\@RightVectorD ÇvecÇ

\@LeftVectorD
\@LeftRightVectorD
\@DownRightVectorD
\@DownLeftVectorD
\@DownLeftRightVectorD
\@RightTeeVectorD
\@LeftTeeVectorD
\@DownRightTeeVectorD
\@DownLeftTeeVectorD
\@RightVectorBarD
\@LeftVectorBarD
\@DownRightVectorBarD
\@DownLeftVectorBarD
\@EquilibriumD ÇequiÇ

\@ReverseEquilibriumD

form full name
\@LeftUpVectorD

\@LeftDownVectorD

\@LeftUpDownVectorD

\@RightUpVectorD

\@RightDownVectorD

\@RightUpDownVectorD

\@LeftUpTeeVectorD

\@LeftDownTeeVectorD

\@RightUpTeeVectorD

\@RightDownTeeVectorD

\@LeftUpVectorBarD

\@LeftDownVectorBarD

\@RightUpVectorBarD

\@RightDownVectorBarD

\@UpEquilibriumD

\@ReverseUpEquilibriumD

Vectors and related arrows.

All the arrow and vector-like operators in Mathematica are infix.

In[6]:= x F y z

Out[6]= x F y z

form full name alias
¢ \@RightTeeD ÇrTÇ

§ \@LeftTeeD ÇlTÇ

¶ \@UpTeeD ÇuTÇ

ß \@DownTeeD ÇdTÇ

form full name
£ \@DoubleRightTeeD
• \@DoubleLeftTeeD

Tees.

228 Notebooks and Documents

Structural Elements and Keyboard Characters

full name alias

\@InvisibleCommaD Esc ,Esc

\@InvisibleApplicationD Esc @Esc

\[InvisibleSpace] Esc isEsc

\@ImplicitPlusD Esc +Esc

full name alias

\[AlignmentMarker] Esc amEsc

\[NoBreak] Esc nbEsc

\[Null] Esc nullEsc

Invisible characters.

In the input there is an invisible comma between the 1 and 2.

In[1]:= m12

Out[1]= m1,2

Here there is an invisible space between the x and y, interpreted as multiplication.

In[2]:= FullForm@xyD

Out[2]//FullForm= Times@x, yD

\[Null] does not display, but can take modifications such as superscripts.

In[3]:= f@x, ^aD

Out[3]= fAx, aE

The \[AlignmentMarker] does not display, but shows how to line up the elements of the
column.

In[4]:= Grid@88"b + c + d"<, 8"a + b + c"<<, Alignment -> ""D êê DisplayForm

Out[4]//DisplayForm=
b + c + d

a + b + c

The \@ImplicitPlusD operator is used as a hidden plus sign in mixed fractions.

In[5]:= 1
2

3

Out[5]=
5

3

Notebooks and Documents 229

full name alias

\[VeryThinSpace] Esc âEsc

\[ThinSpace] Esc ââEsc

\[MediumSpace] Esc âââEsc

\[ThickSpace] Esc ââââEsc

\[InvisibleSpace] Esc isEsc

\[NewLine]

full name alias

\[NegativeVeryThinSpace] Esc -âEsc

\[NegativeThinSpace] Esc -ââEsc

\[NegativeMediumSpace] Esc -âââEsc

\[NegativeThickSpace] Esc -ââââEsc

 \[NonBreakingSpace] Esc nbsEsc

\[IndentingNewLine] Esc nlEsc

Spacing and newline characters.

form full name alias

É \[SelectionPlaceholder] Esc splEsc

form full name alias

Ñ \[Placeholder] Esc plEsc

Characters used in buttons.

In the buttons in a palette, you often want to set up a template with placeholders to indicate

where expressions should be inserted. \[SelectionPlaceholder] marks the position where

an expression that is currently selected should be inserted when the contents of the button are

pasted. \[Placeholder] marks other positions where subsequent expressions can be ins-

erted. The Tab key will take you from one such position to the next.

form full name alias

â \[SpaceIndicator] Esc spaceEsc

¿ \[ReturnIndicator] Esc retEsc

Á \[ReturnKey] Esc âretEsc

Û \[EnterKey] Esc entEsc

Â \[EscapeKey] Esc âescEsc

Ç \[AliasIndicator] Esc escEsc

form full name alias

Ô \[RoundSpaceIndicator]
‚ \[ControlKey] Esc ctrlEsc

· \[CommandKey] Esc cmdEsc

Î \[LeftModified] Esc [Esc

Ï \[RightModified] Esc]Esc

Ì \[CloverLeaf] Esc clEsc

Representations of keys on a keyboard.

In describing how to enter input into Mathematica, it is sometimes useful to give explicit repre-

sentations for keys you should press. You can do this using characters like ¿ and Â. Note that

â and Ô are actually treated as spacing characters by Mathematica.

This string shows how to type a2.

In[6]:= "ÂaÂ ‚Î^Ï2 ‚ÎâÏ"

Out[6]= ÂaÂ ‚Î^Ï2 ‚ÎâÏ

230 Notebooks and Documents

form full name

Ö \[Continuation]
á \@LeftSkeletonD
à \[RightGuillemet]

form full name

Ü \[SkeletonIndicator]
› \[ErrorIndicator]

Characters generated in Mathematica output.

Mathematica uses a \[Continuation] character to indicate that the number continues onto
the next line.

In[7]:= 80!

Out[7]= 71569457046263802294811533723186532165584657342365752577109445058227039255480148842Ö
668944867280814080000000000000000000

form full name

\[RawTab]
\[NewLine]
\[RawReturn]
\[RawSpace]

! \@RawExclamationD
" î @RawDoubleQuoteD

Ò \@RawNumberSignD
$ \[RawDollar]
% \@RawPercentD
& \@RawAmpersandD
' \@RawQuoteD
I \@RawLeftParenthesisD

M \@RawRightParenthesisD

* \@RawStarD
+ \@RawPlusD
, \@RawCommaD
- \@RawDashD
. \@RawDotD

form full name

ë \@RawSlashD

: \@RawColonD
; \@RawSemicolonD
< \@RawLessD
= \@RawEqualD
> \@RawGreaterD
? \@RawQuestionD
ü \@RawAtD
A \@RawLeftBracketD

\ \@RawBackslashD
E \@RawRightBracketD

^ \@RawWedgeD
_ \[RawUnderscore]

` \[RawBackquote]
9 \@RawLeftBraceD

\@RawVerticalBarD

= \@RawRightBraceD

~ \@RawTildeD

Raw keyboard characters.

The fonts that are distributed with Mathematica contain their own renderings of many ordinary

keyboard characters. The reason for this is that standard system fonts often do not contain

appropriate renderings. For example, ^ and ~ are often drawn small and above the centerline,

while for clarity in Mathematica they must be drawn larger and centered on the centerline.

Notebooks and Documents 231

