
This is an example of a problem where the Newton step is very large because the starting point
is at a position where the Jacobian (derivative) is nearly singular. The step size is (not severely)
limited by the option.

In[3]:= FindRootPlot@Cos@x PiD, 88x, -5<<D

Out[3]=

This shows the same example but with a more rigorous step-size limitation, which finds the root
near the starting condition.

In[4]:= FindRootPlot@Cos@x PiD, 88x, -5<<,
Method Ø 8"Newton", "StepControl" Ø 8"LineSearch", "MaxRelativeStepSize" Ø .1<<D

Out[4]= :8x Ø -4.5<, 8Steps Ø 5, Residual Ø 5, Jacobian Ø 5<,

-4.9 -4.8 -4.7 -4.6 -4.5 -4.4

-1.0

-0.8

-0.6

-0.4

-0.2

0.2

>

Note that you need to be careful not to set the "MaxRelativeStepSize" option too small, or it

will affect convergence, especially for minima and roots near zero.

The following table shows a summary of the options, which can be used to control line searches.

option name default value

"Method" Automatic method to use for executing the line
search; can be Automatic,
"MoreThuente", "Backtracking", or
"Brent"

"CurvatureFactor" Automatic factor h in the Wolfe conditions, between 0
and 1; smaller values of h result in a more
exact line search

"DecreaseFactor" 1ê10000 factor m in the Wolfe conditions, between 0
and h

"MaxRelativeStepSize" 10 largest step that will be taken relative to
the norm of the current search point, can
be any positive number or ¶ for no
restriction

Method options for "StepControl" Ø "LineSearch".

Unconstrained Optimization 35

:8x Ø 2.5<, 8Steps Ø 2, Residual Ø 5, Jacobian Ø 2<, 10 20 30 40 50

0.5

1.0

>

The following sections will describe the three line search algorithms implemented in Mathemat-

ica. Comparisons will be made using the Rosenbrock function.

This uses the Unconstrained Problems Package to set up the classic Rosenbrock function, which
has a narrow curved valley.

In[5]:= p = GetFindMinimumProblem@RosenbrockD

Out[5]= FindMinimumProblemBH1 - X1L
2 + 100 I-X1

2 + X2M
2
, 88X1, -1.2<, 8X2, 1.<<, 8<, Rosenbrock, 82, 2<F

MoreThuente

The default line search used by FindMinimum, FindMaximum, and FindFit is one described by

More and Thuente in [MT94]. It tries to find a point that satisfies both the decrease and curva-

ture conditions by using bracketing and quadratic and cubic interpolation.

This shows the steps and evaluations done with Newton’s method with the default line search
parameters. Points with just red and green are where the function and gradient were evaluated
in the line search, but the Wolfe conditions were not satisfied so as to take a step.

In[10]:= FindMinimumPlot@p, Method Ø NewtonD

-1 -0.5 0 0.5 1
-3

-2

-1

0

1

Out[10]= 994.96962µ10-18, 8X1 Ø 1., X2 Ø 1.<=,
8Steps Ø 22, Function Ø 29, Gradient Ø 29, Hessian Ø 23<, Ü ContourGraphics Ü=

The points at which only the function and gradient were evaluated were the ones attempted in

the line search phase that did not satisfy both conditions. Unless restricted by

"MaxRelativeStepSize", the line search always starts with the full step length (a = 1), so that

if the full (in this case Newton) step satisfies the line search criteria, it will be taken, ensuring a

full convergence rate close to a minimum.

Decreasing the curvature factor, which means that the line search ends nearer to the exact

minimum, decreases the number of steps taken by Newton’s method but increases the total

number of function and gradient evaluations.

36 Unconstrained Optimization

This shows the steps and evaluations done with Newton’s method with a curvature factor in the
line search parameters that is smaller than the default. Points with just red and green are
where the function and gradient were evaluated in the line search, but the Wolfe conditions
were not satisfied so as to take a step.

In[31]:= FindMinimumPlot@p,
Method Ø 8"Newton", "StepControl" Ø 8"LineSearch", CurvatureFactor Ø .1<<D

Out[31]= :95.54946µ10-22, 8X1 Ø 1., X2 Ø 1.<=,

8Steps Ø 14, Function Ø 61, Gradient Ø 61, Hessian Ø 15<,

0 2 4 6 8 10 12

-10

0

10

20

>

This example demonstrates why a more exact line search is not necessarily better. When the

line search takes the step to the right at the bottom of the narrow valley, the Newton step is

based on moving along the valley without seeing its curvature (the curvature of the valley is

beyond quadratic order), so the Newton steps end up being far too long, even though the

direction is better. On the other hand, some methods, such as the conjugate gradient method,

need a better line search to improve convergence.

Backtracking

This is a simple line search that starts from the given step size and backtracks toward a step

size of 0, stopping when the sufficient decrease condition is met. In general with only backtrack-

ing, there is no guarantee that you can satisfy the curvature condition, even for nice functions,

so the convergence properties of the methods are not assured. However, the backtracking line

search also does not need to evaluate the gradient at each point, so if gradient evaluations are

relatively expensive, this may be a good choice. It is used as the default line search in

FindRoot because evaluating the gradient of the merit function involves computing the Jaco-

bian, which is relatively expensive.

Unconstrained Optimization 37

In[32]:= FindMinimumPlot@p,
Method Ø 8"Newton", "StepControl" Ø 8"LineSearch", Method Ø "Backtracking"<<D

Out[32]= :91.2326µ10-30, 8X1 Ø 1., X2 Ø 1.<=,

8Steps Ø 25, Function Ø 34, Gradient Ø 26, Hessian Ø 25<,

-1.0 -0.5 0.0 0.5 1.0

-3

-2

-1

0

1

>

Each backtracking step is taken by doing a polynomial interpolation and finding the minimum

point for the interpolant. This point ak is used as long as it lies between c1 ak-1 and c2 ak-1, where

ak-1 is the previous value of the parameter a and 0 < c1 § c2 < 1. By default, c1 = 0.1 and c2 = 0.5,

but they can be controlled by the method option "BacktrackFactors" -> 8c1, c2<. If you give a

single value for the factors, this sets c1 = c2, and no interpolation is used. The value 1/2 gives

bisection.

In this example, the effect of the relatively large backtrack factor is quite apparent.

In[33]:= FindMinimumPlot@p, Method Ø 8"Newton", "StepControl" Ø
8"LineSearch", Method Ø 8"Backtracking", "BacktrackFactors" Ø 1 ê 2<<<D

Out[33]= :93.74398µ10-21, 8X1 Ø 1., X2 Ø 1.<=,

8Steps Ø 21, Function Ø 29, Gradient Ø 22, Hessian Ø 22<,

-1.0 -0.5 0.0 0.5 1.0

-3

-2

-1

0

1

>

option name default value

"BacktrackFactors" 81ê10, 1ê2< determine the minimum and maximum
factor by which the attempted step length
must shrink between backtracking steps

Method option for line search Method -> "Backtracking".

38 Unconstrained Optimization

Brent

This uses the derivative-free univariate method of Brent [Br02] for the line search. It attempts

to find the minimum of f a to within tolerances, regardless of the decrease and curvature fac-

tors. In effect, it has two phases. First, it tries to bracket the root, then it uses "Brent’s" com-

bined interpolation/golden section method to find the minimum. The advantage of this line

search is that it does not require, as the other two methods do, that the step be in a descent

direction, since it will look in both directions in an attempt to bracket the minimum. As such it is

very appropriate for the derivative-free "principal axis" method. The downside of this line

search is that it typically uses many function evaluations, so it is usually less efficient than the

other two methods.

This example shows the effect of using the Brent method for line search. Note that in the phase
of bracketing the root, it may use negative values of a. Even though the number of Newton
steps is relatively small in this example, the total number of function evaluations is much larger
than for other line search methods.

In[34]:= FindMinimumPlot@p,
Method Ø 8"Newton", "StepControl" Ø 8"LineSearch", Method Ø "Brent"<<D

Out[34]= :91.01471µ10-23, 8X1 Ø 1., X2 Ø 1.<=,

8Steps Ø 13, Function Ø 188, Gradient Ø 14, Hessian Ø 14<,

-3 -2 -1 0 1

-4

-2

0

2

4

>

Trust Region Methods

A trust region method has a region around the current search point, where the quadratic model

(3)qkHpL = f HxkL + “ f HxkLT p +
1
2
pT Bk p

for "local minimization" is "trusted" to be correct and steps are chosen to stay within this

region. The size of the region is modified during the search, based on how well the model

agrees with actual function evaluations.

Unconstrained Optimization 39

Very typically, the trust region is taken to be an ellipse such that °D p¥ § D. D is a diagonal

scaling (often taken from the diagonal of the approximate Hessian) and D is the trust region

radius, which is updated at each step.

When the step based on the quadratic model alone lies within the trust region, then, assuming

the function value gets smaller, that step will be chosen. Thus, just as with "line search" meth-

ods, the step control does not interfere with the convergence of the algorithm near to a mini-

mum where the quadratic model is good. When the step based on the quadratic model lies

outside the trust region, a step just up to the boundary of the trust region is chosen, such that

the step is an approximate minimizer of the quadratic model on the boundary of the trust

region.

Once a step pk is chosen, the function is evaluated at the new point, and the actual function

value is checked against the value predicted by the quadratic model. What is actually computed

is the ratio of actual to predicted reduction.

rk =
f HxkL - f Hxk+ pkL

qkH0L - qkHpkL
=

actual reduction of f

predicted model reduction of f

If rk is close to 1, then the quadratic model is quite a good predictor and the region can be

increased in size. On the other hand, if rk is too small, the region is decreased in size. When rk

is below a threshold, h, the step is rejected and recomputed. You can control this threshold with

the method option "AcceptableStepRatio" -> h. Typically the value of h is quite small to avoid

rejecting steps that would be progress toward a minimum. However, if obtaining the quadratic

model at a point is quite expensive (e.g., evaluating the Hessian takes a relatively long time), a

larger value of h will reduce the number of Hessian evaluations, but it may increase the number

of function evaluations.

To start the trust region algorithm, an initial radius D needs to be determined. By default Mathe-

matica uses the size of the step based on the model (1) restricted by a fairly loose relative step

size limit. However, in some cases, this may take you out of the region you are primarily inter-

ested in, so you can specify a starting radius D0 using the option

"StartingScaledStepSize" -> D0. The option contains Scaled in its name because the trust

region radius works through the diagonal scaling D, so this is not an absolute step size.

40 Unconstrained Optimization

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This shows the steps and evaluations taken during a search for a local minimum of a function
similar to Rosenbrock's function, using Newton's method with trust region step control.

In[2]:= FindMinimumPlot@Hx - 1L^2 + 100 Sin@x^2 - yD, 88x, -1<, 8y, 1<<,
Method Ø 8"Newton", "StepControl" -> "TrustRegion"<, MaxRecursion Ø 0D

Out[2]= :8-100., 8x Ø 1., y Ø 178.5<<,

8Steps Ø 16, Function Ø 20, Gradient Ø 17, Hessian Ø 16<,

-1.0 -0.5 0.0 0.5 1.0
0

200

400

600

800

1000

1200

1400

>

The plot looks quite bad because the search has extended over such a large region that the fine

structure of the function cannot really be seen on that scale.

This shows the steps and evaluations for the same function, but with a restricted initial trust
region radius D0. Here the search stays much closer to the initial condition and follows the
narrow valley.

In[3]:= FindMinimumPlot@Hx - 1L^2 + 100 Sin@x^2 - yD, 88x, -1<, 8y, 1<<, Method Ø
8"Newton", "StepControl" Ø 8"TrustRegion", "StartingScaledStepSize" Ø 1<<D

Out[3]= :8-100., 8x Ø 1., y Ø 2.5708<<,

8Steps Ø 18, Function Ø 20, Gradient Ø 19, Hessian Ø 19<,

-1.0 -0.5 0.0 0.5 1.0
1.0

1.5

2.0

2.5

>

It is also possible to set an overall maximum bound for the trust region radius by using the

option "MaxScaledStepSize" -> Dmax so that for any step, Dk § Dmax.

Unconstrained Optimization 41

Trust region methods can also have difficulties with functions which are not smooth due to

problems with numerical roundoff in the function computation. When the function is not suffi-

ciently smooth, the radius of the trust region will keep getting reduced. Eventually, it will get to

the point at which it is effectively zero.

This gets the Freudenstein|Roth test problem from the Optimization

`Unconstrained Problems`package in a form where it can be solved by FindMinimum .
(See "Test Problems".)

In[4]:= pfr = GetFindMinimumProblem@FreudensteinRothD

Out[4]= FindMinimumProblemAH-13 + X1 + X2 H-2 + H5 - X2L X2LL
2 + H-29 + X1 + X2 H-14 + X2 H1 + X2LLL

2,
88X1, 0.5<, 8X2, -2.<<, 8<, FreudensteinRoth, 82, 2<E

This finds a local minimum for the function using the default method. The default method in this
case is the (trust region) Levenberg|Marquardt method since the function is a sum of squares.

In[5]:= FindMinimumPlot@pfrD

FindMinimum::sszero :
The step size in the search has become less than the tolerance prescribed by the PrecisionGoal

option, but the gradient is larger than the tolerance specified
by the AccuracyGoal option. There is a possibility that the
method has stalled at a point which is not a local minimum. à

Out[5]= :848.9843, 8X1 Ø 11.4128, X2 Ø -0.896805<<,

8Steps Ø 16, Residual Ø 35, Jacobian Ø 17<,

0 5 10 15 20 25 30
-2.0

-1.5

-1.0

-0.5

0.0

0.5

>

The message means that the size of the trust region has become effectively zero relative to the

size of the search point, so steps taken would have negligible effect. Note: On some platforms,

due to subtle differences in machine arithmetic, the message may not show up. This is because

the reasons leading to the message have to do with numerical uncertainty, which can vary

between different platforms.

42 Unconstrained Optimization

This makes a plot of the variation function along the X1 direction at the final point found.

In[6]:= BlockA8e = 10^-7, x1f = 11.412778991937346, x2f = -0.8968052550911878, min<,
min = H-13 + X1 + X2 H-2 + H5 - X2L X2LL2 + H-29 + X1 + X2 H-14 + X2 H1 + X2LLL2 ê.

8X1 Ø x1f, X2 Ø x2f<;
PlotAIH-13 + X1 + X2 H-2 + H5 - X2L X2LL2 + H-29 + X1 + X2 H-14 + X2 H1 + X2LLL2M - min ê.

X2 Ø x2f, 8X1, x1f - e, x1f + e<EE

Out[6]=

11.4128 11.4128 11.4128

-2.µ 10-14
-1.µ 10-14

1.µ 10-14
2.µ 10-14
3.µ 10-14
4.µ 10-14
5.µ 10-14

The plot along one direction makes it fairly clear why no more improvement is possible. Part of

the reason the Levenberg|Marquardt method gets into trouble in this situation is that conver-

gence is relatively slow because the residual is nonzero at the minimum. With "Newton's"

method, the convergence is faster, and the full quadratic model allows for a better estimate of

step size, so that FindMinimum can have more confidence that the default tolerances have been

satisfied.

In[52]:= FindMinimumPlot@pfr, Method Ø 8"Newton", StepControl Ø "TrustRegion"<D

Out[52]= :848.9843, 8X1 Ø 11.4128, X2 Ø -0.896805<<,

8Steps Ø 6, Function Ø 7, Gradient Ø 7, Hessian Ø 7<,

2 4 6 8 10
-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

>

The following table summarizes the options for controlling trust region step control.

option name default value

"AcceptableStepRatio" 1ê10000 the threshold h, such that when the actual
to prediction reduction rk ¥ h, the search is
moved to the computed step

"MaxScaledStepSize" ¶ the value Dmax, such that the trust region
size Dk < Dmax for all steps

"StartingScaledStepSize" Automatic the initial trust region size D0

Method options for "StepControl" -> "TrustRegion".

Unconstrained Optimization 43

Setting Up Optimization Problems in
Mathematica

Specifying Derivatives

The function FindRoot has a Jacobian option; the functions FindMinimum, FindMaximum, and

FindFit have a Gradient option; and the "Newton" method has a method option Hessian. All

these derivatives are specified with the same basic structure. Here is a summary of ways to

specify derivative computation methods.

Automatic find a symbolic derivative for the function and use finite
difference approximations if a symbolic derivative cannot
be found

Symbolic same as Automatic, but gives a warning message if finite
differences are to be used

FiniteDifference use finite differences to approximate the derivative

expression use the given expression with local numerical values of the
variables to evaluate the derivative

Methods for computing gradient, Jacobian, and Hessian derivatives.

The basic specification for a derivative is just the method for computing it. However, all of the

derivatives take options as well. These can be specified by using a list 8method, opts<. Here is a

summary of the options for the derivatives.

option name default value

"EvaluationMonitor" None expression to evaluate with local values of
the variables every time the derivative is
evaluated, usually specified with :> instead
of -> to prevent symbolic evaluation

"Sparse" Automatic sparse structure for the derivative; can be
Automatic, True, False, or a pattern
SparseArray giving the nonzero structure

"DifferenceOrder" 1 difference order to use when finite differ-
ences are used to compute the derivative

Options for computing gradient, Jacobian, and Hessian derivatives.

44 Unconstrained Optimization

A few examples will help illustrate how these fit together.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This defines a function that is only intended to evaluate for numerical values of the variables.

In[2]:= f@x_?NumberQ, y_?NumberQD := Cos@x^2 - 3 yD + Sin@x^2 + y^2D

With just Method Ø "Newton", FindMinimum issues an lstol message because it was not able

to resolve the minimum well enough due to lack of good derivative information.

This shows the steps taken by FindMinimum when it has to use finite differences to compute
the gradient and Hessian.

In[3]:= FindMinimumPlot@f@x, yD, 88x, 1<, 8y, 1<<, Method -> "Newton"D

FindMinimum::symd:
Unable to automatically compute the symbolic derivative of f@x, yD with respect to the arguments

8x, y<. Numerical approximations to derivatives will be used instead. à

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease in the function. You may need
more than MachinePrecision digits of working precision to meet these tolerances. à

Out[3]=

>

Unconstrained Optimization 45

:8-2., 8x Ø 1.37638, y Ø 1.67867<<,

8Steps Ø 4, Function Ø 89, Gradient Ø 26<, >

 The following describes how you can use the gradient option to specify the derivative.

This computes the minimum of f@x, yD using a symbolic expression for its gradient.

In[4]:= FindMinimumPlotAf@x, yD, 88x, 1<, 8y, 1<<,
Gradient Ø 92 x CosAx2 + y2E - 2 x SinAx2 - 3 yE, 2 y CosAx2 + y2E + 3 SinAx2 - 3 yE=,
Method Ø "Newton"E

Out[4]= :8-2., 8x Ø 1.37638, y Ø 1.67868<<,

8Steps Ø 5, Function Ø 6, Gradient Ø 6, Hessian Ø 6<,

1.0 1.1 1.2 1.3 1.4
1.0

1.2

1.4

1.6

1.8

>

Symbolic derivatives are not always available. If you need extra accuracy from finite differ-

ences, you can increase the difference order from the default of 1 at the cost of extra function

evaluations.

This computes the minimum of f@x, yD using a second-order finite difference to compute the
gradient.

In[5]:= FindMinimumPlot@f@x, yD, 88x, 1<, 8y, 1<<,
Gradient Ø 8Automatic, "DifferenceOrder" Ø 2<, Method Ø "Newton"D

Out[5]= :8-2., 8x Ø 1.37638, y Ø 1.67868<<,

8Steps Ø 5, Function Ø 102, Gradient Ø 24, Hessian Ø 6<,

1.0 1.1 1.2 1.3 1.4
1.0

1.2

1.4

1.6

1.8

>

Note that the number of function evaluations is much higher because function evaluations are

used to compute the gradient, which is used to approximate the Hessian in turn. (The Hessian

is computed with finite differences since no symbolic expression for it can be computed from

the information given.)

46 Unconstrained Optimization

The information given from FindMinimumPlot about the number of function, gradient, and

Hessian evaluations is quite useful. The EvaluationMonitor options are what make this possi-

ble. Here is an example that simply counts the number of each type of evaluation. (The plot is

made using Reap and Sow to collect the values at which the evaluations are done.)

This computes the minimum with counters to keep track of the number of steps and the num-
ber of function, gradient, and Hessian evaluations.

In[6]:= Block@8s = 0, e = 0, g = 0, h = 0<,
8FindMinimum@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,

88 x, 1<, 8y, 1<<, StepMonitor ß s++, EvaluationMonitor ß e++,
Gradient Ø 8Automatic, EvaluationMonitor ß g++<, Method Ø
8"Newton", "Hessian" Ø 8Automatic, EvaluationMonitor ß h++<<D, s, e, g, h<D

Out[6]= 88-2., 8x Ø 1.37638, y Ø 1.67868<<, 5, 6, 6, 6<

Using such diagnostics can be quite useful for determining what methods and/or method param-

eters may be most successful for a class of problems with similar characteristics.

When Mathematica can access the symbolic structure of the function, it automatically does a

structural analysis of the function and its derivatives and uses SparseArray objects to repre-

sent the derivatives when appropriate. Since subsequent numerical linear algebra can then use

the sparse structures, this can have a profound effect on the overall efficiency of the search.

When Mathematica cannot do a structural analysis, it has to assume, in general, that the struc-

ture is dense. However, if you know what the sparse structure of the derivative is, you can

specify this with the "Sparse" method option and gain huge efficiency advantages, both in

computing derivatives (with finite differences, the number of evaluations can be reduced signifi-

cantly) and in subsequent linear algebra. This issue is particularly important when working with

vector-valued variables. A good example for illustrating this aspect is the extended Rosenbrock

problem, which has a very simple sparse structure.

This gets the extended Rosenbrock function with 1000 variables in symbolic form ready to be
solved with FindRoot using the UnconstrainedProblems` package.

In[7]:= n = 1000; Short@ pex = GetFindRootProblem@ExtendedRosenbrock, nD, 20D

Out[7]//Short= FindRootProblemA910 I-X1
2 + X2M, 1 - X1, á997à, 1 - X999=, 8á1à<, 8<, á18à, 81000, 1000<E

This solves the problem using the symbolic form of the function.

In[8]:= Timing@Norm@1 - H Array@XÒ &, nD ê. ProblemSolve@pexDLDD

Out[8]= 80.321984, 0.<

Unconstrained Optimization 47

For a function with simple form like this, it is easy to write a vector form of the function, which

can be evaluated much more quickly than the symbolic form can, even with automatic

compilation.

This defines a vector form of the extended Rosenbrock function, which evaluates very efficiently.

In[9]:= ExtendedRosenbrockResidual@X_ListD := Module@8x1, x2<,
x1 = Take@X, 81, -1, 2<D;
x2 = Take@X, 82, -1, 2<D;
Flatten@Transpose@810 Hx2 - x1^2L, 1 - x1<DDD

This extracts the starting point as a vector from the problem structure.

In[10]:= Short@start = pex@@2, All, 2DDD

Out[10]//Short= 8-1.2, 1., -1.2, 1., -1.2, 1., -1.2, á986à, 1., -1.2, 1., -1.2, 1., -1.2, 1.<

This solves the problem using a vector variable and the vector function for evaluation.

In[11]:= Timing@Norm@1 - HX ê. FindRoot@ExtendedRosenbrockResidual@XD, 8X, start<DLDD

Out[11]= 812.2235, 0.<

The solution with the function, which is faster to evaluate, winds up being slower overall

because the Jacobian has to be computed with finite differences since the x_List pattern

makes it opaque to symbolic analysis. It is not so much the finite differences that are slow as

the fact that it needs to do 100 function evaluations to get all the columns of the Jacobian. With

knowledge of the structure, this can be reduced to two evaluations to get the Jacobian. For this

function, the structure of the Jacobian is quite simple.

This defines a pattern SparseArray , which has the structure of nonzeros for the Jacobian of
the extended Rosenbrock function. (By specifying _ for the values in the rules, the
SparseArray is taken to be a template of the Pattern type as indicated in the output form.)

In[12]:= sparsity = SparseArray@
Flatten@Table@88i, i< Ø _, 8i, i + 1< Ø _, 8i + 1, i< Ø _<, 8i, 1, n - 1, 2<DDD

Out[12]= SparseArray@<1500>, 81000, 1000<, PatternD

This solves the problem with the knowledge of the actual Jacobian structure, showing a signifi-
cant cost savings.

In[13]:= Timing@Norm@1 - HX ê. FindRoot@ExtendedRosenbrockResidual@XD, 8X, start<,
Method Ø 8"Newton"<, Jacobian Ø 8Automatic, Sparse Ø sparsity<DLDD

Out[13]= 80.031138, 0.<

48 Unconstrained Optimization

When a sparse structure is given, it is also possible to have the value computed by a symbolic

expression that evaluates to the values corresponding to the positions given in the sparse

structure template. Note that the values must correspond directly to the positions as ordered in

the SparseArray (the ordering can be seen using ArrayRules). One way to get a consistent

ordering of indices is to transpose the matrix twice, which results in a SparseArray with indices

in lexicographic order.

This transposes the nonzero structure matrix twice to get the indices sorted.

In[14]:= sparsity = Transpose@Transpose@sparsityDD

Out[14]= SparseArray@<1500>, 81000, 1000<, PatternD

This defines a function that will return the nonzero values in the Jacobian corresponding to the
index positions in the nonzero structure matrix.

In[15]:= ERJValues@X_ListD := Module@8x1, zero<,
x1 = Take@X, 81, -1, 2<D;
zero = 0. x1;
Flatten@Transpose@8-20 x1, 10. + zero, -1. + zero<DDD

This solves the problem with the resulting sparse symbolic Jacobian.

In[16]:= Timing@Norm@1 - HX ê. FindRoot@ExtendedRosenbrockResidual@XD, 8X, start<,
Method Ø 8"Newton"<, Jacobian Ø 8ERJValues@XD, Sparse Ø sparsity<DLDD

Out[16]= 80.025614, 0.<

In this case, using the sparse Jacobian is not significantly faster because the Jacobian is so

sparse that a finite difference approximation can be found for it in only two function evaluations

and because the problem is well enough defined near the minimum that the extra accuracy in

the Jacobian does not make any significant difference.

Variables and Starting Conditions

All the functions FindMinimum, FindMaximum, and FindRoot take variable specifications of the

same form. The function FindFit uses the same form for its parameter specifications.

Unconstrained Optimization 49

FindMinimum@ f,varsD find a local minimum of f with respect to the variables
given in vars

FindMinimum@ f,varsD find a local maximum of f with respect to the variables
given in vars

FindRoot@ f,varsD find a root f = 0 with respect to the variables given in vars

FindRoot@eqns,varsD find a root of the equations eqns with respect to the vari -
ables given in vars

FindFit@data,expr,pars,varsD find values of the parameters pars that make expr give a
best fit to data as a function of vars

Variables and parameters in the "Find" functions.

The list vars (pars for FindFit) should be a list of individual variable specifications. Each variable

specification should be of the following form.

8var,st< variable var has starting value st

8var,st1,st2< variable var has two starting values st1 and st2; the second
starting condition is only used with the principal axis and
secant methods

8var,st,rl,ru< variable var has starting value st; the search will be termi -
nated when the value of var goes outside of the interval
@rl, ruD

8var,st1,st2,rl,ru< variable var has two starting values st1 and st2; the search
will be terminated when the value of var goes outside of
the interval @rl, ruD

Individual variable specifications in the "Find" functions.

The specifications in vars all need to have the same number of starting values. When region

bounds are not specified, they are taken to be unbounded, that is, rl = -¶, ru =¶.

Vector- and Matrix-Valued Variables

The most common use of variables is to represent numbers. However, the variable input syntax

supports variables that are treated as vectors, matrices, or higher-rank tensors. In general, the

"Find" commands, with the exception of FindFit, which currently only works with scalar

variables, will consider a variable to take on values with the same rectangular structure as the

starting conditions given for it.

50 Unconstrained Optimization

Here is a matrix.

In[1]:= A =
0 1 2
3 4 5
6 7 8

;

This uses FindRoot to find an eigenvalue and corresponding normalized eigenvector for A.

In[2]:= FindRoot@8A.x ã l x, x.x ã 1<, 88l, 1<, 8x, 81, 2, 3<<<D

Out[2]= 8l Ø 13.3485, x Ø 80.164764, 0.505774, 0.846785<<

Of course, this is not the best way to compute the eigenvalue, but it does show how the vari-

able dimensions are picked up from the starting values. Since l has a starting value of 1, it is

taken to be a scalar. On the other hand, x is given a starting value, which is a vector of length

3, so it is always taken to be a vector of length 3.

If you use multiple starting values for variables, it is necessary that the values have consistent

dimensions and that each component of the starting values is distinct.

This finds a different eigenvalue using two starting conditions for each variable.

In[3]:= FindRoot@8A.x ã l x, x.x ã 1<, 88l, -2, -1<, 8x, 8-1, 0, 0<, 80, 1, 1<<<D

Out[3]= 8l Ø -1.34847, x Ø 8-0.7997, -0.104206, 0.591288<<

One advantage of variables that can take on vector and matrix values is that they allow you to

write functions, which can be very efficient for larger problems and/or handle problems of

different sizes automatically.

This defines a function that gives an objective function equivalent to the
ExtendedRosenbrock problem in the UnconstrainedProblems package. The function
expects a value of x which is a matrix with two rows.

In[4]:= ExtendedRosenbrockObjective@x_ ê; HHLength@xD ã 2L && MatrixQ@xDLD :=
Module@8x1, x2<,
8x1, x2< = x;
x2 -= x1^2;
x1 -= 1;
x1.x1 + 100 x2.x2D

Note that since the value of the function would be meaningless unless x had the correct struc-

ture, the definition is restricted to arguments with that structure. For example, if you defined

the function for any pattern x_, then evaluating with an undefined symbol x (which is what

FindMinimum does) gives meaningless unintended results. It is often the case that when work-

ing with functions for vector-valued variables, you will have to restrict the definitions. Note that

the definition above does not rule out symbolic values with the right structure. For example,

Unconstrained Optimization 51

 does) gives meaningless unintended results. It is often the case that when work-

the definition above does not rule out symbolic values with the right structure. For example,

ExtendedRosenbrockObjective@88x11, x12<, 8x21, x22<<D gives a symbolic representation of the

function for scalar x11, ….

This uses FindMinimum to solve the problem given a generic value for the problem size. You
can change the value of n without changing anything else to solve problems of different size.

In[5]:= n = 10;
start = 8Table@-1.2, 8n<D, Table@1., 8n<D<;
FindMinimum@ExtendedRosenbrockObjective@xD, 8x, start<D

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease in the function. You may need
more than MachinePrecision digits of working precision to meet these tolerances. à

Out[7]= 92.00081µ10-10,
8x Ø 880.999996, 0.999996, 0.999996, 0.999996, 0.999996, 0.999996, 0.999996, 0.999996,

0.999996, 0.999996<, 80.999991, 0.999991, 0.999991, 0.999991,
0.999991, 0.999991, 0.999991, 0.999991, 0.999991, 0.999991<<<=

The solution did not achieve the default tolerances due to the fact that Mathematica was not

able to get symbolic derivatives for the function, so it had to fall back on finite differences that

are not as accurate.

A disadvantage of using vector- and matrix-valued variables is that Mathematica cannot cur-

rently compute symbolic derivatives for them. Sometimes it is not difficult to develop a function

that gives the correct derivative. (Failing that, if you really need greater accuracy, you can use

higher-order finite differences.)

This defines a function that returns the gradient for the ExtendedRosenbrockObjective
function. Note that the gradient is a vector obtained by flattening the matrix corresponding to
the variable positions.

In[8]:= ExtendedRosenbrockGradient@x_ ê; HHLength@xD ã 2L && MatrixQ@xDLD :=
Module@8x1, x2<,
8x1, x2< = x;
x2 -= x1^2;
Flatten@82 Hx1 - 1L - 400 x1 x2, 200 x2<DD

This solves the problem using the symbolic value of the gradient.

In[9]:= n = 10;
start = 8Table@-1.2, 8n<D, Table@1., 8n<D<;
FindMinimum@ExtendedRosenbrockObjective@xD,
8x, start<, Gradient Ø ExtendedRosenbrockGradient@xDD

Out[11]= 93.00886µ10-20,
8x Ø 881., 1., 1., 1., 1., 1., 1., 1., 1., 1.<, 81., 1., 1., 1., 1., 1., 1., 1., 1., 1.<<<=

52 Unconstrained Optimization

Jacobian and Hessian derivatives are often sparse. You can also specify the structural sparsity

of these derivatives when appropriate, which can reduce overall solution complexity by quite a

bit.

Termination Conditions

Mathematically, sufficient conditions for a local minimum of a smooth function are quite straight-

forward: x* is a local minimum if “ f Hx*L = 0 and the Hessian “2 f Hx*L is positive definite. (It is a

necessary condition that the Hessian be positive semidefinite.) The conditions for a root are

even simpler. However, when the function f is being evaluated on a computer where its value is

only known, at best, to a certain precision, and practically only a limited number of function

evaluations are possible, it is necessary to use error estimates to decide when a search has

become close enough to a minimum or a root, and to compute the solution only to a finite

tolerance. For the most part, these estimates suffice quite well, but in some cases, they can be

in error, usually due to unresolved fine scale behavior of the function.

Tolerances affect how close a search will try to get to a root or local minimum before terminat-

ing the search. Assuming that the function itself has some error (as is typical when it is com-

puted with numerical values), it is not typically possible to locate the position of a minimum

much better than to half of the precision of the numbers being worked with. This is because of

the quadratic nature of local minima. Near the bottom of a parabola, the height varies quite

slowly as you move across from the minimum. Thus, if there is any error noise in the function,

it will typically mask the actual rise of the parabola over a width roughly equal to the square

root of the noise. This is best seen with an example.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

Unconstrained Optimization 53

The following command displays a sequence of plots showing the minimum of the function

sinHxL - cos HxL + 2 over successively smaller ranges. The curve computed with machine num-
bers is shown in black; the actual curve (computed with 100 digits of precision) is shown in blue.

In[2]:= Table@Block@8e = 10.^-k<,
Show@8Plot@Sin@xD - Cos@xD + Sqrt@2D, 8x, -p ê 4 - e, -p ê 4 + e<, PlotStyle Ø BlackD,

Plot@Sin@xD - Cos@xD + Sqrt@2D, 8x, -p ê 4 - e, -p ê 4 + e<, PlotStyle Ø Blue,
WorkingPrecision Ø 100D<, PlotLabel Ø Row@8"Width ", e<DDD, 8k, 5, 9<D

Out[2]=

From the sequence of plots, it is clear that for changes of order 10-8, which is about half of

machine precision and smaller, errors in the function are masking the actual shape of the curve

near the minimum. With just sampling of the function at that precision, there is no way to be

sure if a given point gives the smallest local value of the function or not to any closer tolerance.

The value of the derivative, if it is computed symbolically, is much more reliable, but for the

general case, it is not sufficient to rely only on the value of the derivative; the search needs to

find a local minimal value of the function where the derivative is small to satisfy the tolerances

in general. Note also that if symbolic derivatives of your function cannot be computed and finite

differences or a derivative-free method is used, the accuracy of the solution may degrade

further.

Root finding can suffer from the same inaccuracies in the function. While it is typically not as

severe, some of the error estimates are based on a merit function, which does have a quadratic

shape.

For the reason of this limitation, the default tolerances for the Find functions are all set to be

half of the final working precision. Depending on how much error the function has, this may or

may not be achievable, but in most cases it is a reasonable goal. You can adjust the tolerances

using the AccuracyGoal and PrecisionGoal options. When AccuracyGoal -> ag and

PrecisionGoal -> pg, this defines tolerances tola = 10-ag and tolr = 10-pg.

54 Unconstrained Optimization

:

-0.785400 -0.785390

1.µ10-11

3.µ10-11

5.µ10-11

7.µ10-11
Width 0.00001

,

-0.785398 -0.785397

1.µ10-13

3.µ10-13

5.µ10-13

7.µ10-13
Width 1.µ10-6

,

-0.785398 -0.785398

1.µ10-15

3.µ10-15

5.µ10-15

7.µ10-15
Width 1.µ10-7

,

-0.785398 -0.785398

5.µ10-17
1.µ10-16
1.5µ10-16
2.µ10-16

Width 1.µ10-8

,

-0.785398 -0.785398

5.µ10-17
1.µ10-16
1.5µ10-16
2.µ10-16

Width 1.µ10-9

>

Given tola and tolr FindMinimum tries to find a value xk such that °xk - x*¥ § maxHtola, °xk¥ tolrL. Of

course, since the exact position of the minimum, x*, is not known, the quantity °xk - x*¥ is esti-

mated. This is usually done based on past steps and derivative values. To match the derivative

condition at a minimum, the additional requirement °“ f HxkL¥ § tola is imposed. For FindRoot, the

corresponding condition is that just the residual be small at the root: ° f ¥ § tola.

This finds the 2 to at least 12 digits of accuracy, or within a tolerance of 10-12. The precision
goal of ¶ means that tolr = 0, so it does not have any effect in the formula. (Note: you cannot
similarly set the accuracy goal to ¶ since that is always used for the size of the residual.)

In[3]:= FindRoot@x^2 - 2, 8x, 1<, AccuracyGoal Ø 12, PrecisionGoal Ø ¶D

Out[3]= 8x Ø 1.41421<

This shows that the result satisfied the requested error tolerances.

In[4]:= 8x - Sqrt@2D, x^2 - 2< ê. %

Out[4]= 90., 4.44089µ10-16=

This tries to find the minimum of the function sinHxL - cosHxL to 8 digits of accuracy.
FindMinimum gives a warning message because of the error in the function as seen in the
plots.

In[5]:= FindMinimum@Sin@xD - Cos@xD, 8x, 0<,
Method -> "Newton", AccuracyGoal Ø 8, PrecisionGoal Ø ¶D

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease
in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances. à
Out[5]= 8-1.41421, 8x Ø -0.785398<<

This shows that though the value at the minimum was found to be basically machine epsilon,
the position was only found to the order of 10-8 or so.

In[6]:= 8Sqrt@2D + %@@1DD, p ê 4 + x ê. %@@2DD<

Out[6]= 92.22045µ10-16, -1.26022µ10-8=

In multiple dimensions, the situation is even more complicated since there can be more error in

some directions than others, such as when a minimum is found along a relatively narrow valley,

as in the Freudenstein|Roth problem. For searches such as this, often the search parameters

are scaled, which in turn affects the error estimates. Nonetheless, it is still typical that the

quadratic shape of the minimum affects the realistically achievable tolerances.

Unconstrained Optimization 55

When you need to find a root or minimum beyond the default tolerances, it may be necessary

to increase the final working precision. You can do this with the WorkingPrecision option.

When you use WorkingPrecision -> prec, the search starts at the precision of the starting

values and is adaptively increased up to prec as the search converges. By default,

WorkingPrecision -> MachinePrecision, so machine numbers are used, which are usually

much faster. Going to higher precision can take significantly more time, but can get you much

more accurate results if your function is defined in an appropriate way. For very high-precision

solutions, "Newton's" method is recommended because its quadratic convergence rate signifi-

cantly reduces the number of steps ultimately required.

It is important to note that increasing the setting of the WorkingPrecision option does no

good if the function is defined with lower-precision numbers. In general, for

WorkingPrecision -> prec to be effective, the numbers used to define the function should be

exact or at least of precision prec. When possible, the precision of numbers in the function is

artificially raised to prec using SetPrecision so that convergence still works, but this is not

always possible. In any case, when the functions and derivatives are evaluated numerically, the

precision of the results is raised to prec if necessary so that the internal arithmetic can be done

with prec digit precision. Even so, the actual precision or accuracy of the root or minimum and

its position is limited by the accuracy in the function. This is especially important to keep in

mind when using FindFit, where data is usually only known up to a certain precision.

Here is a function defined using machine numbers.

In[7]:= f@x_?NumberQD := Sin@1. xD - Cos@1. xD;

Even with higher working precision, the minimum cannot be resolved better because the actual
function still has the same errors as shown in the plots. The derivatives were specified to keep
other things consistent with the computation at machine precision shown previously.

In[8]:= FindMinimum@f@xD, 8x, 0<, Gradient Ø 8Cos@1. xD + Sin@1. xD<,
Method Ø 8"Newton", Hessian Ø 88Cos@1. xD - Sin@1. xD<<<,
AccuracyGoal Ø 8, PrecisionGoal Ø ¶, WorkingPrecision Ø 20D

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and PrecisionGoal

but was unable to find a sufficient decrease in the function. You may need
more than 20.` digits of working precision to meet these tolerances. à

Out[8]= 8-1.4142135623730949234, 8x Ø -0.78539817599970194669<<

56 Unconstrained Optimization

Here is the computation done with 20-digit precision when the function does not have machine
numbers.

In[9]:= FindMinimum@Sin@xD - Cos@xD, 8x, 0<, Method -> "Newton",
AccuracyGoal Ø 8, PrecisionGoal Ø ¶, WorkingPrecision Ø 20D

Out[9]= 8-1.4142135623730950488, 8x Ø -0.78539816339744830962<<

If you specify WorkingPrecision -> prec, but do not explicitly specify the AccuracyGoal and

PrecisionGoal options, then their default settings of Automatic will be taken to be

AccuracyGoal -> prec ê 2 and PrecisionGoal -> prec ê 2. This leads to the smallest tolerances

that can realistically be expected in general, as discussed earlier.

Here is the computation done with 50-digit precision without an explicitly specified setting for
the AccuracyGoal or PrecisionGoal options.

In[10]:= FindMinimum@Sin@xD - Cos@xD, 8x, 0<, Method -> "Newton", WorkingPrecision Ø 50D

Out[10]= 8-1.4142135623730950488016887242096980785696718753769,
8x Ø -0.78539816339744830961566084581987572104929234984378<<

This shows that though the value at the minimum was actually found to be even better than the
default 25-digit tolerances.

In[11]:= 8Sqrt@2D + %@@1DD, p ê 4 + x ê. %@@2DD<

Out[11]= 90.µ10-50, 0.µ10-51=

The following table shows a summary of the options affecting precision and tolerance.

option name default value

WorkingPrecision MachinePrecis-
ion

the final working precision, prec, to use;
precision is adaptively increased from the
smaller of prec and the precision of the
starting conditions to prec

AccuracyGoal Automatic setting ag determines an absolute tolerance
by tola = 10-ag; when Automatic,
ag = prec ê 2

PrecisionGoal Automatic setting pg determines an absolute toler-
ance by tolr = 10-pg; when Automatic,
pg = prec ê 2

Precision and tolerance options in the "Find" functions.

A search will sometimes converge slowly. To prevent slow searches from going on indefinitely,

the Find commands all have a maximum number of iterations (steps) that will be allowed

before terminating. This can be controlled with the option

Unconstrained Optimization 57

before terminating. This can be controlled with the option MaxIterations that has the default

value MaxIterations -> 100. When a search terminates with this condition, the command will

issue the cvmit message.

This gets the Brown|Dennis problem from the Optimization`UnconstrainedProblems`
package.

In[12]:= Short@bd = GetFindMinimumProblem@BrownDennisD, 5D

Out[12]//Short= FindMinimumProblemB -‰1ë5 + X1 +
X2

5

2

+ -CosB
1

5
F + X3 + SinB

1

5
F X4

2 2

+

-‰2ë5 + X1 +
2 X2

5

2

+ -CosB
2

5
F + X3 + SinB

2

5
F X4

2 2

+

á17à + JI-‰4 + X1 + 4 X2M
2
+ H-Cos@4D + X3 + Sin@4D X4L

2N
2
,

88X1, 25.<, 8X2, 5.<, 8X3, -5.<, 8X4, -1.<<, 8<, BrownDennis, 84, 20<F

This attempts to solve the problem with the default method, which is the Levenberg|Marquardt
method, since the function is a sum of squares.

In[13]:= ProblemSolve@bdD

FindMinimum::cvmit : Failed to converge to the requested accuracy or precision within 100 iterations. à

Out[13]= 8105443., 8X1 Ø -7.35071, X2 Ø 11.7365, X3 Ø -0.60436, X4 Ø 0.168396<<

The Levenberg|Marquardt method is converging slowly on this problem because the residual is

nonzero near the minimum and the second-order part of the Hessian is needed. While the

method eventually does converge in just under 400 steps, perhaps a better option is to use a

method which may converge faster.

In[44]:= ProblemSolve@bd, Method Ø QuasiNewtonD

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease
in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances. à
Out[44]= 885822.2, 8X1 Ø -11.5944, X2 Ø 13.2036, X3 Ø -0.403439, X4 Ø 0.236779<<

In a larger calculation, one possibility when hitting the iteration limit is to use the final search

point, which is returned, as a starting condition for continuing the search, ideally with another

method.

58 Unconstrained Optimization

Symbolic Evaluation

The functions FindMinimum, FindMaximum, and FindRoot have the HoldAll attribute and so

have special semantics for evaluation of their arguments. First, the variables are determined

from the second argument, then they are localized. Next, the function is evaluated symbolically,

then processed into an efficient form for numerical evaluation. Finally, during the execution of

the command, the function is repeatedly evaluated with different numerical values. Here is a

list showing these steps with additional description.

Determine variables process the second argument; if the second argument is
not of the correct form (a list of variables and starting
values), it will be evaluated to get the correct form

Localize variables in a manner similar to Block and Table, add rules to the
variables so that any assignments given to them will not
affect your Mathematica session beyond the scope of the
"Find" command and so that previous assignments do
not affect the value (the variable will evaluate to itself at
this stage)

Evaluate the function with the locally undefined (symbolic) values of the vari-
ables, evaluate the first argument (function or equations).
Note: this is a change which was instituted in Mathemat-
ica 5, so some adjustments may be necessary for code
that ran in previous versions. If your function is such that
symbolic evaluation will not keep the function as intended
or will be prohibitively slow, you should define your func-
tion so that it only evaluates for numerical values of the
variables. The simplest way to do this is by defining your
function using PatternTest (?), as in
f@x_?NumberQD := definition.

Preprocess the function analyze the function to help determine the algorithm to
use (e.g., sum of squares -> Levenberg|Marquardt);
optimize and compile the function for faster numerical
evaluation if possible: for FindRoot this first involves
going from equations to a function

Compute derivatives compute any needed symbolic derivatives if possible;
otherwise, do preprocessing needed to compute deriva-
tives using finite differences

Evaluate numerically repeatedly evaluate the function (and derivatives when
required) with different numerical values

Steps in processing the function for the "Find" commands.

Unconstrained Optimization 59

FindFit does not have the HoldAll attribute, so its arguments are all evaluated before the

commands begin. However, it uses all of the stages described above, except instead of evaluat-

ing the function, it constructs a function to minimize from the model function, variables, and

provided data.

You will sometimes want to prevent symbolic evaluation, most often when your function is not

an explicit formula, but a value derived through running through a program. An example of

what happens and how to prevent the symbolic evaluation is shown.

This attempts to solve a simple boundary value problem numerically using shooting.

In[1]:= FindRoot@
First@x@1D ê. NDSolve@8x''@tD + Hx@tD UnitStep@tD + 1L x@tD ã 0, x@-1D ã 0,

x'@-1D ã xp<, x, 8t, -1, 1<DD, 8xp, Pi<D

NDSolve::ndinnt : Initial condition xp is not a number or a rectangular array of numbers. à

ReplaceAll::reps :
9NDSolveA9x@tD H1+Times@á2àDL+x££@tD ã 0, x@-1D ã 0, x£@-1D ã xp=, x, 8t, -1, 1<E= is neither a list of

replacement rules nor a valid dispatch table, and so cannot be used for replacing. à

FindRoot::nlnum:
The function value 8x@1.D< is not a list of numbers with dimensions 81< at 8xp< = 83.14159<. à

NDSolve::ndinnt : Initial condition xp is not a number or a rectangular array of numbers. à

ReplaceAll::reps :
9NDSolveA9x@tD H1+Times@á2àDL+x££@tD ã 0, x@-1D ã 0, x£@-1D ã xp=, x, 8t, -1, 1<E= is neither a list of

replacement rules nor a valid dispatch table, and so cannot be used for replacing. à

FindRoot::nlnum:
The function value 8x@1.D< is not a list of numbers with dimensions 81< at 8xp< = 83.14159<. à

Out[1]= FindRoot@First@x@1D ê.
NDSolve@8x££@tD + Hx@tD UnitStep@tD + 1L x@tD ã 0, x@-1D ã 0, x£@-1D ã xp<, x, 8t, -1, 1<DD, 8xp, p<D

The command fails because of the symbolic evaluation of the function. You can see what hap-

pens when you evaluate it inside of Block.

This evaluates the function given to FindRoot with a local (undefined) value of xp.

In[2]:= Block@8xp<,
First@x@1D ê. NDSolve@8x''@tD + Hx@tD UnitStep@tD + 1L x@tD ã 0, x@-1D ã 0,

x'@-1D ã xp<, x, 8t, -1, 1<DDD

NDSolve::ndinnt : Initial condition xp is not a number or a rectangular array of numbers. à

ReplaceAll::reps :
9NDSolveA9x@tD H1+Times@á2àDL+x££@tD ã 0, x@-1D ã 0, x£@-1D ã xp=, x, 8t, -1, 1<E= is neither a list of

replacement rules nor a valid dispatch table, and so cannot be used for replacing. à
Out[2]= x@1D

60 Unconstrained Optimization

Of course, this is not at all what was intended for the function; it does not even depend on xp.

What happened is that without a numerical value for xp, NDSolve fails, so ReplaceAll (ê.) fails

because there are no rules. First just returns its first argument, which is x@1D. Since the

function is meaningless unless xp has numerical values, it should be properly defined.

This defines a function that returns the value x@1D as a function of a numerical value for x'@tD
at t = -1.

In[3]:= fx1@xp_?NumberQD :=
First@x@1D ê. NDSolve@8x''@tD + Hx@tD UnitStep@tD + 1L x@tD ã 0,

x@-1D ã 0, x'@-1D ã xp<, x, 8t, -1, 1<DD

An advantage of having a simple function definition outside of FindRoot is that it can indepen-

dently be tested to make sure that it is what you really intended.

This makes a plot of fx1.

In[4]:= Plot@fx1@xpD, 8xp, 0, 5<D

Out[4]=

From the plot, you can deduce two bracketing values for the root, so it is possible to take

advantage of "Brent's" method to quickly and accurately solve the problem.

This solves the shooting problem.

In[5]:= FindRoot@fx1@xpD, 8xp, 3, 4<D

Out[5]= 8xp Ø 3.34372<

It may seem that symbolic evaluation just creates a bother since you have to define the func-

tion specifically to prevent it. However, without symbolic evaluation, it is hard for Mathematica

to take advantage of its unique combination of numerical and symbolic power. Symbolic evalua-

tion means that the commands can consistently take advantage of benefits that come from

symbolic analysis, such as algorithm determination, automatic computation of derivatives,

automatic optimization and compilation, and structural analysis.

Unconstrained Optimization 61

1 2 3 4 5

-1.0

-0.5

0.5

UnconstrainedProblems Package

Plotting Search Data

The utility functions FindMinimumPlot and FindRootPlot show search data for FindMinimum

and FindRoot for one- and two-dimensional functions. They work with essentially the same

arguments as FindMinimum and FindRoot except that they additionally take options, which

affect the graphics functions they call to provide the plots, and they do not have the HoldAll

attribute as do FindMinimum and FindRoot.

FindMinimumPlot@ f,8x,xst<,optsD plot the steps and the points at which the function f and
any of its derivatives that were evaluated in
FindMinimum@ f, 8x, xst<D superimposed on a plot of f
versus x; opts may include options from both
FindMinimum and Plot

FindMinimumPlot@ f,
88x,xst<,8y,yst<<,optsD

plot the steps and the points at which the function f and
any of its derivatives that were evaluated in
FindMinimum@ f, 88x, xst<, 8y, yst<<D superimposed on
a contour plot of f as a function of x and y; opts may
include options from both FindMinimum and
ContourPlot

FindRootPlot@ f,8x,xst<,optsD plot the steps and the points at which the function f and
any of its derivatives which were evaluated in
FindRoot@ f, 8x, xst<D superimposed on a plot of f
versus x; opts may include options from both FindRoot
and Plot

FindRootPlot@ f,
88x,xst<,8y,yst<<,optsD

plot the steps and the points at which the function f and
any of its derivatives that were evaluated in
FindRoot@ f, 88x, xst<, 8y, yst<<D superimposed on a
contour plot of the merit function f as a function of x and
y; opts may include options from both FindRoot and
ContourPlot

Plotting search data.

Note that to simplify processing and reduce possible confusion about the function f ,

FindRootPlot does not accept equations; it finds a root f = 0.

62 Unconstrained Optimization

Steps and evaluation points are color coded for easy detection as follows:

† Steps are shown with blue lines and blue points.

† Function evaluations are shown with green points.

† Gradient evaluations are shown with red points.

† Hessian evaluations are shown with cyan points.

† Residual function evaluations are shown with yellow points.

† Jacobian evaluations are shown with purple points.

† The search termination is shown with a large black point.

FindMinimumPlot and FindRootPlot return a list containing 8result, summary, plot<, where:

† result is the result of FindMinimum or FindRoot.

† summary is a list of rules showing the numbers of steps and evaluations of the function and
its derivatives.

† plot is the graphics object shown.

This loads the package.

In[1]:= << Optimization`UnconstrainedProblems`

This shows in two dimensions the steps and evaluations used by FindMinimum to find a local
minimum of the function cosIx2 - 3 yM + sinIx2 + y2M starting at the point 8x, y< = 81, 1<. Options are
given to ContourPlot so that no contour lines are shown and the function value is indicated
by grayscale. Since FindMinimum by default uses the "quasi-Newton" method, there are only
evaluations of the function and gradient that occur at the same points, indicated by the red
circles with green centers.

In[2]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,
88x, 1<, 8y, 1<<, Contours Ø 100, ContourLines Ø FalseD

Out[2]=

Unconstrained Optimization 63

:8 - 2.,8 xØ 1.37638, yØ 1.67868<< ,

8 StepsØ 9, FunctionØ 13, GradientØ 13< ,

0.8 1.0 1.2 1.4 1.6
1.0

1.2

1.4

1.6

1.8

2.0

>

This shows in two dimensions the steps and evaluations used by FindMinimum to find a local

minimum of the function Ix2 - 3 yM2 + sin2Ix2 + y2M starting at the point 8x, y< = 81, 1<. Since the
problem is a sum of squares, FindMinimum by default uses the "Gauss|Newton"/Levenberg|
Marquardt method that derives a residual function and only evaluates it and its Jacobian. Points
at which the residual function is evaluated are shown with yellow dots. The yellow dots sur-
rounded by a large purple circle are points at which the Jacobian was evaluated as well.

In[3]:= FindMinimumPlot@Hx^2 - 3 yL^2 + Sin@x^2 + y^2D^2, 88x, 1<, 8y, 1<<D

Out[3]= :92.27472µ10-28, 8x Ø 2.06482, y Ø 1.42116<=,

8Steps Ø 6, Residual Ø 7, Jacobian Ø 7<,

1.0 1.2 1.4 1.6 1.8 2.0
1.0

1.1

1.2

1.3

1.4

1.5

>

This shows in two dimensions the steps and evaluations used by FindMinimum to find a local

minimum of the function Ix2 - 3 yM2 + sin2Ix2 + y2M starting at the point 8x, y< = 81, 1< using
"Newton’s" method. Points at which the function, gradient, and Hessian were all evaluated are
shown by concentric green, red, and cyan circles. Note that in this example, all of the Newton
steps satisfied the Wolfe conditions, so there were no points where the function and gradient
were evaluated separately from the Hessian, which is not always the case. Note also that
Newton’s method finds a different local minimum than the default method.

In[4]:= FindMinimumPlot@Hx^2 - 3 yL^2 + Sin@x^2 + y^2D^2,
88x, 1<, 8y, 1<<, Method Ø NewtonD

Out[4]= :94.03019µ10-29, 8x Ø 1.57033, y Ø 0.82198<=,

8Steps Ø 6, Function Ø 10, Gradient Ø 10, Hessian Ø 7<,

1.0 1.2 1.4 1.6 1.8 2.0 2.2

0.7

0.8

0.9

1.0

1.1

1.2

>

64 Unconstrained Optimization

This shows the steps and evaluations used by FindMinimum to find a local minimum of the

function ex + 1
x
 with two starting values superimposed on the plot of the function. Options are

given to Plot so that the curve representing the function is thick and purple. With two starting
values, FindMinimum uses the derivative-free principal axis method, so there are only function
evaluations, indicated by the green dots.

In[5]:= FindMinimumPlot@Exp@xD + 1 ê x, 8x, 1, 1.1<,
PlotStyle Ø 8Thickness@.025D, RGBColor@.4, 0, .4D<D

Out[5]=

This shows in two dimensions the steps and evaluations used by FindRoot to find a root of the
function 9x2 - 3 y, sinIx2 + y2M= = 80, 0< starting at the point 8x, y< = 81, 1<. As described earlier, the
function is a residual, and the default method in FindRoot evaluates the residual and its
Jacobian as shown by the yellow dots and purple circles. Note that this plot is nearly the same
as the one produced by FindMinimumPlot with the default method for the function

Ix2 - 3 yM2 + sin2Ix2 + y2M since the residual is the same. FindRootPlot also shows the zero
contour of each component of the residual function in red and green.

In[6]:= FindRootPlot@8x^2 - 3 y, Sin@x^2 + y^2D<, 88x, 1<, 8y, 1<<D

Out[6]= :8x Ø 2.06482, y Ø 1.42116<, 8Steps Ø 7, Residual Ø 7, Jacobian Ø 7<,

1.0 1.2 1.4 1.6 1.8 2.0
1.0

1.1

1.2

1.3

1.4

1.5

>

Test Problems

All the test problems presented in [MGH81] have been coded into Mathematica in the

Optimization`UnconstrainedProblems` package. A data structure is used so that the prob-

lems can be processed for solution and testing with FindMinimum and FindRoot in a seamless

way. The lists of problems for FindMinimum and FindRoot are in $FindMinimumProblems and

$FindRootProblems, respectively, and a problem can be accessed using

GetFindMinimumProblem and GetFindRootProblem.

Unconstrained Optimization 65

:83.44228, 8x Ø 0.703467<<, 8Steps Ø 6, Function Ø 14<,

0.70 0.75 0.80 0.85 0.90 0.95 1.00

3.50

3.55

3.60

3.65

3.70

>

$FindMinimumProblems list of problems that are appropriate for FindMinimum

GetFindMinimumProblem@probD get the problem prob using the default size and starting
values in a FindMinimumProblem data structure

GetFindMinimumProblem@prob,8n,m<D

get the problem prob with n variables such that it is a sum
of m squares in a FindMinimumProblem data structure

GetFindMinimumProblem@prob,size,startD

get the problem prob with given size and starting value start
in a FindMinimumProblem data structure

FindMinimumProblem@ f,vars,opts,prob,sizeD

a data structure that contains a minimization problem to
be solved by FindMinimum

Accessing FindMinimum problems.

$FindRootProblems list of problems that are appropriate for FindRoot

GetFindRootProblem@probD get the problem prob using the default size and starting
values in a FindRootProblem data structure

GetFindRootProblem@prob,nD get the problem prob with n variables (and n equations) in
a FindRootProblem data structure

GetFindRootProblem@prob,n,startD get the problem prob with size n and starting value start in
a FindRootProblem data structure

FindRootProblem@ f,vars,opts,prob,sizeD

a data structure that contains a minimization problem to
be solved by FindRoot

Accessing FindRoot problems.

GetFindMinimumProblem and GetFindRootProblem are both pass options to be used by other

commands. They also accept the option Variables -> vars which is used to specify what vari-

ables to use for the problems.

option name default value

Variables XÒ& a function that is applied to the integers
1, … n to generate the variables for a
problem with n variables or a list of length
n containing the variables

Specifying variable names.

66 Unconstrained Optimization

This loads the package.

In[1]:= << Optimization`UnconstrainedProblems`

This gets the Beale problem in a FindMinimumProblem data structure.

In[2]:= beale = GetFindMinimumProblem@BealeD

Out[2]= FindMinimumProblemB
3

2
- X1 H1 - X2L

2

+
9

4
- X1 I1 - X2

2M

2

+
21

8
- X1 J1 - X2

3N

2

,

88X1, 1.<, 8X2, 1.<<, 8<, Beale, 82, 3<F

This gets the Powell singular function problem in a FindRootProblem data structure.

In[3]:= ps = GetFindRootProblem@PowellSingular, Variables Ø 8x, y, z, w<D

Out[3]= FindRootProblemB:x + 10 y, 5 H-w + zL, Hy - 2 zL2, 10 H-w + xL2>,

88x, 3.<, 8y, -1<, 8z, 0.<, 8w, 1.<<, 8<, PowellSingular, 84, 4<F

Once you have a FindMinimumProblem or FindRootProblem object, in addition to simply solv-

ing the problem, there are various tests that you can run.

ProblemSolve@p,optsD solve the problem in p, giving the same output as
FindMinimum or FindRoot

ProblemStatistics@p,optsD solve the problem, giving a list 8sol, stats<, where sol is
the output of ProblemSolve@pD and evals is a list of rules
indicating the number of steps and evaluations used

ProblemTime@p,optsD solve the problem giving a list 8sol, Time -> time<, where
sol is the output of ProblemSolve@pD and time is time
taken to solve the problem; if time is less than a second,
the problem will be solved multiple times to get an average
timing

ProblemTest@p,optsD solve the problem, giving a list of rules including the step
and evaluation statistics and time from
ProblemStatistics@pD and ProblemTime@pD along
with rules indicating the accuracy and precision of the
solution as compared with a reference solution

FindMinimumPlot@p,optsD plot the steps and evaluation points for solving a
FindMinimumProblem p

FindRootPlot@p,optsD plot the steps and evaluation points for solving a
FindRootProblem p

Operations with FindMinimumProblem and FindRootProblem data objects.

Unconstrained Optimization 67

Any of the previous commands shown can take options that are passed on directly to

FindMinimum or FindRoot and override any options for these functions which may have been

specified when the problem was set up.

This uses FindRoot to solve the Powell singular function problem and gives the root.

In[4]:= ProblemSolve@psD

Out[4]= 9x Ø 8.86974µ10-9, y Ø -8.86974µ10-10, z Ø 1.41916µ10-9, w Ø 1.41916µ10-9=

This does the same as the previous example, but includes statistics on steps and evaluations
required.

In[5]:= ProblemStatistics@psD

Out[5]= 9x Ø 8.86974µ10-9, y Ø -8.86974µ10-10, z Ø 1.41916µ10-9,

w Ø 1.41916µ10-9, 8Steps Ø 28, Function Ø 29, Jacobian Ø 28<=

This uses FindMinimum to solve the Beale problem and averages the timing over several trials
to get the average time it takes to solve the problem.

In[6]:= ProblemTime@bealeD

Out[6]= 992.63792µ10-19, 8X1 Ø 3., X2 Ø 0.5<=, Time Ø 0.00201428 Second=

This uses FindMinimum to solve the Beale problem, compares the result with a reference
solution, and gives a list of rules indicating the results of the test.

In[7]:= ProblemTest@bealeD

Out[7]= 8FunctionAccuracy Ø 18.5787, FunctionPrecision Ø Indeterminate,
SpatialAccuracy Ø 9.7438, SpatialPrecision Ø 9.85325,
Time Ø 0.00202963 Second, Steps Ø 6, Residual Ø 8, Jacobian Ø 7, Messages Ø 8<<

ProblemTest gives a way to easily compare two different methods for the same problem.

This uses FindMinimum to solve the Beale problem using "Newton’s" method, compares the
result with a reference solution, and gives a list of rules indicating the results of the test.

In[8]:= ProblemTest@beale, Method -> "Newton"D

Out[8]= 8FunctionAccuracy Ø 25.5581, FunctionPrecision Ø Indeterminate,
SpatialAccuracy Ø 12.384, SpatialPrecision Ø 12.6444, Time Ø 0.00297526 Second,
Steps Ø 8, Function Ø 9, Gradient Ø 9, Hessian Ø 9, Messages Ø 8<<

68 Unconstrained Optimization

Most of the rules returned by these functions are self-explanatory, but a few require some

description. Here is a table clarifying those rules.

"FunctionAccuracy" the accuracy of the function value -Log@10, °error in f¥D

"FunctionPrecision" the precision of the function value
-Log@10, °relative error in f¥D

"SpatialAccuracy" the accuracy in the position of the minimizer or root
-Log@10, °error in x¥D

"SpatialPrecision" the precision in the position of the minimizer or root
-Log@10, °relative error in x¥D

"Messages" a list of messages issued during the solution of the problem

A very useful comparison is to see how a list of methods affect a particular problem. This is easy to do by
setting up a FindMinimumProblem object and mapping a problem test over a list of methods.

This gets the Chebyquad problem. The output has been abbreviated to save space.

In[9]:= Short@cq = GetFindMinimumProblem@ChebyquadD, 5D

Out[9]//Short= FindMinimumProblemB
1

81
H-9 + 2 X1 + 2 X2 + 2 X3 + 2 X4 + 2 X5 + 2 X6 + 2 X7 + 2 X8 + 2 X9L

2 +

1

81
I-3 H-1 + 2 X1L + 4 H-1 + 2 X1L

3 - 3 H-1 + 2 X2L + á21à + 4 H-1 + 2 X9L
3M

2
+

1

81
Iá35à + 16á1à5M

2
+

1

81
Há1àL2 +

1

81
á1à2 + Há1à + á1àL2 +

1

15
+
1

9
Há1àL

2

+
1

35
+
1

9
I-9 + á35à + 32 H-1 + á1àL6M

2

+

1

63
+
1

9
I9 - 32 H-1 + 2 X1L

2 + á51à + 128 H-1 + 2 X9L
8M

2

, á3à, 89, 9<F

Here is a list of possible methods.

In[10]:= methods = 8Automatic, "QuasiNewton", 8"QuasiNewton", "StepMemory" Ø 10<,
"Newton", 8"Newton", "StepControl" -> "TrustRegion"<, "ConjugateGradient"<;

This makes a table comparing the different methods in terms of accuracy and computation time.

In[11]:= TableForm@Map@Join@8Ò<, 8"Time", "FunctionAccuracy", "SpatialAccuracy"< ê.
ProblemTest@cq, Method Ø ÒDD &, methodsDD

Out[11]//TableForm=

Automatic 0.0288897 20.0663 9.94666
QuasiNewton 0.0317216 17.1785 8.3777
QuasiNewton
StepMemory Ø 10 0.0323488 16.4119 7.47304

Newton 0.0769076 20.025 9.34314
Newton
StepControl Ø TrustRegion 0.0761128 21.8281 10.6614

ConjugateGradient 0.0388904 15.7931 7.72219

It is possible to generate tables of how a particular method affects a variety of problems by

mapping over the names in $FindMinimumProblems or $FindRootProblems.

Unconstrained Optimization 69

This sets up a function that tests a problem with FindMinimum using its default settings except
with a large setting for MaxIterations so that the default (Levenberg|Marquardt) method can
run to convergence.

In[12]:= TestDefault@problem_D := Join@8"Name" Ø problem<,
ProblemTest@GetFindMinimumProblem@problem, MaxIterations Ø 1000DDD

This makes a table showing some of the results from testing all the problems in
$FindMinimumProblems. It may take several minutes to run.

In[13]:= TableForm@Map@H8"Name", "Time", "Residual", "Jacobian", "FunctionAccuracy",
"SpatialAccuracy"< ê. TestDefault@ÒDL &, $FindMinimumProblemsDD

Out[13]//TableForm=

Rosenbrock 0.00284034 21 16 15.9546 15.9546
FreudensteinRoth 0.00442559 35 17 14.1484 8.4797
PowellBadlyScaled 0.00276841 18 17 29.9092 12.4303
BrownBadlyScaled 0.00182188 10 10 20.5345 16.2673
Beale 0.00199867 8 7 18.5787 9.7438
JennrichSampson 0.00828054 34 20 13.3703 8.87261
HelicalValley 0.00218182 11 9 32.0055 17.2046
Bard 0.00673732 7 7 16.9157 8.00751
Gauss 0.00786546 3 3 21.1019 11.0733
Meyer 0.0264677 126 116 11.5089 9.95814
Gulf 0.0120229 89 17 31.109 13.543
Box3D 0.00715045 6 6 18.9447 8.68579
PowellSingular 0.0034851 28 28 30.3044 7.73816
Wood 0.00791268 69 64 23.5366 13.0536
KowalikOsborne 0.010429 36 35 18.6639 8.33507
BrownDennis 0.0899279 412 375 9.13811 6.11409
Osborne1 0.0224698 20 17 17.4797 9.3597
BiggsExp6 0.0231614 50 36 30.2266 14.4925
Osborne2 0.121583 20 17 17.1587 7.90304
Watson 0.0736547 11 9 18.8178 6.68865
ExtendedRosenbrock 0.0954113 21 16 29.9092 15.9546
ExtendedPowell 0.123236 27 27 29.9092 7.21075
PenaltyFunctionI 0.0249084 117 94 18.1356 6.96613
PenaltyFunctionII 0.0271926 109 72 15.9546 7.62089
VariablyDimensionedFunction 0.130756 17 17 15.9546 15.9546
TrigonometricFunction 0.00774007 7 7 28.0238 14.6546
BrownAlmostLinear 0.00557332 14 13 29.1488 0.668059
DiscreteBoundaryValue 0.00547087 4 4 30.5195 14.2959
DiscreteIntegralEquation 0.0105878 4 4 29.3985 14.8825
BroydenTridiagonal 0.00479374 5 5 17.9475 9.44685
BroydenBanded 0.00825598 8 7 28.0567 15.503
LinearFullRank 0.00370734 2 2 14.7505 14.6348
LinearRank1 0.00938284 55 2 15.0515 ERROR
LinearRank1Z 0.00742234 37 2 15.0515 ERROR
Chebyquad 0.0280148 11 9 20.0663 9.94666

The two cases where the spatial accuracy is shown as ERROR are for linear problems, which do

not have an isolated minimizer. The one case, which has a spatial accuracy that is quite poor,

has multiple minimizers, and the method goes to a different minimum than the reference one.

Many of these functions have multiple local minima, so be aware that the error may be reported

as large only because a method went to a different minimum than the reference one.

70 Unconstrained Optimization

References

[AN96] Adams, L. and J. L. Nazareth, eds. Linear and Nonlinear Conjugate Gradient-Related

Methods. SIAM, 1996.

[Br02] Brent, R. P. Algorithms for Minimization without Derivatives. Dover, 2002 (Original

volume 1973).

[DS96] Dennis, J. E. and R. B. Schnabel. Numerical Methods for Unconstrained Optimization.

SIAM, 1996 (Original volume 1983).

[GMW81] Gill, P. E., W. Murray, and M. H. Wright. Practical Optimization. Academic Press, 1981.

[MW93] More, J. J. and S. J. Wright. Optimization Software Guide. SIAM, 1993.

[MT94] More, J. J. and D. J. Thuente. "Line Search Algorithms with Guaranteed Sufficient

Decrease." ACM Transactions on Mathematical Software 20, no. 3 (1994): 286|307.

[MGH81] More, J. J., B. S. Garbow, and K. E. Hillstrom. "Testing Unconstrained Optimization

Software." ACM Transactions on Mathematical Software 7, no. 1 (1981): 17|41.

[NW99] Nocedal, J. and S. J. Wright. Numerical Optimization. Springer, 1999.

[PTVF92] Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes

in C, 2nd ed. Cambridge University Pressn, 1992.

[Rhein98] Rheinboldt, W. C. Methods for Solving Systems of Nonlinear Equations. SIAM, 1998

(Original volume 1974).

Unconstrained Optimization 71

