
This is an example of a problem where the Newton step is very large because the starting point 
is at a position where the Jacobian (derivative) is nearly singular. The step size is (not severely) 
limited by the option.

In[3]:= FindRootPlot@Cos@x PiD, 88x, -5<<D

Out[3]=

This shows the same example but with a more rigorous step-size limitation, which finds the root 
near the starting condition.

In[4]:= FindRootPlot@Cos@x PiD, 88x, -5<<,
Method Ø 8"Newton", "StepControl" Ø 8"LineSearch", "MaxRelativeStepSize" Ø .1<<D

Out[4]= :8x Ø -4.5<, 8Steps Ø 5, Residual Ø 5, Jacobian Ø 5<,

-4.9 -4.8 -4.7 -4.6 -4.5 -4.4

-1.0

-0.8
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>

Note that you need to be careful not to set the "MaxRelativeStepSize" option too small, or it

will affect convergence, especially for minima and roots near zero.

The following table shows a summary of the options, which can be used to control line searches.

option name default value

"Method" Automatic method to use for executing the line 
search; can be Automatic, 
"MoreThuente", "Backtracking", or 
"Brent"

"CurvatureFactor" Automatic factor h in the Wolfe conditions, between 0 
and 1; smaller values of h result in a more 
exact line search

"DecreaseFactor" 1ê10000 factor m in the Wolfe conditions, between 0 
and h

"MaxRelativeStepSize" 10 largest step that will be taken relative to 
the norm of the current search point, can 
be any positive number or ¶ for no 
restriction

Method options for "StepControl" Ø "LineSearch".
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The following sections will describe the three line search algorithms implemented in Mathemat-

ica. Comparisons will be made using the Rosenbrock function.

This uses the Unconstrained Problems Package to set up the classic Rosenbrock function, which 
has a narrow curved valley.

In[5]:= p = GetFindMinimumProblem@RosenbrockD

Out[5]= FindMinimumProblemBH1 - X1L
2 + 100 I-X1

2 + X2M
2
, 88X1, -1.2<, 8X2, 1.<<, 8<, Rosenbrock, 82, 2<F

MoreThuente

The default  line search used by FindMinimum,  FindMaximum,  and FindFit  is  one described by

More and Thuente in [MT94]. It tries to find a point that satisfies both the decrease and curva-

ture conditions by using bracketing and quadratic and cubic interpolation.

This shows the steps and evaluations done with Newton’s method with the default line search 
parameters. Points with just red and green are where the function and gradient were evaluated 
in the line search, but the Wolfe conditions were not satisfied so as to take a step.

In[10]:= FindMinimumPlot@p, Method Ø NewtonD

-1 -0.5 0 0.5 1
-3

-2

-1

0

1

Out[10]= 994.96962µ10-18, 8X1 Ø 1., X2 Ø 1.<=,
8Steps Ø 22, Function Ø 29, Gradient Ø 29, Hessian Ø 23<, Ü ContourGraphics Ü=

The points at which only the function and gradient were evaluated were the ones attempted in

the  line  search  phase  that  did  not  satisfy  both  conditions.  Unless  restricted  by

"MaxRelativeStepSize", the line search always starts with the full step length (a = 1), so that

if the full (in this case Newton) step satisfies the line search criteria, it will be taken, ensuring a

full convergence rate close to a minimum.

Decreasing  the  curvature  factor,  which  means  that  the  line  search  ends  nearer  to  the  exact

minimum,  decreases  the  number  of  steps  taken  by  Newton’s  method  but  increases  the  total

number of function and gradient evaluations.
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This shows the steps and evaluations done with Newton’s method with a curvature factor in the 
line search parameters that is smaller than the default. Points with just red and green are 
where the function and gradient were evaluated in the line search, but the Wolfe conditions 
were not satisfied so as to take a step.

In[31]:= FindMinimumPlot@p,
Method Ø 8"Newton", "StepControl" Ø 8"LineSearch", CurvatureFactor Ø .1<<D

Out[31]= :95.54946µ10-22, 8X1 Ø 1., X2 Ø 1.<=,

8Steps Ø 14, Function Ø 61, Gradient Ø 61, Hessian Ø 15<,
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>

This  example  demonstrates  why a  more  exact  line  search  is  not  necessarily  better.  When the

line search takes the step to the right at the bottom of the narrow valley, the Newton step is

based  on  moving  along  the  valley  without  seeing  its  curvature  (the  curvature  of  the  valley  is

beyond  quadratic  order),  so  the  Newton  steps  end  up  being  far  too  long,  even  though  the

direction is better. On the other hand, some methods, such as the conjugate gradient method,

need a better line search to improve convergence.

Backtracking

This  is  a simple line search that starts from the given step size and backtracks toward a step

size of 0, stopping when the sufficient decrease condition is met. In general with only backtrack-

ing, there is no guarantee that you can satisfy the curvature condition, even for nice functions,

so the convergence properties of the methods are not assured. However, the backtracking line

search also does not need to evaluate the gradient at each point, so if gradient evaluations are

relatively  expensive,  this  may  be  a  good  choice.  It  is  used  as  the  default  line  search  in

FindRoot  because  evaluating  the  gradient  of  the  merit  function  involves  computing  the  Jaco-

bian, which is relatively expensive.
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In[32]:= FindMinimumPlot@p,
Method Ø 8"Newton", "StepControl" Ø 8"LineSearch", Method Ø "Backtracking"<<D

Out[32]= :91.2326µ10-30, 8X1 Ø 1., X2 Ø 1.<=,

8Steps Ø 25, Function Ø 34, Gradient Ø 26, Hessian Ø 25<,
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>

Each  backtracking  step  is  taken by  doing  a  polynomial  interpolation  and finding  the  minimum

point for the interpolant. This point ak is used as long as it lies between c1 ak-1 and c2 ak-1, where

ak-1  is  the  previous  value  of  the  parameter  a  and  0 < c1 § c2 < 1.  By  default,  c1 = 0.1  and  c2 = 0.5,

but they can be controlled by the method option "BacktrackFactors" -> 8c1, c2<. If you give a

single  value for  the factors,  this  sets  c1 = c2,  and no interpolation is  used.  The value 1/2 gives

bisection.

In this example, the effect of the relatively large backtrack factor is quite apparent.

In[33]:= FindMinimumPlot@p, Method Ø 8"Newton", "StepControl" Ø
8"LineSearch", Method Ø 8"Backtracking", "BacktrackFactors" Ø 1 ê 2<<<D

Out[33]= :93.74398µ10-21, 8X1 Ø 1., X2 Ø 1.<=,

8Steps Ø 21, Function Ø 29, Gradient Ø 22, Hessian Ø 22<,
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>

option name default value

"BacktrackFactors" 81ê10, 1ê2< determine the minimum and maximum 
factor by which the attempted step length 
must shrink between backtracking steps

Method option for line search Method -> "Backtracking".
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Brent

This uses the derivative-free univariate method of Brent [Br02] for the line search. It attempts

to find the minimum of f a  to within tolerances, regardless of the decrease and curvature fac-

tors. In effect, it has two phases. First, it tries to bracket the root, then it uses "Brent’s" com-

bined  interpolation/golden  section  method  to  find  the  minimum.  The  advantage  of  this  line

search is that it does not require, as the other two methods do, that the step be in a descent

direction, since it will look in both directions in an attempt to bracket the minimum. As such it is

very  appropriate  for  the  derivative-free  "principal  axis"  method.  The  downside  of  this  line

search is that it typically uses many function evaluations, so it is usually less efficient than the

other two methods.

This example shows the effect of using the Brent method for line search. Note that in the phase 
of bracketing the root, it may use negative values of a. Even though the number of Newton 
steps is relatively small in this example, the total number of function evaluations is much larger 
than for other line search methods.

In[34]:= FindMinimumPlot@p,
Method Ø 8"Newton", "StepControl" Ø 8"LineSearch", Method Ø "Brent"<<D

Out[34]= :91.01471µ10-23, 8X1 Ø 1., X2 Ø 1.<=,

8Steps Ø 13, Function Ø 188, Gradient Ø 14, Hessian Ø 14<,

-3 -2 -1 0 1

-4

-2

0

2

4

>

Trust Region Methods

A trust region method has a region around the current search point, where the quadratic model

(3)qkHpL = f HxkL + “ f HxkLT p +
1
2
pT Bk p

for  "local  minimization"  is  "trusted"  to  be  correct  and  steps  are  chosen  to  stay  within  this

region.  The  size  of  the  region  is  modified  during  the  search,  based  on  how  well  the  model

agrees with actual function evaluations. 
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Very  typically,  the  trust  region  is  taken  to  be  an  ellipse  such  that  °D p¥ § D.  D  is  a  diagonal

scaling  (often  taken  from  the  diagonal  of  the  approximate  Hessian)  and  D  is  the  trust  region

radius, which is updated at each step.

When the step based on the quadratic model alone lies within the trust region, then, assuming

the function value gets smaller, that step will be chosen. Thus, just as with "line search" meth-

ods, the step control does not interfere with the convergence of the algorithm near to a mini-

mum  where  the  quadratic  model  is  good.  When  the  step  based  on  the  quadratic  model  lies

outside the trust region, a step just up to the boundary of the trust region is chosen, such that

the  step  is  an  approximate  minimizer  of  the  quadratic  model  on  the  boundary  of  the  trust

region. 

Once  a  step  pk  is  chosen,  the  function  is  evaluated  at  the  new point,  and  the  actual  function

value is checked against the value predicted by the quadratic model. What is actually computed

is the ratio of actual to predicted reduction.

rk =
f HxkL - f Hxk+ pkL

qkH0L - qkHpkL
=

actual reduction of f

predicted model reduction of f

If  rk  is  close  to  1,  then  the  quadratic  model  is  quite  a  good  predictor  and  the  region  can  be

increased in size. On the other hand, if rk  is too small, the region is decreased in size. When rk

is below a threshold, h, the step is rejected and recomputed. You can control this threshold with

the method option "AcceptableStepRatio" -> h. Typically the value of h is quite small to avoid

rejecting steps that would be progress toward a minimum. However, if obtaining the quadratic

model at a point is quite expensive (e.g., evaluating the Hessian takes a relatively long time), a

larger value of h will reduce the number of Hessian evaluations, but it may increase the number

of function evaluations.

To start the trust region algorithm, an initial radius D needs to be determined. By default Mathe-

matica uses the size of the step based on the model (1) restricted by a fairly loose relative step

size limit. However, in some cases, this may take you out of the region you are primarily inter-

ested  in,  so  you  can  specify  a  starting  radius  D0  using  the  option

"StartingScaledStepSize" -> D0.  The  option  contains  Scaled  in  its  name  because  the  trust

region radius works through the diagonal scaling D, so this is not an absolute step size.
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This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This shows the steps and evaluations taken during a search for a local minimum of a function 
similar to Rosenbrock's function, using Newton's method with trust region step control.

In[2]:= FindMinimumPlot@Hx - 1L^2 + 100 Sin@x^2 - yD, 88x, -1<, 8y, 1<<,
Method Ø 8"Newton", "StepControl" -> "TrustRegion"<, MaxRecursion Ø 0D

Out[2]= :8-100., 8x Ø 1., y Ø 178.5<<,

8Steps Ø 16, Function Ø 20, Gradient Ø 17, Hessian Ø 16<,
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>

The plot looks quite bad because the search has extended over such a large region that the fine

structure of the function cannot really be seen on that scale.

This shows the steps and evaluations for the same function, but with a restricted initial trust 
region radius D0. Here the search stays much closer to the initial condition and follows the 
narrow valley.

In[3]:= FindMinimumPlot@Hx - 1L^2 + 100 Sin@x^2 - yD, 88x, -1<, 8y, 1<<, Method Ø
8"Newton", "StepControl" Ø 8"TrustRegion", "StartingScaledStepSize" Ø 1<<D

Out[3]= :8-100., 8x Ø 1., y Ø 2.5708<<,

8Steps Ø 18, Function Ø 20, Gradient Ø 19, Hessian Ø 19<,
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>

It  is  also  possible  to  set  an  overall  maximum bound  for  the  trust  region  radius  by  using  the

option "MaxScaledStepSize" -> Dmax so that for any step, Dk § Dmax. 
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Trust  region  methods  can  also  have  difficulties  with  functions  which  are  not  smooth  due  to

problems with  numerical  roundoff  in  the function computation.  When the function is  not  suffi-

ciently smooth, the radius of the trust region will keep getting reduced. Eventually, it will get to

the point at which it is effectively zero.

This gets the Freudenstein|Roth test problem from the Optimization 

`Unconstrained Problems`package in a form where it can be solved by FindMinimum . 
(See "Test Problems".)

In[4]:= pfr = GetFindMinimumProblem@FreudensteinRothD

Out[4]= FindMinimumProblemAH-13 + X1 + X2 H-2 + H5 - X2L X2LL
2 + H-29 + X1 + X2 H-14 + X2 H1 + X2LLL

2,
88X1, 0.5<, 8X2, -2.<<, 8<, FreudensteinRoth, 82, 2<E

This finds a local minimum for the function using the default method. The default method in this 
case is the (trust region) Levenberg|Marquardt method since the function is a sum of squares.

In[5]:= FindMinimumPlot@pfrD

FindMinimum::sszero :
The step size in the search has become less than the tolerance prescribed by the PrecisionGoal

option, but the gradient is larger than the tolerance specified
by the AccuracyGoal option. There is a possibility that the
method has stalled at a point which is not a local minimum. à

Out[5]= :848.9843, 8X1 Ø 11.4128, X2 Ø -0.896805<<,

8Steps Ø 16, Residual Ø 35, Jacobian Ø 17<,
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>

The message means that the size of the trust region has become effectively zero relative to the

size of the search point, so steps taken would have negligible effect. Note: On some platforms,

due to subtle differences in machine arithmetic, the message may not show up. This is because

the  reasons  leading  to  the  message  have  to  do  with  numerical  uncertainty,  which  can  vary

between different platforms.
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This makes a plot of the variation function along the X1 direction at the final point found.

In[6]:= BlockA8e = 10^-7, x1f = 11.412778991937346, x2f = -0.8968052550911878, min<,
min = H-13 + X1 + X2 H-2 + H5 - X2L X2LL2 + H-29 + X1 + X2 H-14 + X2 H1 + X2LLL2 ê.

8X1 Ø x1f, X2 Ø x2f<;
PlotAIH-13 + X1 + X2 H-2 + H5 - X2L X2LL2 + H-29 + X1 + X2 H-14 + X2 H1 + X2LLL2M - min ê.

X2 Ø x2f, 8X1, x1f - e, x1f + e<EE

Out[6]=

11.4128 11.4128 11.4128

-2.µ 10-14
-1.µ 10-14

1.µ 10-14
2.µ 10-14
3.µ 10-14
4.µ 10-14
5.µ 10-14

The plot along one direction makes it fairly clear why no more improvement is possible. Part of

the  reason the  Levenberg|Marquardt  method gets  into  trouble  in  this  situation  is  that  conver-

gence  is  relatively  slow  because  the  residual  is  nonzero  at  the  minimum.  With  "Newton's"

method, the convergence is faster, and the full quadratic model allows for a better estimate of

step size, so that FindMinimum  can have more confidence that the default tolerances have been

satisfied.

In[52]:= FindMinimumPlot@pfr, Method Ø 8"Newton", StepControl Ø "TrustRegion"<D

Out[52]= :848.9843, 8X1 Ø 11.4128, X2 Ø -0.896805<<,

8Steps Ø 6, Function Ø 7, Gradient Ø 7, Hessian Ø 7<,
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>

The following table summarizes the options for controlling trust region step control.

option name default value

"AcceptableStepRatio" 1ê10000 the threshold h, such that when the actual 
to prediction reduction rk ¥ h, the search is 
moved to the computed step

"MaxScaledStepSize" ¶ the value Dmax, such that the trust region 
size Dk < Dmax for all steps

"StartingScaledStepSize" Automatic the initial trust region size D0

Method options for "StepControl" -> "TrustRegion".
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Setting Up Optimization Problems in 
Mathematica

Specifying Derivatives

The function FindRoot  has a Jacobian  option; the functions FindMinimum,  FindMaximum,  and

FindFit  have a Gradient  option; and the "Newton" method has a method option Hessian. All

these  derivatives  are  specified  with  the  same  basic  structure.  Here  is  a  summary  of  ways  to

specify derivative computation methods.

Automatic find a symbolic derivative for the function and use finite 
difference approximations if a symbolic derivative cannot 
be found

Symbolic same as Automatic, but gives a warning message if finite 
differences are to be used

FiniteDifference use finite differences to approximate the derivative

expression use the given expression with local numerical values of the 
variables to evaluate the derivative

Methods for computing gradient, Jacobian, and Hessian derivatives.

The basic specification for a derivative is just the method for computing it. However, all of the

derivatives take options as well. These can be specified by using a list 8method, opts<. Here is a

summary of the options for the derivatives.

option name default value

"EvaluationMonitor" None expression to evaluate with local values of 
the variables every time the derivative is 
evaluated, usually specified with :> instead 
of -> to prevent symbolic evaluation

"Sparse" Automatic sparse structure for the derivative; can be 
Automatic, True, False, or a pattern 
SparseArray  giving the nonzero structure

"DifferenceOrder" 1 difference order to use when finite differ-
ences are used to compute the derivative

Options for computing gradient, Jacobian, and Hessian derivatives.
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A few examples will help illustrate how these fit together. 

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This defines a function that is only intended to evaluate for numerical values of the variables.

In[2]:= f@x_?NumberQ, y_?NumberQD := Cos@x^2 - 3 yD + Sin@x^2 + y^2D

With just Method Ø "Newton",  FindMinimum  issues an lstol  message because it  was not able

to resolve the minimum well enough due to lack of good derivative information.

This shows the steps taken by FindMinimum  when it has to use finite differences to compute 
the gradient and Hessian.

In[3]:= FindMinimumPlot@f@x, yD, 88x, 1<, 8y, 1<<, Method -> "Newton"D

FindMinimum::symd:
Unable to automatically compute the symbolic derivative of f@x, yD with respect to the arguments

8x, y<. Numerical approximations to derivatives will be used instead. à

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease in the function. You may need
more than MachinePrecision digits of working precision to meet these tolerances. à

Out[3]=

>
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 The following describes how you can use the gradient option to specify the derivative.

This computes the minimum of f@x, yD using a symbolic expression for its gradient.

In[4]:= FindMinimumPlotAf@x, yD, 88x, 1<, 8y, 1<<,
Gradient Ø 92 x CosAx2 + y2E - 2 x SinAx2 - 3 yE, 2 y CosAx2 + y2E + 3 SinAx2 - 3 yE=,
Method Ø "Newton"E

Out[4]= :8-2., 8x Ø 1.37638, y Ø 1.67868<<,

8Steps Ø 5, Function Ø 6, Gradient Ø 6, Hessian Ø 6<,
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>

Symbolic  derivatives  are  not  always  available.  If  you  need  extra  accuracy  from  finite  differ-

ences, you can increase the difference order from the default of 1 at the cost of extra function

evaluations.

This computes the minimum of f@x, yD using a second-order finite difference to compute the 
gradient.

In[5]:= FindMinimumPlot@f@x, yD, 88x, 1<, 8y, 1<<,
Gradient Ø 8Automatic, "DifferenceOrder" Ø 2<, Method Ø "Newton"D

Out[5]= :8-2., 8x Ø 1.37638, y Ø 1.67868<<,

8Steps Ø 5, Function Ø 102, Gradient Ø 24, Hessian Ø 6<,
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>

Note that the number of  function evaluations is  much higher because function evaluations are

used to compute the gradient, which is used to approximate the Hessian in turn. (The Hessian

is  computed  with  finite  differences  since  no  symbolic  expression  for  it  can  be  computed  from

the information given.)
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The  information  given  from  FindMinimumPlot  about  the  number  of  function,  gradient,  and

Hessian evaluations is quite useful. The EvaluationMonitor options are what make this possi-

ble. Here is an example that simply counts the number of each type of evaluation. (The plot is

made using Reap and Sow to collect the values at which the evaluations are done.)

This computes the minimum with counters to keep track of the number of steps and the num-
ber of function, gradient, and Hessian evaluations.

In[6]:= Block@8s = 0, e = 0, g = 0, h = 0<,
8FindMinimum@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,

88 x, 1<, 8y, 1<<, StepMonitor ß s++, EvaluationMonitor ß e++,
Gradient Ø 8Automatic, EvaluationMonitor ß g++<, Method Ø
8"Newton", "Hessian" Ø 8Automatic, EvaluationMonitor ß h++<<D, s, e, g, h<D

Out[6]= 88-2., 8x Ø 1.37638, y Ø 1.67868<<, 5, 6, 6, 6<

Using such diagnostics can be quite useful for determining what methods and/or method param-

eters may be most successful for a class of problems with similar characteristics.

When  Mathematica  can  access  the  symbolic  structure  of  the  function,  it  automatically  does  a

structural  analysis  of  the  function  and its  derivatives  and uses  SparseArray  objects  to  repre-

sent the derivatives when appropriate. Since subsequent numerical linear algebra can then use

the  sparse  structures,  this  can  have  a  profound  effect  on  the  overall  efficiency  of  the  search.

When Mathematica cannot do a structural analysis, it has to assume, in general, that the struc-

ture  is  dense.  However,  if  you  know  what  the  sparse  structure  of  the  derivative  is,  you  can

specify  this  with  the  "Sparse"  method  option  and  gain  huge  efficiency  advantages,  both  in

computing derivatives (with finite differences, the number of evaluations can be reduced signifi-

cantly) and in subsequent linear algebra. This issue is particularly important when working with

vector-valued variables. A good example for illustrating this aspect is the extended Rosenbrock

problem, which has a very simple sparse structure.

This gets the extended Rosenbrock function with 1000 variables in symbolic form ready to be 
solved with FindRoot using the UnconstrainedProblems` package.

In[7]:= n = 1000; Short@ pex = GetFindRootProblem@ExtendedRosenbrock, nD, 20D

Out[7]//Short= FindRootProblemA910 I-X1
2 + X2M, 1 - X1, á997à, 1 - X999=, 8á1à<, 8<, á18à, 81000, 1000<E

This solves the problem using the symbolic form of the function.

In[8]:= Timing@Norm@1 - H Array@XÒ &, nD ê. ProblemSolve@pexDLDD

Out[8]= 80.321984, 0.<
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For a function with simple form like this, it is easy to write a vector form of the function, which

can  be  evaluated  much  more  quickly  than  the  symbolic  form  can,  even  with  automatic

compilation.

This defines a vector form of the extended Rosenbrock function, which evaluates very efficiently.

In[9]:= ExtendedRosenbrockResidual@X_ListD := Module@8x1, x2<,
x1 = Take@X, 81, -1, 2<D;
x2 = Take@X, 82, -1, 2<D;
Flatten@Transpose@810 Hx2 - x1^2L, 1 - x1<DDD

This extracts the starting point as a vector from the problem structure.

In[10]:= Short@start = pex@@2, All, 2DDD

Out[10]//Short= 8-1.2, 1., -1.2, 1., -1.2, 1., -1.2, á986à, 1., -1.2, 1., -1.2, 1., -1.2, 1.<

This solves the problem using a vector variable and the vector function for evaluation. 

In[11]:= Timing@Norm@1 - HX ê. FindRoot@ExtendedRosenbrockResidual@XD, 8X, start<DLDD

Out[11]= 812.2235, 0.<

The  solution  with  the  function,  which  is  faster  to  evaluate,  winds  up  being  slower  overall

because  the  Jacobian  has  to  be  computed  with  finite  differences  since  the  x_List  pattern

makes it opaque to symbolic analysis. It is not so much the finite differences that are slow as

the fact that it needs to do 100 function evaluations to get all the columns of the Jacobian. With

knowledge of the structure, this can be reduced to two evaluations to get the Jacobian. For this

function, the structure of the Jacobian is quite simple.

This defines a pattern SparseArray , which has the structure of nonzeros for the Jacobian of 
the extended Rosenbrock function. (By specifying _ for the values in the rules, the 
SparseArray  is taken to be a template of the Pattern type as indicated in the output form.)

In[12]:= sparsity = SparseArray@
Flatten@Table@88i, i< Ø _, 8i, i + 1< Ø _, 8i + 1, i< Ø _<, 8i, 1, n - 1, 2<DDD

Out[12]= SparseArray@<1500>, 81000, 1000<, PatternD

This solves the problem with the knowledge of the actual Jacobian structure, showing a signifi-
cant cost savings.

In[13]:= Timing@Norm@1 - HX ê. FindRoot@ExtendedRosenbrockResidual@XD, 8X, start<,
Method Ø 8"Newton"<, Jacobian Ø 8Automatic, Sparse Ø sparsity<DLDD

Out[13]= 80.031138, 0.<
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When a sparse structure is given, it is also possible to have the value computed by a symbolic

expression  that  evaluates  to  the  values  corresponding  to  the  positions  given  in  the  sparse

structure template. Note that the values must correspond directly to the positions as ordered in

the  SparseArray  (the  ordering  can  be  seen  using  ArrayRules).  One  way  to  get  a  consistent

ordering of indices is to transpose the matrix twice, which results in a SparseArray  with indices

in lexicographic order.

This transposes the nonzero structure matrix twice to get the indices sorted.

In[14]:= sparsity = Transpose@Transpose@sparsityDD

Out[14]= SparseArray@<1500>, 81000, 1000<, PatternD

This defines a function that will return the nonzero values in the Jacobian corresponding to the 
index positions in the nonzero structure matrix.

In[15]:= ERJValues@X_ListD := Module@8x1, zero<,
x1 = Take@X, 81, -1, 2<D;
zero = 0. x1;
Flatten@Transpose@8-20 x1, 10. + zero, -1. + zero<DDD

This solves the problem with the resulting sparse symbolic Jacobian.

In[16]:= Timing@Norm@1 - HX ê. FindRoot@ExtendedRosenbrockResidual@XD, 8X, start<,
Method Ø 8"Newton"<, Jacobian Ø 8ERJValues@XD, Sparse Ø sparsity<DLDD

Out[16]= 80.025614, 0.<

In  this  case,  using  the  sparse  Jacobian  is  not  significantly  faster  because  the  Jacobian  is  so

sparse that a finite difference approximation can be found for it in only two function evaluations

and because the problem is well  enough defined near the minimum that the extra accuracy in

the Jacobian does not make any significant difference.

Variables and Starting Conditions

All  the functions FindMinimum,  FindMaximum,  and FindRoot  take variable specifications of  the

same form. The function FindFit uses the same form for its parameter specifications.
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FindMinimum@ f,varsD find a local minimum of f  with respect to the variables 
given in vars

FindMinimum@ f,varsD find a local maximum of f  with respect to the variables 
given in vars

FindRoot@ f,varsD find a root f = 0 with respect to the variables given in vars

FindRoot@eqns,varsD find a root of the equations eqns with respect to the vari -
ables given in vars

FindFit@data,expr,pars,varsD find values of the parameters pars that make expr give a 
best fit to data as a function of vars

Variables and parameters in the "Find" functions. 

The list vars (pars for FindFit) should be a list of individual variable specifications. Each variable

specification should be of the following form.

8var,st< variable var has starting value st

8var,st1,st2< variable var has two starting values st1 and st2; the second 
starting condition is only used with the principal axis and 
secant methods

8var,st,rl,ru< variable var has starting value st; the search will be termi -
nated when the value of var goes outside of the interval 
@rl, ruD

8var,st1,st2,rl,ru< variable var has two starting values st1 and st2; the search 
will be terminated when the value of var goes outside of 
the interval @rl, ruD

Individual variable specifications in the "Find" functions. 

The  specifications  in  vars  all  need  to  have  the  same  number  of  starting  values.  When  region

bounds are not specified, they are taken to be unbounded, that is, rl = -¶, ru =¶.

Vector- and Matrix-Valued Variables

The most common use of variables is to represent numbers. However, the variable input syntax

supports variables that are treated as vectors, matrices, or higher-rank tensors. In general, the

"Find"  commands,  with  the  exception  of  FindFit,  which  currently  only  works  with  scalar

variables, will consider a variable to take on values with the same rectangular structure as the

starting conditions given for it. 
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Here is a matrix.

In[1]:= A =
0 1 2
3 4 5
6 7 8

;

This uses FindRoot to find an eigenvalue and corresponding normalized eigenvector for A.

In[2]:= FindRoot@8A.x ã l x, x.x ã 1<, 88l, 1<, 8x, 81, 2, 3<<<D

Out[2]= 8l Ø 13.3485, x Ø 80.164764, 0.505774, 0.846785<<

Of course, this is not the best way to compute the eigenvalue, but it does show how the vari-

able dimensions are picked up from the starting values. Since l has a starting value of 1, it is

taken to be a scalar. On the other hand, x is given a starting value, which is a vector of length

3, so it is always taken to be a vector of length 3.

If you use multiple starting values for variables, it is necessary that the values have consistent

dimensions and that each component of the starting values is distinct.

This finds a different eigenvalue using two starting conditions for each variable.

In[3]:= FindRoot@8A.x ã l x, x.x ã 1<, 88l, -2, -1<, 8x, 8-1, 0, 0<, 80, 1, 1<<<D

Out[3]= 8l Ø -1.34847, x Ø 8-0.7997, -0.104206, 0.591288<<

One advantage of variables that can take on vector and matrix values is that they allow you to

write  functions,  which  can  be  very  efficient  for  larger  problems  and/or  handle  problems  of

different sizes automatically.

This defines a function that gives an objective function equivalent to the 
ExtendedRosenbrock problem in the UnconstrainedProblems package. The function 
expects a value of x which is a matrix with two rows. 

In[4]:= ExtendedRosenbrockObjective@x_ ê; HHLength@xD ã 2L && MatrixQ@xDLD :=
Module@8x1, x2<,
8x1, x2< = x;
x2 -= x1^2;
x1 -= 1;
x1.x1 + 100 x2.x2D

Note that since the value of the function would be meaningless unless x had the correct struc-

ture,  the  definition  is  restricted  to  arguments  with  that  structure.  For  example,  if  you defined

the  function  for  any  pattern  x_,  then  evaluating  with  an  undefined  symbol  x  (which  is  what

FindMinimum  does) gives meaningless unintended results. It is often the case that when work-

ing with functions for vector-valued variables, you will have to restrict the definitions. Note that

the  definition  above  does  not  rule  out  symbolic  values  with  the  right  structure.  For  example,

Unconstrained Optimization     51



 does) gives meaningless unintended results. It is often the case that when work-

the  definition  above  does  not  rule  out  symbolic  values  with  the  right  structure.  For  example,

ExtendedRosenbrockObjective@88x11, x12<, 8x21, x22<<D  gives a symbolic representation of the

function for scalar x11, ….

This uses FindMinimum  to solve the problem given a generic value for the problem size. You 
can change the value of n without changing anything else to solve problems of different size.

In[5]:= n = 10;
start = 8Table@-1.2, 8n<D, Table@1., 8n<D<;
FindMinimum@ExtendedRosenbrockObjective@xD, 8x, start<D

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease in the function. You may need
more than MachinePrecision digits of working precision to meet these tolerances. à

Out[7]= 92.00081µ10-10,
8x Ø 880.999996, 0.999996, 0.999996, 0.999996, 0.999996, 0.999996, 0.999996, 0.999996,

0.999996, 0.999996<, 80.999991, 0.999991, 0.999991, 0.999991,
0.999991, 0.999991, 0.999991, 0.999991, 0.999991, 0.999991<<<=

The  solution  did  not  achieve  the  default  tolerances  due  to  the  fact  that  Mathematica  was  not

able to get symbolic derivatives for the function, so it had to fall back on finite differences that

are not as accurate. 

A  disadvantage  of  using  vector-  and  matrix-valued  variables  is  that  Mathematica  cannot  cur-

rently compute symbolic derivatives for them. Sometimes it is not difficult to develop a function

that gives the correct derivative. (Failing that, if you really need greater accuracy, you can use

higher-order finite differences.)

This defines a function that returns the gradient for the ExtendedRosenbrockObjective 
function. Note that the gradient is a vector obtained by flattening the matrix corresponding to 
the variable positions.

In[8]:= ExtendedRosenbrockGradient@x_ ê; HHLength@xD ã 2L && MatrixQ@xDLD :=
Module@8x1, x2<,
8x1, x2< = x;
x2 -= x1^2;
Flatten@82 Hx1 - 1L - 400 x1 x2, 200 x2<DD

This solves the problem using the symbolic value of the gradient.

In[9]:= n = 10;
start = 8Table@-1.2, 8n<D, Table@1., 8n<D<;
FindMinimum@ExtendedRosenbrockObjective@xD,
8x, start<, Gradient Ø ExtendedRosenbrockGradient@xDD

Out[11]= 93.00886µ10-20,
8x Ø 881., 1., 1., 1., 1., 1., 1., 1., 1., 1.<, 81., 1., 1., 1., 1., 1., 1., 1., 1., 1.<<<=
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Jacobian and Hessian derivatives are often sparse. You can also specify the structural sparsity

of these derivatives when appropriate, which can reduce overall solution complexity by quite a

bit.

Termination Conditions

Mathematically, sufficient conditions for a local minimum of a smooth function are quite straight-

forward:  x*  is  a  local  minimum if  “ f Hx*L = 0  and the Hessian “2 f Hx*L  is  positive  definite.  (It  is  a

necessary  condition  that  the  Hessian  be  positive  semidefinite.)  The  conditions  for  a  root  are

even simpler. However, when the function f  is being evaluated on a computer where its value is

only  known,  at  best,  to  a  certain  precision,  and  practically  only  a  limited  number  of  function

evaluations  are  possible,  it  is  necessary  to  use  error  estimates  to  decide  when  a  search  has

become  close  enough  to  a  minimum  or  a  root,  and  to  compute  the  solution  only  to  a  finite

tolerance. For the most part, these estimates suffice quite well, but in some cases, they can be

in error, usually due to unresolved fine scale behavior of the function.

Tolerances affect how close a search will try to get to a root or local minimum before terminat-

ing the search. Assuming that the function itself  has some error (as is typical when it  is com-

puted  with  numerical  values),  it  is  not  typically  possible  to  locate  the  position  of  a  minimum

much better than to half of the precision of the numbers being worked with. This is because of

the  quadratic  nature  of  local  minima.  Near  the  bottom  of  a  parabola,  the  height  varies  quite

slowly as you move across from the minimum. Thus, if there is any error noise in the function,

it  will  typically  mask the actual  rise  of  the  parabola  over  a  width  roughly  equal  to  the  square

root of the noise. This is best seen with an example.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

Unconstrained Optimization     53



The following command displays a sequence of plots showing the minimum of the function 

sinHxL - cos HxL + 2  over successively smaller ranges. The curve computed with machine num-
bers is shown in black; the actual curve (computed with 100 digits of precision) is shown in blue.

In[2]:= Table@Block@8e = 10.^-k<,
Show@8Plot@Sin@xD - Cos@xD + Sqrt@2D, 8x, -p ê 4 - e, -p ê 4 + e<, PlotStyle Ø BlackD,

Plot@Sin@xD - Cos@xD + Sqrt@2D, 8x, -p ê 4 - e, -p ê 4 + e<, PlotStyle Ø Blue,
WorkingPrecision Ø 100D<, PlotLabel Ø Row@8"Width ", e<DDD, 8k, 5, 9<D

Out[2]=

From  the  sequence  of  plots,  it  is  clear  that  for  changes  of  order  10-8,  which  is  about  half  of

machine precision and smaller, errors in the function are masking the actual shape of the curve

near the minimum. With just sampling of the function at that precision, there is no way to be

sure if a given point gives the smallest local value of the function or not to any closer tolerance.

The  value  of  the  derivative,  if  it  is  computed  symbolically,  is  much  more  reliable,  but  for  the

general case, it is not sufficient to rely only on the value of the derivative; the search needs to

find a local minimal value of the function where the derivative is small to satisfy the tolerances

in general. Note also that if symbolic derivatives of your function cannot be computed and finite

differences  or  a  derivative-free  method  is  used,  the  accuracy  of  the  solution  may  degrade

further.

Root  finding can suffer  from the same inaccuracies  in  the function.  While  it  is  typically  not  as

severe, some of the error estimates are based on a merit function, which does have a quadratic

shape.

For the reason of this limitation, the default tolerances for the Find  functions are all set to be

half of the final working precision. Depending on how much error the function has, this may or

may not be achievable, but in most cases it is a reasonable goal. You can adjust the tolerances

using  the  AccuracyGoal  and  PrecisionGoal  options.  When  AccuracyGoal -> ag  and

PrecisionGoal -> pg, this defines tolerances tola = 10-ag and tolr = 10-pg.
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Given  tola  and  tolr  FindMinimum  tries  to  find  a  value  xk  such  that  °xk - x*¥ § maxHtola, °xk¥ tolrL.  Of

course, since the exact position of the minimum, x*, is not known, the quantity °xk - x*¥ is esti-

mated. This is usually done based on past steps and derivative values. To match the derivative

condition at a minimum, the additional requirement °“ f HxkL¥ § tola is imposed. For FindRoot, the

corresponding condition is that just the residual be small at the root: ° f ¥ § tola.

This finds the 2  to at least 12 digits of accuracy, or within a tolerance of 10-12. The precision 
goal of ¶ means that tolr = 0, so it does not have any effect in the formula. (Note: you cannot 
similarly set the accuracy goal to ¶ since that is always used for the size of the residual.)

In[3]:= FindRoot@x^2 - 2, 8x, 1<, AccuracyGoal Ø 12, PrecisionGoal Ø ¶D

Out[3]= 8x Ø 1.41421<

This shows that the result satisfied the requested error tolerances.

In[4]:= 8x - Sqrt@2D, x^2 - 2< ê. %

Out[4]= 90., 4.44089µ10-16=

This tries to find the minimum of the function sinHxL - cosHxL to 8 digits of accuracy. 
FindMinimum  gives a warning message because of the error in the function as seen in the 
plots.

In[5]:= FindMinimum@Sin@xD - Cos@xD, 8x, 0<,
Method -> "Newton", AccuracyGoal Ø 8, PrecisionGoal Ø ¶D

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease
in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances. à
Out[5]= 8-1.41421, 8x Ø -0.785398<<

This shows that though the value at the minimum was found to be basically machine epsilon, 
the position was only found to the order of 10-8 or so.

In[6]:= 8Sqrt@2D + %@@1DD, p ê 4 + x ê. %@@2DD<

Out[6]= 92.22045µ10-16, -1.26022µ10-8=

In multiple dimensions, the situation is even more complicated since there can be more error in

some directions than others, such as when a minimum is found along a relatively narrow valley,

as  in  the  Freudenstein|Roth  problem.  For  searches  such  as  this,  often  the  search  parameters

are  scaled,  which  in  turn  affects  the  error  estimates.  Nonetheless,  it  is  still  typical  that  the

quadratic shape of the minimum affects the realistically achievable tolerances.

Unconstrained Optimization     55



When you need to find a root or minimum beyond the default tolerances, it may be necessary

to  increase  the  final  working  precision.  You  can  do  this  with  the  WorkingPrecision  option.

When  you  use  WorkingPrecision -> prec,  the  search  starts  at  the  precision  of  the  starting

values  and  is  adaptively  increased  up  to  prec  as  the  search  converges.  By  default,

WorkingPrecision -> MachinePrecision,  so  machine  numbers  are  used,  which  are  usually

much faster. Going to higher precision can take significantly more time, but can get you much

more accurate results if your function is defined in an appropriate way. For very high-precision

solutions,  "Newton's"  method  is  recommended  because  its  quadratic  convergence  rate  signifi-

cantly reduces the number of steps ultimately required.

It  is  important  to  note  that  increasing  the  setting  of  the  WorkingPrecision  option  does  no

good  if  the  function  is  defined  with  lower-precision  numbers.  In  general,  for

WorkingPrecision -> prec  to  be  effective,  the  numbers  used  to  define  the  function  should  be

exact  or  at  least  of  precision  prec.  When  possible,  the  precision  of  numbers  in  the  function  is

artificially  raised  to  prec  using  SetPrecision  so  that  convergence  still  works,  but  this  is  not

always possible. In any case, when the functions and derivatives are evaluated numerically, the

precision of the results is raised to prec if necessary so that the internal arithmetic can be done

with prec digit precision. Even so, the actual precision or accuracy of the root or minimum and

its  position  is  limited  by  the  accuracy  in  the  function.  This  is  especially  important  to  keep  in

mind when using FindFit, where data is usually only known up to a certain precision.

Here is a function defined using machine numbers.

In[7]:= f@x_?NumberQD := Sin@1. xD - Cos@1. xD;

Even with higher working precision, the minimum cannot be resolved better because the actual 
function still has the same errors as shown in the plots. The derivatives were specified to keep 
other things consistent with the computation at machine precision shown previously.

In[8]:= FindMinimum@f@xD, 8x, 0<, Gradient Ø 8Cos@1. xD + Sin@1. xD<,
Method Ø 8"Newton", Hessian Ø 88Cos@1. xD - Sin@1. xD<<<,
AccuracyGoal Ø 8, PrecisionGoal Ø ¶, WorkingPrecision Ø 20D

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and PrecisionGoal

but was unable to find a sufficient decrease in the function. You may need
more than 20.` digits of working precision to meet these tolerances. à

Out[8]= 8-1.4142135623730949234, 8x Ø -0.78539817599970194669<<
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Here is the computation done with 20-digit precision when the function does not have machine 
numbers.

In[9]:= FindMinimum@Sin@xD - Cos@xD, 8x, 0<, Method -> "Newton",
AccuracyGoal Ø 8, PrecisionGoal Ø ¶, WorkingPrecision Ø 20D

Out[9]= 8-1.4142135623730950488, 8x Ø -0.78539816339744830962<<

If  you  specify  WorkingPrecision -> prec,  but  do  not  explicitly  specify  the  AccuracyGoal  and

PrecisionGoal  options,  then  their  default  settings  of  Automatic  will  be  taken  to  be

AccuracyGoal -> prec ê 2  and  PrecisionGoal -> prec ê 2.  This  leads  to  the  smallest  tolerances

that can realistically be expected in general, as discussed earlier.

Here is the computation done with 50-digit precision without an explicitly specified setting for 
the AccuracyGoal or PrecisionGoal options.

In[10]:= FindMinimum@Sin@xD - Cos@xD, 8x, 0<, Method -> "Newton", WorkingPrecision Ø 50D

Out[10]= 8-1.4142135623730950488016887242096980785696718753769,
8x Ø -0.78539816339744830961566084581987572104929234984378<<

This shows that though the value at the minimum was actually found to be even better than the 
default 25-digit tolerances.

In[11]:= 8Sqrt@2D + %@@1DD, p ê 4 + x ê. %@@2DD<

Out[11]= 90.µ10-50, 0.µ10-51=

The following table shows a summary of the options affecting precision and tolerance.

option name default value

WorkingPrecision MachinePrecis-
ion

the final working precision, prec, to use; 
precision is adaptively increased from the 
smaller of prec and the precision of the 
starting conditions to prec

AccuracyGoal Automatic setting ag determines an absolute tolerance 
by tola = 10-ag; when Automatic, 
ag = prec ê 2

PrecisionGoal Automatic setting pg determines an absolute toler-
ance by tolr = 10-pg; when Automatic, 
pg = prec ê 2

Precision and tolerance options in the "Find" functions. 

A search will  sometimes converge slowly. To prevent slow searches from going on indefinitely,

the  Find  commands  all  have  a  maximum  number  of  iterations  (steps)  that  will  be  allowed

before terminating. This can be controlled with the option 
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before terminating. This can be controlled with the option MaxIterations  that has the default

value MaxIterations -> 100.  When a search terminates with this condition, the command will

issue the cvmit message.

This gets the Brown|Dennis problem from the Optimization`UnconstrainedProblems` 
package.

In[12]:= Short@bd = GetFindMinimumProblem@BrownDennisD, 5D

Out[12]//Short= FindMinimumProblemB -‰1ë5 + X1 +
X2
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,

88X1, 25.<, 8X2, 5.<, 8X3, -5.<, 8X4, -1.<<, 8<, BrownDennis, 84, 20<F

This attempts to solve the problem with the default method, which is the Levenberg|Marquardt 
method, since the function is a sum of squares.

In[13]:= ProblemSolve@bdD

FindMinimum::cvmit : Failed to converge to the requested accuracy or precision within 100 iterations. à

Out[13]= 8105443., 8X1 Ø -7.35071, X2 Ø 11.7365, X3 Ø -0.60436, X4 Ø 0.168396<<

The Levenberg|Marquardt method is converging slowly on this problem because the residual is

nonzero  near  the  minimum  and  the  second-order  part  of  the  Hessian  is  needed.  While  the

method eventually does converge in just under 400 steps, perhaps a better option is to use a

method which may converge faster.

In[44]:= ProblemSolve@bd, Method Ø QuasiNewtonD

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease
in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances. à
Out[44]= 885822.2, 8X1 Ø -11.5944, X2 Ø 13.2036, X3 Ø -0.403439, X4 Ø 0.236779<<

In a larger calculation, one possibility when hitting the iteration limit is to use the final search

point, which is returned, as a starting condition for continuing the search, ideally with another

method.
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Symbolic Evaluation

The  functions  FindMinimum,  FindMaximum,  and  FindRoot  have  the  HoldAll  attribute  and  so

have  special  semantics  for  evaluation  of  their  arguments.  First,  the  variables  are  determined

from the second argument, then they are localized. Next, the function is evaluated symbolically,

then processed into an efficient form for numerical  evaluation. Finally, during the execution of

the  command,  the  function  is  repeatedly  evaluated  with  different  numerical  values.  Here  is  a

list showing these steps with additional description.

Determine variables process the second argument; if the second argument is 
not of the correct form (a list of variables and starting 
values), it will be evaluated to get the correct form

Localize variables in a manner similar to Block and Table, add rules to the 
variables so that any assignments given to them will not 
affect your Mathematica session beyond the scope of the 
"Find" command and so that previous assignments do 
not affect the value (the variable will evaluate to itself at 
this stage)

Evaluate the function with the locally undefined (symbolic) values of the vari-
ables, evaluate the first argument (function or equations). 
Note: this is a change which was instituted in Mathemat-
ica 5, so some adjustments may be necessary for code 
that ran in previous versions. If your function is such that 
symbolic evaluation will not keep the function as intended 
or will be prohibitively slow, you should define your func- 
tion so that it only evaluates for numerical values of the 
variables. The simplest way to do this is by defining your 
function using PatternTest  (?), as in 
f@x_?NumberQD := definition. 

Preprocess the function analyze the function to help determine the algorithm to 
use (e.g., sum of squares -> Levenberg|Marquardt); 
optimize and compile the function for faster numerical 
evaluation if possible: for FindRoot this first involves 
going from equations to a function

Compute derivatives compute any needed symbolic derivatives if possible;  
otherwise, do preprocessing needed to compute deriva-
tives using finite differences

Evaluate numerically repeatedly evaluate the function (and derivatives when 
required) with different numerical values

Steps in processing the function for the "Find" commands.

Unconstrained Optimization     59



FindFit  does  not  have  the  HoldAll  attribute,  so  its  arguments  are  all  evaluated  before  the

commands begin. However, it uses all of the stages described above, except instead of evaluat-

ing  the  function,  it  constructs  a  function  to  minimize  from the  model  function,  variables,  and

provided data.

You will sometimes want to prevent symbolic evaluation, most often when your function is not

an  explicit  formula,  but  a  value  derived  through  running  through  a  program.  An  example  of

what happens and how to prevent the symbolic evaluation is shown.

This attempts to solve a simple boundary value problem numerically using shooting.

In[1]:= FindRoot@
First@x@1D ê. NDSolve@8x''@tD + Hx@tD UnitStep@tD + 1L x@tD ã 0, x@-1D ã 0,

x'@-1D ã xp<, x, 8t, -1, 1<DD, 8xp, Pi<D

NDSolve::ndinnt : Initial condition xp is not a number or a rectangular array of numbers. à

ReplaceAll::reps :
9NDSolveA9x@tD H1+Times@á2àDL+x££@tD ã 0, x@-1D ã 0, x£@-1D ã xp=, x, 8t, -1, 1<E= is neither a list of

replacement rules nor a valid dispatch table, and so cannot be used for replacing. à

FindRoot::nlnum:
The function value 8x@1.D< is not a list of numbers with dimensions 81< at 8xp< = 83.14159<. à

NDSolve::ndinnt : Initial condition xp is not a number or a rectangular array of numbers. à

ReplaceAll::reps :
9NDSolveA9x@tD H1+Times@á2àDL+x££@tD ã 0, x@-1D ã 0, x£@-1D ã xp=, x, 8t, -1, 1<E= is neither a list of

replacement rules nor a valid dispatch table, and so cannot be used for replacing. à

FindRoot::nlnum:
The function value 8x@1.D< is not a list of numbers with dimensions 81< at 8xp< = 83.14159<. à

Out[1]= FindRoot@First@x@1D ê.
NDSolve@8x££@tD + Hx@tD UnitStep@tD + 1L x@tD ã 0, x@-1D ã 0, x£@-1D ã xp<, x, 8t, -1, 1<DD, 8xp, p<D

The command fails because of the symbolic evaluation of the function. You can see what hap-

pens when you evaluate it inside of Block.

This evaluates the function given to FindRoot with a local (undefined) value of xp.

In[2]:= Block@8xp<,
First@x@1D ê. NDSolve@8x''@tD + Hx@tD UnitStep@tD + 1L x@tD ã 0, x@-1D ã 0,

x'@-1D ã xp<, x, 8t, -1, 1<DDD

NDSolve::ndinnt : Initial condition xp is not a number or a rectangular array of numbers. à

ReplaceAll::reps :
9NDSolveA9x@tD H1+Times@á2àDL+x££@tD ã 0, x@-1D ã 0, x£@-1D ã xp=, x, 8t, -1, 1<E= is neither a list of

replacement rules nor a valid dispatch table, and so cannot be used for replacing. à
Out[2]= x@1D
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Of course, this is not at all what was intended for the function; it does not even depend on xp.

What happened is that without a numerical value for xp, NDSolve fails, so ReplaceAll (ê.) fails

because  there  are  no  rules.  First  just  returns  its  first  argument,  which  is  x@1D.  Since  the

function is meaningless unless xp has numerical values, it should be properly defined.

This defines a function that returns the value x@1D as a function of a numerical value for x'@tD 
at t = -1.

In[3]:= fx1@xp_?NumberQD :=
First@x@1D ê. NDSolve@8x''@tD + Hx@tD UnitStep@tD + 1L x@tD ã 0,

x@-1D ã 0, x'@-1D ã xp<, x, 8t, -1, 1<DD

An advantage of having a simple function definition outside of FindRoot  is that it can indepen-

dently be tested to make sure that it is what you really intended.

This makes a plot of fx1.

In[4]:= Plot@fx1@xpD, 8xp, 0, 5<D

Out[4]=

From  the  plot,  you  can  deduce  two  bracketing  values  for  the  root,  so  it  is  possible  to  take

advantage of "Brent's" method to quickly and accurately solve the problem.

This solves the shooting problem.

In[5]:= FindRoot@fx1@xpD, 8xp, 3, 4<D

Out[5]= 8xp Ø 3.34372<

It may seem that symbolic evaluation just creates a bother since you have to define the func-

tion specifically to prevent it. However, without symbolic evaluation, it is hard for Mathematica

to take advantage of its unique combination of numerical and symbolic power. Symbolic evalua-

tion  means  that  the  commands  can  consistently  take  advantage  of  benefits  that  come  from

symbolic  analysis,  such  as  algorithm  determination,  automatic  computation  of  derivatives,

automatic optimization and compilation, and structural analysis. 
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UnconstrainedProblems Package

Plotting Search Data

The  utility  functions  FindMinimumPlot  and  FindRootPlot  show  search  data  for  FindMinimum

and  FindRoot  for  one-  and  two-dimensional  functions.  They  work  with  essentially  the  same

arguments  as  FindMinimum  and  FindRoot  except  that  they  additionally  take  options,  which

affect the graphics functions they call  to provide the plots, and they do not have the HoldAll

attribute as do FindMinimum and FindRoot. 

FindMinimumPlot@ f,8x,xst<,optsD plot the steps and the points at which the function f  and 
any of its derivatives that were evaluated in 
FindMinimum@ f, 8x, xst<D superimposed on a plot of f  
versus x; opts may include options from both 
FindMinimum  and Plot

FindMinimumPlot@ f,
88x,xst<,8y,yst<<,optsD

plot the steps and the points at which the function f  and 
any of its derivatives that were evaluated in 
FindMinimum@ f, 88x, xst<, 8y, yst<<D superimposed on 
a contour plot of f  as a function of x and y; opts may 
include options from both FindMinimum  and 
ContourPlot

FindRootPlot@ f,8x,xst<,optsD plot the steps and the points at which the function f  and 
any of its derivatives which were evaluated in 
FindRoot@ f, 8x, xst<D superimposed on a plot of f  
versus x; opts may include options from both FindRoot 
and Plot

FindRootPlot@ f,
88x,xst<,8y,yst<<,optsD

plot the steps and the points at which the function f  and 
any of its derivatives that were evaluated in 
FindRoot@ f, 88x, xst<, 8y, yst<<D superimposed on a 
contour plot of the merit function f  as a function of x and 
y; opts may include options from both FindRoot and 
ContourPlot

Plotting search data.

Note  that  to  simplify  processing  and  reduce  possible  confusion  about  the  function  f ,

FindRootPlot does not accept equations; it finds a root f = 0.
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Steps and evaluation points are color coded for easy detection as follows:

† Steps are shown with blue lines and blue points.

† Function evaluations are shown with green points.

† Gradient evaluations are shown with red points.

† Hessian evaluations are shown with cyan points.

† Residual function evaluations are shown with yellow points.

† Jacobian evaluations are shown with purple points.

† The search termination is shown with a large black point.

FindMinimumPlot and FindRootPlot return a list containing 8result, summary, plot<, where:

† result is the result of FindMinimum or FindRoot.

† summary is a list of rules showing the numbers of steps and evaluations of the function and
its derivatives.

† plot is the graphics object shown.

This loads the package.

In[1]:= << Optimization`UnconstrainedProblems`

This shows in two dimensions the steps and evaluations used by FindMinimum  to find a local 
minimum of the function cosIx2 - 3 yM + sinIx2 + y2M starting at the point 8x, y< = 81, 1<. Options are 
given to ContourPlot  so that no contour lines are shown and the function value is indicated 
by grayscale. Since FindMinimum  by default uses the "quasi-Newton" method, there are only 
evaluations of the function and gradient that occur at the same points, indicated by the red 
circles with green centers.

In[2]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,
88x, 1<, 8y, 1<<, Contours Ø 100, ContourLines Ø FalseD

Out[2]=
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This shows in two dimensions the steps and evaluations used by FindMinimum  to find a local 

minimum of the function Ix2 - 3 yM2 + sin2Ix2 + y2M starting at the point 8x, y< = 81, 1<. Since the 
problem is a sum of squares, FindMinimum  by default uses the "Gauss|Newton"/Levenberg|
Marquardt method that derives a residual function and only evaluates it and its Jacobian. Points 
at which the residual function is evaluated are shown with yellow dots. The yellow dots sur-
rounded by a large purple circle are points at which the Jacobian was evaluated as well.

In[3]:= FindMinimumPlot@Hx^2 - 3 yL^2 + Sin@x^2 + y^2D^2, 88x, 1<, 8y, 1<<D

Out[3]= :92.27472µ10-28, 8x Ø 2.06482, y Ø 1.42116<=,

8Steps Ø 6, Residual Ø 7, Jacobian Ø 7<,
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This shows in two dimensions the steps and evaluations used by FindMinimum  to find a local 

minimum of the function Ix2 - 3 yM2 + sin2Ix2 + y2M starting at the point 8x, y< = 81, 1< using 
"Newton’s" method. Points at which the function, gradient, and Hessian were all evaluated are 
shown by concentric green, red, and cyan circles. Note that in this example, all of the Newton 
steps satisfied the Wolfe conditions, so there were no points where the function and gradient 
were evaluated separately from the Hessian, which is not always the case. Note also that 
Newton’s method finds a different local minimum than the default method.

In[4]:= FindMinimumPlot@Hx^2 - 3 yL^2 + Sin@x^2 + y^2D^2,
88x, 1<, 8y, 1<<, Method Ø NewtonD

Out[4]= :94.03019µ10-29, 8x Ø 1.57033, y Ø 0.82198<=,

8Steps Ø 6, Function Ø 10, Gradient Ø 10, Hessian Ø 7<,
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This shows the steps and evaluations used by FindMinimum  to find a local minimum of the 

function ex + 1
x
 with two starting values superimposed on the plot of the function. Options are 

given to Plot so that the curve representing the function is thick and purple. With two starting 
values, FindMinimum  uses the derivative-free principal axis method, so there are only function 
evaluations, indicated by the green dots.

In[5]:= FindMinimumPlot@Exp@xD + 1 ê x, 8x, 1, 1.1<,
PlotStyle Ø 8Thickness@.025D, RGBColor@.4, 0, .4D<D

Out[5]=

This shows in two dimensions the steps and evaluations used by FindRoot to find a root of the 
function 9x2 - 3 y, sinIx2 + y2M= = 80, 0< starting at the point 8x, y< = 81, 1<. As described earlier, the 
function is a residual, and the default method in FindRoot evaluates the residual and its 
Jacobian as shown by the yellow dots and purple circles. Note that this plot is nearly the same 
as the one produced by FindMinimumPlot with the default method for the function 

Ix2 - 3 yM2 + sin2Ix2 + y2M since the residual is the same. FindRootPlot also shows the zero 
contour of each component of the residual function in red and green.

In[6]:= FindRootPlot@8x^2 - 3 y, Sin@x^2 + y^2D<, 88x, 1<, 8y, 1<<D

Out[6]= :8x Ø 2.06482, y Ø 1.42116<, 8Steps Ø 7, Residual Ø 7, Jacobian Ø 7<,
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Test Problems

All  the  test  problems  presented  in  [MGH81]  have  been  coded  into  Mathematica  in  the

Optimization`UnconstrainedProblems`  package.  A  data  structure  is  used  so  that  the  prob-

lems can be processed for solution and testing with FindMinimum  and FindRoot  in a seamless

way.  The  lists  of  problems for  FindMinimum  and  FindRoot  are  in  $FindMinimumProblems  and

$FindRootProblems,  respectively,  and  a  problem  can  be  accessed  using

GetFindMinimumProblem and GetFindRootProblem.
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$FindMinimumProblems list of problems that are appropriate for FindMinimum

GetFindMinimumProblem@probD get the problem prob using the default size and starting 
values in a FindMinimumProblem data structure 

GetFindMinimumProblem@prob,8n,m<D

get the problem prob with n variables such that it is a sum 
of m squares in a FindMinimumProblem data structure

GetFindMinimumProblem@prob,size,startD

get the problem prob with given size and starting value start 
in a FindMinimumProblem data structure

FindMinimumProblem@ f,vars,opts,prob,sizeD

a data structure that contains a minimization problem to 
be solved by FindMinimum

Accessing FindMinimum  problems. 

$FindRootProblems list of problems that are appropriate for FindRoot

GetFindRootProblem@probD get the problem prob using the default size and starting 
values in a FindRootProblem data structure 

GetFindRootProblem@prob,nD get the problem prob with n variables (and n equations) in 
a FindRootProblem data structure

GetFindRootProblem@prob,n,startD get the problem prob with size n and starting value start in 
a FindRootProblem data structure

FindRootProblem@ f,vars,opts,prob,sizeD

a data structure that contains a minimization problem to 
be solved by FindRoot

Accessing FindRoot problems. 

GetFindMinimumProblem  and GetFindRootProblem  are  both  pass  options  to  be  used by  other

commands.  They also  accept  the  option  Variables -> vars  which  is  used to  specify  what  vari-

ables to use for the problems.

option name default value

Variables XÒ& a function that is applied to the integers 
1, … n to generate the variables for a 
problem with n variables or a list of length 
n containing the variables

Specifying variable names.
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This loads the package.

In[1]:= << Optimization`UnconstrainedProblems`

This gets the Beale problem in a FindMinimumProblem data structure.

In[2]:= beale = GetFindMinimumProblem@BealeD

Out[2]= FindMinimumProblemB
3

2
- X1 H1 - X2L

2

+
9

4
- X1 I1 - X2

2M

2

+
21

8
- X1 J1 - X2

3N

2

,

88X1, 1.<, 8X2, 1.<<, 8<, Beale, 82, 3<F

This gets the Powell singular function problem in a FindRootProblem data structure.

In[3]:= ps = GetFindRootProblem@PowellSingular, Variables Ø 8x, y, z, w<D

Out[3]= FindRootProblemB:x + 10 y, 5 H-w + zL, Hy - 2 zL2, 10 H-w + xL2>,

88x, 3.<, 8y, -1<, 8z, 0.<, 8w, 1.<<, 8<, PowellSingular, 84, 4<F

Once you have a FindMinimumProblem  or FindRootProblem  object,  in addition to simply solv-

ing the problem, there are various tests that you can run. 

ProblemSolve@p,optsD solve the problem in p, giving the same output as 
FindMinimum  or FindRoot

ProblemStatistics@p,optsD solve the problem, giving a list 8sol, stats<, where sol is 
the output of ProblemSolve@pD and evals is a list of rules 
indicating the number of steps and evaluations used

ProblemTime@p,optsD solve the problem giving a list 8sol, Time -> time<, where 
sol is the output of ProblemSolve@pD and time is time 
taken to solve the problem; if time is less than a second, 
the problem will be solved multiple times to get an average 
timing

ProblemTest@p,optsD solve the problem, giving a list of rules including the step 
and evaluation statistics and time from 
ProblemStatistics@pD and ProblemTime@pD along 
with rules indicating the accuracy and precision of the 
solution as compared with a reference solution

FindMinimumPlot@p,optsD plot the steps and evaluation points for solving a 
FindMinimumProblem p

FindRootPlot@p,optsD plot the steps and evaluation points for solving a 
FindRootProblem p

Operations with FindMinimumProblem and FindRootProblem data objects.
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Any  of  the  previous  commands  shown  can  take  options  that  are  passed  on  directly  to

FindMinimum  or  FindRoot  and override any options for  these functions which may have been

specified when the problem was set up.

This uses FindRoot to solve the Powell singular function problem and gives the root.

In[4]:= ProblemSolve@psD

Out[4]= 9x Ø 8.86974µ10-9, y Ø -8.86974µ10-10, z Ø 1.41916µ10-9, w Ø 1.41916µ10-9=

This does the same as the previous example, but includes statistics on steps and evaluations 
required.

In[5]:= ProblemStatistics@psD

Out[5]= 9x Ø 8.86974µ10-9, y Ø -8.86974µ10-10, z Ø 1.41916µ10-9,

w Ø 1.41916µ10-9, 8Steps Ø 28, Function Ø 29, Jacobian Ø 28<=

This uses FindMinimum  to solve the Beale problem and averages the timing over several trials 
to get the average time it takes to solve the problem.

In[6]:= ProblemTime@bealeD

Out[6]= 992.63792µ10-19, 8X1 Ø 3., X2 Ø 0.5<=, Time Ø 0.00201428 Second=

This uses FindMinimum  to solve the Beale problem, compares the result with a reference 
solution, and gives a list of rules indicating the results of the test.

In[7]:= ProblemTest@bealeD

Out[7]= 8FunctionAccuracy Ø 18.5787, FunctionPrecision Ø Indeterminate,
SpatialAccuracy Ø 9.7438, SpatialPrecision Ø 9.85325,
Time Ø 0.00202963 Second, Steps Ø 6, Residual Ø 8, Jacobian Ø 7, Messages Ø 8<<

ProblemTest gives a way to easily compare two different methods for the same problem.

This uses FindMinimum  to solve the Beale problem using "Newton’s" method, compares the 
result with a reference solution, and gives a list of rules indicating the results of the test.

In[8]:= ProblemTest@beale, Method -> "Newton"D

Out[8]= 8FunctionAccuracy Ø 25.5581, FunctionPrecision Ø Indeterminate,
SpatialAccuracy Ø 12.384, SpatialPrecision Ø 12.6444, Time Ø 0.00297526 Second,
Steps Ø 8, Function Ø 9, Gradient Ø 9, Hessian Ø 9, Messages Ø 8<<
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Most  of  the  rules  returned  by  these  functions  are  self-explanatory,  but  a  few  require  some

description. Here is a table clarifying those rules.

"FunctionAccuracy" the accuracy of the function value -Log@10, °error in f¥D

"FunctionPrecision" the precision of the function value 
-Log@10, °relative error in f¥D

"SpatialAccuracy" the accuracy in the position of the minimizer or root 
-Log@10, °error in x¥D

"SpatialPrecision" the precision in the position of the minimizer or root 
-Log@10, °relative error in x¥D

"Messages" a list of messages issued during the solution of the problem

A very useful comparison is to see how a list of methods affect a particular problem. This is easy to do by 
setting up a FindMinimumProblem object and mapping a problem test over a list of methods.

This gets the Chebyquad problem. The output has been abbreviated to save space.

In[9]:= Short@cq = GetFindMinimumProblem@ChebyquadD, 5D

Out[9]//Short= FindMinimumProblemB
1

81
H-9 + 2 X1 + 2 X2 + 2 X3 + 2 X4 + 2 X5 + 2 X6 + 2 X7 + 2 X8 + 2 X9L

2 +

1

81
I-3 H-1 + 2 X1L + 4 H-1 + 2 X1L

3 - 3 H-1 + 2 X2L + á21à + 4 H-1 + 2 X9L
3M

2
+

1

81
Iá35à + 16á1à5M

2
+

1

81
Há1àL2 +

1

81
á1à2 + Há1à + á1àL2 +

1

15
+
1

9
Há1àL

2

+
1

35
+
1

9
I-9 + á35à + 32 H-1 + á1àL6M

2

+

1

63
+
1

9
I9 - 32 H-1 + 2 X1L

2 + á51à + 128 H-1 + 2 X9L
8M

2

, á3à, 89, 9<F

Here is a list of possible methods.

In[10]:= methods = 8Automatic, "QuasiNewton", 8"QuasiNewton", "StepMemory" Ø 10<,
"Newton", 8"Newton", "StepControl" -> "TrustRegion"<, "ConjugateGradient"<;

This makes a table comparing the different methods in terms of accuracy and computation time.

In[11]:= TableForm@Map@Join@8Ò<, 8"Time", "FunctionAccuracy", "SpatialAccuracy"< ê.
ProblemTest@cq, Method Ø ÒDD &, methodsDD

Out[11]//TableForm=

Automatic 0.0288897 20.0663 9.94666
QuasiNewton 0.0317216 17.1785 8.3777
QuasiNewton
StepMemory Ø 10 0.0323488 16.4119 7.47304

Newton 0.0769076 20.025 9.34314
Newton
StepControl Ø TrustRegion 0.0761128 21.8281 10.6614

ConjugateGradient 0.0388904 15.7931 7.72219

It  is  possible  to  generate  tables  of  how  a  particular  method  affects  a  variety  of  problems  by

mapping over the names in $FindMinimumProblems or $FindRootProblems. 
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This sets up a function that tests a problem with FindMinimum  using its default settings except 
with a large setting for MaxIterations so that the default (Levenberg|Marquardt) method can 
run to convergence.

In[12]:= TestDefault@problem_D := Join@8"Name" Ø problem<,
ProblemTest@GetFindMinimumProblem@problem, MaxIterations Ø 1000DDD

This makes a table showing some of the results from testing all the problems in 
$FindMinimumProblems. It may take several minutes to run.

In[13]:= TableForm@Map@H8"Name", "Time", "Residual", "Jacobian", "FunctionAccuracy",
"SpatialAccuracy"< ê. TestDefault@ÒDL &, $FindMinimumProblemsDD

Out[13]//TableForm=

Rosenbrock 0.00284034 21 16 15.9546 15.9546
FreudensteinRoth 0.00442559 35 17 14.1484 8.4797
PowellBadlyScaled 0.00276841 18 17 29.9092 12.4303
BrownBadlyScaled 0.00182188 10 10 20.5345 16.2673
Beale 0.00199867 8 7 18.5787 9.7438
JennrichSampson 0.00828054 34 20 13.3703 8.87261
HelicalValley 0.00218182 11 9 32.0055 17.2046
Bard 0.00673732 7 7 16.9157 8.00751
Gauss 0.00786546 3 3 21.1019 11.0733
Meyer 0.0264677 126 116 11.5089 9.95814
Gulf 0.0120229 89 17 31.109 13.543
Box3D 0.00715045 6 6 18.9447 8.68579
PowellSingular 0.0034851 28 28 30.3044 7.73816
Wood 0.00791268 69 64 23.5366 13.0536
KowalikOsborne 0.010429 36 35 18.6639 8.33507
BrownDennis 0.0899279 412 375 9.13811 6.11409
Osborne1 0.0224698 20 17 17.4797 9.3597
BiggsExp6 0.0231614 50 36 30.2266 14.4925
Osborne2 0.121583 20 17 17.1587 7.90304
Watson 0.0736547 11 9 18.8178 6.68865
ExtendedRosenbrock 0.0954113 21 16 29.9092 15.9546
ExtendedPowell 0.123236 27 27 29.9092 7.21075
PenaltyFunctionI 0.0249084 117 94 18.1356 6.96613
PenaltyFunctionII 0.0271926 109 72 15.9546 7.62089
VariablyDimensionedFunction 0.130756 17 17 15.9546 15.9546
TrigonometricFunction 0.00774007 7 7 28.0238 14.6546
BrownAlmostLinear 0.00557332 14 13 29.1488 0.668059
DiscreteBoundaryValue 0.00547087 4 4 30.5195 14.2959
DiscreteIntegralEquation 0.0105878 4 4 29.3985 14.8825
BroydenTridiagonal 0.00479374 5 5 17.9475 9.44685
BroydenBanded 0.00825598 8 7 28.0567 15.503
LinearFullRank 0.00370734 2 2 14.7505 14.6348
LinearRank1 0.00938284 55 2 15.0515 ERROR
LinearRank1Z 0.00742234 37 2 15.0515 ERROR
Chebyquad 0.0280148 11 9 20.0663 9.94666

The two cases where the spatial accuracy is shown as ERROR are for linear problems, which do

not have an isolated minimizer. The one case, which has a spatial accuracy that is quite poor,

has multiple minimizers, and the method goes to a different minimum than the reference one.

Many of these functions have multiple local minima, so be aware that the error may be reported

as large only because a method went to a different minimum than the reference one.
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